This is a reproduction of a library book that was digitized by Google as part of an ongoing effort to preserve the information in books and make it universally accessible.

Google books

https://books.google.com

$$
\begin{aligned}
& \text { Sic } 12523 \\
& 4
\end{aligned}
$$

4 under averse
a- chant 6
ferric bu

DESCRIPTIONANDVSEOFTHE SECTOR, CROSSESTAFFE, andother Instruments:

VVith a Canon of Artificiall Sines and Tangents, to 2 Radius of 10000.0000 . parts, and the vie thereof in Afroonomie, Navigation, Dialling, and Forification, Ǵ̛.

The fccond Edition mush angmented.

By Edm. Gunter Cometime Profeffor of Atonomic in Grefham Colledge in Londom

LONDON;

Printed by Fiviliam Iones, for Iames Bowler, and are to ba. fold at the CHarigoild in Pants Church-gard.

$$
1636
$$

$$
\begin{aligned}
& \therefore \cdot \cdots . \quad \therefore \quad 4 \\
& \text {...... A } \\
& \text { - }
\end{aligned}
$$

$$
\begin{aligned}
& \cdots \\
& \therefore=-\cdots-\cdots \\
& \text {. } \because \because \therefore \because, \\
& \text { - }
\end{aligned}
$$

HONORATISSIMO

DOMINODn. $70 H A N N I$
COMITI de BRIDGEWATER, VIC ECOMITI de BRACKLEY,

BARONI de ELLESMERE, EQVITI ORDINIS HONORATISSIMI QVI DICITVR BALNEI, Do PRESIDENTI WAELIA LIMITVMQ NEC NONREGIEMAIESTATIA SACRIS CONSIEIIS. \&c.

Iucubrationes has fuas Mathematicas

> D. D. D.

Edu. Guntsig.

I!: ? Dogited by Google

The Contents.

THE CONTENTS Of the firt booke of the Sector.

Chap. r .

THEC defription, muking, and geminaltofeof of be SCAor. pag. 1. Cbap. 2. The vfeof the conte oflinos.
pag. 19.
 bling any giver parey; or jof an cxom of parts. peg. 19.
To increafo or dimininiba live inagizen proportiom:"
Tedividonathainao panery 5 vel.
Tofinder:propeotionation two or more right lines given. pag. 22 :
 uthird in continuall pröportion. -pagi 290
Threa limes being-gizen; to - Innd a fourth in dijcontinuali
 iTo diuide olise in fouth fiort - 4 cuth that Lime is before disix ded.

7ag. 25 .
Timoxumbers: Gaing givinito fundea thirdiur cemrimella ivia

 to.find a forrtth in diccontinnall

Cbap. 3.The ved of the lines of fuperficies 1 . T. findia proportions lectuene-sino or more theyeperfaies: F'TO agment or diminis a raperficies in a gimen proportion pag. 30.
To"dde: mè leter guperficies . Sotaxith her To fubtracl.one 1 the fuparficies from anoosther pai 30. T" Jind in meinine proportionatl
 To make afquare equalt to 'a
 To fuind a proportionterween fuperficies thoug b they be wr-

 Que feperficies, and equall to amotomerys. sTafzala meime proporitionall

 sTo find the Square roote of in nhenbex the +oote being given, find thè $/ q$ quatre number of that reqote.
pas. 35 . T trat wimberasbety given,
 ted praportion ver. pag. 37. 1. Chap iti The ofe of the lines affotias. To find ial proportion

 Torangment or dimintife a Vos

The Coments.
thet. To fubract one like folid a chords of ewery arke. pag. 54. from another.. 1. pag. 40
Ta finditien meama prapopsion . Mall lines betweque simeroandive lines gincoro. $\because \cdots$ pagi 42.
To find the lake betwetme oweo nwenbers.: - pagotes.
\therefore Tojsiontrephbiguesdots of a Whabers: $\because 0$: Pegadupol

- Tbrec nombers beinge sionow, of fridabafant ted praparviparb $\therefore \cdots$ pags 46
The contenta ot the ficond booke of the Setior.

Cbapal Of thenimsere offines ahords 3 rangenas, wid fecants.
peg. 170
Chap, 2. Tbegenerall ofe of finesand tangents: paig: $\$ 2$:
The nodes. haing knowne, to find tibe right fine of ayy arke or angto. \therefore pán- 52
Therighe jon of and arkebe. ing, to finde the radimo.
pa. 53.
The Radins afix cirslegor the right jine of any arke givient, cr aftraigbt line refensilivg a five to finde the quantitio of that sopkremani fize
pag. 53.
The radius ar any vight five given, to findo the ver \int od fone of any arte.
Faning the diamater or fomidiamefer of minctate find the
blingithe o oudjand verfod fine to find the dinasetor and radius
pag. 57.
The chord of any arke being ginex, tofind the tiameser and nodiber - an a pag' 580
Haming the dinimeter of an allipfos, to def cribe the fane upu - explane.
pang 58.
CTo. open the Sector to dony int -gle-ar shat Sechem being oporned ta fiod the quanuitieg ithe wingte
pag. 60.
T. find the quantitio of any
 IPowaright tioneaindi e paint ginem on it, to make as angto $2-$ grath ta any ragte giver.
p 2.03
To diusde the circmenfortrote ef a ciection - given
To dinide a right line ty en orecisse and ineme proportion.
Chap. 3 of the projection of: the Phetexix praine. pag. 6 uhith ie Noravamaltre foew she: haure of the night. pag. 72. Chap. 4 Of the rufotetion of riphtalime triarnglos. - pag 79. Chapt 5. Of the refantion of

pag. 90.
Clisp: σ_{4} of the ofe of the. Meridians

The Costents.
infor
CHap.4. Df the lines of equa: tiditbodies for contripering of the fides by the'ftie rig gitari boitries
今ptatre equinte to thofe bodeds.
pir 5 2.
Chap, 5 . Of site litice bf met.

 thoir wotigtt watat mingitudt:
pa, 53
Chapuc. Of Abs:lowe of the leffer tungents forideforibing of houre-lines on feverall planes.
pailis
The Contents of the fint Booke of the crope: Staffe:

Chap: F. Fethedefcriterion infcription of the feverall lines. pag. 1:
Chapas. The rife of thatines of inteties; for : perpendianture. brights:and diytances. : pi 4

Chap.3. The vere of the tas: gent lines for taking of angles and obforving atbe alititude of she Sumpe:
p. 9

Chap. 4. The ufe ofishe limes of eguall. parts, iaynod with the tines of shorids, for protrationg.
of righ linetriangley; paito
Chap: 5. The infe of theme. riddixulyona in mikizg yf: a cean atowred pricking downe the

C'lap! 6. Ofrtbe gemerst ofe of zloe lise of wixmbers far firedo ing of: proparsianall: numbers, what werviction ef xhapes. rpe 19
\& Rhap. Ti Mafthermertat rfie Twill $\begin{aligned} \text { vfouft be limas. of eartificiall }\end{aligned}$ nenes: \therefore Chapr 8. The v/s of: + liver afieriajadidell- salogewts sime ke. foturing: Df $\sqrt{p h}$ drijothtriangles.
p. 26

Chipp. 9: Of nee gemerall ike of fuadinernaf sinterined. Tian gever yoymadiminte tha Lisus of simentiers in refal ving aft right Limatriangles.
p. 28

Chapi io. The gomerall v/e of the lisie of werfod Simas in refolvingaf my beriacthtwiangha, ou bervion tbrice foder are thnosinno, and an ongle requined.
p. 37.

The Contents of the feeond Booke of the Chuffun:
Siaffe:

Where the former tives of praportion are moreparcicubar. Igraxphanod in feverall, hivides.
pagi 39
Chap.1. Therefe of the line of nuerberis in superficiall neatsure.

Tho Consteatis
"Is finting the constent in ation of the compriffeie pi8z Squiring of woticto: : pai4o - Chater 2. Itavefrefutrilina

 - Chap 3 .OOf the : ofe of whe lime of numbers in Solidinodfure in fiwding the coutsus of a fouridd fold, w $\because 1$ ripias and of a cylinder,

Ghap 4: The vfaof ithe line of numbers in igawging of.oeft fels,:

Chapis: of refoluing fuch Aftrenonsicals propofitions as are'of ordinary ufe in the pra-1 Eife of RLavigition, as an finding the altisude of tot Sumes.
p: 65
The Sunnes declination. The time of the Surnes rijung and fetting.
:p. 66
The rmptitede.
p. 67

The time and alititude: zaten the Sine commeth to be dice eaft orwaft:
p. 68

The Sunnes altitide and azimenth at the hapre of fixa.ip. 69
Thrivaimath at anyealtitude.
p,70
The boure of the day. P. 73
Tberightiafienfiom. p. 75 Hritb the masier of refolving thefo. Tropgfition by andter of vrificiall Sines and Tangents.
pa: 76
And the finding of the vori-1
Chap. 6. :Of froh naxicicult q4aftions as are of ordinary vife cowoinnianclongritedes hatitide, ruindiand difanciar: : pas 84
With an Appendix of therifa of in ingtrumeat in forme of a Graffo. Bow, far whe more cafice finding of the latitude at: Sank pagioso

The Contents of the third
Booke of tha Craffe-
ars \therefore - s staffos
The diftimition of Planes pohereas bourc-lises may be de'foribed.
patis
Of the vo of the limes of numsbers, Sines and Tangexts, for the drawing of houre-lines on all forts of Planes.
p. 115

To funde the inclinatson of a
Plaise.
p.120

To finde the daclination of a
Plane.
p. 121

Chap. I: To dram tho bowre linas in aquiveritials: P leses
p.i.35

Chap. 24 To deswe tbe baure limes in a directh polar plane.

$$
p, 129
$$

e Chap. 3. Ta drapo the boure: limes ith in mersdianglanp.p.I 30

Ghap,4. To drax the boureelimos' in an borixastall plame:
b 3
p. 132

Chap:

The Cortents:

Chap. jo. Te chruestop haver. Limo in a juime teraicall pive.
p. 137

Chapi 6. Ti dramethe kawe limes in a verticall inolining plane.
pen 139
Chap.7. To draw the howre lines in a versicall declining plase.
p. 142

Chap. 8. To draw she boure lines in a meridian inclinsing plane.
pol 58
Chap.9. To draw the howre lines in a polar declining plane.
p. 163

Chap.10. To draw the boure lines a dealining inclining plame.
pi: 70
Chap. 12. To defcribe the sropiques and other parallels of declination in an aquinoctial plave,
p. 180

Chap.12. To deforibe the tropigmes andotber parattels of declination in a polar plane.
p. 182

Chap. 13. To deforibe the sropiques and other: paraliels of ideclination in any other Plane, not aquinoctmill nor polar. p. 189

Chap. 14. To deforibe shie parallels of the fignes in any of the firmer plivess : ©p. 198

Chap, is. To ayoutbe shic paratiels of sbe lengoth of the day in any of the former plasess,
p.1991

Chap 26. To duom abe pld mequall planicumis hewercs in abo former phemise : page 202
Chap. 27. To drave ato havere lives from Suond-rifang, and
Sumps-fetsing . in cheformer planer,
p. 204

Chap 88. Ta draw abe bei: rizoutall line in stbe formor
planes,
p. 206

Chap,19. Todraw tbe verticall circles ar asimuctos in tha
formor planes,
p. 208

Chap. 20. To dofcribe the
parallels of the horiconin the
former plases.
p. 216

To defcribé fucb linesias maty
Suew the proportion of the flat.
dow unto the Gnomen,
p. 228

Laftly an Appendix comaer. sing the vfe of a small portable Quadrant for she more cafic finding of thic bowne and sbicazimonth,
p. 230

Chap. 1. Of ibe doforiptions
of the 2 uadrant,
P. 23°

Chap 2 Of tbe vfe of the Quadrawt in taking therlitisude of the Swnie, Moone, or Starres
p. 247

Chap-3. Of the Eclipsique,
Chap. y 1 of itc tine of de climation,
pre49
Chap. 5. Of the circle of the po250
Chap:

Firf correct, and then reade with practife.

Eirata Sectort
PAg. 13.0 line 23 reade according. p 8: line laft x denomination p. 30 1.5. r. numbers pa, 4 2:1. i, r. were pi 46; li. is. t. 7. po 45, L. 2, so hand

Errata Croffefaff:

 to the fine $p .431 .23$. r. (quare p 47.10 . 1 r, To in the p. 53 , 1, r. 19 length P. 97. 1. 17. r . of poifition p. 107. i. 27. r . as arep. 208.1. 30, r, to the day

 of the Az, $\mathrm{p}: 233,1.3$ 1, r, the tenth of P . 23 , 1 . 16, r. belonging to 20. p. 24 5. l. 12, r. hang.

Erratato the $u f$ of the Camos:
Page 2, 1. 6, ro 19, 1.22 , r. 100, p. 3, 1. 4, ro added to, p. 6, in margin, ro fatus, p. 20,1, 3, r.p. 25, 1. \{, P. 90. p. 34.1\% 23. r. 103. 1. 25. r. by two pag, $42.1 .7, r$ which is pag. 46,103 , r. propofition pag. 47. I. $1 \mathrm{f} . \mathrm{r}$.
 $1,26, r$, ditch.

The Errata by directiou to the Croffeftaffe for thofethere.

Page 117, line 28, r, 77, p. 121,1, 28, r, $62, p, 126,1,8, r, 36, p$, $143,1,1, r, 146$ p. $156,1: 22, r, 129, p, 196,1,9, r, 190, p, 199,1,1, r$, $65,1,4, r, 184$, P. 202, $1,34, r, 135, p, 204,1,4, r, 168,206,1,8, r$, $150, p, 207,1,8, r, 181,1,25, r, 183 . p, 208,1,5, r, 131,138,150, p$. 215,$1 ; 4, r, 163, p, 216,1,22, r, 20 \varsigma, p, 218,1,1, r, 209, p, 230,1$, io, $69.1,11, r, 75, P, 245,1,16, r, p, 72$, of the Sector, $P, 246,1,3, r$, pa, $7,1,20, r_{2} p_{2} 69$, of the Setor, $r, p 162,1,18$, put out in fcheme, P, 158 , Setors:

The ufe of the Canon.

- His Canon hath like vee as Tables of right Sines and Tangents fer forth by others, but the practife fomewhat more cafie. For keeping their rules, and working by thefeTables, you may vfe addition infiead of their multiplication, and fubtraction in ftead of their divifion, and for refolve al fphxricalltriangles without the helpe of Secants or verfed -sines.

If any defire the like of right-lined Triangles, he may äd joyne the Logarithmes of my old Collegue \& worthy friend M. Henrie Briggs. For both proceed from the fame ground, and fo require the fame maner of workes; as I often hew in. my publique Lectures at Grafiam College: where I reft.

Friend to all that are ftudious of Mashematicall praEtije, E. G.

FINIS.

THE

FIRST BOOKE
 OF THE SECTOR.

CHAP. 1.

Thedfcription, the menking, and the generall afe of the Seaior.
 Settor in Geometric, is a figure comprehended of tworight lines containing an angle at the center, and of the circungerence affumed by then. This Geometricalli inStrument hawing two logs containing all variety of angles, and the d flance of the fecte, reprefenting the fubtenfes of the circumference, is therefore called by the fame name.
It containeth 12 feucrall lines or feales; of which 9 are generall, the other 5 more particular. The firft is the feale of Lives diuided into a 100 cquall parts, and numbred by 1.2.3.4.5.6.7.8.9.10.

The fecond, the lines of Superficies diaided into 100 B ynequall of Sines, are alldrawne from the center of the Sector almolt torthe end of thelegs. Ih y aredraupe orboth the legs, thatzuety line hayhtaviethis fellow. At of then are of one length, that they may anfwere one to the other. And cuery one hath his parallells, that the eye may the better difting siif the diuffions. But of the parallells thofe onely which are in wardemot contsine he the diuifionso

There are thite otfer generatf lime, thich becaufe they are infinite are plac d on the fide of the Sector. 5.Thefirft a line of Tangent\&, ruitbred with 10.20 .30 .4050 60 . fignifying fo many degrees from the $b \in g i n n i n g$ of the line, of which 4.5 are equall to the whole line of Sixes, theirelt:foltownas the lengthrof theSedfor will beare. 6. The fecond, a line of Secants, diuided by pricks into 60 degrees, is the fame with that of the line of Tangents,' to which it is joyned.
7. The third is sthe grevidian line, or line of R umbs, diuit dedisnequaly liatio dsgrees, of whichtie firlt 70 are almontequalł to the whole line of Sines, the reft follow vat 2085 aceording'to the length of the Sellor.
-Of the particularilines inferced among the genorall; boompe there was veydfipact.
8. The firf are the lines of Qundritereplaced betweene the lines of Soxes, and noted with-1o. 9. 8. 7. S. б. 5: 90. 2 .
9. Thefeconily th lines ofrighents placedbetweene the lites of Sures and: 5 uporfitises, diuided atito yo pates, and

10. The third, the lines of Initritbed Godies in the fante splyeres placedibetweenethe falés of Lisers, and nored with-D.S.I.C. O.T.

1r. The fourth,the lines of Equated bodios, placed betwen the lines of Lives and Solive, and noted with D. I.C. S.O.T 22. The fift, are the tines of Metralls, inferted with the lines of Equated Godies (there being roome fuificient) and

There remaine the edges of the Selior, and on the ont I have fet a line of lucbes, which are the twelfth parts of a foote Engliih: on the othèr alleffer line of Tangeneoy to which the Gromatis Riditu.

2 Of the istaking of the Settor:

LEe a Reter beffirt made cither of braffe or of woods C.jike thato the facracr: figire, whieh may open and thut vpgn his center. The headsof it may' be about: the twelfth part of the whole length, that it may beare the moueable.foore, and yet the moft- part of he divifions may fall without it. Thenlet a moueable Gromon be fet aothoondrofthe moveaber foote, and there turne vpöd on Arisgi for :mitic may forietime tand at a right angle whithe fetejand fometimes be inclofed within the feetBat ehis is welliknowne to the workemant.

- For drawing of the lines. Vpon the center of the Sector". andfuldiantion fome what foritef chen one of the fetts drasp and could atle of circle, choffing the clofare of the intward edgestof the SECtor about the letren T.
In this arke, at ond deg ofe cither fide from the edge ${ }_{2}^{2}$

 thetnumbets fet to them, be ondy the 4 \& de vito 10 as in the e e xathple: Theretints fo dutuded, I call the lints or
 2. In this Atre at 5 degrees ón cither ifde, froftricedge
 them with Parallells. Thefe fhall ferue for the lines of Silids.

Trbe defaription of the Hwes:

Thenion the other fide of the SeCter in like mannes? xpon the Center \& equall Semidiameter, drawe anothes bike Arke of a circle: and here ageine at one degree neere on cither fide from the edge neere the letter 2 draw right lines from the center, and fit them with parallells. Thefe thall ferue for the lines of Simes.

At 5 Degrees, on either fide from the edge neere 2 draw other right lines fronthe center, and fit them with parallells : thefe fhall ferue tor the lines of Superfcies.

Thefe foure principall lines being drawne, and fitted; with parallells, wee may draw other linos in the middle betweene the edges and the lines of Lives, which Thall ferue for the lines of isfcribed bodies, and others betweene the edges and the Sines for the lines of quadratwore. And fothe red as.in the example.

3: To diwidethe lines of Superficies.

EEing the Superfccies doe hold in the proportion of cheir bomologall fides duplecared. by the 29 Pro. 6. libs Euclid. If you fhall find meane proportionalls between the whole fide, and each hundred part of the like fide, by the 13. Pro 6 Jib. Exclid.all of them cutting the fame line,that line fo eut lhall containe the diuifions required. wherefore apon the center A and Semidiameter equall to the line of Lines,defribea Semicircle ACBD, with AB perpendicalar to the diameter $C \mathcal{D}$. And let the Semidianeter $A D$ be divided as the line of. Lines. into aphanded parts, $\& A$ F the one halfe of $\mathcal{A C}$ diuided alfointo an hundred. parts to thall the diuifions in $\mathcal{L} E$ be the centers from whence you. fhall defcribe the femicircles C 10. C 20.C 304%. diuiding the line $A: B$ into an puadred vnequall. parts : \& this line $\boldsymbol{A B}$ ro diuided thall be the line.of Superficies, and muft betransferred into the Secior. Bot let the numbers. Set to them beronely 1! En 2e 3! wnto 10, as in the exy ample.

Or thefe lines of Smperficies may otherwife be transferred into the Setter, out of the line of Limes, by a table of \{quare rootes: For the roote taken out of the line of Lines thall giue the fquare in the lines of Superficies.

As, to infcribe the divifion of 2 sin the limes of Superfo. ciesput fix ciphers to 25 and make it 25000000 then finde the faroote of this number, which will be 5000.

Take therefore 5000, our of the line af Lines (fuppofing the whole line to be 10000) and it well giue the true. diftance betweene the center, and the points of 25 . in the lines of Superficies:

So, for the diuigion of 30 , pat to 6 ciphiers, and make it 30000000 , whofe fq. root is 5477 . This (taken out of the line of L imes) fhall give the place for the points of 30 , in the lines of Superfocies. And the like reafon holdeth forall the ref, according to this following Table.

Ifany pleafé tomake ve of a Dingonal Scale, equall to. the lime of Lives, he may put viij ciphers to the number phopofed, and make the Table of Roots to of. places. So. is worke will be more exact?

> NTable of Square Rootes for thic dimifoin of 此: Iines of Superficies.
(2)

i4 To diwide the lines of Solids.

SEing like Solids do hold in the proportion of their hoi Smologall Gides triplicated, if you hall finde two meane: proportionalls betweene the whole fide \& each thoufand, part of the like fide: all of them icutting the fame twó rightlines, the former of thofe lines fo cur, fhall copmine: the diuifions reguired.
Wherefore vpon the center x; \& semidiameter equall to the line of Lines, defcribe a circle and diuide it into 4 equallparts $C E B D$; drawing the croffe diameters $C B, \mathcal{E}$ D. Then diuide the fenidiameter $A^{\circ} C$, frrt ineo so equall parts, and between the whole line $A O \& A F$, the tenth part of $A C$, feeke out two meane proportionall lipes $A I$ and $A H$: agains betweene $A D$ and $\mathcal{A} G$ being ewo zenth parts of $A C$, feeke out two, meane propertionffis $A L$ and $A K$, and fo forward in the reft. So fhal the line $\mathcal{A B}$, be diuided inta so viequall partes.

Secondly, diuide each tenth part of the line $A C$ into xo more, and betweene the whole line $\mathcal{A D}$, and each of thom, feeke out two meane proportionalls as before: So Shail the line $A \mathcal{B}$ be duided now into an hundred vne-: quall parts.
Thirdy, If the length will beare it, fubdiuide the line ' $A C$ once againe, each part in ten more : and betweene the whole line $4 \mathbb{D}$ and each fubdiuifion, fecke two meaise
meane proportionalls as before. So fhculd the line $A B$ be now duided into roco parts. But the ruler being Thort, it Rall luffice, ifithofe io which are neareft the center be exprelled, the reft be vnderftood to be diuided, thoughactually they be diuided into no more then 5 or 2 , and chis line $A \cdot B$ fo duided shall be the line of Solids, and muft be transferred into the S_{s} for : But let the numbers fet to them be onely 3. 3. 1. 2. 3.\&c. vnto 10 as in the example.

Or thefélines of Solids may otherwife be transferred, into the Seltor, out of the line of Lines (or rather, out of a Diagonall fcale cquall to the line of Limes). by a table of Cubique Roots. For the Root, taken out of the line of Lines, lhall gine the cube in the lines of Solids,
As to infribe the diuifion of 125 in the lines of Solids; put xij. ciphers to 12 S , and make it $12 \$ 000000000000$: Then find the cubique Root, of tie number, which will be 50000 . Take thicrefore jocoov out of the line of Lames, (Girch as the wholeline is 100000) and it will gise the true diftance betweene the points of 125 inche lines of Solids.
So, for thediuificn of 300 , put to xij. ciphers more and makeit 300000000000000 , whofe cubique Rioot.is 66943 This, traken out of ofheline of Lives, hall give the place for the points of 300 in the lines of Solids. And the like reafon holdeth for all the reft, according to the enfuing Table.

cttable of Cubique Rooses.

c

For divifion of the Lines of Solids.

s. To disuide the lines of Sines and Tangents on the

 fide of the Sector.VPonthe center A, and femidiameter equall to the line of L Lines,defaribe a femicircle $A B C D$, with A D, perpendicalar to the diameter $C D$. Then diuide the guadrants C B $B \cdot D$, each of them into 90 . and fubdiuide each degree into 2 parts. For fo,if ftecight lines be drawoe paralleli to the diameter $C \mathcal{D}$, through thele 90 , and their fubidiuifions they hall diuide the perpendicular $\boldsymbol{C T}$. ynequally intogo.

And this line A B fo diuided fhalf be the line of Simes, and mult be transferr d into the Seltor. The number fet to them are to be 10.20 .30, dec.viro 90 as in the example.

If now in the point D, vito the dianeter $C D$, we thall raife a perpendicular $\mathcal{D} E$. and to it drawe ftreight lines from the center $A_{\text {a }}$ athough each degree of the quadrave
drunt D B thefe ettreight lines fhalbe fecturs, and this perd pendicular fodiuided by them thill be the line of Tan: gents, $\&$ mu't be transf:ifed vinto che fide of the Sector. The number fet to them, are to be 1o. 20. 30. \&c. as in the expmple.
If betweene A and D, another freight line $G \mathcal{F}$, be drawne parallelit to $D E$, it wit be du uided by thote lines from the center in like fort as $D: B$ is diuided, and it may frine for a leffer line oftwingits, to befet onthe edge of the Settor:
If the compaffes fhall be extended, from C, to each degree of the Q wadmant; $C \mathcal{B}$, and thofe extents transferred into one line ($C A$) this line C A fo diuided into 60 (or rather, into go. gr) :hatil be aling of Chords; atid my (ie fet on feme voyd place of the Sefior.
Thefe lines of Simes and Tangents, may yer otherwite be transferred into the Seitior out of the line of L ines, (or ra. ther out of diagonall Scale equalt to the lige of L iness, by tables of Sines and Pangentss.
 awo of xoobooi parts, the Sine of 30 gr. will be equall to j0000 (hate the 'Line offizes s) and the Sine of 45 . gr. equall to 707 Io parts of the lime of lines, accord to the vfuall table of Sines.
In like manner the Tangent of 45 g . being equall to the whole Line of limes, the taxg. of 4° deg. will be equall to 83910 parts of the Line oflines: and the Tang. of so degr. eq all to 119175, that is, to one Radim (or whole Line) and r9:75 parts more of the fame line of lines, according to the old table of Tangents.

And (vpon the fame ground) the Secart of 40 gr . will be equall to 130540 , that is, one Radius, and 30540 . parts of the Line of lines: and the Secant of 50 degr. equall to iss $7^{2,}$, and fo the reft, decorditig to the like Table of Secdurs.
The Line of Cbbrids may atcol be divided by help of the Table of Siries; and tite of tines, 'For the double fine 'o C_{3} halfe
halfe the ark, taken out of the line of limes ; will gine the chord.

As, if the $A r k$ propofed were 60 gr . The halfe of this Ark is 30 . degr. and the fiwe thereof 50000 , which being doubled make 100000 , the whole line of lines, equall to a sbord of 60 degr.

So, for the chord of go degr. The halfe ark is 45 degres; and the fine thereof 70710 . which being doabled, make 1414240 . (that is,) one Radius. and 41420 parts of the line of lines, equall to the chord of 90 gr . required.

6 To, Dew the grousd of the Sector.

LEt A B, A C, reprefent the leggs of the Sector: then: Feing thefe two $A B, A C$, are equall, and their fections AD, A E, alfo equall, they thall be cut proportionally : and if we draw the lines EC,D E, they will be, parallell by the fecond Pro. 6 lib. of Esclid, and to the: Triangles ABC.ADE, halbe equiangle; by reafon of the common angle at A, and the equall angles ar the bale, and therefore thall have the fides proportionall an bout thofe equall angles, by the 4 Pro. 6 lib. of Euclid.

The fide $A D$, fhalbe to the fide $A B$, as the bafis $D E$, v nto the parallell bafis $B C$, and by conuerfion $A B$, thall be vnto A D, as BC, vnto D E: and by periatation A D, fhall be vnto DE, as A B, to BC. \&c. So that if A. $\begin{array}{r}\text { be }\end{array}$
be the fourth part of the fide AB , then $\mathrm{D} E$, fhall alifo be the tourth part of bis parallell bafis BC. The like reafon holdeth in allother fections.

7 Tofbew the genieral vfe of the Sector.

THere may fome cóclufions be wrought by the Sector, euen then when it is Shut, by reafon that the lines are all of one length: but generally the vfe hereof confilts in the folution of the Golden rale, where three lines being given of a known denomination, a fourth proportionall is to be found. And this folution is diuerfe in regard both of the lines, and of the entrance into the worke.

The folution in regard of the lines is fometimes fimple, as when the worke is begun and ended vpon the fame lines. Sometimes it is compound, as when it is begun on one kind of lines, and ended on another. It may be begun vpon the lines of Lines; \&8.fini hed vpon the lines of Superficies. It may begin on the Sines, and end on the Tangents.

The folution in regard of the emtrance into the worke, may be either wi ha paraltell or elfe laterall on the fide of the Sector, I cal izparallell entrance, or entring with a paral: tell, when the two lines of the firft denomination are applied in the parallells, and the third line, and that which is fought for, are on the fide of the Section. I call it lateraill entranoe, or entring on the fide of the SeCtor, when the two lines of the firte denomination are on the frde of the SeEfor, and the thirdline and that which is to be found out, doe ftand ing the parallells.

As for example, let there be giten three lines $\mathcal{A}, \mathcal{B}, C$,to which I am to find a fourth proportienall. Iet A, meafared inthe line of lines, be 40,350 , and C 60, and fuppofe
 Thall 60 Here are lines of two denominatios, one of manths another of pounds, and the firt with whigh I an to enter mult be that of 40 monthes. If then I woald enter with a parallell, firft I take A, the line of 40 , and pax it ouer as a phrallell in so,reckoned in the line of limes, on either fide of the Sector trom the center, fo as it may be the Bafe of an Ifofcheles triangle B A C, whole fides A B, A C are equal to B, the line of the fecond denomination.

Then the Solity being thas optaneds, I thite C the line of 60 , botweene che ficetre of the cotrapuffes, and curyyin ditemp paralledl to $B C$, I inde thent to croffe the lines $A B$, $A C$, on the fide of the Sther in D and B, numbred with 75 , wherefore I conclude the lint $A D$, or $A E$, is tite foorth proportionall mad the cortwpondent marnbere 79 whidh wastrequirod.

ButifI waidd dutier ow the fute of the Solfor, ctien would: 1 difpofe the lines of the firtt denomination A and C; in the line of Lises, on both fides of the Sector, in A B, AC, $\&$ in $\mathbf{A} D ; \mathbf{A} \mathbf{E}_{\text {, fo }}$ as they Should all meere in the centé A, and thea taking 8 , the line of abe fecond demomnatip on put it oner asia parablellin $B C^{\prime}$, that it may be the Bafis of the Ifofcheles triangle $B \cap C_{1}$ (whofe fides $A: B, A C$; are equall to A, the firt line of the firlt denominatio.,) for fo the Seflor being thus opened, the o:her parallell from D to E, Thall be the fourth proportionall which was required, and if it be meafured with the other lines, it fhal be 75 , as before.

In both this manner of operations, the two firt lines do ferue to ope the Sector to his due angle, the difference betweene them is efpecially this that in parallellentrance, the two lines of the firft denomination, are placed in the parailells B C, D E, \& in laterall entrance they are placed on both fides of the Sector, in A B, A D and in A C, A E.

Now in fimple folition which is begunand ended, vponthe fame kinde of lines, it is all one whichrof the two latter: lines be put in the fecod or third places. As in our exäple. we may fay, as 40 are to 50 , 1060 vnto 75 , or effe as 40 are. to 60 , fo 50 vnto 75. And hence it comith that we may. enter both with a parallell; \& on the fides two manner of wayes at either entrance, and fo the moft part of queftions may be wrought 4 feuerall wayes, theughin the propofitions following, I mention onely that which is moft conuenient. If any haue not the Selfer, he may make vfe of the former figure, as in our example, where we haue 3 numbers given (40.59.60.) to finde the fourth Proportionall.

Firft, draw a right line ($A \mathcal{D}$) to reprefent one of thelines of the Sector. Then take out the firt number (40). out of thecine of Lines, and pricke it downe from A to B_{3} and on the Center (A,) and Semidiameter ($A B$) defcribe. $2 n$ octuft arke of a circle from \mathcal{B} towards C. In like. manier, take out (60) the other number, of the firt deno\% ${ }^{6}$
minion) and'pricke it downe from e A to D. And on the center $\left(A_{,}\right)$and Semidiameter $(A D)$ defcribe a fecond arke of a circle, from \mathcal{D} toward E. That done; take the third number (50) and infcribe it into the firft arke from \mathcal{B} to C;and laying the ruler to the center (A) and the point C, draw the right hine ($A C$, out in length, till it cutt the fecond arch in the point E. So the diftance from D to E (taken and meafured in thefame fcale with the third number) will giue the 75 for the fourth proportionall.

Thus much for the generall vfe of the Seftor, which being confidered and: well puderfood, there is mothing. hard in that which followeth.

CHAP. 11 .

The rofe of the Scale of Lines

1.T0 fet donne a Líne, refombling any given paris or fraction of parts.

THe lines of Lines are diuided actally into 100 parts, but we haue put onely 10 numbers in them. Thefe we would haue to fignifie either themfeties' alone, or ten times themfelues, or an hundred times themfelues, or a rhoufand times themfelues, as the matter thall require. As if the numbers giaen be no more then 10 , then we may thinke the liries onely diuided into 10 parts according to the numberfet to them. If they be nore then 10, and not more then 100, then either line thall containe 100 parts; and the numbers fer by them thall be in value 10. 20. $30,8 \mathrm{Cc}$ as they are dinided actvally. If yet they be more then 100 , then euery part muft be thought to be diuided into 10 , and either line fhall be 1000 parts, and the numbers fet to them fhall be in value 100. 200. 300 , and fo forward ftill increafang themfelues by 100 D 2

This

This being prefappored, we may number the parts and fraction of parts given in the line of limes; and taking out the diftance with a pare of compaffes, feet it by, for the line fo taken flail rafemblethe number given.

In this manner may we fer downe a line refembling. 75, if either we take 75 out of the hundred parts, into. which one of the line ot limes is actually divided, and note it in A , or $7 \frac{1}{\frac{1}{2}}$ of the frit 10 parts, adnate it in B , or aneby $\frac{1}{4}$: of one of thole hundred parts, and note it in Co. Or if this be either to great or to foal, we may rum a Scale. at pleasure, by opening the compaffe to fame final die. france, and running it ten times over, then opening the compaffeto there ten, run them our nine times more, \& fer figures to them as in this example, and ones of this we. may take what pats we will as before.

To this end I have divided the line of inches on the edge of the Sector, fo as ono inch contaiwech 8 parts, anthe 9 , another, $10, \& 8$. according as they are figured, and as they are dilatant from the other and of the Seller, chase fo wemight have the better estimate. .

> 2: To encreafe a line is a given proportions.
> 3 Todimemflalimina given propantins.

TAge the line given with a paine of compacter, and. openthe Soltox, fo as the fete of che compares may flan in the poises of the number given, then keeping the Sector at this angle, the parallell distance of the points. of the number required, font give the liperequired.
B

Let A beating given to be idereafed in the proportion of 3 to: Firs I take the line A, with the companies, and open the Sector til I may par it over in she pojnts
of 3 and 3 , fo the parallell betweene the poynts of 5 , 8 s 5 doth giue ine the line \mathcal{B}, which was required.

In like manner, if \mathcal{B}, be a line giuen to be diminihod in the proportio of 5 to 3,1 take the line B \& to it open the Seltor in the poynts of 5 , fo the parallell betweene the poynts of 3 , doth giue me the line A_{5} which was required.

If this manaer of worke doth not fuifice, we may mulsiplie or diuide the numbers giuen by 2 , or 3 , or 4.8 c . And fo worke by their numbers equimultiplices as for 3 and 5 ; we may open the Sector in 6 and 10 , or elfe in $\$$ and 15 , or elfe in 12 and 20 orini 15 and 25 or in 18 and 30. \&c.

4. To diuide a tinc into parts gineni:

TAke the line giren, and open the Sector according to . the length of the faid line in the points of the patts, whereinto the line fhould be diuided, then keeping the Sector at this angle, the paraltell diftance betweene the points of i and ifhall dinide she line gilieninto the pates. equired.

Let $A B$, be the line given to te duided 3nto filis: parts, firlt Itake this tine A B, and to it open the Seritonin the point of s and s, to the pardilll betweene the points of I and r, doch give tre chodine A. C, which doth dinide it into the pates required.

Ortet the fikelime A B; be to be diaided inso twency: three partw Firit I taks ort the line and pue is vpon tha: D考

Setior in the points of 23 , then may I by the former pro:pofition dimiouth it in AC, C D, in the proportion of 23, to 10 , and after that duide the line A C into $10, \& \mathrm{Cc}$, As before.

\therefore So finde apropprtion betweene tive or more right lines giuen.

T Ake the greater line giaen, and according to it open
 till they flay in like points, fo the namber of points wherein they flay, fhall hew their proportion vato 100.

Let the lines gipen be $A B, C D$, firt I tahe the line $C D$ and to it open the SeCtior in the points of 100 , and 100 , then keepi g the Seftor at this angle, I enter the liffer line $A B$, parallell to the former, and finde it to crufle the lines of L ines in the points of 60 . Wherefore the proportion of $A B$ to $C D$, is as 60 to 100.
Or if the line' $C \cdot D$, be'greater thien ean be pat ouer in the poynts of ioa, then I admit the leffer line $A B$, to be $\mathbf{8 0 0}$, and cutting of $C E$ equall $\& Q^{\prime} A B$, I finde the proportion of $C \mathcal{E}$,ymo \equiv Dto be as: 400 almof to 67 ; wherefore this

this propofition may alfo not vnfitly be wrought by any other number, that admits feuerall diuifiens, and namely, by the pumbers of 60. And fo the lefter line will be found to be 36 , which is as before in leffer numbers, as 3 vito 5 . It may alfo be wrought without opening the Soctor, For if the lines betweene which we ftek a proportion, betapplyed to the lines of Lixes, sor any other Scale of equall parits) there will be fuctuproportion found between

TAevife of be Live pf Lipes:

hemp astetivecie thelitas ta which :phey are equall!:
6 Imolines beinggimen to finde a third
incontinuall proportion:
Fifteplake both the lines, igitas, on both fider bfithe Seftar fiom itheiCenter, and anarkethe toxnmes of of their extenfion, then take aut the fefond line againe,s, and to it open the Sector, in the termesof the firel line,fo keetping the Seftor at this angle, the parallell diftance berweene the termes öf cthe'fecond ling fhall tre ctiesthidd proportionallo.
 place on both fides of the SeCtor, fo as they all meese inche center A, let the termes of the firft line be B and B, the termes of the fecond C and C. Then doe I rake out $A C$ the fecond livie igaite, and to to openche Setwor thethe- termep B B So the parallen betweete C aid C dorit give mit the third line in continuall proportion. For as $A . B$ is vpeo $C A$, so B, equall to $A C$, is vnto $C C$.

TEre the firt line 8 the third are to be placed on both fides of the Setior from the center, then take out the feccond line, and to it open the Sector in the termes of the firft lithe. For fo keeping the Sector at this angle, the parallell diftance betweene the termes of the third line, thalbe the fourth proportionall.

Let the three lines given be A, B, C.

Firf I takeoutt A and C, and place them on bothlides of the Sector, in A B, A C, and A D, A E, laying the beginning of both lines at the center A,then do I take out B the fer. cond liene, according to it I open the Seefor in B and C,the

The ofe of the lines of Lines:

remes of the firt line: fo the parallell betweene D and E_{3} doth giue methe fourth proportionall which was required.

As in Arithmetique, it Gufficeth if the frift and third number gituen be of owe denomination, the fecoride si the fourth which is requised be of another. For one and the fante de-- nomination is uot required peecfarily in them afto δ in Geometrie, ir fufficeth if the fides A $B, A D$, refembling the firt and third lines giuen bemeafured in one Scale, and the parallells B C, D E be, meadured in another. Wherefore knowing the proportion of A the firft line, and C the third line, by the fift prop.before. Which is here as 8 to is 2 defce ding in leffer nübersis as 4 to 6 , or as 2 to 3,or afcending into greater numbers, as 16 vnto 24 or 18 to 27 , or 20 to 30 , or 30 to 45 , or 40 to 60 \&c. I fhe Sector be opened in the points of 8 and 8 , to tue quantity of \mathcal{B}, the fecond line giuen, then a parallell betwecene $\mathbf{I} 2$ and 12 , thall give $D E$, the fourth line required. So likewife if ic be opened in 4 and 4, then a parallell betweene 6 and 6 , or if in 16 and 16 , then a parallell betweene 24 and 24 hall giue the fame D E. And fo in the reft.

8 To denide a line in fuch fort ac another live is before dsuided

FTrft take outthe line ginem, whictris already dinided, and ${ }^{\prime}$ laying it on both fids of the Selor from the center; mark how farre it extendeth. Then take out the fecond line which is to be diuided, and to it open the Sector in the termesof the firt line. This done, take ont the parts of the firt line, and place them allo on the fame fide of the Sector from the center.For the parallells taken in the termes of thefe parts, fhal be the correfpondent parts in the line which is to be diuided

Lete $A B$; be a line divided in D^{\prime} and E, gnd $\mathcal{B} C$, the line which I am to diuide in fuctr fort, as $A A^{\prime}$ is diuided.

Firf I take out the line $A B$, and placeit on the line of Limes in $A B, A C$, both from the center A, then take I out the fecond $B C$, and to inopen the Seetor in B and C, the
termes of the firnt line. The Seteor thus opened to his due angle, I take our $A D$ and $A E$, the parts of the firft line $A B$, and place them alfo on both the fides of the Sector $A \mathcal{D}^{\prime}$, $A E$, fo the parallell $D D$,giuect me \mathcal{B}, and the parallell E, ε, giueth me $B G$, and now the line $B C$, is diuidedin $F \& G$ as is the otherline $\backslash \mathrm{B}$, in D and E, which is that which was

required
If the line $A \mathrm{~B}$, werelonger then one of the fides of the Ruler, then fhould I finde what proportion it hath to his parts $\mathcal{D}, \mathcal{\perp} E$, and that knowne I may worke as before in the former' propofition.

9 Two numbers being given to finde a third in continuallpropörtion.

FIrt reckon the two numbers giuen on both fides of the lines of Lines from the center, and marke the termes to which either of them exrendeth, then take out a line refembling the fecommumber againe, and to it open the Sector in the termes of the firtt number, for fo keeping the Sector at this angle, the parallell diftance betweene the termes of the fecond laterall number, being meafured in the fame Scale

The vje of the lines of Linese:

Scale, from whence his parallell was taken, thall giue the third number proportionall.

Let the two numbers giuen be 18, 24 , thefe being re: fembled in lines, the worke will be in a manner all one, with that in the fixt Prop. and fo the third proportionall number will be found to be 320
10. Tbree numbers being ginen to find a foursh in difcolttinwall proporition.

THe folution of this propofition, is in a manner all one with that before in the feuenth Prop. onely there may be fome difficulty in placing of the nu nbers. To avoyd this, we muft remember that three numbers being giuen, the queftion is annexed but to one, and this mult atwayes be placed in the third place,that which agrees with this third number in denamination. Thalbe the firft number, and that which remaineth the fecond number. This being confidered, reckon the firf, and third numbers, which are of the firft denomination on both fides of the lines of Lines from the center, and marke he ternes to which either of them' extendeth, then take outa line refenbling the fecond number, and to it open the Sector in the termes of the firt number, for fo keeping the Sector at this angle, the parallell dif. ranco btweene the termes of the third laterall number, being meafured in the fame Scale from whence his parallell was taken, hall ghe the fourth mumber proportionall.
As if a quefton were propofed in this manner 10 yards coff 8 P , how many yards may we buy for 12 If heere the queftion is annexed to 12 ; and therefore it fhall be the third number, and becaure 8 is ot the fame denomination, it fhall be the firft number, then 10 remain:ng, it muft be the fecond number, fo will they fand in this order, 8, 2, , 12 . Thefe be: ing refembled in lines, the worke will be in a manner the fame, with that in the feventh Propo, and the fourth pro. portionall number will be found to be ig. For as 8 are to 10, fois unto 15.

And this holdeth indirct proportion, where, as the firt number is to the fecond, fo the third to the fourth, So that if the third number be greater then the firt, the fourth will be greater then the fecond, or if the third number be leffe then the firft, the fourth will be lelfe then the fecond, but in reciprocall proportion, commonly called the Backe rula, where by how much the firt number is greater then the third, fo much the fecond will be leffe then the fourth, or by how much the firft number is leffe then the third, fo much the fecond will be greater then the fourth. The manner of working mult be contrary, that is; the Scater is to be opened in the termis of the third number, and the parallell refembling the number required, is to be found betweenethe termes of the fitif number, the reft inay be obforned as before, as for examplige:

If twelue neen would raife a frame in ten dayes, in bow many: dayes would eight mem raif the fame frame? Here, becaufe the fewer men would require longer time, though the numbors be: 42, $10, \&$ yet the fourth proportionall will brfound to be 15 .

So if 60 yards, of three quarters of a yard in bredth, woald bang ronnd about a roone, © it were required to know how many yards of balfe a yardin bredtb, would ferref for the fame roome. T he fourt b proportionall would be found to be go.
So if to make a footefuperficiall 122 imbos in bredtb doe require 42 inches in length, 6 the bredth being 16 inches, it were required to know the leng th. Hire, becaufe the nore breadth, the leffo length, the fourth proportionall will befound to be 9 .

So ifto make Solid foote, abafe of 144 inches. require is ivches in bight, quad a bafag given baing 226 inchis, is wer a requi-redito kenom bow maxy inche sit: hall hawain bight. The fourtb. proportionall mould be fansud do. be Sn

This laft propoficion of findingt a fourth proportionall number:

The of of tbe lines of Superfcies:

number, may be wrought allo by the tanes of superfictos, men by the lines of Solids,

CHAP. III.

The rofe of the Iines of Superficies.

1.Tofinde a propertion betrecence two or more like Superficies.

TAke one of the fides of the greater Sxperficies given, and according to it open the Sectior in the points of 100 and roo, in the lines of Superficies, then take the like fides of the leffer Superficies feucrally, and carry them panallell tothe former, till they tay in like points, fo the number of points. wherein they fay, thall thew their proportion vnto $\mathrm{I} \circ \mathrm{o}$.

Let AandB, bethe fides oflike Smperficies, as the fides of two fquares, or the diameters oftwo circles, firft I take the fide A, and to it open the Seckor in the points of 100, then keeping the Swelor to this angle, I enter the leffer Gide B, parallell to the former, and finde it to croffe the lines of Super-. foriss in the poinas of 40 ; wherefore the propertion of the Superficios, whofe fide is A, to that whofe fide is B, is as 100 vnto 40, which is in leffer number, as $\mathbf{5}$ vnto 2.

This propofition might haue beene wrought by 60, or any other number that admits feuerall diuifions: It may alfo be wroughe without opening the Softor, for if the fides of the Superficies giuen, be applied to the lines of Sxperficies: begining alwayes at the center of the Sellor, there will be fuch propertion foand betweene them, as berweene thie E. 3
number

2 To augment a Superficies in aginen Proportions. 3 To dimimifh a Superficies in agiaen Proportion.

TAke the fide of the Superficies, and to it open the Sector in the points of the numbers giuen; then keeping the Secter at that angle, the parallell diftance between the points of the number required, thall giue the like fide of the Sisper: ficies required.

Iet " A be the fide of a Square to beaugmented in the proportion of 2 to 5 . Firft I take the fide A, and put it ouet In the tines of Superficies, in 2 'and' 2 ; fo the parallell between s and s, doth giue me the fide B, on which if I Thould make a Square, it would haue fuch proportion to the fquare of \mathcal{A}_{2} 255 vito 2.
In like manner if \boldsymbol{B} were the femidiareter of a circle to be diminifhed in the proportion of ς unto $2, I$ would take out B, and put it ouer in the tines of Superficies, in 5 and $5 ;$ fo the parallell betweene 2 and 2 would gitee me \mathcal{R}; on which Semidiameter if I hould make a circle, it would be leffe then the circle made upon the Semidiameter $\cdot \boldsymbol{B}$, in fuch proportion as 2 is leffe then 5 .

For varietie of worke the like caution may be here ob: ferved to that which we gane in the third Propertion of Lines.

4 To adde one like Superficies to another.
 sTofabtractione like Superficiea from another.

Flift, the proportion betweéne like fides of the Superfisies giaen, is to be found by the firlt Prop. of Superficies, then adde or fubrract the numbers of thore proportions,

The vfe of the lime of Superficies.:

and accordingly, augment or diminith by the former Propofition:

As if A and \mathcal{B} were the fide of two Squares, and it were required to makea third Square equall to them both. Pirt the proportion betweene the Squares of A and B,ywould be found to be as 100 unto 40 , or inthe leffer numbers as s to 2 ; then becaufe 5 and 2 added doe make 7 , I 2 agment the fide A in the proportion of 5 to 7 , and produce the fide C, on which if I make a fquare, it will be equall to both the fquares of A and B, which was reguired.
In like manner A and \mathcal{B} being the fides of two Squares; if it were required to fubtract the fquare of \mathcal{B} out of the Square of A, and to make a fquare equall to the remainder. here the proportion being as 5 to 2 , becaufe a taken out of 5 , the remainder is 3 , I would diminif the fide \boldsymbol{A} in the proportion of s to 3 , and fo 1 fhould produce the fide D. on which if I make a fuare, it will be equal to the remainder when the fquare of B is taken out of the fquare of A, that is, the two fquares made vpon $\mathcal{B} \& D$, fhall be equall to the firt fquare made vpon the fide \mathscr{A} L.

6 To finde a meane proportionall betwecese two lines given.

FIrf find what proportion is betweene the lines given, Fas they are lines, by the fifth Prop. of Lines, then open the SeEfor in the lines of Superfcies, according to his number, to the quantitic of the one, and a paralleilif taken betweene the points of the number belonging to the other lanc fhall be the meane proportionall.

Tat the lings given be ef and C. The proportion ber tweene them as they are lines will be found by the fifch pofit. of lines to be as 4 to 9. Wherefore I take the tine C, and put it over to the lines of Superficies betweene 9 and 9 , and keeping the Sector at this angle, his parallell between 4 and 4 doth give are-B for the meane proportionall. Then for proole of the operation I may take thicline B, and put it over betveence 9 and 9 : fo his parallell betweene $4 \& 4$, thall give me the firft line A. Whereby it is plaine that thele three lins doe hold in continuall proportion a and therefore B is ameaue proportionall Eetwecene A and C the expremes given.

Vpon the finding out of this meane proportion depend many Corollaries, as

80 mabe ai Squme aguathe a supenficies giuess.

1F the superficies given be a reftangle poratiellogratr, 1 meane proporcionall betwecre the two vnequall fides fhat bethe fide of tirs equidl-fguare.

If it fhall be a triangle; a meane propostion betxiecue the perpendicular and hatfe the bafe fhall be,the fide of hise equabl fquare: If it fhatt be aly othrer rightlined: figure, it may be refolued into triangles, and fò a fide of a a. Cquate found equall to euery trianglc; and thefe being reduced into one equall fquare, it fhall be equall to the wifiole right-ined figare giuen.

Tofindeaproportion betimeene Superfitits, thouth they be wishkerone teabe otber.:

IF to every Saperficies we find the Gde of his equall fquare, the proportion bewewen thoferfarares, fhall bs the proportion betweene the Sxpergicies given.

Let the Superficiey given, be the oblonge A, and the triangle 8 . Firft between the whegnall fides of A, Ifinde a meane proportionall, and poreit in C: this is the fide of a fquare equall unio A. Then betweenethe perpendicular of B, and halfe his bafe, 1 finde a meane proportionall, and note it in B: this is the fide of a Square equall to B: but the proporvion between the fquares of C and B, will be found by the frift Prop. of Superficiov to be as 5 to 4: and therefore chis is the proportion between thofe given Smperfcises.

To make a Superffices like to one Superficies and equall to another.
Et the one Sixperfocies given be the triangle A, and the 0^{-0}

F

Fira between the perpendicular and the bafe of B, I find a mane proportionall, and note it in B, as the fide of his e quall fquare: then betweene the perpendicular of the triangle A, and halfe his bafe, I find a meane proportionall, and note it in A, as the fide of his equall fquare. Wherefore now: as the fide B is to the fide A, fo finall the fides of the Rhomboides giuen be to C and \mathcal{D}, the fides of the Rhomboides reguired, $\&$ his perpendicular allo to E, the perpendicular required.

Hauing the fides and the perpendicular, I may frame the inhomboides up, and it will be equall to the triangle es.

If the, Smperficies given had been any other right-lined figures, they mighthane been refolved into trianges, and then brought into fguares as before:

Many fuch Corollaries mightidaue Been àmexed', but the meanes of finding a meane proportionall being knownéa they all follow of themetices.

2. Tefinde imeane propentianall betmene troa

FIrf reckon the two numabess givien on both fles of the Linefot Smpmyficiar, from the center, and mark the termes whereuato they extend; then take a line out of the line of Lines, or any other fcale of equall parts refembling one of: thofe numbers giuen; and putit ouer in the termes of hit like number in the lines of Superificies; for fo keeping the Soctor at this angle, the parailell taken from the rermes of the other number and meafured in the fame feale from which the other parallell was taken, fhall here fhew the meane prow portionall which was required.

Let the numbers giuen be 4 and 9 . IfI Nall take the line L1, in the diagram of the fixt Prop. refembling 4 in a ceale. of equall patts, and to it open the Sector in the termes of 4 and 4 , inthe lines of Superficies, his parallell betweene, 8 . and 9 doth giue me B for the meane proportionall. Apd. this meafured in the fcale of equall parts doth extend to σ,

In like mannier if 1 takethe line C, refembling 9 in wf fale of equall paris, and rait open the Setior in the termes of 0 :and 9 , in the limes of supenfcies, his parallell between 4 and 4 doth gine fne the fane line 8 , which witt proue tor be 6, as before, ifiit be mexfured in the fame scole whenoe:C was taketi.
 dinc, dofomecime fignife thomfelucs slone : Gometime, ist $20,30,40 \& \mathrm{ce}$. fometime $100,200,300,4008 \mathrm{8c}$. and $\mathrm{fofor}-$ ward as the matcer hhall require. The firft fgure of, cuery number is alway that which is here fet down: ithe feft ant be fiupplied according to the nature of the queftion.
Jf you fuppole pricks under the number given (asinumitht:-- outiowl extretion) and the malt prick to the left hand hatl tall under the hat fig. (which will be as oftas there be odd ifgures) the unite will be beft phaced at in, in the middec of che lines fo theroot, \& the fguare will booth fall forward, toward the end of the tine. But, if the laft pricke fhall gl under the lat fgare bur one (which will be as oft as there be even Figures) then, the unire may be placed at I in the beginning of the line, and the fquare in the fecond length: or the units may be placed at to in the end of the line, locher ioot and the fquare, will both fall backward, toward the middte of the line

> 8 To frndshe fquare roose of a number.
> 9 The xoote being gimen to find the fquare mumber of that roose.

1N the extraction of a \&quare roote it is ufuall to fet pricks under the firt figure, the thind, the fifth, the feventh, and fo forward, beginning from the righe hand toward the left, and as many pricks as fall to be under the fquare number given, fo many figures thall be in the roote : fo that if the number given beltefle then 100 , the roote fall be onely of one

35

The infe of tbe lime of Superficiesì

sgiure; ifleffe then iocos, it thall be but two figures; if fete

 then 1000000, it thall be three figures, \&c.Thercuipon the lines of Superficiesare divided firftinto an hundred parts, and if the number given-be greater then- L00, ،the firft divifion (which before didfignific only one) mult - Gignific roo; ane the wholeline frall be 10000 parts: if yes ithe numbergiven be greater then 10000 , the firft divifion muft now fignific 10000, and the whole line be efteemed at i000000 pars: a d difthis be too litete- to expreffe the number given, as of as we have recourfe to the beginning, the whole line fhall increafe it felfe an iundred times.

By thefe meanes if the laft pricke to the left hand fhall fall under the latt figure, which will beas oft as there be odde figures, the number given thall fall our betwe cne the center of the Sector and the tench divifion: but if the laft prick fhall fall under the laft figure but one, which will be as oft as there be even figures, then the number given thall fall out jbetweene the tenth divifion and the end of the Sector.

This being confidered, when a namber is given and the Square roote is required, take a paire of eompaffes and fetting one foote in the cemrer, extend the other to the terme of the number given in one of the liines of Suporfocier; for this difance applied to one of the Lines of L ines, fhall hew what the Square root is, without opening the Sedoor.

Thas 36 doth give a root of 6 and 360, a root of (almof) 19: and 3600 , a root of $60:$ and 36000 , a root of $189 \& \mathrm{c}$.
In like manner, the neereft root of 725 is here found to be (about) 27 : the neereft root of 7250, about 85 : the neecent of 72500 , about $i 69$: and the neereft root of 725000 , about 851: And fo in the ref.

On the contrary, a number given may be fquared, if fitt we extend the compaffes to the number given in the lines of Lines, and then apply the diftance to the Lines of Superficiere, as may appeare by the former examples.

Thotefo of the Bime of Suptrficies:

10. T bree numbers being given to ford the fourth \therefore is a duplicated proportion.

IT is plaine by the 19 and 20 Prop. 6 Lib. of Euclid. that like Superficies do hold in a duplicated proportion of their homologall fides, whereupon a gueftion being moved concerning Superficies and their fides. It is ufuait in Arithmetricke that the proportion be firt duplicated before the queftion be refolved, which is not neeceffaric in the ufe of the Seltor, onely the nu nbers which doe Gignifie superficies muft be reckoned in the lines of Superficies;, and they which fignifie the fides of, superficies, in the lines of Limes, atcer this manner.
If a queftion be made concexnieg a superficies, the two numbers of the firft denomination muft be reckoned in the lines of Lises, and the Seckor opened. in the termes of the fird number to the quantitic of o line out of the fate of superficios recembling: the fecond number, fo his paralelle faben betweene the termes of the third number, leiug meafured in the fame fcale of Superficies, ohallgive, the Superficiall nume: ber which was required.
 hength, Inall ctsapiage itemi haces: in the: Stoptfain, and it be required to know how many acres the Square Thiould contine, whorefideris fixtie perches.:

Here IfItooke 10 at of the line of Sxperfiais, and partit corerincoin the linet of Empghis parallel between co ana

3妾:
 60 meafured in the line of Superfries, would be $22 \frac{1}{3} ;$ and fuch is the number of acrees required. For Squares doc hold in a duplicated proportion of their fides; wherefore when the proportion of their fides is as 4 to 6, and 4 multiplied into 4 become 16, and 6 maltiplied into 6 become 36, the proportion of their Iquares hall be as 16 to 36 and fuch is the proporion of 50 to $22 \frac{1}{5}$.
Tra field meafured with a fatute perch of 16 . foote, fhell containc 288 acres, and it be required to know how many acres it would containe if it wire meafiured with a woodland perch of 18 foote.
Here becuute the proportion is reciprocill, ifI tooke 288 out of che line of Superficies, and put it ouerin 28, in thelines of Lines, his parallell betweence 196_{2}^{\prime} and 166_{2}^{\prime} maiafared in the line of 'superffcies, would be 242 ; end fichis the number of acres required.
For fecing the proportion of the fildes is as $16 \frac{1}{2}$ to 18 , or in leffer numbers as in to 12, and that in multiplied into in become $\mathbf{i 2 1}$, and is into 12 become 144, the proportion of thefe isupryicies fhall be as ritito thit; and to thave 288 th 242, in reciprocall propotrion.
On the contrary, if a queftion be propofed conceming the fide of a Supierficies, the two numbers of the firft teno mination muft be reckoned in the lites of sixperfities, wid the Soffor openced in the rermes of the firt number, to the quare titie of a line, out of the line of Eimes or fome scaile of equall parts, refembling the fecond number; follhis parallell raken
 the fanc foukewidh the focond number, fitll give ithe foarth nuaber x zagired.

As if a ficld cormined, 128 axcres when it ands meafured withatacure parch of 16 , mand being mocefied with ano-
 to know what was the length of the perch with whichit was fo mspalured.

Here becaufe the proportion is reciprocall, if I tooke $16 \frac{1}{2}$ out of the line of Lives, and put it oure in 342 in the lines

Tbereforfitetimagt Superficies:

 fured in the line of Liost, would be is, sxfich is the leaggth

For jecing che ppoportion of che acres is ase888 untor 240 , or in the leef numberas 144 to 121, and that the rooce of

 are $16 \frac{6}{\frac{1}{2}}$ to 18 , in reciprocall propostion:

If 360 men were to be fec in forme of a long fquare, whofe fides fhall haue the proportion of 5 to 8 ; and it were required to know the number of men to be placed in frone wod fite: if the fides were only 5 and 8, there 'hould be but 40 men; but there are 360 : therefore, working as before, I finde that.

As fato the fogure ofs

As 40 to che Cquare ofs.
fo 360 to the dquarc.af: 34
and fo ws and 24 arc the fiates sequirec.
If 1000 men were lodged in a fiquaco ground, whofe finde were 60 paes, and $1 t$ were required to know. the fide of the Equare wherein sooa might be fo lodiged here working :at before, 1 frould finde that

As 1000 are tathe Iquare of 60 :
Ho 5000 to the fquare of $\$ 34$
And factivery neare is the number of paces required.

CHAR. EV.

The ofe of the lines of Solids.

Mitherahore; in rogular, parmilll'; and 'oticer lifie bodiest Iwhofefides next the equall angles are proportionall, the worke

39

worke is in a manner the famae, with that in the firf Prip. of Superfivies, but that it is wrought on ocher lines.

Take one of the fides of the greater Solid, \& according to it open the Sector in the points of a $1000 \&$ ro00, in the lives of Solids, then take the like fides of the leffer Solids feverally, and carry them paralleh to the former, till they ftay in like points ; fo the number of points wherein they fay, fhall thew their proportion to 1000 .

Let A and \mathcal{B}, be the like fides of like Solids, either the di:ameters, or femidiameters of two Ppheres, or the fides of two cubes, or other like. Firf I take the fide λi; and to $\hat{0}$ to open the Seftor in the points of 1000 , then keeping the Scefor at this angle, I enter the leffer gude \mathbb{B}, parallell to the former; and finde it to croffe the line:of Sobids in the points of 400 , and fuch is the proportion betweene the Solids required which in leffer number is as ρ to \mathbf{z}.

This propofition mighe liave been wrought by 60 , or 2 my other mumber that admits feverall divifions.

It may alfo be wrought without opening the Seltor, for if the fides of the Solids given, be applied to the lines of Solids, begining all wayes at the center of the Setoor, there will be fuch proportion betweene them, as betweeric the numbers of parts wheréon they fall.

2 To amgment a Solidin agiven proportion.

3 To diminilh, Solid in a givemprapertionm

TAke the fide of the Solid given, and to it open the Setor, in the points of the number given: then keeping the Sector at that angle, the parallell difance betweene the points of the pumber feguifed, Gaat givet he lihe fidterf the Solid requyred.

The yje of the live of Solids

 other like fides may be found out ia the fame manner, and with shem the:Solids required, waty be made up with thet fame angles,

Let A be the fide of a enbey to be anguened ite the ptod portion of 2 to .3. First I make che fide \mathcal{A}, and pat it over in the lines of Salide in 1 anid 2 , fo the parallell betweene 3 and 3, doch g iveeme the fide B, on whtrich if I make a cube; it wig hime Luch propontionto the cube of i, as 3 ze $\%$.

 and pur it over in the lines of Solids, in 3 and 3 , fo the par rallell betweene 2 and 2 , would give me A : to which dia-
 Sphere, whofe diameter is B_{2} in ficch proportion as 2 is leffe then 3 .

Here alcofor variety of woikeg may the like caution ba .

> 4 To adde one like solid te amitber.
> 5. T. 9 Jubtuabe ave like Solid frow meotion.

HIr It the propotion beentene shu gidev of the litei Solld
 or subtriat thofe propostionss, and accordingly mignetriok diminilh by the former Prop.

42.
 The wfe of the lime of Solids:

- As if A and B where the fides of two cubeci, and it weieie re: quited io make a third cube squall to them both : firt the. proportion betweene thefides A and B, would be found to be as 100 to 40 , or in leffer termes as \bar{s} to 2 . Then becuure $;$ and 2 being added do make $7, I$ augment the fide \mathcal{C} in the proportion of 5 107, and produce the fide C, on which if I haxea cub, it win be equali to bork the cubes of A and B_{2} which was required.

In like maner \mathcal{A} and \mathcal{B} being the fides of wo cubes, if ie were required to fubtratt the cube of B out of the cube of A_{2} and for rakke a cube equall to the renninder. Hete the proportion being as \boldsymbol{y} to 2 , beccafe 2 taken out of 5 ; the remainder is 3 . 1 hould diminifh the fide A in the proportion of s to 2 , and fo I hould have the fide D, oni which if 1 make a cube, it will be equall to the remainder when the cube of B ig raken out of the cube of A, that is the two cubes inade upon B and D, Ghall be equall to the frit cube made apon the cide A .

$\because:$
 6 To.jind two meneane propertionall lines betwere two extreme lines given.

FIn I I find what proportion is betweene the two extreme linesgiyenas they are lines, by the fifth Prop: of Lives, then open the Sector in the lines of Solids, to the quantitic of the former extreme, and a parallell betweene the points of the number belonging to the other extreame, that be that meane profortionall which is next the former extreme. This doars openthe Suctor againe to this meane proportionall in thy poiprsofthe formor extreine, and the parallell diftance begwepere the points of the latter extreme; ohall be the others meane proportionall required.

thievfo of tbe lime of Solids.

- Zet the two extreme lines given be A and D, the proporton betweene them, as they are lines, will be found to be as 27 to 8 . Wherefure I take the line A, and patit over in the lines of Sotids betweene 27 and 27 , and keeping the $\mathcal{S e f f i r}_{\text {or }}$. aet this angle, fiis patallell bee weene 8 and 8 , doth give me $B_{\text {, }}$ the meane proportionall next unto' A. Then put I over this line B y betweene the afdrefaid $\mathbf{2 7}$ and 27 , and his parallell betweene 8 and 8 dothgive me the line \mathcal{C}, the other meane proportiondil whichtwas required.
Againue, for proofe of the oberation I put over this line G in the aforefaid 27 and 27 , and his parallell betweene 8 and 8 doth give in the very line D : whereby it is plain that thefe foure linesdo hold in continuall proportionf and fo B and: 6 afe found to be che meane proportionals betweene it and :12 the extremes'given.

7 To find two mesme proportionallinumicins: bet peent two extreme nimbibersigiven.

FIrftrecton the numbers given on both fides !of the libee of Solids, beginining from the center, "and marking the termes whereto they extend then take a lineout of the line of Lines, or any othet fcale df equall partic refembling thefori mer of thofe numbers, and patic over in the tines of Solidss betweene the points of his like nuihber, and a parallell' bee: t weene the points belonging to the other extreme, meafured. in the fale frow whence the othet parallell wàs taken; fhall give that meate propertionall ntamber which is thext the: former extreme. This done open the Settor :agaive to: his meane proportionall in the poinits of the format extremes; and the parallell difance betweene the points of the latter extreme, meafured in the fame 'cale as before \boldsymbol{y}_{1} hall there Shew the other meane proportionall required:

Therve of the lime of Sollds.

\therefore Let the two extreama numbers given be 27 and 8 gif I Mall rake the line A, refembling 27 in a fcale of equall parts, and to it opén the Sector in 27 and 27, in the line of Solides his parallell berweene 8 and 8 doth give me B for his nekt meane proportionall, and this meadured in the! former fcal doth extend to 18. Then put I over this line B between the aforefaid 27 and 27 , and his parallell between 8 and 8 doth give me C for the other meane proportionall, and this meas fured in the former fcale doth extend to 12. Againe, for prooferofiny worke, I put over this line C betweene 27 and \& j, as before, and his parallell betweene 8 and 8 doth giva me D, which meafured in the former fcale doch extend to 8 , which was the latter extreame number givens whereby it is plainet hat chefo foure numbers do hold in continual proportion : and therefore 18 and 12 are meane proportionalla betweene 27 and 8 , which was required.

If you fuppofe pricks under the gamber given as in arithmeticall extiaction and that laft pick to the left hand that fall under the laft figure, as in 1728 , the unite will be left plaeed at I', in the middle of the line and the Root fquare ant cube will all fall forward tow ard the end of the line.

If the laft pricke flall fall under the laft figiure but one, am in 17280 y the unise may be placed at 1 , in the beginning af the line, and the cube in tbe fecend length; or the unite may: be placed at 10 , in the end of the line; and the cute inthe firft léngtb.

Bat if the laft.prict hall fall on the kitwigere but two, as in $1 y 2800$; then; place the piec always s at $i 0$, in the end of thedries: Go, the Reot fqugate and cube will.all fall begward: and be found in the fecond bength. .
\therefore : Te find the cubique ragle of a nunpber.
 of that roote.
N the extraction of a cubique root, it is ufuall to fet pricks under the firlt figure, the fourth, the feventh, and tenth,

Dogriaco ofy Google
 ind fo forwaid, omitting two, and pricking the third from the right hane toward the left; and as many pricks as fall to be moder the cubique number, fo many figures thall be, in theroote. So that if the number given be leffe then 1000, the roote fhall be only of one figure; if leffe then 1000000 , it Thall be but of two figures; if above thefe, and leffe then 1000000000 , it thall be but three figures; \&c. whereapon the lines of Solids ate divided, firf into rooo, parts, and if the numbers given be greater then 1000 , the firft divifion(which before did fignific onely one) mult fignife 1000, and the whole line fhall be 1000000: if yet the number given be greaterthen 1000000, the firt divifion malt now fignifie 1000000, and the whole line be efteemed at 1000000000. parts, and if thefe be to little to expreffe the; prumbers given, as oft as we haverecourfe tothe beginning, the whole line thall encreafe ic felfe a thoufanp times.

By thefe meates; if the talt pricke, to the left hand, (hall fall under the laft figure, the number given thall be reckoned ar the beginning of the lines of Solids from 1 to 10 , and the firft figure of the roote fhall be always either $\%_{2}$ or 2 . If the laft pricke thall fall under the laft figure but one; then the namber given fhall be reckoned in the middle of the line of Solids, betwera do and 400, and the firilt figure of the roote: Goall bealurayes eitherr2; or 3 ; ar 40 But if the laft pricke. Orall fall under the laft figure but two, then the number gio; ven, thall be reckoned at theend of the line of Solids; betweene 100, and 1060.

This being confidored whena number is given; and the: cabique rocte required: Set one foote of the compaffes in. the center of the Sector, extend the other in the line of Solids? tothe points of the number given: for this diftance applied to one of the lines of Limes, hall thew what the cibique root is, without opening the sfitor:

- So the neereft roote of 8490000 , is about 204 The neereft roote of 84900000 , is about 439 . The neereft roote of 849090000 , is about 947 :
- On the contrary, a number may be cabed, if firt we exrend the compafes to the mumber given, in the fine of: Likes, and then apply the diftance to the lines of Solvids; as may appeare by the former examples.

> 10 Thrce numbers being given to finde a fourth in a triplicated proportion.

AS like Superficies doe hold in a duplicated proportion, fo like folids in a triplicated proportion of their homologall fides : and therefore the fa ne worke is to be obferved here on the lines of Sotids, as before in the lines of Superficies; as may appeare by thefe two examples.

If a cube whele fide is 4 inches, thall be 7 pound weight, and if it be required to know the weight of a cabe whofe fide is η inches; here the proportion would be;

> As 4 are to a curbe of 70 fo 7 to a cube of $37 \frac{1}{2}$

And if I tooke 7 out of the lires of Solids, and part it over in 4 and 4 , in the lines of Lines, his parallell between 7 and 7 meafired in the lines of.Solids, would: be $37_{i j}^{i}$, and fuch is the weight reguired.

If a biller of 27 pound weight have a diamiter of 6 inches; and it be required to know the diamiter of the like bullet; whore weight is 125 pounds; here the proportion would be,

As the cabique root of 27 is unto 6 : So the cubique root of 12 gis unpot 10 .

The iff of tho lin of Superficiee:;
And if I tooke 6 out of the line of Limes, and put lt oves in 27 and 27 of the lines of Solidd, hli parallell betweene I3s and i2s meafured in the line of rines, would be 10 ; and fich is the length of the diameter required.

The end of the firft Booke:

THE
 SECOND BOOREOF
 THE SECTOR

Containing the vere of the Circular tines.

CPAP. I.
Of the nature of Sintes, Chords, Tangents and Secants, fit to be knoivne before baid in referense torigb-line Triangles.
$T \mathrm{~N}$ the Cenum efTNinglter, a cirele is commonly divided into 360 degrees, each degree into 60 minutrss, each mios ${ }^{n}$ nuts into 60 focinde.

A feniaircle therefore is surarkeof 180 g

30. Of the matare of Sines and Tangēnts:

A quadrant is an arke of $90 . \mathrm{g}_{\mathrm{g}}$.
The meafure of an angle is th arke of a circle,- defribed out ot the a :gular point, insercepted betweene the fides fuff. ficiently produced.

So the meafure ofa right angle is atwayes an arke of 90 gr. and in this exa nole the meature of the angle $B A D$ is the arke B Cof 40 gr , the mealure of the angle B A G, is the ate B Fof 50 gr .

- The complementof azarke or of an angledoth commoaly lig uifie the arke which the given arke doth want of 90 gr: a and fo the arke BF is the complement of the arke BC_{3} $\&$ the angle B A F, whofe meafure is B F is the complemenc of the agale B A C; and on the contrary.

The complement of an arke or angle in regard of a Eemiz circle, is that arke which the given arke wancech to made up 180 gr : and to the angle E A H is the complement of the angle E A F, as the arke EH is the complement of the arke FE;', in which the arke CE is the exceffe aboue the quat drant.
The proporions which thefe arkes (being the meafires of angles) have to the fides of a triangle, cannot be certaine. ualeffe that which is crooked be brought to a ftraight line; and that may be done by the application of Chords, Rigbs Sines, verfed Sines, Tangents and Secants, to the femidiameter of a circle.

A Chorde is a right line fubtending an arke: fo $\mathbf{B E}$ is the chord of the arke BCE, and B F a chorde of the arke BF.
A right Sine is halfe the chorde of the double arke, viz, the rightline which fallech perpendicularly from the one extreme of the given arke, vpon the diameter drawne to the other extreme of the faid arke.
So if the given arke be BC, or the given àngle be BAC, let the diamerer be drawne through the center \mathbf{A} unto $\mathrm{C}_{\text {; }}$ and a perpendicular $B D$ be let.downe from the extreme B, upon $A C$; this perpendicular $B D$ fhall be the right fineboth of the arke $\mathrm{B}: \mathrm{C}_{\mathrm{C}}$, and alfo of the angle $\mathrm{BAC}:$ and it is

Of the natury of Sines and Tangents.

alfo the halfe of the chord B If, fubtending the arke BCE: which is double to the given arke $B C$. In like manner, the femidiameter FA , is the right fine of the arke F , and of the right angle $\mathrm{FA} \mathrm{C}_{\text {; }}$ for it falleth perpendicularly upon AC, and it is the halfe of the chord FH ,

This whole Sine of gogr. is hereafter called Radius; bue the other Sines take their denomination from the degrees and minutes of their arks.

Strmi verf w s, the verfed fine is afegment of the diameter, inà tercepted betweene the rigbe fine of the fame arke, and the circumference of the circle. So \mathbf{D} C is the verfed fine of the arke $C B$, and G F the varfed jine of the arke B F, and $G H$ the verfed fine of the arke B H.
A T.angent is a right line perpendicular to the diameter;' drawne by the one extreme of the givenarke, and terminared by thie focanit drawne from the center through the os ther extreme of the faid arke.
A 'Secant is a right line drawne from the center, through one extreme of the given arke, till it meete with the tangens raifed from the diameter at the other extreme of the faid arke.

So ifthe given arke be C E, orthe given angle be C $A E$ let the diameter be drawne through the center \mathbf{A} to C , and in C to $A \mathrm{C}$; be raifed a perpendicular C . Then let another line bedrawne from the center A through E, till it meet with the perpendicular CI in I_{3} the line CI is a T angent, and AI is the Secant both of the arke C E , and of the angle CAE

H2
 CHAP

58. The gimedill vc of Sines ind Tangener.

 CHAP. IL

 CHAP. IL}

Of tbe generall rofe of Sines and Tangents:

I The Eadjuw being knome tofind the right fiva: of any arkeor angle.

TEtheradius of the circle given be equall to the laterall: Radius, that is, to the wholeliae of Simac on the Sectorstheve needsno.farther worloe, bus to cake the other fines alfo ous: of the fide of the Satiax Barifit be cither greaser or leffer, then let it be made a parallell Radiues, by applying it ours in: the lines of Sizis, betweene goand gog fo the parallell taken: frown the like late ealk fines, frall bothe finacrequired.

As if the given Radius be. A C;and itwero requiredito find) the fine of $50^{\circ} \mathrm{Gr}$. \& his complemeat agrecable to that Raduse.:

Let $A B$, AD reprefent the lines of fines on the Sector, and let $B B$, the dianance betweene 20 and 90 , be equall to the given
given radius $A C$. Here the lines $A 4^{\circ}, \mathcal{A} 50, A 90$, ,nay be called the laterall finer of 40,$50 ; \% 9$; in regard of their place on the fide ofth: Settor. The lines betweene 40 and 40, betweene so and so, betweene 90 ind 90 , may be catled the parallell fwes of 40,50 and ${ }^{3} 90$;in reg ard they are pa allell one to the other. The whole fine of go $G r$. here ftinding for the so idiameter of the circle, maxy be called the Radirs. And therefore if $A C$ be purover in the line of Sives in 90 and 90 . and fo made a pwrate elt radizu, his parallell fine berwecte 50 and so, (hall be B D, the fine of 50 required. And becaire go calken vut of 90 ,thie complement is 4 "; his parallell fimesbetweene 40 and 40 , fliall be $B G$, the fine of the complemenc: which was required:
> 2. The righas jone of any inke being given - 50 find the Radivs.

TVrethefmegivenintoa parallell fine, and his paral ${ }^{2}$ lell Radim (lfallye the Radiua required.
As if $B D$ werethegivenfine of 50 $G r$ and the were required to firde the Radias: let B D be made' a paradtellf frue of go Girbby applying it' over inthelines of Sines, betweene 500 and 50 ; fo his parallell Radius betweene 90 and 90 Giall be: $A C$, the Ridins requiredis

> 3 The Rudiow of a ciserbe, an therigbt Sineof any arke. being given, and aftreight line refeneblinga sime, to find the quantitice of itiat unknowne Sinc.

Let the Radius or right fifice given be turrided into his' paz . E. rallells, th n take the right line given, and carrie it paralleil to the former, tillit fiay in like Sines: fo the number of degrees and minueswwere it fayeth, fhall give the quanticie of the Siue required.
As if $B D$ were the given fine of $50 G \%$ and $B G$ the fiteight line given. firftil make B D' paraliett fine of so $G r_{3}$ denkesping the Shefirathits angle; $1 \cdot$ tarie the line $B^{\prime} G^{\prime}$ therefore 40 gr . is this quantitic requiled.

> 4 Tbe Radius or any right Sine being giv en, to find the verjed fine of any arke

Fthe arke, whofe ver \int ed fine is required, be leffe then the quadrait, take the fine of the complement out of the radius, and the remainder Chall be the $\mathcal{i n w}$ verfur, the verfed fine of that arke.
As If A B being the laterall Radise, it were required to find the verfed fine of 40 gr ; here the fine of the complement is \mathbf{A}. so', and therefore B so is the verffed fixe required. Or if I. reckon from B, at the end of the Sector, toward the center, the diftance from 90 to 80 , is the verfed five of 20 gr ; from 90 to 70 , the verfed fine of 20 gr ;from 90 to 60 , is the vericd fine of 30 gr : and fo in the reft:

If $A D$ be the given fine of 50 gr . and it be required to find the virfed fine of 50 gr ; here becaule AD is unequall to the laterall fine of $50 \mathrm{~g} r_{3} \mid$ make it a parallell. And firft I Gind the radius A C; then the fine of the complement A 40 , which being taken out of A C, leaveth C 40 for the verfed fine of 50 gr . which was required.
But if the arke, whole verfed fine is required, be greater, then the quadrant, his verfed fine alfo is greater then the Radius, by the right fine of his exceffe above googr.

As if A C being the Radias given, it were required to find the verfed fine of I 30 gr : here the exceffe above 90 gr , is 40 g^{\prime} : and therefore the verfed fine required is equall to the Ras dius A C and A 40 , both being fertogecher.

s The diameter or Radius being given, to finde the Chords of suery arke.

The fines may be fitted many wayes to lerue for chords:
4. A jne being the halfe of the chord of the double arke: If the fixe be doubled, it giveth the chord of the double arke,
a sine of to gr . doubled giveth a Chord of 20 gr , and a Sine of 25 gr . being doubled giveth a Chord of 30 gr . and fo in the reft. Ashere B D, the filie of B C, an arke of 40 gr . being doubled giveth B E the chord of BCE, which is an arke of 80 gr . Wherefore if the Radius of the circle given be equall to the laterall Radius, let the Sector be opened neare unto his length, fo that both the lines of Sines may make bur.one direct line : fo the diffance on the fines bet weene 10 and 10 , Thall be a chord of 20 ; the diftance betweene 30 and 20 , Thall be a chord of 40; and the diftance betweene 30 and 30 , hall flall be a chord of 60 ; andro in the reft.

2 Becaufe a fine is the halfe of the chord of the double erke, the proportion holdeth.

As the diamiter F H unto the Radius A H, fo the chord $B E$ unto the fine $D E$, or the chord $G L$ unto the fine $A L$, and then it the Radius A H, be pat for the diameter, which is a chord of 180 gr , the fine DE or $A \mathrm{~L}$, thall ferue for a chord of 80 gr , and the femiradius which is the fine of 30 gr , thall ferue for a chord of 60 gr , and go for the femidianeter. of a circle, and fo in the relt. So that by thefe maanes we fhall. not need to double the lines of Sizes as before, but onely to double the numbers. And to this purpofe I have fubdivided each how fax the halfe degrecsdo reach in the fines, and yet fand for wholedegrees when they are ufd as chords.

Whercfore if the Radius of the circle given be equall oo the lacerall femiradius (the fine of 30 Gr and chord of $60 \mathrm{Gr} . \mathrm{J}$ there needs no farther work then to take che fine of $10 G r$ for a chord of 20 Gr .and a fine of is Gr .for a chord of 30 Gr $\& c$.

But if the Radius of the circk given be either greater or leffer then the laterall femiradius, take the diameter of it, and make it a parallell chord of 180 Gr . by applying it over the lines of Sives between go and go or rake the Radius or Semidiameter which is equafl to the chord of 60 Gr . and make is a parallell Radias of 60 Gr . by applying it over in the fines of 30 and 30 , and keepe the Sector at this angle. The parallells taken from the laterall chords hhall be the chords requi: red.

As if the diameter of a circle given were the line er $\boldsymbol{\tau}^{\boldsymbol{\prime}} \boldsymbol{B}^{\prime}$ and it were required to find the chord of 80 gr : firft, I make $A \mathrm{~B}$ a parallell chord of A 80 Gr . or the halfe of ivenymallell chord of 60 Gr fo his parallell $L \mathcal{G}$ doth give me 6.9 he chord of 80 Gr . which was required.

3 Seeing that as the fine of the complement of the halfe arke is vnto the Radiss, fo the fine of the fame whole arke is unto the chord of it: if wc feeke but for one fingle chord, we ray. find it without either doubling the fines, or doubling the number. For applying over the Radius given in the line of the complement of halfe the arke required, his pas: saltell fine fhall be the chord required.

As if the femidiameter of the circle given were $A C$, and in we re required to find che chord of 40 Gr : the halfe of 40 Gr . is 20 Gr the complement of 20 Gr . is 70 Gr . Wherefore 1 make et C a parallell Gine of $70 G r$ and his parallell fine $G \mathcal{L}$ doth give me FG the chardiof 40 Gr, agreeable to the femidiameter AC.

The gonaral yso of Siaps and Tangents

Having troo xight limes refembling sbe chord and verfed Sine, tofind she Diumeter and Radius.

Let the two rightlines given be A B, refembling the chond, $C \mathcal{D}$, the verfed fiac of 2 circle, whore arch $A C B$ is дaknowwne: apd loc i- be tegsured to fud che diameter CF
Haviag 2 tines givon, the finft CD, the fecond AD D the halfe of A B,we eay find a chird in copn-
 inneal prepertion.(by the 5 or Proyoufitbe lines) and that thall be the line DE (ISh) wh
 the hife dheserefis che Radius (B C).
 6. The chord of any arke being given to finde the diameter and Radius.

TVrne the cliord given unto a parallell chord, and his pa= rallell femiradias fhall be the femidianneter, and the parallell radius thall be the diameter.

As if FGWe the chord of 80 gr : I put this over in G and Letlie fine of 40 , and choid of 80 or. and the paralleH chord of 180 gr : giveth me A B the diameter requiredd

Or if I turne the chprd jiven into a pafalleif fine of thes fante quantite, his parallell fine of the complement of halle the arke; doth giveme the femidiameter:

AsifFG be the given chord of $40 \mathrm{~g}^{2}$, iputit overia Q and L , the fines of 40 gr , their becuale the halfo: of $40 \mathrm{gro}$,

 Hetti, agreable to thatchord of ao git Having the Dianséter of an Ettipho', to deforibe the \therefore fame
TF elach femidiameter be divided, in fuch fort, as the line of Simes is divided upon the Sector, and right lines drappue

through each divifion perpendicular to thofe femidiameters like unto fines; The points, where the fines diawne through the one femidiamerer do meete the fines of the complement drawne through the other Semidiameter, fhall be the points through which the Ellipfis is to be drawhe.

Let the diamerers be $A-B, B E_{1}$ one croffing the middle of the other, in the point C. Divide firt the lemridiameiers $C A, C \mathcal{B}$; then, then the femidiameters $C D_{2} C E$ like unto the lines of Simes upon the Sector, by the 8 Propofition of Lines: So, the Ellipfis hall be drawne through the points at the meeting of the Sines of 10 and 80 of 20 and 70 , of 30 and 60 \&c.

Or (withour the helpe of the line of Sines) we may draw the circle A F B upon the center C and femidiameter $\triangle C$. For fo; croffing the diametor A B with feverall perpendicilar lines continued unto thecircumference of the circle, if we divide thefe perpendiculars on either fide of the diameter, in fuch fort as the greater femidiamete CF is divided, by the leffer, in the point $D_{\text {; }}$ anddraw a line winding through all thofe points, the line fo drawie hall be the Ellipfis.

Or (without the helpe of the SeCtor) we may with the Radius A C, upon the centers D and E, defcribe two occule arches meeting in the points K and L. Then taking betweene C and k, any number of points $\mathcal{M} N$, we may from the centers K and \dot{E}, with the femidiameter MB deferibe foure occult arches; and with the Radius AM, and the fame centers K and L ; croffe them againe with other 4 arches in the points at O. In like manner, from the fame centers K and L, with the Radius $2 K B$, we may defcribe other 4 occult arches; and, with the Radius $A N$, and the former centers croffe them againe, with 4 atches in the points at P, and fo draw the Ellipfis through the points O P. \&c.

This is (in effect) as wee fhould tye a thred: about \mathcal{L} and L, and then draw it eafily from the point were brought to the point eI againe; which is allo ain etfy way to defcribean Ellip is.

The diftance of there former points from either Semidiameter may be fet downe in numbers. For, fuppofing the leffer Semidiameter $C D$, to be ios the greater ($C \cdot B$) to be 16, (or :otherwife divided into any number of knowhe points, If we have the proportion betweene $C G$ and $C B$, we may find the leng h of the perpendicular $G I$, If the proportion be as I to 2 , the perpendicular will be 8:66.

If the proportion beas 2 'to 3 , the perpendicular will be about 7.45.

As the greater femidiameter $C 3$ to the part given
So 100000 , the Radius
to the fine of
$C G$
whofe complement is $G H$
As the Radius
to the fine of the complement G HI
So the leffer femidiametcr $C \mathcal{D}$ to the perpendicular

GI

The fame may alfo be found without knowing the fines: For the perpendicular $G H$, is a meane proportionall betwien $\mathcal{A} G$ and $G B$: which being knowne As $C F$ unto $\mathcal{E} D$, fo is $G H$ unto $G I$.

7 To apen the Sector to the gisaktitic of any

angle givem.'

- The Sector being opened, to find the quantitic of the angle.

1T is one thing to open the edges of the Sector to in angle, and another thing to open the lines on the Sector to the fame angle. For the lines oflines on the one fide, 8 thelines of fires on the other fide, do make an angle of 2 gr . when the

Sẽtoris cloferhur, and the edges doe makeno angle at all. So likewife the hnes of Superifioies and the lines of Sotids doe make an angle of 10 gr , which are to be allowod to the dges.
*Thelines of lives may beopened to aright angle, if the whole line of roo parts be applied overin 80 and 60 .

The line of fines may be opened to a right angle, if the targe fecant of 45 gr . be applied over in the fines of 90 gr . or if the fine of 90 gr . be appliced over in the fines of 45 gr . or if the fine of 45 gr . be applied over in the fines of 30 gr .

If ir be required to open thofe lines to any other angle, take out the chord thereof, and apply ir over in the Jemirais. diwn, and thofe lines fhall be opened to that angle.

As if it were required to open the Sector in the lines of fimes to an angle of 40 gr . take out the chord of $40 . \mathrm{gr}_{\text {a }}$ and to it open the Sector in the chord of 60 gr . fo Thall the lines of fines be opened to the angle required. Or if the fame chord of 40 Gr . be applied over betweene 50 , and 50 , in the lines of lines, they fhall alfo be opened to the fame angle. If it be applied over in 25 of the lines of Superficies, or 125 in the lines of Sotids, they alfo ihall be opened to the fame angle: becaufe the chord of 60 Gr . or fine of 30 Gr. and 50 in the lines of limes, and 25 in the lines of sumpeficies, and 125 in the Soleds, are all of the fame length with t.e femiradius..

Or if the Semiradius be applied over betweene the fine of 30 Gr . and the fine of the complement of the angle required, it will open the lines of Sines to that angle.

As if the femiradius be applied over in the fines of 30 Gr and the fine of 50 ' $G r$. it fhall open stre liues of Simes to an angle of 40 Gr .

On the contrary, if the Sector be opened to an angle, and it be required to know the quantitie thereof, open the compaffes to the femiradius, and fetting one foote in the fine of 30 Gr. varne the other toward the orher line of fines, and it thall fall there in the complement of the angle; if it fall on 50 Gr . the angle is 40 Gr , it on 60 Gr . the angle is 30 Gr . \&e. Or take over the parallell chord of 60 Gr , and meafure it
in che laterall chord, and it hall there fhew the guantitiebf the argle. As if the Sector being opened to an angle, I fhould take over the parallell of 30 Gr . of the fines, and 60. Gr; of the chords, and meafure it in the laterall chords, findoit to be 40 Grithe angle comprehended betweene the lines of Sines is:40 Gr. bur the angle betweene the edges of the SeCor is 2 Gr . leffe, and therefore bui 38 Gr .

9 To finde the quantitic of any angle given.

FFout of the angular point, to the quantitie of the Semiradius, be defcribed an occult arke that may cut both fides of the angle, the chord of this arke meafured in the laterall chord, hall give the quantirie of the angle.

Ler the angle given be \mathcal{B}. C : firt I take the Semiradiys with the compaffes, and fetting one foote in A, I cut the fides of the angle in B and C_{3} then I take the chord $B C$, and meafure it in the laterall chord, and I find it to be in Gr, and. 1s M.and fuch is thequantitic of the angle giva.

A:
Or if the arke be defcrib dout of the angular point at as ny other diftance, let the femidiameter be turned iato a. parallall chord of 60 Gr. then take the chord of this arke, and carrie it parallell till it croffe in like chords : fo the place where it flayeth fhall give the quantitic of the angle.

As in the former example, if I make the femidiameter $A \cdot B$ - parallell chord of 60 Gr: and then keeping the SeCtor at that angle, carrie the chord $B C$ parallell, till it fay in like chords; I Thall finde it to ftay in no other but in Gr. 1.s. M. and fuch is the angle $\mathcal{B} A C$.

Io Ipona right line na a point ginen in it, to make an angle equall to ansy angle given.

FIrft out of the point given defcribe an arke, cutting the fame line: then by the. 5. Prap.afore,find the chord of the angle given agreeable to the femidiameter, and infcribe it into this arke: fo a right line drawne through the point given, and the end of this chord, fhall be the fide that makes vp. the angle.

Let the right line given be $\mathscr{A} \mathcal{B}$, and the point given in it be A, and let the angle given be 11 gr .15 m . Here I open the compafles to any femidiameter $\boldsymbol{A} \mathcal{B}$, (but as oft as I may conveniently to the laterall femiradius.) and fetting one foote ine A, I defcribe an occult arke $B C$; then I feeke out the chord of $11 \rho r .15 \mathrm{~m}$. and taking it with the compaffes, Ifet: one foote in \mathcal{B}; the other crofleth the arke in C, by which Idraw the line $A C$, and it makes up the angle required

Ix TO dividethe circumference of a circle into any parts required.

TF 360 the meafure of the whole circumference be divided by the number of parts required, the \{quotient giveth the chord, which being found will divide the circumterence.

So a chord of 120 gr . Will divide the circumference into 3 equall parts; a chord of 90 gr . into 4 parts;a chord of $72 . \mathrm{gr}$ into s parts j a chord of 60 gr into 6 parts; chord of 51 gr .26 inno 7 parts; a chord of 45 gr . into 8 parts; a chord of 40 gra into 9 parts ${ }^{2}$ a chord" of $36 \mathrm{gr}^{\prime}$ into 10 parts; a chord of $32 \mathrm{gr}_{\mathrm{g}}$ 44 m . into 11 parts; a chord of 30 gr . into' 1 ' 2 parts
In like maner if it be required to divide the circumference. of the circle whofe femidiameter is $A \mathcal{B}$, into 32 : firft I take the femidiamerer $A \mathrm{~B}$ and, make it a paralkell chord of 60 grt then becaufe 360 gr . beir g divided by 32 the quotient will be $1 \mathrm{I}_{\mathrm{gr}} 15 \mathrm{~m}$. I find the parallell chord of $11 \mathrm{gr}, 15 \mathrm{~m}$. and this will divide the circumference into 3^{2}.

But here the parts being many, it were better to divide it firft into fewer, and after to comeover it againe. As fift to divide the circumference inro 4, and then each 4 parts into. 8, or otherwife, as the parts may be divided.

12. To divide aright line by extreme and meaxe praportion.

THe lineto be divided by extreme and meane propor:tion, hath the fame proportion to his greater fegment, as in figures infcribed in the fame circle, the fide of an hexason a figue of fix angles, hath to a fide of a decagon a figure of ten angles: but the fide ota boxagon is a chord of 60 gr . and the fide of a decagon is a chordpf 36 gr .

Let $\mathcal{A} B$ be the line ra be divided: if I make A a parallell chord of $60 \mathrm{~g} \mathrm{~g} \cdot \mathrm{nd}$ to this femidiamerer find A. Ca chord of 36 gr . this A C hall be the greater fegment, dividing the whok line in C, by extreme and meane proportion. So that, As $A B$, he whole line is unto $A C$ the greater fegment: fo $A C$ thegreatcr fegment unto $C B$ the leffer feginent.
Or let 1 C be the grater fegment given: if I make this 2parallell chord of 36 gr . the correctpondent femidiameter: fhall be the whole line $A B$, and the difference. C B the leftep Egment.

Orlet C B be the leffer fegment given : if I make this a parallen chord of 36 gr . the correlpondent femidiameter Shall be the greater regment $A C$ which added to $C B$, given: the whole line AB.

To avoid doubling of lines or numbers, youmay put over the whole line in the Sines of 72 gr . and the parallell fine of 36 gr . Thall be the greater fegment.

Orif you put over the whole line in the fines of 54 gr : the parallell fine of 30 gr . thall be the greater fegment, and. the parallell Gine of 38 gr . Mayll be the lefer fegment.

CHAP

CHAP. III,

Of the proiection of the Sphere in Plano.

'THe Sphere may be proiected in Plano in freight lines, as in the Analemma, if the Semidiamiter of the circle given be divided in fuch fort as the line of Sines on the SeAor.
As if the Radius of the cirle given were $A E$, the circle thereon defcribed may reprefent the plane of the generall meridian, which divided into foure equal partsin E, P, E, S, and crofledat right angles with $E \&$ and $P S$, the diamiter $E \mathbb{E}$, fhall reprefent the xquator, and $P S$ the circle of the houre of σ. And it is alio the Axis of the world, wherein P flands for the North fole, and S for the South pole. Then niay each quarter of the meridian be divided into 90 degrees from the aquator towards the poles. In which it we number 23 degr. 30 min. the greatef declination of the Sunne from E to 69 North. wards, from \mathbb{E} to v_{s} Southwards, the line drawne from 69 to wo fhall be the ecliptique, and the lines drawne parallell to the equator through os and ws fhall te the tropiques.

Having thefe common fections with the plane of the meridian, if we fhall divide each Semidiameter of the Ecliptique into 90 degr. in fuch fort as the Sines are divided on the Sector. The fift 30 degr. from \boldsymbol{A} towards 69 , hall ftand for the fine of r. The 30 degr. next following for γ. The reff for $I \pi . \sigma . \Omega \& c$. in their order. So that by thefe meanes we have she place of the Sun for all times of the yeare.

If againe we divide $A P A S$, in the like fort, and fet to the numbers 10. 20. $30 . \& \mathrm{c}$. unto 90 degres, the lines drawne through each of thefe degrees parallell to the equa-

E
of the Proiection of the Spbare

tor; Ghall fhew the declination of the Sunine, and reprefent the paralllls of latitude.

If farther we divide $A E, A R$, and each of his paralells equally in the like fort, and then carefully draw a line through each 15 degrees, fo as it makes no angles; the lines fo drawne thall be elipficall, and reprefent the houre-circles.
cles; The meridian $P E S$, the houre of 12 at noone that next unto it drawne through 75 degrees from the Center the houres of 11 and 1 , that which is drawne through 60 degrees, from the center the houres of io and 2. 8 c .

To thefe wee may adde the monthes of the yeare; and the dayes of each moneth, placing Ianuarie about F, CHarsh about ε, Inne about I, Iulie about K, September, about E E; December, about the Tropique of wo: and fo the reft according to their Declination from the Equator.

Then having refpect unto the latitude, we may number it from E Northward unto Z, and there place the Zenith: by which and the conter the line drawne Z A N Ghall reprefent the verticall Circle, paffing through the $Z \in$ nith and Nadir Eaft and Weft, and the line M A H croffing it at right ang'es., hall reprefent the borizon.

Thefe two being divided in the fame fort as the ecliptique and the xquator, the line drawne through each degree of the Semidiameter $A \mathrm{Z}$, parallell to the horizon, Shall be the Circles of altizude, and the divifions in the horizon and his parallells thall give the azimuth.

Laftly, if :hrough 18 gr. in $A N$, be drawne a right line $I K$ parallel to the horizon, it Chall fliew the tume when the day breaketh, and the end of the twilight.

For example of this proiection, let the place of the Sun be the laft degree of \succ, the parallell paffing through this p'ace is $L D$, and therefore the meridian alcitude $M L$, and the depreffion below the ho:izon at midnight $H \mathcal{D}$: the femidiurnall arke $L C$, the feminoctnruall arke $\mathrm{C} D$, the declination e $A^{-} B$, the afcentionall difference $\mathcal{B} C$, the amplitude of afcention $A: C$. The difference betweene the end of twilight and the day breake is very fmall; for it feemes the paralrell of the Sun doth hardly crofe the line of twilight.

If the altitude of the Sunne begiven, let a line bee drawne from it parallell to the horizon: fo it fhall croffe the parallell of the Sunne, and there fhew both the azimuth and the houre of the houre of the day. As if the place of the Sunne being given as betore, the Altitude in the morning were found to be 20 degr. the line $F G$, drawne parallell to the horizon through 20 degrees in A z, would croffe the parallell of the Sun in \odot. Wherefore $F \odot$ fheweh the azimuth, and $L \odot$ o the quantitie of houres from the meridian. It feemes to be about halfe on houre paft 6 in the morning, and yet more thenthalfe a point fhort ofthe Eaft.
The diftance of two places may be alfo thewed by this proiection, their latitudes being knowne, and their difference of longitude.

For fuppofe a place in the Eaft of eArabia, having 20 degr. of North latitude, whofe difference of longitude from London, is found to be an Eclipfe to be 5 howres $\frac{1}{3}$. Let Z bethe Zenith of London, the parallell of latirude for that other place muft be $L D$, in which the difference of longitude si $\mathrm{L} \odot$. Wherefore \odot reprerenting the fite of that place, I drawe through \odot a parallell to the horizon $M H$, croffing the vericall $A Z$ neare about 70 degres from the zenith, which multiplied by 20, fheweth the diftance of London, and that place to be 1400 leagues. Or multiplyed by 60 , to be 4200 miles.

2 The Sphere may be proiected in plano by circular lines, as in the generall Aftrolabe of Gemma Frijinss, by the help of the tangent on the fide of the SeEFor.
For let the circle given reprefent the plane of the geerall meridian as before; let it be divided into foure arts, and croffed at right angles with $E \in$ the equator, and $P S$ the circle of the houre of 6 , wherein. \mathcal{P} flands for the North pole, and S for the.South pole. Let each quarter of the meridian be divided into 90 . degers and fo the whole into 360 , beginning from P,

of the Proieciticn of the Sphare.

 180 at $S, 270$ at $\varepsilon, 350$ at P. The femdiamiters

$A P, A E$; may be divided according to the tangents of halfe their Arkes, that is a taigent of 45 degrees, which is alwayes 100000 equall to the , Rädius, Thall give K_{3}.
the

70
the femidiamiter of 90 degrees a tangent of 40 degriocs 83910, Thall give 80 degrees, in the femidiamiter: a tangent of 35 degrees 70021 hall give 70. \&c. So that the femidiameters may bee divided in fuch fort as, the tatigent on the fide of the Sector, the difference being oucly in the ir denomination.

Having dividid the circumference and the femidiameters, we may eafily draw the meridia:ns and the paraUlels by the help of the Sector.

The meridians are to be drawne through both thepoles P and S, and the degrees betore graduated in the zquator. The diftance of the center of each meridian from A the center of the plane, is equall to the tangent of the Came meridian, reckoned fromithe generall meridian $P \nsubseteq S E$; and the femidiameter equall to the fecant of the fame degree.

As for ex mple, if 1 thould drawe the meridian $P B S$, which is the tenth from $P \mathbb{P} \mathcal{S}$, the tangent of 10 gr . 47633, giveth me $A C$, and the lecant of 10 gr . 101543 , giveth me $S C$, whercfore C is the center of the meridian ${ }_{P} \mathcal{B} S, \& C S$ his femidiameter: fo $A F$ a tangent of 20 gr . 36397 theweth F, to be the center of $P D S$, the twentith meridian from P, $\mathbb{E} S \& A G$ a tangent of 23 gr .30 m. 4348 r , fheweth G to be the center of $P 69 \mathrm{~S}$.\&c.

The parallels are to be drawne through the degrees, in $A P, A S$, and their correfpondent degrees in the generall meridian. The diftance of the center of each parallell from A the center of the plane, is equall to the fecant of the fame parallell from the pole, and the femidianieter equall to the tangent of the fame degree. As if I Thould draw the parallell of 80 degrees which is the tenth from the pole S, firft I open the compafics unto AC the tangent of 10 degrees 17633 , and this giveth me the femidi meter of this parallell, whofe center is a little from S, in in fach diftance as 101543 the fecants $S C$ is longer then ro000n, the Radivs A.

The meridians and parallels being dra wres, if we num-
ber the 2_{3} degr. 30 m . from E to σ Northwards, from E. to w southward, the line drawne from to to w fhall be the ec'iptique: which beirg divided in fuch fort as the lemidiameter $A P$, the firft 30 degr . from A to \mathcal{S} fhall ftand for the fine of r, the 30 degr. next following tor ζ; the reft for $I I \sigma \Omega$. αc. in th it ir order.

If farther we have refpect unto the latitude, we may number ic from E Northward unto Z, and there place the zepith, by which and the center, the line diawne $Z A \approx$ fhall reprefent the verticall circle, and the line $M \mathscr{A} H$ croffing it at right angles, fhall reprefent the horizon; and thefe divided in the fame fort as $A P$, the circles drawne through each digree of the femidianeter $\mathcal{A} \mathrm{Z}$, parallell to the horizon, hall be the circles of altitude: and the circles drawne through the horizon and his poles, Shall giue the Azimuths.
For example of this proiection, let the place of the Sun be in the beginning of ans, the parailell pafing through this place is $\approx \approx \mathcal{L}$, and the efore the meridian altitude $M L$, and the deprefion below the horizon at midnight $H O$, the femidiurnal! arke $L \odot$, the feminocturnall arke $O \odot$, the declination A R.th z afcenfionall difference $R \odot$ the amplitade of afcention $A \odot$.

Or if A be pat to reprefent the pole of the world, then fhall P 出 $S E$. ftand for the x quator, and $P \subseteq S y_{0}$ for the eciiptiq ie, and the reft which before ftood for meridians, may now ferue tor particular horizons, according to their feverall elevations. Then fuppofe the place of the Sunne given to be 24 degrees of ' 8 , his longitude fhall be $P i$, his right atcention $P H_{b}$ his deciination H. And if the piace given be 19 -degr. of Ω, his longitude fhall be P, , his right afcention $P N$, his declination $\mathcal{R K} K$. Againe, the decination brought to the horizon of the place, thall there fhew the alcentionall differeice, amplitude of afcention, \& he like conclafions of the globe. But I intend not here to flow the ofe. of the Aftrolabe, but the vie of the Sector in proiection.

And dfter this manner may a nocturnall be proiected té thew the houre of the night, whereof I will fet downe a eype for the ofe of Sea-men.

It confirts as you fee of two parts, the one is a plane, divided equally according to the 24 houres of the day, and each houre into quarters or minutes, as the plane will beare: the line frcm the center to XII, flands for the meridian, and X11, flands for the houre of 12 at midnight. The other part is a rundle for fach ftarres as are neare the North pole, together with the 12 moneths, and the dayes of each moneth fitted to the right afcention of the flares. Thofe that haue occation to fee the South

1

South pole, may do the like for the Southerne conftellasious, and put them in a rundle on the back of this plane, and foit may ferve for all the world.

The vie of this nocturnall is eafie and ready. For looke vp to the pole, and fee what farres are neare the meridian, then place the rundle to the like fituation, io the day of the moneth will thew the houre of the night. 3 The Sphare may be proiected in plano by circular lines, as in the particular Aftrolabe of Lobn Stopblerin, by help of the tangent, as before.

For let the circle given reprefent the tropique of $u p$, ket it be divided into foure parts, and croffed at right angles with $A C$ the equinoctiall coloure, and $M \mathcal{B}$ the folftitiall coloure, and generall meridian, the center P reprefenting the pole of the world. Let each quarter be divided into 90 degrees, and fo the whole into 360 , beginning from \mathcal{A} towards' B. The meridian P M, or $P B$, may be divided according to the tangent of halfe his arke. So as the aker from the North pole to the tropique r, being 90 degrees and 23 degrees 30 m . that is 113 degrees 30 m . and the halfe arke 56 degrees 45 m . the meridian fhall be divided into 90 degrees and 23 degrees 30 m . in fuch fort as the tangenc of 56 degrees 45 m . on the fide of the Secter is divided into degrees and halfe degrees; of which $P \mathbb{E}$ the arke of the x quator 90 degrees from the pole, thall be given by the tangent of 45 degrees. And $P 69$ the arke of the Summer tropique 66 degress 30 m . from the pole, fhall be given by the tangent of 33 degrees 15 m . And the circles drawne ypon the center \boldsymbol{P} through \boldsymbol{E}. and s, hall be the æquator, and the Summer tropique.

Having the xquator and both the tropiques, the ecliptique $r g \approx \%$ hall be drawne from the one tropigue to the other, through the interfection of the xguator and the Equinoctiall colure. And it may be divided firt into the twelue fignes after this manner: \boldsymbol{P}^{2} E the arke of the pole of the ecliptique 23 degrecs 30 mm .
from the pole of the world, hall be given by the tangent of 11 degrees 45 m . The center of the circle of longitude paffing through this pole $E r$ and \approx, fhill be found at D (fomewhat belowe B) by the tangent of 66 degrees 30 m . Then through \mathcal{D} draw an occult line parallell to $A C$, and divide it on each fide from D, in fuch fort as the tangent is divided on the fide of the Sector, allowing 45 degrees to be equall to $D E$, So the thirtith degree from \mathcal{D} toward the right hand, thall be the center of the circle of longitude paffing through ε ऽ and m. The fixtith degree, the center of III E_{f}. The thi rtith degree from \mathcal{D} rowards the left hand, the cer:ter of $\Varangle E$ mp. The fixtith, the center of $\approx E \Omega$. And the other intermediate degrees fhall be the centers to divide each figneinto 30 gr .

If farther we have relpect unto the latitude, we may (the meridian being before divided) number it from P North-ward unto H, and there place the North interfection of the meridian and horizon: then the complemeat of the latitude being numbred from \mathcal{P} Southward unto Z, fhall there give the zenith; and 90 degr. from Z Southward unto F, thall there give the Soush interfection of the meridian and horizon. The middle betweene F and \boldsymbol{H} fhall be \boldsymbol{G} the center of the horizon $r H \approx \mathrm{~F}$, paffing through the beginning of γ and \approx ounleffe there be fome former errour.

All parallels to the horizon may be found in like fort by their interfections with the meridian, and the middle betweene thofe interfections is alwayes thel cenecr.

The Azimuths may be drawne as the circles of longitude were before. For the circle of the firft verticall in Z will be found at I (fomewhat neere unto B) by the taingent of the latirude. And if through I we draw an occult line parallell to $\perp \mathrm{C}$, and divide it on each fide from I, in fuch fort as the tangent is divided
of the Proicclion of the Spare.

on the fide of the Secter, allowing 45 degrees to bee quall to $L Z$, thefe divifions fhall be the centers, and the diftance from thefe divifions unto Z, fhall be the femidiameters whereon to defcribe the reft of the Azimuths.

$$
\underline{4}
$$

The

For example of this proiection, let \odot the place of the Suane given be io d egr. of y : a right line drawne from \mathcal{P} through this place unto the aquator, Ch all there thew his right afcention $\checkmark K$, and his declination K. Then may we on the cencer \mathcal{P} and femidiamiter $\odot \mathcal{P}$, draw an occult parallell of declination, croffing the horizon in L and $\mathcal{C M}$, the meridian in G and N. So the right lines $P L$ and $P M$ prodaced, fhall thew the time of the Sunnes rifing and fetting, $r Q$ the difference of afcention, $\approx R$ the difference of defcention, $r \mathcal{L}$ the amplitude of his rifing, and $\sim M$ the amplitude of his fetting. $L \mathbf{N} M$ fheweth the length of the night. $2 \boldsymbol{G}$ fheweth his diftance from the zenith at noone, \boldsymbol{H} \boldsymbol{N} his depreffion below the horizon at midnight. And then having the altitude of the Suune at any time of the day, the interfection of the parallell of altitude with the parallell of declination; Theweth the Azimuth, and a right line drawne from P through this interfection, giveth the houre of the day.

The Sphzre may be proiected in plano by circtslar lines, after the maner of the old concave hemifphare, by the help of the tangent on the fide of the SeCtior.

For let the circle given reprefent the plane of the horizon, let it be divided into foure parts, and croffed at right angles with $\boldsymbol{S} \boldsymbol{N}$ the meridian, and $E V$ the verticall; fo as S may ftand for the South, $2 \sim$ for the North, E for the Ealt, V the Weft part of the horizon, and the center Z reprefentialfo the zenith. Let each quarter of the horizon be divided into 90 degrees, and fo the whole into 360 degre. beginning from \mathbb{N}, and fetting to the numbers of 10.20.30 \& \& .90 at $\mathcal{E}, 180$ at $S, 270$ at $V, 360$ at 2

The femidiamitor $Z \mathcal{Z}, Z \boldsymbol{Z}$, may be divided accord: ageto the vangent of halfe their arkes: fo as the arke from the zenich to ohe horizon being 90 gr . and the halfe arke 45 gr. the femidiamiters are to be divided in fuch fort as the tangent of 45 gr . as was hewed before in the fecond moiection. And if from. Z we draw circles through each
of there divifijas, they thall be parallels of altitude. " Then having refpectunto the alcitude, we may (the meridian being before divided) number it from Z to \mathbb{E}, and there place the interfection of the meridian and xquator. The conplement of the latitude from \mathbf{Z} vito P,

fhall thicre give the pole of the world, and 90 further from P fhall there give the other interfection of the mesidian and x quator.

The middle betweene tiefe interfctions thall be es the center of the xquator, peffing through ε and V, molefte there be fome former errour. The interfections' of the trofiques depend on the aquator. From EE 23 degrees 30 m . farther ihall be $u s$ the interfection of the meridian and the Scutherne tropique. From \& 23 degrees 30 m . nearer fhall be σ, the interlection of the meridian and the Noriherne tropique. The interfections of the other intermediate paralleis, thall be given in like fort, by their degrees of diftance from the xquator, andthe middle betweene thofe interfections is alwayes the eenter.

The houre circles may be here drawne as the Azimuths in the third proiection. For the center of $\varepsilon \mathrm{P} V$, the houre of σ will be found at \mathcal{B} (fomewhat neare anto 2) by the tangent of the latitude. And if through B we draw an occult line parallell unto ε, V, and divide it on each fide from B, in fuch furt as the tangent is divided on the fide of the SeCtor, allowing 45 degrees to be equall to $\mathcal{B} P$, and 15 degrees for every houre: thofe divifions thall be the centers, and the diftanee from the divifions unto \mathcal{P}, fhell be the femidiameters, wheron to defcribe the reft of the houre circles.

The eclip:ique may be drawne las the xquator . For the center of that halfe which hath Southerne declina, tion, thall be given by the tangent of the altitude, which the Sunne hath in his entrance into wo. And the center of the other halfe, by the targent of his alticude, at his entrance into 5 . And it may be divided, as in the former proiection, or elfe by tables calculated to that purpofe.

To thele circles thus drawne, if we Thall addd the moneths of the yeare, and the dayes of each moneth, as we may well doe, at the horizon, on either fide be-
betweene the tropiques; this proie :ion hall be fitted for the moft vfefull conclufions of the Globe.

For the day of the moneth being given, the parallell that fhooteth on it, doth hhew what declipation the Sunne hath at that time of the yeare. And where this parallell croffeth the ecliptique, there is the place of the Sunne. Or the place of the Sunne being firft given, the paraliel which croffeth it, fhall at the horizon fhew the day of the moneth. Either of thefe then being given, or onely the parallell of declination, we may follow it firft unto the horizon, there the diftance of the end of the parallell from E or V, (heweth the amplitude; the fame among the houre circles theweth the time, when the Sunne rifech or fetteth. Then having the altitude of the Sunne at any time of the day, the interfection of the parallell of declination with the parallell of alitude, Theweth the houre of the day; and a right line drawne from Z, through this interfection to the horizon, givath the Azimuth.

Thas in either of thefe proiections, that which is otherwife moft troublefome, is eafily done by the help of the tangent line: and what I have faid of this line, the fame may be wrought by fcale and numbers out of the table of tangents.

CHAP. IV.

Of the refolution of right-line Triangles.

of the proicetion of the Sphare '

1N all Triangles there being fixe parts, viz. three angles and three fides, any three of them l-ligg given, the reft may be found by the ScClor.
As may appeare by the Proe following, where 'n for our pratife we may ret there wriangles $C E A, C E B, C E D$, are rectangle in B, and A $G F$ redangle in G, the reft confint of oblique angles.

In a Rectangle to find,
ITo finde the bafe, both fides being given.

Let the Sector be opend in the line of lines to a right angle, (as before was fhewed Cap. 2. Prop.7.) then take out the fides of the triangle, and lay them, one on one line, the other on the other line, fo as they meete in the center, \& marke how farre they extend. For the lime taken from the termes of their extenfion, fhall be the bafe required, viz. the fide oppofite to the right angle.

Or adde the fquares of the two fides(as in Rrop.4. Superfic.) and the fide of the compound fquare fhall be the bafe.

As if the lines $A E, C E$, fhould be the fides about tne right angle, and it were required to find the bafe fubtending the right angle.
betweene the stopiques; this proiection thall be fitt n for the onoft F lafull conclufions of the Globe.

For the day of the moniech beling given, the parallell that fliootection it, doth fhew what declinati on the Sutne bath at that time of the yeare. And where this parafiell crofeth the ecliptique, there is the place of the Sunne. Or
 crofleth it, Mall at the horizon fhew the day of the notreth Either of thefe then being given, or onely the patatial of ae: clingtion, we may follow it firt unto the horizon, there thetiftance of the end of the parallell from E or V, fheweth the amplitudes the fame andoing che buruse cincles heweth the time, when the Sunnerileth or fettetty Then having the altitude of the Sunne at any time of the day, the interfection of the parallell of declination with the parallell of altitude; fheweth the houre of the day; and a right line drawne from Z, throughshis interfection to the horizon, giveth the Azimath.

Thus in either of thefe proiections, that which is otherwife molt troublefome, is eafily done by the helpe of the tangent line : and what I have faid of this line, the fame may be wrought by fcale \& numbers out of the table of tangents

CHAP.IV.

- of othe refolutiam of rightive Trianges.

IM all Triangles there being fixeparts, vite:three noglts and three fides, any threeofthem beios: giveny the? Eef may be found by the Sectory :
4. As may appeare by the Prap, following, whateiv for of practife we may vfe thefe triangles, CEAy CEB \boldsymbol{B}_{4} IC ED are rectangle in E, and $A G$ Erectangle in Githeseft codgh of oblique angles.

80 Ofthe proiection ff be Sphart,

Ang	Gt.M. S.	Lin	Parts.	Ans: Or. M S 5	Lim. Pars
E	900.0	AC			B D 28
: 5 :	-90:0 0	AF		ECD : 53 , 748	AD:28
,	161536	$F G$	28	$B C D 1061536$	B.E 56
D	365212	CE	21.	ACD.126 2212	ED 190
, ${ }^{\text {P }}$	36.521 .2	CD	35		
	14t3 7.48	$C^{\text {c }}$		\cdots	
A A SE	7.3412	40	961		
ACE	7304412	AE	73		
$\triangle C B$. 20.3635	AZ	44		

inm a Ratfingherighe line Triangle; 1. To finde the ba/e, botbfodes being givien.

Let the Sedor be opaned inethe line of liwes to à right angle, (as before was Shewed Câp. 2. Prop. 7.) then take out the fides of the triangle, and lay them, one.on one lize, the other on the other live, fo ast they inimete tn thie center, \& marke how farre they extend. For the line taken from theteremes of cheir extenfion, thall be the bafe required, viz. the fide pppoifere ciche rightuangle: :

Or adde the fguares of the two fides (das in Propec4. Sinver Exe and the fride opoftre compound fquace fiall be the bafe, \therefore A sit chelines a $1 E, C E$, thould bethe fides about the fighoantbos andit.wereg required to findt he bâfe fubrending the right angle.
 $3 I$

Fifft, tee the line of Lines to 2 right angle by applying the whole line of ro from 6 in the one line to 8 in the other. Then if the greater of the two lines given be leffe then the line of: Lines, I take the greater of them e $\angle E$, and trangferr it with the compaffes into one of the lines oflimes, and find, that, in : my SeCter (which is $\mathbf{F} 4$ inches long, and fo, the line of Lines: almoft 7 inches) it reacheth from the center to 5.18.

Againe, I take the leffer line $C \cdot E$, and transferr it into the: other line of Lines, and find, that it reacheth from the center unta 151. wherefore I take the diftance from g_{I} anto s 18 , and fuch is the length of the Bafe A C required.

If either of the lines given be too large for the Seator, then: I may meafure them by feet or inches, and fuppofe I find the length of $\mathcal{A} \varepsilon$ to be abour 720 , and of $C^{\prime} \varepsilon_{2} 210$ Then, in the line of Lines (being fet, one perpendicular to the other, as before) I extend the Compaffes from 210 unto 720 ;and meafuring this extent in the line of lines, find it to be 750 parts. wherefore, I prick downe 75° patts, in the line $A G$, from the fame fcale by which I mealured $\mathcal{A} E$, and $C E$. SO, chis, line $A C$ hall be tbe Bafe required.

In working by the line of Superficies. I need no opening of the Sector. For, taking the line $C \varepsilon$ with my compaffes, and meafuring it in the line of Superficies upon my Secter, I fiad it neere 13 : parts.

Then taking the line $A E$, I find it to be about 269; Thefen two being added together make 292 : and this extent is the length of the bafe el C. required.

2 To find the baje by baving the argles:

 and one of the fides given.Take the fide given, and curne it into the parallell fine of his oppofite angle; to the parallel Radius flapl be the bafe.

As if the line $A E$ wera the fide of a rectangletriangle oppofite to an aiggle of $73 \mathrm{gr} .45^{\prime}$, and it were required to find thę Bafe .
"Firft, I take the foces $1 \boldsymbol{E}$ with my tompafres, and fee it M

If the fide given be fuch as cannot well be fited over in ${ }^{\text {d }}$ the fines of his oppofite angle, I may mealure it by fret or ienches, and fuppofe I find the length of A E to be 720. then? Would I take 7^{20} pars, oux of the line of lines, and make it parallell Sine of $73 \mathrm{gr}^{\prime 2} 45^{\circ}$. So, the parallell Radius taken from between 90 and 90 , and meatired in the line of lines, will be cound tabe about 750 parts : wherefore, I pricke downo 750 in the line A C, by the fame feale, whereby I meafure AE: and chis ling AC Caall be the Bale required.

3 Tryenda fle by baving the baffe: and the otherf fide given

Lee the Seqtor be opened in the lines of lines to a right angle, and the fide given laid on one of thote lines frome. the cencer : then rake the bafe with a paire of compaffes, and: fetting one foote in the terme of the given fide, turne the other to the other line of the Se.tor, and it Ihall there Shew. the fide required.

Or take the Iquare of the fide out of the fquare of the bate. (as in Prop.4. Superf:) and the fide of the remainipg fquare. : tall be the fide required.

Thus having A C for the Bafe, and C F; for the fide of a rectangle triangle, the other fide will be found to be. AR

Or $_{5}$, if A C, being meafared; be 750, and C Es, aho, the echer fide AE will be found to be 730 .

> 4 To find a jade having the bafe. rad ibs angles giver.

Thus in the Reetangle AEC, if A C be made a prillest Redius, the parallell fine of $73 \mathrm{gr}^{\prime} 45^{\circ}$ will give the fide of 5 , and the parallell ine of 16 gro 15° will give the os cher fide $C E$.

and the angles givevi.

Take the fide given, and tnmete into his paralleft ste of his oppofite angle : fot the parallell jame of the cotiliplemene fiall be the Gde required.
Thus in the Rectangle D \& C, if CE be made a pardlell fine of $53 \mathrm{Gr} .8^{\prime}$ the parillell gine of 36 Gr , sti'. will give the nite ED: and the parallell Gine of 90 sr , will give the

2 6 Ti fndsbe angles by baentig the bife i" madran of ihe fider givome
syrit, take out the bafe given, and taying it on both adeil of the Seftor, fo as they may meete in the center, and marlie. how farre it extendeth. Then take oat the faterall Reditat and to is open the Sector in the termes of the bufe This : doite, take out the fide given, and place it alfo on thie facten Eives of the Sector from the center. For the paraltell cakien inthe termes of this fide : Mall he the finc of his appofite angec,
Or cake the bafe given, and make it a paralleil Radius; theritake the fide given, and curric it paralledl to che bafe is till it fay in like fiwes: fo thiey lhall give the quancitic of the oppofite angle.
Thus in the Rectangle $A E \subset$ having the Bare $A C^{\prime}$ iod the fide $A E$, you poay fride the argle $C A E$, to be 5685.185°.

S

\sum_{2}
Mefolutian of rigbt-line triangtes.
7. Tofind the anglas by having bath the
fides given.
Take out the greater fide, and lay it on both fides of the: Sector, fo as they meete in the center, and marke ho; w.farre itextendeth. Then take the other fide, and to it open the $\mathrm{Se}-$; Ctor in the termes of the greater fide; fo the parallell Radius. Shall be the tangent of the leffer angle. The third angle is alWayes knowne by the complement.

Thus in the Rectangie $D, E C$, having the fides $C E$, and $\varepsilon \mathcal{D}$, you may find the leffer angle $E C D$ to be $36 \mathrm{~g} \cdot 5^{\prime}$, and therefore the other angle $E \mathcal{D}$ C to be $53.8^{\prime \prime}$

8 The Radius being given, to find the tasgent: -addfecant of any arke.
9 The tangent of any arke being gitven, to find tbe Secant ibereof, and the Radius.
10 The fecast of any arke being given, to find Th toingent therceff axitt be radidu:
The tangent, and the fecant, together with the Radius of every atke, do make a right angle triangle; whofe fides are: the Radius and taigent, and the bafe alwayes the fecanf; and the angles alwayes knowne by reafon of the given arkes. As, in the Retangle $1 E C$ if on the center \mathcal{I}, and femir* diamerer $A \mathcal{E}$, you defcribeacircle, then make $A \varepsilon$, to be the Radius, and $E C$, a tangent of $I \sigma_{0}$ is and $A C 2$ fecant of 159 gr. 15°

If you defribe a circle on the center C, and femidiameter " $C E$, then is $C E$ the Radius aind $E A$, a tanget of 73.45° and, C A a fecant of 73:45:
Wherefore the Lolytion is the fame with thole before.
Is any rigbt-lined triangle whatfoever,
"II Te find a fide by knowing the other tre fides; and the argle contained by them.
Let the Setter be opengdinthe lines of llwes to the angle given.

Givenās I hewsed before cop \& Prop. 7. Then take out the Gides of the triangle, $\&$ laying them the one on the one line, the other on the other; fo as they meete in the center, marke how far they cxtend. For theline taken betweene the termes of their extenfion, hall be the third fide required.

As if A Cand A D were two fides of a right lined triangle conteining an angle of $16 \mathrm{gr}^{\circ} \cdot 16^{\prime}$ and it were required, to find the third fide fabtending this angle.

Eirft I fet the lines to an angle of 16 . 16^{\prime}, by applying the fine of $8 \mathrm{gr} .5^{\prime \prime}$ over in the ponts of so and 50 , in the line of lines. That done, I take the longer line A D, and transfer it with my compaffes, in to one of the lines oflines, and find is to reach from the center to 730 .

- Againe, I take the leffer line A C', and transfer it into the' other line of limes, where it reacheth from the center to 540. wherefore, I take the diltance from 540 to 720°, and fuch is we lengthof the 3 fide C D D required.

Or (if thelinas be given in meafure) AD roo, and AC TS : Iexteadthe compaffes from $100 t 0$ 75, and meafuring this extent in the line oflines, find to be 35 . Whereapon I^{2} take 35 parts out of the fcale, by which $A C$, and A D were meafured and prick them downe in the line CD. So, this. line $C D_{2}$ flall be the third fide required.

> I2 To find a fide by havingthe other two fides, and one of the udiacent angles, fo it be knowne which of the other angles is aciute or obltgwe

Let the Sector be opened in the line of lines to the angle given, and the adiacent fide laid on one of thofe lines from the center; then take the other fide with a paire of compaforg fes, and fetting one foote in the terme of the former given fide. tume the other to the other line of the Sector which herezeprefentecth thefiderequired, and it hall crofe it in two

$$
\underline{M}_{3}
$$ required too fod the fide $A D$.

Firt topen the Sector in the line of lines to an ungle of 16 gr .16 m . And laying the adiacent fide from the cethore $\mathrm{e}^{\prime} \mathrm{f}$? find whert it exrendeth in C. Then itake the other fide $C D$ with the compaffes, and fetting one foote in C , \& turting the other to the ocher line of thic Seliter I find ehar it doth croffe itboch in B and D.
O_{r}, (if the lines be given in mefuret) $\dot{C} \mathrm{C}$ ys, mil

 she leffer if it be acute, it is the greater.

13 Tofind afite by having the anglets ard ane af the other fides given.
Take the fide given, and turac it into the parallell fore of his oppofite angle; fo the parallell fines of the other a agle \& Thalt be the oppogite fides required.

As if in the triangle $A B C$, having the fide $\& D_{\text {rrand }}$ fides, $A \mathrm{C}$, and $B \mathrm{C}$.
The three anigless of a righelined Triangle, are alwayes equall to 180 Gr . Wherefore, I adde $16 \mathrm{Gr} .16^{\prime}$ unto 143 .grd $A C B$ oppofite to the knowne fide $A E_{5}$ to be 20 gr. 3 ? Then, 1
g. 306

Eefolmionofrighe-Live Triazgles.

 Paraliell fine of 143.8^{\prime} will be the fide 14 C.
Otrifnemationg the fide $1 B$ I find it to be 443 I may - inketan parts, eieher ous of the line of limes, or out of any, or iher x cale of equall parts, and make it a Parallecil fioc, of 20 g .
 Zever, wittgive 3 f for the iength of the fide $B C$; and the parallofline of $36 \mathrm{y}^{2} .52^{\prime \prime}$ will give $7 \%^{\prime}$, for the length of the other fide $A C$.
Wher thiczaigle counces to be above 90 grs the fine of 80 . ars doch fand for a Gine of 100 grt and the fine of $70 \mathrm{gr}^{\circ}$.
 their complenumis to. 880 degrices,
 by beping the tbrece augles.
Th hathitureralk fues of the angles, and meafire them in Aheofinesi' For the numbers belonging to thofe lines girethe proportion of the fides.
Thus, in the two equi-angle triangles $A E C, A, E$, if you - weche lacerill fine of 90 gr , for the right angle at E and G, ent mealure it in the line of lims, you fhalll find-it to be 100.
 te 28 A, you fhall findit ro be 28. Take che laterall fine of 73 ero 44^{\prime} for the chirdangle at C and F, you hall find is to be: go. Sach therefore is the proportion of the fides. As 100.96. 285, So are 75. 720 3 m

1s. Io find ain angle by knowing the Ibreefides.

Tecthe eve epmining fides be layd on the liaes of the. Soilim, from she ceprer, one on one line, and thic other on the echers apdlet the third Gide, whichisoppofie to the angle A

 opened in thofe lines to the quantitic of the angle required.The quantitie of this angle is found as in Cap: 2 Prop. 8.
Thus having the 3 fides of the triangle A C D, to find the angie at \mathcal{A}_{0} I take the 2 conteining fides A D, A心 and tranf. ferthem with my compaffes into the lines of Lines: where I find the one to reach from the center, to 7^{2}; ohe other, to 54.

Then I take CD, (the fide oppofite to the angle at A) and fit that over berweene 72 and 54.

Or if the 3 fides be given in meafure $: A, 1009 \mathrm{AC} 75:$ C D. 35 : I might take 35 for the fideC.D out of the line of Lines, and fet that over from 100 to 75. . This don I take the diftance betweene 50 and 50 and meafuring it in the line of Sines I find it to be about about $8 \mathrm{~g}^{\prime}$. 8^{\prime} : jou doublt whereof is $16 \mathrm{gr} .16^{\prime}$ the angle required.

16 To finde arangle by baving two fides. andoneadiacent ongle.

1.

1 Firft take out the fide oppofite to the angle given, and laying it on both fides of theSector, fo.as they meete in the center, marke how far it extencteth; then take out the fate-s? rall fine of the angle, and to it open the Sector in the termes: of the firft fide: this done, take out theorher fide given, and patace it alfo on the fame lines of the Sector from the centers for the parallellstaken in the termes of this fide; fhal be the: fine of the angle oppofite to the fecond fider . . \therefore is

Or take out the fide oppofite to the angle given, and make it a parallell fine of that angle: then take the other fide given and carrie it parallell to the former: till it flay in like fines: fo they fhall give the quantitie of Nè angle oppofite to the recond fide.

Thus in the triangle $A C D$, knowing two fides $A C, C D$, with the angle $C A D$ oppofre to the fide $C D$, you may find the angle $A \cdot D$ Coppolite to the other knownc Gide $A C$, to

iy To find asiangle by baving two fides, and the angle conisained thy them.

wirft find the thind fideby the r 1 . Propo and thew the axt oks may be found by the rg. or ra. Prop.

Fot oblervacion of angles, the Sector mayy have fighes fee on the moveable foote; fu that by looking through then, the edges of the Sector may be applisd to the fides of the angle.
For meafuring of the fides of teffet triangles, any fcale may tufice, eicher of fecte, or iuches, orleffor parts. bua for greware triangles, efpecially for plotting of grounds, I hoid it fit to ufe a chane of touie perches inlength; each perch divided into 25 , and the whote chaine an bundred links, wherein, if the whote chiaine be (according to rot foot in - perch) 66 foote (that is, 792 ifiches) each keverall link will be 7 inches anff:
If (according to 18. in the perch) the whole chaine be 72 feet in length (chat is, 864 inches) then, each feverall link will be 8 inches and 64
For fo the length being multiplied into the bredth, the five laft figurcs give the content in roods and perches by this Table; che other figures toward the left hand, doe hew the number of acres directly.
As in a long Iquare, where the length is 24 chaines ${ }^{2}$ the bredch 13 . chaines $\frac{5}{2}$, the ufuall way is, to refolve the chaines into perches: So the length is 97 perches and the bredth 54 perches. Thefe multiplied one into the other make 5238 fquare perches and thofe (divided by 16a) give 32. Acres, 2 roods, and $\$ 8$ perctres for the content required.

Links	$\stackrel{R}{R}{ }^{\boldsymbol{P}}$
100008	4
90000	324
80000	
90000	
60060	C 6
50000	
40000	
30000	8
20000	32
0	16
9375	15
8750	14
8125	13
7500	$\cdot 12$
6875	11
6250 9625	
500	8
4375	7
3750	
2500	,
1875	,
- 258	2
625	1

Bart, reckoning by chaines and linkes, the length is 24 cb 2 glim. the bred:h 13 ch .50 linke. Thefe multiplied one into the other make 32,73750 fguare linkes. Then, cutting of the s laft figures, I find 32. Acres 73750 lin.fuch as an 100000 do make an acre. Of which 700 30 are equall to two roods 32 perches: and the reft 3750 equall to 6 perches more (at appeareth by this table.) So, the whole conient is $\mathbf{3} 2$ acres, z^{2} roods, 38 perches, as before.

CHAP. V.

Of the refolution of fphericall Triangles:

FOr our prasife in Cpharicall triangle, let et be the equinoctiall point, $\mathcal{A} B$ an arke of the ecliptique reprefenting the longitude of the Sunne in the beginning of 8_{2} $B C$ an arke of che declination from the Sunne to the eq ua. tor, and $A C$ anarke of the equator reprefeiting the right Cenfion

[^0]
Resolution of fpbaricall Triangles:"

plitude of the Sones rifling from the Eat, and $\mathcal{B} E$ an ark e of the horizon for his setting from the Weft: fo DC hall be the difference of afcenfion, and $C \mathcal{E}$ the difference of defierFion; AD the oblique afcenfion, and $A E$ the oblique deScenfion of the fame place of the Sone in our latitude at, Oxford of s 1 gr .45 m . whole complement 38 gr .15 m . is the angle at E and D. The triangles $A C B, D C B, E C B$, are rectangle in C :che other $A D B, \perp \in B$, condift every way of oblique angles.

Ordo fit an example nearer to the latitude of London. Let Z PP reprefent the zenith pole and Sun, Z P being $38 G r$. 30 m. the complement of the latitude, $P S 70 \mathrm{Gr}$. the complexment of the declination, and $Z S 4 \oplus G r$. the complement of the Suns altitude. The angle at Z thai Thew the azimuth, and the angle at P, the houre of the day from the meridian. Then if from Z to P. S we let dowse a perpendicular $Z R$, we filial reduce the oblique triangle into two rectangle triangles. $Z R P, Z R S$. Or if from S to $Z P$ we let dowse a perpendicular $S \mathcal{O}$, we foal reduce the fame $Z P$. S into two other citriangles, $S M Z, S$ UM P, rectangle at M :whatsoever is fid N angles in the like calce. ${ }^{\circ}$

Foc the refolution of each of thefe, there befeverall 'wayes: - onely chufe thofe which are fireft for the Selior, wher in if that be remembred which before is the wed in the generall *fe of the Socteor concerning laterall aid parailell entrance, it may fulfice onely to fet downe ihe propofition of the three parts given to the fourth required, and fol thew filt by the sims alone.

In a rectangle triangle.

1 Tofinde a fide by knowing the baf., and the angle oppofice to the required fide.

As the Radius
is to the fine of the bafe:
So the fine of the oppofite angle.
to the fine of the fide required.
As in the retangle $\mathscr{A C B}$, having the bafe $\mathcal{C} B$, the plade of the Sunne 30 gr . from th: Equino fiall point, and the angle B e $1 C$ of ${ }_{2} 3$ gr. 30 m. the greatefd declination, it it were required to fiud the fide $B C$ the declination of the Sunne.

Take either the laierall fine of 23 gr .30 m . and make it \boldsymbol{z} patallell Radius; fo the parallell finc of 30 gr . 2 aken and meafured in the fide of the Sector, thall give the fide required 11 gr .30 m . Or take the fine of 30 gr . zad make it a parallell Radius; fo the parallell fine of ε_{3} gr. 30 m, rakela and maffared. in the laterall fines, frall be ingr. 30 m.as beforie.

So in the triangle $Z P S$ having $Z P 38$ gr. 30 m . and the angle $P 31 g r 34 \mathrm{~m}$ given, we thall find the perpendicular $Z R$ to be 19 gr .1 mm ; or having $P S$ yo gro and the faid angle $P_{3} 31 \mathrm{gr} .34 \mathrm{~m}$. given, we mayy fude the per endiculur T M to be 29 gr .28 mon

2 Toffnde a fideby fnouring tbe bafe and the octsy fide.

As the fine of the complenent of the fide givea :

- tuftuition of Phericath srianges?
$\therefore-{ }^{3}$ to the Radius:
to the fine of the co nilement of the bale to the fane of the cumplement of the Gide required:
So in the rectangle $A C B$, $12 y$ ing $A B 30$ grand $B C i x$ gro
$\$ 0 \mathrm{~m}$. given, the fide $A G$ will be foand 27 gr .54 m .
Or in the rectangle $Z R$ D having Z P 38 gr .30 m and $Z R$
9 gr .1 m . given, the fide $R P$ will be tound $3+\mathrm{gr} .7 \mathrm{mo}$

3. Io find a fride by knawing the two oblique angles:

As the fine of eicher angle
to the fine of the co. upienmert of the oober angle e?
So is the Raditus to the fine of the complemont of she fide oppofite to the lecond angle. -
So in the rectangle $A C B$, having $C A B$ bor the frittangle a $3 \mathrm{gr}, \mathrm{y}^{\mathrm{m} m \mathrm{mad} . A B C \text { forthe fecond } 69 \mathrm{gr} .22 \text { mithe fide } A C}$ will be found $27 \mathrm{gris} 4 m$. Or making $A B C$ the firtt angle, and $C \mid A B$ the lecond; the fide $B C$ will be found in $g r .30 \mathrm{~m}$
4. To finde the bafe by finowing botb the fides.

As the Radius
to the fine of, the complement of the one fide :
So the fine of the complement of the other fide, to the fine of the complement of the bafe required.
So in the rectangle $A C B$.having $A C_{2}{ }^{7} g r .542 m . \& B C$ 11 gr. 30 m . the bafe $A B$ will be found 30 gr .

3 To finde the bufo by knowing the orinefode, andibe angle.oppofite to that fide.
As the fine of theangle given, to the fine of the fide given : t :
Se is the Radius

co the fine of the bafe required.
So in the rectangle BCD, knowing the latitude atd the declination, we may find the amplitude; as having $B C$ the fde of the declination II gr. 30 m . and B DC the angle of : the complement of the latitude 38 gr .15 m . the bate B D. which is the amplitude, will be found to be 18 gr .47 m .

6 To find an angle by the ot ber oblique angle, and tibe
fide oppogite to the inquired apgle.:
As the Radius
to the fine of the complement of the fides
So the fine of the angle given, to the fine of the complement of the angle required. :
So in the rectangle $A C B$, having the angle $B A C 23$ sf: 30 m . and the fide $\mathrm{AC} 27 \mathrm{gr} \cdot 54 \mathrm{~m}$, the angle $\triangle B C$ will be fourd 69 gr .21 m.
7. To finde an angle by the otber oblique angle, and the fide oppofite to the angle given.
As the line of the complement of the fide to the fine of the complement of the angle given :
So is the Radius
to the fine of the angle required.
So in the rectangle, A C B, having B A C 23 gr. 30 min. and ECIIgr. 30 m . the angle $A B C$ will be found $69 \mathrm{gr} .2 \mathrm{mmo}$.

8 Tofinde an angle by the bafe, and tbe fide oppofite to the inquired angle.
As the fine of the bate is to the Radius:
So the fine of the fide to the fine ofth angle required.
So in the rectangle B C D, having BD $18 \mathrm{gr}$.47 mm and
 Thefes

Thefe eight Propofitions have been wrought by the fines alone; thofe which follo wrequire joynt helpe of the tangent.
And forafmuch as the tangent could not well be extended beyond 6.3 gr .30 m . I hall fet downe two wayes for the refolution of each propofition; if the one will nor hold, the o-3 ther may.
> 9. To find afide Ly baving the otber fide, and the angle oppofire to the inquired fide.

- Asthe Radius
to the fine of the fide given:
So the tangent of the angle,
- to tangene of the fide required.

3. As the Gine of the fide given,
is to the Radius:
So the tangent of the complement of the angle,
to the tangent of the complement of the fide regaired. So in the rectangle A C B, having the fide 'A C 27 Gr. $^{\prime}$. 54^{3} m, and the angle BA:C 2ξ Gr. 30 m. the fide $B C$ will be found to be II gr, 30 me.

10 To find in fide fy bavitugite other fide,judt the angle naxt to tha ing quircd fide.

- : As the tangentof the angle;
 to the tangent of the fide given:
 So isthe Radius
 to the fine of the fide reguired.

3 As the tangent of the complement of the fide?
to the tangent of the complement of the anglef
So's the Radius
to the fine of the fide segraired

This and the like, where the tangent fandeth in the firte place, are beft wrought by parallelt entrance. And fo in the rectangle $B C \cdot D$, having $B C$ the fide of declination 11 gr .30 mm and B D C the angite of the complement of the laticude 38 Gr. 15 m. the Gide D. C, which is the afeenfonatit difference, will be found 14 Gr .57 m .

By the afcenfionall difference is given the time of the Sunnes rifing and fetring, and length of the day; allowing an houre for each 15 gr . and 4 minutes of times far each feverall degree. As in the example the difference betweeno the Sunnes afcenfion in a right fphere, which is alwayes ate: 6 of the clocke, and his afcenfion in our latitude being 14 gr , 57 m , it Gheweth that the Sunne rifeth very neare an house before 6, becaule of the Northerne decinacion; or after 6, if she Sunse be declining to the Southward.

> II To find a fide by knowing the baft, and bbe angleadiacant mext to thaingwirod fide:

- As the Radius

to the fie of the complement of the angles. So is the tangent of the baic, to the tangent of the fide reguired.

- As tha fine of the complément of the antisf:
is to the Radus:
So the tangent of the comptement of the Eafe, to the tangent of the complement of the fide required.
So in the rectangle ACB, knowieng bhe phice of the Sita from the next equ:noctiall paitec', and the angle of his greateft declination, we may find his right afcemfint viti the
 the right afcenfion $A C$ will be found 27 gr .54 mm .

12 Thofrid the tufe k knomiug ibac obligueangles.
As the tangent of the ohe ingoks
to the tangent of the complemens of the ather angle: So is the Radius
to the fine of the complement of the bale:
So in the rectangle $A C_{B}$ fiving $B C_{2 g} g r .30 m$ and A B C $69 \mathrm{gr:22}$ w. the bifi A B witl be found 30 git.

13 Tajurde the bafe, by kroning oni of the.fides, and the angle adiacent next that fide.

* As the Radius
is to the fine of the complement of the angle:
Se the cangent of the complement of the fide,
to the tangent of the complement of the bafex
As the fine of the conplement of the angle
is to the Radius
So the tangent of the fide given,
to the taggent of che bafe required.
So in the rectangle $A C B$, having $A C 37 \mathrm{gro} 54 \mathrm{~m}$. and

14 To findan angle, by hmoming bootwafides.
I As the Radius
is to the fine of the fide next the inquited angles
So the tangent of the complement of the oppolite fide, to the tangent of the complement of the apgle requrited:
2 As the fine of the fide next the inquired angle, is to the Radius:
So, the tangent of the oppofite fide, to the tangent of the angle required.
So in the rectangle A C B, havisg A C. $27 \mathrm{~g}^{r}, 54 m$. and BC is $g r, 30 m$ othe angle at A will be found $23 g r .30 \mathrm{~m}$, and theangle at B 69 gr .21 m .

Is To finde an arigle, by knowing the bafe, and the fide next adiacent to tbe inquired angle

5 As the tangent of the complement of the fide, to the tangent of the complement of the bale:
So is the Radius
to the fine of the complement of the angle required:.

- As the tangent of the bafe,
to the tangent of the fide:
So is the Radius,
to the fine of the complement of the angle required:
So in the rectangle BCD , having the bafe BD 18 gr .47 wos and the fide $B \subset 11 \mathrm{gr} .30 \mathrm{~m}$. the angle $D \mathrm{~B}$ C between them will be found $53 \mathrm{gr}$.15 me .

16 To find amangle, by knowing the others,
 oblique angle, and the bafe.

- As the Radius'
to the fine of the complement of the bale:
*So the tangent of the angle given. to the tangent of the complement of the angle required

2. As the fine of the complement of the bale ${ }_{2}$. is to the Radiuse.
\therefore So the tangent of the complement of the angle givers; to the tangent of the angle required.
F. So in the rectangle A C B, having the angle at $A 23$ gr: 30 m , and the bafe A B. 30 gr . the angle $A B C$ will be found: 69 gr .22 m .

Thefe fixteen cafes are all that can fall out in a rectangle triangle thofe which follow do holid.

In any Sbiaricall triangle whatfoever

17 To finda a fide oppofite to an angle given, by knowits ome fide, and two anigles, wherof one is op-
pojite to the givein fide, the other. to the fide required.
: As the inne of the angle oppofite to the fide given; is to the fine of that fide given :
So the fine of the angle oppofite to the fide required; to the fine of the fide required.
So in the triangle A BE, having the place of the Sunte; the latitude, and the greateft delination, we may finde the mimplicude. As having A B 30 gr . B A E 23 gr .30 m , and AEB ' 88 gr .15 m. the fide B E which is the amplitude, will be found 18 gr .47 m .
1s To finde an angleoppofite to a fide given, by baving ope angle and troo fides, the one oppofite to the given angle, the ot ber to the angle required.

As the fine of the fide oppofite to the angle given; is to the fine of that angle given:
So the fine of the fide oppofite to the angle required, to the fine of the angle regaired.
So in the triangle $Z P S$, having the azimuth, and altitude, and declination, we may find the houre of the day. As having $\mathcal{P} Z S 130 \mathrm{gr} .3 \mathrm{~m}, \mathrm{P} S 70 \mathrm{gr}$. and $Z S 40 \mathrm{gr}$, the angle $Z P S$, which fhewieth the houre from the meridian thall be found ${ }^{2} 1 \mathrm{gr} .34 \mathrm{~m}$.

19 Tofind an angle by knowing the three fidis.
This propofitionis mof urffull, but moft difficulr of all
O3.
oibersy

9 Refolition of fobaricall Triang les; ochers:as in Arithmerique, lo by the Sectar,yet may it be pery formed feverall wayes.

- According to Regiomontanus and others.

As the fine of theleffer fide next the angle required,
to th: difference of the verled fines of the bale and diffe: So is the Radius
(rence of the fides:
to a fourth proportionall.
Then as the fine of the greater fide next the angle required. is tothat fourth proportionall :
So is the Radius
to the verfed fine of the angle required.
So in the trianglo $Z P S$,having the fide $\mathcal{P} S$, the cóplement of the declination $7^{\circ} \mathrm{gr} . \circ \mathrm{mm}$, the fide $Z P$ the complement of the latitude $38 \mathrm{gr}, 30 \mathrm{~m}$, and the bale $Z S$ the complement of the altitude $40 \mathrm{~g} r$, the augle of the houre of the day $Z, P S$ will be found 3 Igr .34 m . which is 2 h .6 m . from the meridian.
For the bafe being 40 gr .0 m .and the difference of the fides 38 gr. 30 nat, and 70. gr.ans.being 3 I gr. 30 m. the difference of their verfed fines will be the fame with the diftance between the right fine of 50 gr . and 58 gr .30 m . This differeñce I take out, and make it a paralleth sine of the leffer fide 38 gr .30 mo fo the parallell Radius will be the fourth proportionall. Then coning to the fecond operation, I make this fourth propor. tionall a parallell fine of the greater fide of 70 gr .0 mm and take out his parallell Radius. For this meafured from 90 gr . to ward the center, will be the verfed fine of $3 \mathrm{rgr.34m}$.

In the like fort in the fame triangle ZPS, having the fame complements giumn the angle P. ZS which is the azimuth from the North part of the maridian, witl be found $130 \mathrm{gr}_{\mathrm{a}}$ 3 m . For here thabale oppofite to the angle required being 79 gr . and the difference of the fides 38 gr .30 m . and 40 gr being $£ \mathrm{gr} .30 \mathrm{~m}$. the difference of their verfed fines wilt be the fame with the diftance betweene the right fines of 20 gr . and 88 gr .30 ma . This difference I take, and make it a parallell fine of the leffer fide 38 gr 30 md , fo the parallell Radius will betbe fourth proportionall. Then coming to the fecond operation, I make this tourth proportionall a parallell fine of
the greater fide 40 gr . and take our his parallell Radius. For this meafured from 90 gr ribeyond the center in the lines of fines ftretched forthat their full length, will be the verled fiae of 130 gr .3 m .
2. I may fiode anangle by knowing three fides, by that which I have elfewhere demonftrated upon Barih: Pit $j / c i s{ }^{\text {s }}$, and that ar one operation in this manner.

As the fine of the greater fide

is to the fecant of the complement of the other fide:
So the difference of fines of the complement of the bale, and the arke compounded of the leffer fide with complemeut of the greater, to the verfed fine of the angle required.

So in the fame triangle $Z P S$, having the fame comple: ments given, the angle at P, which hewerh the houre from the meridian, will befound as before 31 gr .34 m .

For the fides being 38 gr .30 m . and 70 gr .0 m . I take the fecant of the complement of 38 gr .30 m . and make it a paralbell fine of $70 \mathrm{gr}_{\text {; }}$ then keeping the Sector at this angle, I confider that che complement of 70 gr . being 20 gr . added unto 38 or 30 mz . the compounded fide (which is here the meridian altitude) will be 58 gr 30 mr ; and that the bafe being 40 gr , the difference of fines of the compounded fide and the complement of the bafe will be (as before) the diftance betweene the fines of 50 gr . and $\rho 9 \mathrm{gr} .30 \mathrm{~m}$. Wherefore I takeoux this difference, and lay iton both the lines of froor from the center : fo the parallell taken in the termes of this diference, and matured from 90 gr . toward the center, dath give the verfed fince of 31 gr .34 mo

This example, of finding the houre of the day might otherwife have been propofed in thefe termes.

As the fine of che complement of the declination, is tor the fecans of the Lacita I:
Sa the diference berween the fine of the alcituds propofod, and che fine of the meridian Alticude.

Then the Latitude being $\boldsymbol{\rho}^{1} \mathrm{~S} .30^{\circ}$, the declination 20 gr. northward, and the Altitude 50 gro the worke would be the fame as before.

The other angles $\mathcal{P} \boldsymbol{Z} S, P S \mathcal{Z}$, may be found in the fame fort; but having the fides and one angle, it will be foomer done by that which we fhewed before in the 18 Prop.

20 Tofind a.fide by knowing the three angles.

If for the greater angle we take his complement to 180 gr . the angles fhall be turncd into fides, and the fides into ant gles, $\&$ the operation thall be the fame, as in the former Prop-,

As in the triangle Z P S, having the angle Z PS 3 I $\mathrm{Gr} .34^{\circ}{ }^{\circ}{ }^{\circ}$ Z SP 30 gr . 28^{\prime} and $\mathrm{PZ} S_{130} \mathrm{gr}^{\mathrm{r}} \cdot 3^{\prime}$, I would take the greater. anele, of $130 \mathrm{gr}^{\circ} 3^{\prime}$. out of 180 gr , and there remaine 49 grv 57°. Then as it 1 had a Triangle of 3 knowne Gdes, one of $51 \mathrm{gr}^{\circ} 34^{\prime \prime}$, another of $30 \mathrm{gr} 20^{\prime}$ and a third of $49 \mathrm{gr} .57^{\circ}$, I would feeke the angle oppofite to one of thefe fides, by the laft Prop. So the angle which is thas found, would be the Fide which is here required.

21 To finda fide, by having the other two fides; and the angle comprebended.

This propofition being the converfe of the nineteenth; may be wrought accordingly; but the beft way both for it and thofe which follow, is to refolvethem into two rectarigles, by letting downe a perpendicular, as was fhewed in the firft Prop.

So in the triaugle $Z P S$, having $Z P$ the complement of the latiude, and $P S$ the complement of the declination, with Z p S the a"gle of the houre from the meridian, we may find $Z S$ the complement of the altitude of thie Sunne.

For having let downe the perpendicular $Z R$ by the fire

Prop. We bave two triangles, $Z R P, Z R S$, both rectangle et R. Then may we finde the fide. R, either by the fecond; or tenth, or eleventh Prop. which taken out of $\mathrm{P} S$, leaveth the cide $R S$: with this $R S$ and $Z R$ we may find the bafe $Z S$ by the fourth Prop.

Or having let downe the perpendicular $S M$, we have two rectangle triangles $S M Z, S, M P$. Then may we find $M P$, from which if iwe take $Z \mathcal{P}$, there remaineth $M Z$: but with Ir Z and $S M$, we may find the bafe $Z S$.

22 To find afide, by having the otber troo fides, and oneof the angles next tbe inquired fide.

S in the triangle $Z P S$ having $Z P$ the complement of the latitude, and $P S$ the complement of the declination, with $P Z S$ the angle of the aximith, we may finde $Z S$ the complement of the altitude of the Sunne.
For having Z. P, and the angle at Z, we may to $S Z$ produced; let downe a perpendicular $P V$. Then we have two reAangle triangles, $\mathrm{P} V Z, \mathrm{P} V S$, whereinit we find the fides. $V Z, V S$, and take the one out of the other, there will remaln the fide required Z. S.

23 To finde the fide, by fiaving ons fide, and tbe two angles next the inquired fide.

So in the triangle $A B D$, haviog $A B$ the place of the fart:and $B: A D$ the angle of the greateft declination, and $A D . B$ the angle of the equator with the horizon, we may find $\mathcal{A} D$. the oblique afcention.
For having let downe $B C$ the perpendicnlar of declina: tion, we have two refangles triangles, $\mathcal{A} C B, D C B$. Thien miay we find eA C the right afcencion, and $D C$ theafcentionall difference $;$ and comparing the one with the oo ther, there remaineth $\mathcal{A} \mathcal{D}$;

24 To finda fide, by baving twa angles, and the fide tuclofed by them.

So in the triangle $Z P S$, having the angles at Z and P, with the fide intercepted Z P, we may find the fide P S. For having let downe the perpendicular P V, we have two rectangles P V Z, P V S. Then may we find the angle VP Z, either by the feventh,or fifteenth or fixteenth prop. which added to Z P S, maketh the angle V PS, with this V P S. and $P V$, we may find the befe $P S$, according to the 13 Prop.

2 is fordan angle by having the other two angles asd the fide inclofed by ithem.
So in the triangle $Z P S$, baving the angles at Z and P. with the fide iatercepted $Z P$, we may finde the other angle $Z S \mathrm{P}$. For having let downe the perpendicalar $Z \cdot R$, we have two rectangles ZR P, ZRS. Then may we finde the angle P Z R by the fixteenth Propa and that compared, with $P Z S$, leaveth the angle $R Z S$: with this $R Z S$ and $Z R$ we may find the angle required Z S R, according to the fixth Propgition.

26 To finde aniangle, by baving the other ano angles, and ore of the jides next the inquired avgle.
So in the triangle A B.D, having the angles at A and D, with the fide $A B$, we may find the angle $A B D$. For having lut downe the perpendicular B C, we have two rectangles, $A C B, D C B$. Then may we find the angles ABC, D BC, and eake D B C our of A B C; for fo there remaineth the an: gle required A B D.

$$
\begin{aligned}
& 27 \text { To find an angle, by kioning twe-fides, and } \\
& \text { the angle costained by thems. }
\end{aligned}
$$

So in the triangle $Z P S$, having the fides $Z P, P S$, with the ang'e compretiended $Z P S$, we may find the angle $P Z S$. For having let downe the perpendicular S M, we have two rectangles $S M Z, S M$. Then may we find the fide $M P$, and taking Z P ous of $M \mathrm{P}$, there remaneeh $M Z$: with this $\mathcal{C M} Z$ and the perpendicular $M S$. we may find the angle $M Z S$, by the fourteenth Prop. This angle $M Z S$, taken out 180 g . there remaineth $P Z S$.

28 To finde as angle by knowing the two fades mext it and one of the otber angles.

So in the triangle $Z \mathrm{PS}$, having the fides $Z \mathrm{P}$ and $\mathrm{PS} \mathrm{S}_{\text {; }}$ with the angle $\mathrm{P} Z \mathrm{~S}$, we may fiad the angle $Z \mathrm{PS}$, For having let downe the perpendicular $\mathrm{P} V$, we have two rectangles $\mathrm{P} V Z, \mathrm{P} V \mathrm{~S}$. Then may we find the angles $\mathbb{I} \mathrm{P} \mathrm{Z}, V \mathrm{PS} ;$ and taking $V P Z$ out of $V P S$, there remaineth $Z P S$ which was required.
Thefe 28 cafes are all that can fall out in any fphericall triangle: ifany do not prefenty underfand chein, let then once more reade overthe ufe of the globes, and they hall foone become eafie unto them.

CHAP. VI.

Oftherofe of the Meridian linein Naviadtion.

THe CMeridiassline is here fet on the fide of the Sector. ftreched forth ar full length, on the fame plane with the line of limes and Solids, and is diuided umequally toward 87 gr :
(whereof
(whereof $7 a$ gr: are about one halfe) in fuch lort as the Me: ridian in the Chart of Mercators proiection. The vie of it: may be:

- To divide a fea Cbartiaccording to proiection.

If a degree of the zquator on the fea-chart be equall to the handred part of the line of lines in the SeCTor, the degrees of the CMeridian vpon the Sector, fhall give the like degrees vpoa the fea-chart: if otherwife they be unequall, thep may the meridians of the fea-chart be divided in fuch fort as the, line of Meridians is divided on the Setzor, by that which we. Shewed before in the 8 prop. of the line of lines.
But to avoid error, I have here fet downe a Table, where by the Meridian line may be divided out of the degrees of the equator, fuppofing each degree in the \&quator, to be fubdivided into a thoufand parts. By which Table, and the v fuall Table of Sines, Tangouts and Secants, the proportions following may bealifo refolved arithmetically. For the manner of divifion, let the x.juator be drawne, and divided, and croffed with parallell meridians, as in the common fea-chart: then looke info the Table, and let the diftance betweene the Equator and 40 gr . in the meridian, from the xquator, bo equall to 43 gr . 7 II parts of the Equator ; let 50 gr .in the meridian from the $x q u t t o r$, beequall 1057 gr .909 parts of the equator; and foin the reft.
The making of this Table is, by adticion of Secants. For the Parallells of latitules beingleffe then Equator or Meridian, in fuch proportion; as che Radius is tothe Secant of: the Parallell. For example, the Parallell of 65 degrees of: Latitude is leffe then the E quacor (and confequently, each d :gree of this Paralloll of 60 d :grees leffe chen a degree of the x fuator, or Meridian) in fuch proportion as $\mathbf{1 0 0 0 0 0}$. the Radius hath unto 200030 the Sec. nit of 60 degrees.

$08 \quad$ AT able for the divifion
$16383749166188772569196.5751721105579175116171$

IIT

							${ }^{\circ}$
	.						8_{88}^{88}
		7		2			${ }^{\text {17 }}$
		y					
					4		$耳^{\circ}{ }^{\circ}$
				d			目

- If itbe a particular Chart,I would firf draw the line et Er ferving For the firt Meridian and crolfe it with' 2 perpenditent of the Compaffes Tdivide the two exreme Parallells of Laciudeinto equall degrees, and through each degree draw meridian lines parallelf to the firtt meridian; moting them: with 1 i $2,3 \cdot 4$. sic. and then, I fubdivide either one or alfy of thofederees nno 10 parts, and (if I may) eachtenth paru inte-taparts mofe, tut thowfoever, I fuppofe each degpee to be fubdivided into 1000 parts.

Tho meridian being drawnic, I come to the parallelle of latikude, beginning ar'se gro.

And finding in the Table, that the diftance between the Equayor and sojgr. in tha meridianilhould be equall to 57 gr. 90d parts in the Equator and his parallells I may fuppofe the loweft Parallelliou: $5 \geqslant \mathrm{gr}$. from the'Equator \& So thd dittande between this low fit tarallell and the Parallett of 50. gr. will be onely 909 parts α Wherefore I take thele go9 odd: parts, фut of the degree that I divided before, and prick them downe in the tw φ uttermol meridians from the lowef Pat sallellupwardsand shere-draw the Paraltell of $j 0 g^{\prime}$ of latitudf.

In like manne,, becaufe find by the table that the diftinct betweene the Equator and $\mathrm{g}_{\mathrm{I}} \mathrm{gr}$. in the meridian is 59 grt

there remaine 2 gr . 48 I parts for the diftunce betweene the loweft Parallell, and this Parallell of 51: wherefore I take thefe 2 degrees 481 parts out of the line before divided and pricke them downe in the two uttermoft Meridians (as before) from the loweft Paraliell upward, and there draw the Paraliell of \boldsymbol{s} deg rees of latituds.
If any defire to have his chart agree with his Settor, he maxy make cach degree of longitude xquall to the tenth part of the line af lines; anddivide the meridian of his chart out out of the Sector: fo fhall each degree of the chart, be ten. times as large as the like degree on the Seltor, and the worke be eafie from the one to the other.
Or hemay divide the Meridian of his chart by the fide of a Protraftor, fuch as is commonly ufed by furveiors of land, and is here reprefented by $A C D E$: whercin the outward. parteof the femiemete $A B C$ is divided ε quatty into 180 gr . The inward part xqually into 16 . Rumbs,and.each Rumb fub-: divided into 4 .
The lines $C \mathcal{D}, \mathcal{D} \cdot E ; E A_{i}$ divided x gually according to the lineof lines upan he Sector, or the Parillells upon the Chart. Onely the Diameter $\mathcal{1} C$ would be divided unequally by lecting dewne oeeutt perpendicular tines uponit, from. each degree in the femicircle whichbeing done the incermediate part berweene the Rumbs and the Diameter may be all cut forth: and the backide of the long fquare may be filleds with 6 lines of chords, or fales. of feverall purts in the inch,

So may the meridian be divided by the parts of the fide \boldsymbol{E} D, the angles of each Ru'nb may readily be pricked downe by thedegrees in the Semicircle, and the line of chards and: the other falales may ferve to doe the like with more. variety.

2 To find bow many leas mes any wer to one degree. of longitude in everxy fever all hatitude.

The ufe of the Meridian liné.

In failing by the compiffe, the courfe holds fometime upon a great circle, fo nerima uno a paralle to the xquator; but moft commonly upon crooksed lines winding towards. one of the poles, whichlines are well knowne by the name: of R umbs.
If the cotref hold upon a greas circle, it is either North or South, mader fome meridim, or Baft or W:f, under the x quator: And inthere cafes, every degree requires an allo N ance of tweprie lexgeres, every twentic leagues will make a degree aiference in the faling: fortha: here needs no fur-: ther precepte chen the rute of proportion in the Chapter of limes.
Bur if the courfe hodd Ealt or Weft, ot any of the paralEels to the aquators.

As the Radius

is to tweaty leagues, the mealure of one degree af the xquator:
So the fine of the complement of the latitude
to the meafure of leages anfwering to one degree in that latitude,

Wher fore I take 20 leagues out of the line of limes, and make it a parallell Radius, by firting, it over in the fines of 90 aad 90 : fo bis parallell grae taken o at of the complemene of the latitude, and meafured is the line of lines, thall Chew the number ofleagues requircd,

Thas in the latitade of a $\mathrm{f}: \mathrm{gr}$. 12 m . we fhall find. 19 . leagues anfwering to one degree of longitude, and 18 leagues in the latitude of 25 gr .15 m , as in this Table.

This may be done mose readily without opening the Sector, by doubling the fine: of the complement of the lactitude, as may appeare in the fame example.

It may alfo be done by the line of meridianes ciftere uron the Sector, or upon the charto For if Q_{3}
we open a paire of compaffes to the quantitie of one degree of longitude in the xquator, or one of his Parallells and meafure it in the mer di in li: e fettung one foore as much above the lacitude gi ven, as the other falleth beneath it, fo that the la tituse may be in the middle betweene the feete of the compafies, the number of 1 agues intercepsed fhall be thar which was requiry d.

Bur If the courfehold upon any of the rwmbs, betweenc a parallell of the sequater and the meridian we are to confides (beitides the quarter of the world to which we tend, which mult be alwayes knowne.)

1. The d fference of longitude at leaf in generall,
2. The difference of laticude, and that in paticular,

The rxmb whercon the courfe holds.
4 The diftance npon the runild, which is the dittance, which we are here to confider, and is alwaves fome whar greater thes the tike ditance upon a greater circle. And for thele firlt I hew in generall this third Prop.

	E
18.12	19
2515	18
3148	17
36,52	
4.25	
45.34	
4928	
53.	
5638	
69	
6315	
6625	
6930	
7232	-
7531	
7828	
123	
8415	

3 To find how many leagmesdo anfwer to oxe degree of lattumde in everfy feverall Rumbb.

The Seamans comprife is commonly divided into 32 poiuts, the halfe into 16 , he qua: ter into 8 , which have t eir name of $N \sim \mathcal{L} \varepsilon, N \mathcal{N} \mathcal{R} \& c$. according to thole parts of the world to which they foint. Anfwerable to thefe points are the Rumbes upon their chart; each quaxter divided into 8 ; each Ramb In gr. is' diftast one from the orthers. The Firft Rumbe being that whicli is i\$ $g x .15^{\prime}$. difant from the Meridian; The fecont $22 \mathrm{gr} .30^{\prime}$ the third 33 gr : 45^{\prime} and to the reft. Ard (if they have n. ed of fmaller partrs) they lubdivide cach Ramb into quarters allowi.g 2iger. 48^{\prime}. to the fint

ほ-

quarter $\mathrm{gr} .37^{\circ}$ to the halfc $R m m b$ \&c. as in the rable following.
As the fine of the complement of the rumb frô the meridıan.
is to. 20 leagues the meafiure of one de gree ar the merıdiatr So the Radius
to the leagues anfutering to one degree upon the Rumb.
 Northlatirude, it were required how many lengues the thip fhould run, before it cond cowie to sig gr. of laitude, Be cauferhis is thexhird Rimbl and the inclinavion thereof $33^{\circ} \mathrm{gt} .45^{4}$ I would take 20 leagues \&c.
Wherefore I take 20 leagues out of the line of lizes, and make it a paralletl fine of ja gr. is' the complement of the Ranb fromithe meridian; fo hisparallel Radiar takeriand ineafured in the line of lines, fhall thew inie 24 , for the number ofletgoes required.
indidhusin the firt Ramb from the meridian, we thall find 20 lgs 39 parrs anfweriag to one degree of laritade and wit lgt os iparts in the lecoud Rtmb, \&c. at in this Table', where we fubdivide oleti keague inte a hemdred parts, and fintobefidet what inclination the rumb hath to the meridian.

This may be done more readily with out opening the Sector, by doubling the fecant of the Rumbe, as may appeare in the fame example:

- Ir may alfo be done upon the chart, iffirt wf draw the Rumb, then we take

the diftiace upon the Rum's betweene two parallells; * mealure it in the meridianline, as farre above the greater lacitude as beneath the lefer. For fo the number of leagues in tercipted, fhall be that which was required.

For example : in the fecond chart Pag 97 I firit deaw the 8 Rumbs, from the interfection of the meridian with the Psrallell of 50 gr . of laxitude, either by.the which I bave fhewed before in the generall ufe of fines Cap، ai Prop. 10 or by help of theprotraftion lalt mentioned. For, laying the center of the Prutractor to the point of interfection, (which is to be the center of the Rumbs.) and turning the diameter of the protractor, untill it be parallell to the Meridians of the chart (which is then done, when the Meridians and Parallells in the chart fall under like divifions in the Protractor) 1 may make one pricke at 11 gr , 15^{\prime} another, at $22 \mathrm{gr} \cdot 30^{\prime}$ in outward part of the femicircle, and fo the reft.

Or, having neither Sector nor Protractor 1 would have, a line of chord; fer on the fide of the Ruler which I am to ufe from which I may take 60 gr and with that extent fetting one) foote of the Compaffes in the former point of interfections draw an occult arke of a circle, and therein pricke dowan the: former arkes from the Meridian as in cap. in Prop. 10. SO, thife arkes being pricked downe, by either of thefe wayes, the right lines drawne through the center aud thofe prickes; fhall be the Rumbs required.

The Rumbes being drawne. I take the diftance betweene the Parallells of 50 and $s 1 \mathrm{gr}$ uporn $A C$, the third Rumbs: and merfuring it in the Meridian line I find the compaffes to: rcach from about $\frac{1}{10}$ of a degree belowthe parallell of sjos but.
 Ipagues fuch as 20 make a degree.

Againe, it take the diftance upon the fame Rumbe between the Parallell of 54 and $55 g r$ which I find to be fomewhat longer then the lormer diftance betweene the Parallells of 50 and 51 ; but meafuring it in the Meridian line according to the
 before for ahe number of leagues anfwering to one degree of
Ietietud

Latitude upon this third Rumb.
And bv the fame reaton, I may finde the number of leagnes anfwering to a degree of Latitrude ufon the reft of the Rumbs egreeable to the Table.

This confidered in generall, I hew more particalarly in twelue Prop. following, how of thefe foure any two being given theother two may befound, both by Mercators chart, and by this Settor.

1 By one latitude Rumb and ditence, to find the difference of latitydes.

As the Radius

to the fine of the complement of the Runb from the ane So the diftance upon the Rumb
(ridian:
to thedift. ren eot latuades.
Ict the place given be A in the laritude of sogr: C in a grea er lacitude, but uiknowne, the dittance upon the Ruanb being 6 gr . betweene them, and the Rumb the third fyom the meridian.
Firft I talce 6 gr . from the diftance apon the Rumb, out of the line of lines and make it a parallell Kadius,', by putting it over in the fines ot 90 and 90. Then keeping the ' Sector at this angle, I take out the parallell fine of 50 gr .15 m , which is the finc of the complement of the third Rumb from the mesidian, and meafaring it in the line of lines, I find it to be $5 . g^{\text {g }}$. and fuch is the difference of latitude required.

Or I may take out the fine of 56 gr .15 m . For the comple-: ment of the third Rumb from the meridian, and makeit a parallell Radius; then keeping the Seltor at this angle, I take 6 gr. for the diftance, either out of the line of limes, or any other fcale of equall parts, or elfe out of the meridian line, and lay ir on both fides of the Sector from the cenfer; cither on the tine of lines or \&nes : fo the parallell taken from the retmes of this diftance, and meafured is the fame folle whercin the diHance was meafured, ghall hew the difference of gatitude to be y gr: as before.

But in chorter dizunees, fuch ws fal wi his the com raffe of a daies lailing, chis w rike will h hid insh beter. As mag appeare by comparing the worke with the Tab'e following: where the numbers in hh front d, fig ifie the leagues; thole in the fide, the Rumb; and the reftia the madde, the difference of latitude.

In the Chart let a meridian e $1 B$ be drawne through A_{i}^{i} and in A with $A B$ make an angle of the Rumb $B A C$ Then open the compalles, a coiding to the latitude of the places, toEF F the quantitie of 6 gr in the meridian, transferring them into the Rumb from A to C, and through C draw the paralLell $B \cdot C$. crolfing the meridian $A \cdot B$ in B : fo the degrees in the meridian from A to B_{2} thall hew she difference of laticudes to be $g^{g r}$.

2 By the Rwmb and bot latitwtes to find the diftance apoe the Rumb.

As the fine of the complement of the Rumb from the merf: is to the Radius:

So the difference of latitudes;

 to the diftance upan the Rumb.As if the places given were A in the latitude of so gra E in the latitude of 5 s $g r$. and she Ra ab she third from the meridian.

Here I may-take $\boldsymbol{\xi} \mathrm{gr}$. for the difference of latifude out of the line of lines, and pur it over in the fine of 56 gr .15 m . for the complement of the third Ru ub from the meridian. Then keeping t're Seftor, at this angie, I take out the paralle!l Radius, and meafuring it in the line ot lines, 1 find it to be 6 gr . and fuch is the diftaice upon the Runb, which was required.

Or I mav take the laterall Radius, and make it a parallell fine of 56 gr .15 m . the complement of the Rumb from the meridian : then keeping the Seetor at this angle, I take 5 gr. for the difference of latitude, either out of the line of lines,

Li 1 able थj haguts, uriós.

as ou* of fo ne , the reale ot equa! parts, and lay it on both fides of the Sector triom he ceiser, either ou the line of lines or ot finces: fo the parallell taken from the teruts of his difference, and meat ir d in the fame fcale with the difference fhail hew the diftance upon the Rumb to be 6 gre or 120 leagues.

Or keering the Sector at this angle, I may rake the difference berweene 50 gr and 5 s grout of the Meridian line, and
 $2 i \mathrm{p}$. of the xquator. Wherefore I take the paraflell berween. 8.22 and 822 out of the line of limes, and mea uring it in the line of lines I fhall find it co be 989; which thewes that according to this projection, the dittace upon this chird Rumb, anfwerable to the former difference of latitudes, will be equal t09. 8 r. 89 p. of the equat or.

Or he Sector rem ining at this angle, I may take the diffesence berweene 50 gr . and 55 gr . out of the CMeridian line, and lay it from the center on both fides of the Secfor, either on the line of lines or of funes: fo the parallell taken from the termes of this difference, thall be the sery line ot diftance reguired, the fa ne with $A C$ or $E F$ upon the chart; which mayferve for the better pricking downe of the diftance upon tine Rumb, without taking it forth of the Meridiam line as in the: former Prop.

Or if the Rumb fall noarer to the equator, that the laterall: Radius cannot be fittedover in it, this propofition may be. wrought by parallell entrance.

For if I firlt take out the fine of 56 gr .15 m and make it a parallell Radius, by fitting ir over inthe fines of 90 and go, or in the ends of the line o lines, and then take 5 gr . for. the difference of la itudes out of the line of lines and carrie it parallell to the former, I hall find it to crofle bo h lines of limes in the points of 6 : and fo it gives the fame diftance' as before.

Or if the diftance be fmall, it may be found by the former Table. For the Rumb b ing found in the fide of the Table, and the difference of latitude in the fame line; the top of the
columne whercin the difference of latitude was found, that giue the number of leaga-s in the diftance reguired.

Or we may find his diftance in the Taule of Rumbs in the fiutt Prop following. For according to the example looke into the Table of the tuird Rumb for $\mathbf{5 g} \mathbf{g}$. of laticude, and shere we fhall finde α gr. 10 parts under the title of diftance.

So if the difference of latitude vpon the fame Rumb were sogr. the dittance would be 60 gr . 3 parts. It the differ nese of latitude v́pon the fame Ramb were onely $\frac{1}{2}$ of a degree the diftance would be onely 60 parts, fuch as 100 doe make a degree.

In the chart let a Meridian $A B$ be drawne throug $h:$ and paraliels of laticude through A and $C ;$ and then in A with $\because B$ make an angic of the Rumb BeAC: fo the diftance taken frome 1 to C, and mealured in the Meridian line, ${ }^{\text {² }}$ according to the latitude of the places, thall be found to be 6 gr or 120 leagues. And fuch is the diftance required.

3 by tbe dist ance and botblatitades
 to find tbe Rumb.

As the diftance opon the Rumb,

to the difference of latitudis:
So is the Radius
(ridian"
to the fine of the complement of the Runb from the Me-
As if the places given were \mathbf{A} in the latitude of 90 gr. \mathcal{C} in the laitude ot 55 gr . the diftance betweene them being, 6 gr.vpoit the Kumb. Fi fl I take 0 gr . for the diftance vpon the Rumb, \& lay it on both lides of che Sector from the centir; theis out of the lame fale 1 take gr , for the difference o lat ude, and to ir open the Sector in the termes of the former diftalice : to the parallill Radius taken and meafured in th. filk s, coth give 56 gr .15 m . he complement whereof 33 gr. 45 m is the al gle of the Ruibs inciination to the Meridran, which was rquired.

Yathechart let a Moridian A 30:drawne through A, and, paralie's of latitud= soih throush 1 zad C; then open the compaftes according to the laritude of the places to εF the quancicie of 6 gr in che meridian, and ferting ne foote in A turne the orher till it croffe the pardillell $B C C_{1} C$, and draw. the right line $A C:$: th: angle $B A C$ fhil hew the inclina: tion of the Runs to the meridiapto be 33 gr - 4 s mas before.

Thefe three laft Prop. depend one on che other, and mar be wroughr as truely by the conmon fea-chart as by this of Morcators proieftion: a and therefore in wo king them by the Seftor, the diftance aod the difference of latitudes may as we.l or better be taken out of the line of lines. (whish here reprefenterhthe Equator)or any other lige. ot equall parts, as out of the inlarged degrees in the meridian line. But in the propofitions following, the difference of longitude mant be tuken out of the Equator ; the difference sfaritudes and dio ftance v pon the Ru nb; muift alwaves be taken ouit of the mes. sidian line; which I therefore call the proper difference, and proper difance.

By the longiteme and latiture of two phatess safind the Ruwb.

As, if the places given were Ain the latitude of $\rho_{3} \mathrm{gr} \in$ in the latitude of 5 s gr . and the difference of longitule betweene them were 5 .gr. 30 m .

In the charc let meridians and parailets be drawne through. Rand \mathcal{C}, and a itraigtu line for the Rumb from A to C; then. By that we hewed C1J. 2. R.rop. 9 inquire the quantitie of thi: angle B. A' C. and it hall be found: to be 33 gri $45 \times x x^{\prime}$ which is tee thi \mathbb{R} Runb foin the Meridian. Wherefore the: prosortion holds for the Sector,

As A B the proper difference oflatituda, is to $\mathcal{B} C$ the difference of longitude:
Soch Bas Radus,
to $B C$ the tangent of the Rumb from the Meridiant According tothis I take the proper difference of latitude from
from so grito ssgr:out of the line of meridiansand lay ition both fides of ehe Sector from the centergthen I take the diffee rence do longitude $5 \mathrm{gr}_{2}^{\prime}$ 'otrt of the line of lines, and to it on pen the Sector in the termes of the former difterence of latitudes: fo the parallell Radius taken from betweene 90 and 90 , and meafured in the greater tangent on the fide of the SeGor, doth give $33 \mathrm{gr}_{\mathrm{r}} 45 \mathrm{~m}$. for the Rumb requited.

But if the Runb fall nearer to the Requator;

> As $A D$ the difference of longitudes, is to $D C$ the proper difference of latitudes: So $A D$ as Ractias,
> to $D C$ the tangent of the rumb from the zquatori:

According to this I take the former difference of lativades from 50 griso is $\$$ griont of the line of Meridiains, and to it 0 ob pien the Seffor in the termes of the difference of kongitude teck oned in the line of lines from the center: to the parallell Radius taken and meafured in the tangent, doth giwe $5 \% \mathrm{gr}$. 15 m . for the Rumb from the Equator; which is the complemeint to the former' 33 gr .45 mm . and lo both way es it is found to be the third rumb from the Meridian.

But if this Rumb were to be found in the common Reachart, i_{t} fhould feetne torbezboue 47 gr . which is more thea the tourth Rumb from the Meridian.

5) By the Rumb andboth latitudes; to find the ; difference of lengitnde:

As ifthe places given were A in the latitude of so gr. and C in the laitude of s gigr and the Rumb the third fom the meridian.

In the chart, let a meridian be drawne through A; and a parallell of latitude through C. then in \mathcal{A} w with eq B make the angle of the rumb from the meridian $B A C$, (as was thewed (ap. 2. Prop. 10.) So the degrees in the parallen be tweene Biand C_{2}, fhall be found to s gr: tongitude

Wongitude which was required. Wherefore the'proportion thoids for the Sefter.

As eA B the Radins;

to $B C$ the tangent of the R mb from the meridian : So $A B$ as proper difference of the latitudes, to $\mathrm{B} C$ the diflerence of longitude.
Aceording to this we may take the tangent of the Rumb . which is here 33 gr .45 m . from the meridian, out of che greater taurgent on the fide of the Sector, and putting it over beweene 90 and 90 , make it a Radius: thea keeping the Sector whis angle, trke the proper difference of iaitudes from so gra to $5 s$ gr. ont of the line of Meridians, and lay it oa both Tid. s of the Sefor from the cenress \{ So the parallei taken from the termes of this difference, and meafured in the line of lints Qhall thew the difference of longitude to be $5 \mathrm{gr} \cdot \frac{1}{5}$.
Ot if the Rumb fall nearer the equator.

> As $D C$ che tangent of the Rumb from the equator, to $A \mathcal{D}$ the Radius:
> So D C as proper difference of the latitudes,
> to $\mathcal{D D}$ the difference of tongitude.

Aecording to this we may beft work by parailel entrance: frint taking 56 gr . 15 m . for the ang'e of the Rumb from the equator, out of the greater tangent, and make it a parallell Kadius : then take the proper difference of latitudes out of the hine of meridians, and carrie it parallell to the former: -fo we fhall find it to croffe the line of limes in $5 \mathrm{gr} \cdot \frac{1}{2}$. And this is the difference of longitude reguired, the fame as before.
But if this difference were to be found by the common Sea-chart, i- hourd feeme to be onely 3 gr. 20 m . which is, more then 2 degrees leffe then the truth. And yet this error would be grearer, if cither the lazitude be greater, or the Rumb fail nearer the \mathbb{E} quator : as may appcare by comparing the common fea-chart with the Tables following:

	$\text { efirst Rwwhe }\}$	North and by Eafl, Sonth and or Eafl,	
	a Longi 'Dift	La Long: Dis\%.	La Long. Dift.
		Gr Gr. P. Gr. P.	Gr Gr.P. Gr.P.
	-	306263059	OD 15 ¢1
	$1-20102$	316493151	
	40.204	32672326	
	$3{ }^{3} \quad 60$	336963365	6316266423
	480	347203467	6416716529
	005	357443569	65171766
	206	367683671	6617.6567
	7 I 407	37 7 92 37 73	6718156831
	81608		68,18676933
	80 918	39 81433977	6919217025
	10	40.87040 .78	7019787137
	20.14	41 $\overline{8}$ 96 41 \%o	71203772
	401.2	42.922 .4282	7221 Oul 7341
	611325	4319504384	$73^{21} 667443$
14	811427	44.9644480	7422367545
	3021529	4510044588	$75^{23} 1070{ }^{15}$
	22163	46 10 33 46	7.623 .907749
	3431733	47 <0 624792	7724757851
		$4810914^{\circ} 94$	78,25 787
	3851937	$4911.21+296$	7.926 .6780 .55
	$40620 \quad 39$	5011525098	8027 - 88157
	$427{ }^{21} 41$	51 II 8352	8128.9782 59
	449224315	$521: 1553$	82:30.3283 6r
	470.2345 .5	53124754.4	$833: 8+846_{3}$
	49224475	5412881,56	8433618565
	5142549	55131656	8535698667
	53626515	5613505710	$8 6 \longdiv { 3 8 2 4 8 7 6 9 }$
	558.27535	571385.531	37 $\mathrm{y}_{1} 5^{288878}$
	58028555	58142359	$88{ }^{8} 6158973$
	$6032957 / 5$	5914626016	$895+069075$
	26305016	601501618	

	Sorthereft, Soweto-caft	
LTLong. ${ }^{\text {Difif. }}$	Zong. ${ }^{\text {D }}$	
Gr Gr. P. Gr.		Gr Gr. P. ${ }_{\text {gr }}$
	3031474343	50 754598485
42	$31 / 32 \sigma_{3} 43{ }^{3} 8$	27
200	2233381	2
3.00	33349946	381758
400		+ 8399.
5017	1353742149	$5{ }^{86}$
6018	3638863 50 91	6\% 88
7029	37.398855233	721
0311	$\left.\right\|_{38} ^{38} 4_{42}{ }^{\pi}$	68.93
	$\left[\begin{array}{l} 39 \\ 402 \\ 40 \\ 43 \end{array}\right.$	
1i 07 ls	41450357	
$123120916{ }^{16}$	$424^{6} 3659$	硡
13123121838	4347726	
	45 sa so 63 a	
16126 212263	46.51936505	76
172524	4753	
181883025	85	
$19.1936{ }^{66}$	4956376	91341011172
20. $2042{ }^{28}$	$50 \leq 79170{ }^{21}$	Sol ${ }^{1}$
25402970	$51594872{ }^{12}$	${ }_{1}{ }^{1}$
22563131	5261097354	
23.23643253	5352737495	831601011738
47333	4176	
23925.28353^{35}	5865137778	779422021
26.9736 .77		
28083818	5769748061	
1839	5718202	
324	spip	

Thefe tables are calculared for each of the Rnmbs. The firt feven have three columnes, and of them the firf conmaineth the degrees of Latitude fron the Aqquinotiall to th Pole: the fecond doth give the difference of Longitude; and the third the diftance, both of them belonging to that Rumo and latitude.

As in the Table of the third Rumbs at the lasitude of so: - Gr. I find under the title of Longitude 38 gr .69 parts, and under the title of diffance 60 gr .13 parts. This thewes that if the courfe held conftantly on the third Rumb from the Equinoctiall to the Latitude of 50 gr . the difference of Longia tude would be 38 gr .69 parts of 100 and the diltance upon the Rumbe 60 gr. 13 parts. For hereI rection the diltance by degrees; rather then by leagues or miles, and fubdivide each degree into 100 parts, rather then into 60 minutes, for the more eafe in calculation, and withall to make the calculation to agree the better, both with this, and my Croffi faffe. and other inftrumentr.

The ufe of thefe Tables, for the finding of the difference of Longitude, is this. Turne to the table of the Rumb, and: there fee what longirude belongeth to either latitude, then take the one longitude our of the other, the remainder will be the difference of longitude required.

As in the former example, where che places givenwere ef in the la itude of $50 \mathrm{Gr} . C$ in the latimude of y 5 Gr . and the Rumbthe third from the meridian: I looke inta the table: of he third Rumb and chere find,

Latitudé sogr. : Longitude 38 gr. 69 parts.
Latitud ssgro Longitude $44 \mathrm{gr}^{\mathrm{gr}}$ 19.
Therefore the diffe af longitude 5 gr .50 .
There is another ufe of thefe tables, for the defcribing of the Rumbs'both on the Globe,andall forts of Cbarts: Fcr having drawne the circles of longitude and latitnde, and finding by the tables; the difference of longitude belonging to each Kumb andlatitude: If we mate a pricke in she chart, at
every degree of latitude, according to that difference of lormgitude, and draw lines through thofe prickes, fo as they make no angles, the lines fo drawne falil be the Rurabs reguired.

The ufe of the eight Rumb is Comething different from the reft. For there being hire no change of lacitude, l have fet to each latitude, the d ffernce of longitud, belonging to one degres of diftance, and the diftance belonging to one degree of longitude.

As if two places thall be 2 ofeagues, or one degree diftant one from the other, in the lititidde of $j 0 \mathrm{gr}$. the difterence of longitude berweene them wilt be igr. s sparts. But if they differ one degree in longitude, the diftance betweene them will be onely 64 parts, which fall Chortot is leagues, or at the moot 64 gr .28 parts, fuch as 10000 do make a degree.

6 By the differince of longitwde, Rumb, andone Latzimde, to find the at her latitude.

As if the places given were \mathcal{A}, in the latitude of $50 \mathrm{gr} . \underset{\mathbf{C}}{ }$ in a greater lattiude but unknowne, the difference of longitude $5 g^{5} \cdot \frac{1}{3}$, and the Rumb the third from the Meridian.

In the chart let $\boldsymbol{A} B, D \quad C$, meridians, be drawne through A and C, according to the difference of longitnde, one 5 gr From the other; and a parallell of latitude through \mathcal{A}, crof. find the meridian CD in D : then in A, with $A B$, make an angle of the Rumbe B A C: fo the degrecs in the meridian berweene D and C, thall be found to be $s g r$ the proper diffee rence of latitude which was required. Wharofore the propore tion holds for the Sector;

As A D the Radias'
to D C the cangent of the Rumb from the aguator
So A D as difference of longitude,
to $D C$ the proper difference of latitude
According to this, I take $56 \mathrm{gr}, \mathrm{I} \rho \mathrm{m}$. for the angle of the Rumb from the æquator, out of the greater Tangenti, and I 2

The efo of the Neridias line:
 of lixen from ehs center, for the differeace of longitul. So tha: patallell taken from the termes of ehis differeace, a id in mafased in the line of meritians, (hyll reach from so gr. the latiund: given, to 5 gr. wifich is che latitud required:

Os if the Ru nb fall aearer to the meridian.

> As $B C$ che tangene of the Rumb from the moridian. is to $A B$ the Rad us :
> So $\mathcal{B} C$ as differ nche of longíuda, to $A D$ the proper diferepege of latitude.

According to this we may belt work by paralled entrance;: firt take 35 gr - 45 m. For the angle of the Ram's from the memdian, out of the greater Tangent, and make ita pratlelt Radiuss then take s gr. $\frac{4}{2}$ for the difference of lo igitude out of the line of lizes, and carry it parallell to tha former; till the feere of the compades it ty in like points: fo the line between. the center and the place of this fty, being taken and mafured in the line.of meridiaxs from 50 gr. forward, thall hewr. the latitude required to be ss gro as in the formar way.
Thelike may be tound by the tables of Ratmbs. For in the table of che chird Rumb, at the latitude of sogr. If finde the loagitude of 38 gr : 69 p ; to this if adde 5 gr .50 p . For the differesce of loagitude given, the conpound longitude will be 44 gr .19 p . and this anfivers to the laticude of 55 gr .
Bat if this difference of latitude were to be found by the Comm 3 fea: chart, it hould feemet to $\mathrm{b}: 8 \mathrm{gr} . \mathrm{r} 3$ m.and fo the fecond latitude thould be 58 gr .13 m . whichi is aboue 3 ge more then the truth.

7 By one latitude, rüm', and diflance, to find the differance of loagitude.

As if the places given were act in the lacitude of 50 gro Cina greaterlatitude but unkno vne, the diftance upon the Rumb being 6 gr. betweene thein, and the Rumb the third from she meridiant.

In the chart, leia meridian $A B$, and a priallefl $A D$ be drawne though A a a d in A. wi h A.B, make an angle BAC for the Ranj from th: ineridian; then opan the compaffes. according to the latitude of the plac ss to $E E$, the quantitie of $\sigma \mathrm{gr}$. in the meridiain, transferring then into the Rumb. fro n Ato C_{1} and through C draw arother meridian $D E$, croffing the parallell drawie through A in D : fo the degrees intercepted in the parallell fro $n A$ to D, fhall hew the d fference oflongitude reguired to be aboate $5 \mathrm{gc} \cdot \frac{1}{2}$: Wherefors the proportion holds for the sector.

As AC the Radius,
(meridian:
is to $\mathbf{A} D$, equa'l to $B C$, the fine of the Rumb trom the So A C as proper diftance upon the Ram's. to AD the difference of longitude.

According to this I take the fine of $33 \mathrm{gF}^{-} .45 \mathrm{~m}$. for the and ge of the Rumb from the meridian, and make it a parallelt Radius; then keeping the Sector ac this angle, I take 6 gr . for the diftance out of the meridian line, according to the eftimated latitudes of both places, and lay it on both fides of the Se\#or from the center:fo the paratlell taken from th: termes of this diftance, and meafured in the lines of lines, fhall.hew the difference of longitud: to be about $5 \mathrm{gr} . \frac{5}{2}$.

In this and fomeof the Propi following, where there is but onelatitade knowne, there miy be fomerimes an errorof a minate or two, in the eftimation of the proper diftance, yet it may be reqified at a fecond operation.

This propofirion may alfo be wrought by the Tables of Rembs. Foraccording to the example, in the Table of the third Rumb, at the latitude of 50 gr . I frad the longitude of $3^{8} \mathrm{gr} .69^{\prime} p$ and the diftance of 60 gr .13 P : to this I adde $6 \mathrm{gr} \mathrm{ra}_{\text {a }}$ for the diftance givei; fo the compond diftance will be 66 gr. 13 p. and this anfwers to the lougitude of 44 gr . 19 p ; then if I take the one longitudt out of the other, the difference: will be 5 gr . 50 p. as before.
But if this difference were to be found by the com non fta chart, it hould feeme to be onely 3 ge 20 mo which is. to find the disfance.

As if the places were given A, in the latitude of $50 \mathrm{gr} . G$ in a greater latitude but unknowne, the differ erce of longitude betweene them being $\mathrm{gr}_{5} \frac{1}{2}$, and the Rumb the third from the meridian.

In the chart let $A B, D C$, meridians be drawne through ' A and C, according to the d fference of longitude, and a parallell of latitude through A, crofling the merid'an $D C$ in $D_{\text {; then in }}$ 1, with $A B$, make an angle of the Rumb B A C : fo the diftance on the Rumb from A to C taken and meafured in the meridian, according to the eftimated latiude of the places, fhall be found to be $6 . g r$. Wherefore the proportion holds for the Sector.

As AD, equall to $B C$, the fine of the Rumbtron the meri-: is to $A C$ the Radius:
So $A D$ as difference of longitudes, toes C the proper diftance upon the Rumb.
According to this, I take the lateriall Radius, and make it a parallell Gine of 33 gr .45 m . which is hete the angle of the Kumb from the meridian ; then I reckon 5 gr. $\frac{1}{2}$ in the lines of lines from the center; for the difference of longitude : fo the parallell taken from the termes of this difference, and meafured in the line of meridians, according to the latitudes of the places, Shall there fhew the diftance required to be about 6 gr . which are 120 leagues.

Or if the Rumb fall nearer to the meridian, that the lateral: Radius cannot be fitted over in his fine, this Prop. mult be wrought by parallell entrance, and fo alfo it gives the fame diftance as before.

Or we may find this diftance by the Table of Rumbs. For in the tabl of the third Rumb, at the latitude of sogr. I find thelongitude of $3^{8} \mathrm{gr} .69 \mathrm{p}$. and the diftance ot 60 gr . $13 . \mathrm{p}$. To this longitude here found, I adde 5 gr .50 . for the difference of longitude given : fo the compound longitude will be 44 gr .19 p . and this anfwers to the ditance of 66 gr .15 p . Thenit I take the one diftance out of the other, the remainder will be $\sigma \mathrm{gr}$. 02 p . for the dittance required.

But if this diftance were to be meafured on the common fea-chart, it hould feeme to be almoft 10 gr . or at the leat 197 leagues, above 77 leagues more then the tru:h.

9 By one latitude, diftance, and difference of longitudes, to fird the Rumb.

As if the places given were A, in the laxitude of gogr. C in a greater latitude but unknowne, the difference of longitude betweene them being $5 \mathrm{gr} \frac{1}{2}$, and the diftance of 6 gr . apon the Rumb.

In the chart let AB,DC, meridians, be drawne through A and C, and a parallell of latitude through $2 x$; then open the compaffes according to the latitudes of the places, to εF the giantity of $\sigma \mathrm{gr}$. in the meridian, and ferting the one foote in A, the other foote fhall crofe th: other meridian in C, and if we draw the right line $A C$; the angle BAC fhall hew the inclination of the Rumb to the meridian to be abour $33 . \mathrm{gr}$ Is m . Wherefore the proportion holds for the Selder.

As AC the proper diftance upon the Ramb; is to $A D$ the difference of longitude:

So AC'as Radius,

to $A D$, equall to $B C$, the fine of the Rumb from the meridian.
According to this, I take the proper diftance $\sigma \mathrm{gr}$. out of the line of mesridians, and lay iton both fides of the Setor toom the cenrer; then I take thed firence of longitude sigr. $\frac{1}{2}$ out of thetine of lines, and to it open the Seltor in the terms of the former diftance: fo the parallell Radias taken foom bezween: 90 and 90, and meafured inthe fines, doth give abous 33 gr .45 m . for the Rumb required.
But if this Rumb.w.ere to be found by the common feachaste,

> 10 By the Longitude and latitude of two places, to find their diftance from the Rumb.

Let the Sector be opened in the lines of lines, unto a righe angle(as was hewed before Cap.2.Prop.7.) hen take out the proper difference of latitude, and lay it on the one line, and the difference of longitude, and lay it on the othertine? 10 as they may both meere in the center, marking how far they extend. For the line taken from the termes of their extenfion, and meafured in the meridian, according to their lati-: sudes, thall hiew the diftance required.

So if the places given were A and C, A in the latitude of 50 gr . C in the latitude of $5 \% \mathrm{gr}$. the proper difference of tatitude fhall be the line $A B$, and let $B C$ the difference of longitude be $5 \cdot E r \cdot \frac{1}{2}$, we thall find that $A C$ the diftance upon: the Rumb is about 6 gr . which make 120 leagues.

For in the chast, let an occult meridian be drawne throigh A_{s} and a paralleH of latitude through C , crofing the former meridian in B, and a right line for the Rumb from A to G, fo have we a rectangle triangle $A B C$, whofe bafe $A C$, tateon and meatured in the meridian from E below 90 gr to F_{2} as. much above $55 . \mathrm{g}^{r}$. doch containe the quantitie of 0 gr .

In the fame manner the Secter being opened to aright ansle, in the lines of lines: if we take the difference of latitude oit of the linc of meridiass, in his proper place from 50 gr, to 55 gr .and place ir on one of the fides from the center, to refemble $A B$, then reckon the difference off longitade ort the other perpendicular line from the center to $s \mathrm{gr} \cdot \frac{1}{2}$, in ftead of B C, we fhall have the like rectangle triangle on the Section, to that which we had before onithe chart: and if we takeout the bafe of it, and meafire it in the tine of meridiaws from botow 50 gr . to as numetraboue 5 s gr . we fhall finde as before, that it containeth about 6 gr . or 120 leagues.

- Butif thiscdiltance wereto be meararedion the common

 which is 25 leagues more then the turth.
12 By the latitude of two places, and the diftanceupon The Rumb to fipd the doffercege.of Lengityde.

Let the Setlornbe opened in the lines oflenes to a right angle thene take out the proper difference of, latitudes, aid lay ILOŋ ope of the lines from fhe cehter a then take the proper diftasce wirba paire of compaifes, and retting one Foote in the termes of the difference, turpe ibe other foote to the ofher line of the Selfor and 1 t Shall there hew he differ eice of longitude requirçd.
Soif the place given were 4 , in the latitude of so gr. 6 jn the Jatitude ot ss g^{r}. with 6 gr. of diftance one from another, we hall find their difference of loggitude to be about $5: g^{2} \cdot \frac{2}{5}$

For in thechart ler m meridian $A B$ be dayne for the one, and $B C, A D$, paraillells of fatitude for them borth Then open she compafes according to the latitude of fhe places, to E F the quantizicof 6 gro in the merridian, and fetting one foote in $\mathcal{A}_{\text {, }}$ baving lacitude of sogr. tutne the ofther to the parallell of 5 g gr . and it hail there cut of the required difference of .longitude B. C. s. ${ }^{5}{ }^{2} \frac{2}{2}$.

In the fume maver, the Seltor being opened to a right ansice, in the lines of $l i n e s$ s. if we take the difference of latitude -out.of the line of meridiauss in his proper place from ${ }^{\circ} \mathrm{g} \mathrm{gr}$. unto s5. gr, and place iton one of the lines from the center; :then take 6 gr: the diftance upon the Rumb out of the fame line of meridians, accolding to the latiuides of the paces, and det the one foote in the treme of the former difference, tura aing the ather faote to the orher perpendicula line, we Thall finde that it will croffe it about $s \mathrm{gr} \cdot \frac{1}{2}$ from the center: : which is the difference oflongitude requited,

But If this difference of longitade were to be found by the commong fea chart, it would feeme to be onely i gre 20 m which is more then $2 \mathrm{gr}, 10 \mathrm{~m}$. lefertherf the truth.

12. By one latitude, diftance and diffrence of longitmdes; to finte the difference of, Latitudes.

Leethe Sector be opened in the line of tines to a right andgle, and let the difference of longitude be reckoned in one of thofe lines from the center; then take the proper difance with a paire of compaffes, and fetting the one foore in the terme of the formar difference, turne the other foote to the other line of the Serfor, aud it fhall thence cut off a linesequall to the proper difference of latitade required.

So if the places given were A and C, A in the latitude of sogr. C in a greater iatitude but unknowne, the difference of longiude betweene them $5 \mathrm{gr} \frac{5}{2}$, and the diftance upon the Rumb 6 g . or 120 leagaes, we ghall find the differeace of taticude to be $s \mathrm{gr}$.

For in the chart, ler occult meridians be drawne throughi \because And $C_{;}$and a paralie:l of latitude through $\mathcal{C}_{\text {; }}$ ther open the compaftes according to the eftimated lacitudes of the places to E F the quantity of 6 gr . in the meridian, and ferting the onefo te in 1 , turne the ocher to the meridian drawne through C, and it fhall there cut off the line $D_{D} C_{2}$ which is the difference of latitu le required.

In the fame mater, the Sector being opened te a right angle, in the lines of lines, ifin the one line we reckon the difference of longit de from the center to $5 . \mathrm{gr}_{0} \frac{1}{2}$, then taking 6 gr. for the ditennce out of the li ve of Meritians, according to the latitude of the olaces, we fet the one foote in the rerme of the given difference, and turne the other foote to the other perpendicular line, we fhall find that it curs a line fromit, which take: 1 and meafured in the line of meridians, from 50 wr. on forward, doth thew the difference of latitude to be as before 5 gr .

But if this difference of latitude were to be found by the common fea-chart, it would feeme to be onely $2 \mathrm{gru}_{2} 5 \mathrm{~m}$. which is 2 gr .35 m . leffe then the trath، Such is the difference betweene bosh thero charts.

THE THIRD BOOKE

Containing the ufe of the particular

Lines.

11H E lines of lives, of fuperfiaies, of folids, of fines, with the laterall lines of tangents and meridians, whereof I baue hitherunto fooken, are thofe which I principally intended : that little roo e on the Sector which remainethy may be filled up with fuch particular lines as each one thall thinke convenient for his purpole. 1 have made choife of fuch as I thought might be beft prickt on without hindring the fight of the former, vizdines of Ouadratura, of Segmentr; of Inforibed bodies, of Equated bodiers, and of CMetials.

CHAP. L

Of the lines of Quadrature.

THe lines of quadrature may be knowne by the letter Q_{Q} and by their place betweene the lines of jines. 2 fignifieth the fide of a faniara; f the fide of apomages with five eguall fides. 6 of an bexagon with fixe cquall fides, and $\mathrm{fo} 7,8$, 9 , and $10 . S$ fands for the S midiameter of a circle, and 90 fora line equall to go ${ }^{\text {gir. }}$ in the'circumference. The ufe of thetr may bes

1 To make a fquare equall to a sircle given: 2. Tp make a circle equal to a fquare given.

If thit cincte be firt given, take his femidimieters and to it: open the Sedoo in the points at So fo the parallell taken from betweene the points at 2 ghall be the fide of the fquare re-. quitred.

If the quare be given tite his nide, and to it open the sos Aor, in the points at Q: ot the paraflell taken from betweene the poincs at S, thall be the Semidiameter of the circice requilred.
Let the Semidiameter of the circle given be: B, the fide of the fquare equáll uaro it fhall be for id to be C.D.

 Take the of le of the figure giveia, and fi it over rin his dab

of the limes of cectionomos.

thie othere figures, halt be the fides of thole figures: which being made up wich equall angles, bhall be all equall oneto the ocher.

Let the Semidiameter of the circle given be erexthefide of an bexigon eguall to this circle, nall by there meanes be found to be G. H; and the fides of an oftagon to be $I K$. O -

 ther of thiefe equall figharts, ws before.

Take the Semidiameter of the circle given, and to it openthe sedior in the points at S; fo the parallell taken from beeweene the points at 90 in this line, Shall be the fourth part of the circumference: which being knowne, the other parts may be found out by the fecond and third Prop, of lines.
Thus if the Semidiameter of the circl given be AB, theright line εF : Thall be foundro be the fourth part of the circumference. Therefore the double of $\mathcal{E} F$ thatl be equall to the circumference of 880 gr . and he halfe of $E F$ fhall be the: circumference of 45 gr . and fo in the ref.

CHAP. II.

Of the lines of Segmeuts:

THe lines of fegments which ate hare placed between the: lines of fixes and /uperficies, and are in m'sred $5 y 5,6,7$, 8;9; ro. do reprefent the diameter of a cirćle, fo divided intoa hundred parts, as that a right line drawne through thefe parts, perpendicular to the diamzeter, fhall cut the circle intos two feg neites, of which the greater feg neat thatl have that proportion to the wholecircle, as the parss cut have to $\mathbf{1 0 0}$ The une of them may be

350
of the limes of Segments.
I To divide a circle given into two fog went
according to a proportion given.
2 To find a proportion betweeme a. circle
and bis.jegmentsgiven.
Let the Sector be opened in the points of an $\mathbf{1 0 0}$, to the diameter of the circle given : fo a parallell taken from the points proportionall to the greater segment required, hall give the depth of that greater ferment.

Or if the figment, be given, tet the Sector be'opened as before; then take the depth of the greater tegument, and carry it

parallell to the diameter: f o the number of points wherein they flay, fhall fhew the proportion to 100 .
$\boldsymbol{A} \boldsymbol{s}$ if the diameter of the circie given were $\mathcal{B} L$, the depth of the grezer feginent \mathcal{L} O being 75 , doth Thew the proportion of the fegmeat $\mathrm{O} M E$ 之 to the circle to be as 75 to 100 viz . three parts of toure.

Hence I might fhew, ifthere were any ufe of it,

$$
\begin{aligned}
& \text { To find the fode of a quuare, equallto any } \\
& \text { knowne fegment of acircle. }
\end{aligned}
$$

The fide of fquare equall to the whole circke, may be found by the former Cap, and then having the pioportion of the fegment to the ciscle, we may dimininih the Yquarec in ficch proportion, by that which hath beene Chewed Lib. I.Cap: 3. Prop, 3.

CHAP.IIT. Of the lines of Infcribed bodies.'

T-He lines of inffribed bodies are hicre placed betweene the lines of lines, and may be knowne by the letters, \mathcal{D}, S, I C, O, T, of which D'fignifiecth the fide of a dodicabodron; I of an tecofabedron, C of a cube, O of an ortabedron and T of a tetrabedron, alli ilcribe J into the fame fphare, whofe femi: diameter is here fis ififid by the lecter S.

The ufe of thef. lines may be,

1. The femidiameter of afphare being given, to find tbe fides of the fiveregular bodies, whbich may be inf cribed in the fard /phare.
${ }_{2}$ The fide of any of the fine regutar b, dies being given, ta find the femidianseter of asphare, that will circumf cribe the faid bodic.
Ifthe fohare be firt given,take his femidiameter, and to is open
open the Selfor in the points at S: if any of the other bodias be firft given, take whefide of it, and fit it over in his due points: Po the parallell taken from betweene, the points, of the other bodies, fall be the fides of thoof godies, and may be infcribed into the fame fphare.

B ${ }^{1}$ D

 E FSo if the femidiameterof the finse be $A C$ the fide of tho dodecabedron inictibed thall be ΦE.

CHAP. III.

Of the lines of Egaated bodies.

THe lines of equated bodies are here placed betweene the lines of lines and folids, noted with thefe letters, $D, 1, C$, S, O, T sof which D ftands for the fide of adedecabedron, I, for the fide of an lcoJabedrom, C.for the fideoof a cuba, S forthe dio ameter of a/pibere, O for the fide of an oftabedron, and 7 ' for the fide of a tetrabedrom all equall one to the others. The ule of thele lines may be.
I The diameter of afphare being iven; tojindithejfides of the fiue regular bodies, equall to that pbare.
2. The fide of any of the fine eregalar bodies being given, to find the diameter of a /phare, and theci Edes of the other bodies, equall to the firft body givein.
If the fphrere beifint given, take his diameter, and to ir oo pen the Sector in the pointsat S : if any: of the other bodies be-firf given, take the fide of it, and fit it aver in his dae points: fo the parallels takea from betweene the points of the other bedies, fhall be the fides of thofe bodics equall to the firft body given.

Thus in the laft diagram, if the diameter of a fohare given be $B C$, the fide of the dodecabedron equall to this fohare, syould te fernad to be F G.

of the lives of cretionel
 CHAP. V.
 Of the lines of Mettals.

T${ }^{-}$He lines of Mectalls are here ioyned with thofe before of equated bodies, and are noted with thefe characters Q. ¢.F.D.P.9. $\delta \cdot 4$. of which \odot ftands for gold, $\&$ for quick filver, Ifor leade, D for filver, 9 for copper, ${ }^{\text {o }}$ for iron, and 4 for tint The ufe of them is to give a proportion betweene thefefe ucralt mettals, in their magnitude and weight, according to the experiments of Marinus. Gbetaldus, in his booke called Promotus eArchimedes.
\therefore I In life bidies of feverath metialls and equall weight, having the magnitude of theone, so fixde tha mignitude of the reft.
Take the magnitude given out of the lines of Solsds, and to it open the Soctor in the points belonging to the metrall given: fo the parallells takea from between the points of the other mettalls, and meafured in the lines of Solids, Ihall giue the magnitude of their bodies

- Thus having cubes or fphares of equall weight, but feverall mettalls, we fhall finde that if thofe of tin containe $10000 \mathcal{D}$, the others of iron will containe 9250 , thote of copper 8222, thofe offilver 7161 , thofe of lead 6435, thofefull of quickfilver. 5453 , and thofe of gold 3895.
> -2-lo-lite bodies of feverall mettalls andeguall magmitude, having the pright of ane to finde the mecigbt of the reff.

This propofition is the converfe op the former, the proportion not direet, but reciprocalt, wherefore having two pike bodies, take the given weight of the one out of the lines of Solids, and to it open the Sector in the goints belonging to
the mettall of the other body: fo the parallell taken from the points belonging to the body giverf, and meafured in the lines of Solids, fhall. give the weight of the body required. As if a cabe of gotd weightd 38. E.and it were required to know the weight of a cube of lead having equall magnitude. Firft I take 38 . for the weiglit of the golden cuse; ont of the lines of Solits, and put it over in the points of $\overline{5}$. belonging toleid: To the parallell taken from betweene the points of $\%$. fatinding for gold, and rreafured in the lines's of Solits, docth: give the weight of the teaden cabe required to be $23 \mathrm{E}_{\mathrm{L}}$

Thus ifa t phaze of gold thall weigh toooo. We Chall finde thiat a fopherc of the faine diameter full of quilckfilyer thall: weigh 7143 , a fehare a lead 6053 , a fphixe of filver 5438 ,
 of tinne 3895.

3 Abody being giveno of one mettrall, to mate another like unto is, of a not ber mett all and egwall meigbt:-

Take oft one of the fldes of the Body given, and patie ouver in the points belonging to tis trettalle to the paralted taken frodn betwee se thepointrs Betongith to the othier mettall, hall give the like Gide, forthebody reg dired. off if be annintegatiri body, het the other lilie fides be found out in. the fame thander.

Let the body given be a phete of lead consaining in magnitude ro d, whofe diameter is $: A$, to which I am to make a fohare of irom of equal waight: If 1 1ake out che diammer 1 , and put it orer in the points of 5 belonging tolead r the parallell taken from beiweene the points of o tanding for iron, fall $b e \mathcal{B}$, the diameter of the iton Shere reguired. And this compaied withthe other diameter, in the lines of

folids will be found to be 23 d. in magnitude.

4 A body being given of one mettall, to make another like anto it of another mettall, accor-. \therefore "ding to a weight given.
Firth find the fides of a like body of equall weight, then may we either angment or diminifl thien according to the propottion givea by that wrich we flewed before in the 1eeond and third Propiof Sotids.

As if the body given were a fo hatre of lead, whofe diameter is \mathcal{L}, and i : were reguired to find the dameter of a p phare of ivon, which thall weigh three times as much as the (phare of kad: I take A; and put it over in the points of b, his parallell taken from betweene the poimts of ${ }^{\prime}$ ', fhall give me ${ }^{3}$ for the diameeter of an equat fphere of iron: if this be augmented in fuch proportion as I anto 3_{p}, it giveth C for whe diameter required.

XI

CHAP:

CHAP. VI.

Of the lines on tbe edges of the Sector.

$\Psi^{\text {Aving thewed fome ufe of the lines }}$ on the flat fides of the Sefior, there remaine onely thole on the edgis. And here one halfe of the ourward edge is divided into inches, and numbred according to their dift ince from the ends of the Sefior. . As in the Seefor of fourtcene inches long, where we find It and 13,3 it Theweth that divifion to be I mah trom the nearer erd, and 13 inches from the farther end of the Sector.

The other halfe containeth a line of leffer tang ents, to which the gnomon is Radius.They are here continued to 75 gr . And if there be need to produce them farther, take 45 out of the number of degrees required, and double the remainder: fo the tangent and fecent of thistlouble remainder being added, hall make up. the tangent of the degres required.

As if $A B$ beingthe Radius, and $B C$ the tangent line, it were required to find: the tangert of 75 gr . If we take 45 gr . out of 75 gr . the remainder is 30 gr . and the double 60 gr . whofe tangent is. B D, and the fecant is A D: if then we adde $A D$ to $B: D$, it maketh $\mathcal{B} C$ the tangent of $75 . \mathrm{g}$. which was requirediIn like fort the fecant of $61 . \mathrm{gn}$. added to the tangent of 61 gr . giveth the tangent of 75 gr .30 m . and the fecant of 62 gr. added to the tang ent of 62 gragivelhiche tangent of 76 gr .
and fo in the reft. The ure of this line may be

To obferue the altiticude of the Sunme.

Hold the SeClor fo as the tangent $\mathcal{B} C$ may be verticall, and: the gnomon $B \in /$ parallell to the horizon; then turne the gnomontoward the Sunne, fo that it may caft a hadow apon the tangent, and the end of the fhadow fhall thew the altitude ot the Sunne. So if the end of the gnomon at $\cdot A$, do gives Thadow unto H, it hewerhthat the altitude is $3^{8} \mathrm{gr} \cdot \frac{1}{3}$, if unto D, then 60 gr . and io in the reft.
There is anoth r ufe of his tangext line, for the drawing of the houre lines upon any ordinary plane, whereof I will fer downe thefe propofitions.
> 1. To draw the bourelines upon an horizontiall plane.

> 2 Todraw the houre lines upon a direct verticall plaine:

Eirft draw a right line A. C forthe horizon and the zquasor, and croffe it ar the poine A about the middle of the line with A B another right line, which nayiferve for the meridian and the houre of 12 ; then take out $15 g$ gr. ont of the tangents, and pricke the n downe in the xquator on both fides from 1.2: fo the one point fhnll ferve foithe houre of 11, and the other for the houre of II. Againe, take out the tangent of 30 gr .and pricke it downe in the aequator on both fides from. 12: Fo the one of thefe points hall ferue for the houre of 10 , and the other for the houre of 2 . In like maner may you pricke downe the tangent of 45 gr for the houres of 2 aud 3 and the tangent of 60 gr . for the houres of 8 and: 4s and the tangent of 75 g . for the houres of 7 and 5 .

Or if any pleafe to fer downe the parts of an houre, hie may
 ry quarter. This done, you are to confider the latitude of the place, and the qualitie of the plane: For the fecant of the latitude thall be the femidiameter in a vertical plane, \& the fecant: of the complement of the latitude in an horizontall plan-.
X. 3

Fart
g es

 and ter the phane beverciialt. If yood enke wi D ehe ficeint of
 vidian line from A undo r_{s}, whic poine ve thall bethe ceinterf and if you draw right lines from V uato 11 , and 10 , and the ref of the houre points, they fall be the hourelines requi-
na
But ifthe plane be horizontall then 女our-are to take out
H the fecant of 38 fr .30 m.for the femidiame ter, and prick downe in the meridim line from A unto \mathcal{A} : fo the right hes drawne from the center $/ 7$ unfo the theare points, Chall the homelines required; bnely the houte of is is wanting: thetrat mult alwayes be/drawnte plarallall ta the àzuanor, tireligh the center V ig a vericefll, thropgt the ceriter $B A$ in
 atgle ($H \lambda \times$ thay right line $f V$ the bafe of this uxiangle hat titheaxis of the ftyle for either plaipe.

3 Tgaraw the houre pises on polar plandes.
 4 70 draw the hoivelines on meriliap Rianea:

In/polar plane the xquator inay beallo ethe fame with the Horzontal! line, and the loure poirtsctiay be pricked on as before, but the houre finfs munt be drawne parallelf to the中eridian.
In a meridian plane, the eqquator will cat the horizontall Ine with an angle equadito the complement of the latitude If the place; then may you make cholfe of the point A, and: thesectroffe the x equator with a tigbtline, which may ferve
 downe in the'xquator onborh fides from 6 , fhall ferue for the Houres of five and f; and the tangent of 30 gr . for the houres: df8 and 4 ; and the tangent of 45 gr.for the houres of 3 and $\boldsymbol{\theta}$ wht the tangenc of 60 gr . for the houres.of and iof, and the: thingent of $75 g^{2}$. for the houres of I and II. And if you draw wightine thisough chefe houre poitrs, croffing the xquator at rethbe angles, they hall bee the hourc lines required.

T0. The afe of the ie flo saingem?:

Tbe fubatilay will beathafome wath clie howre of izint the
 the axis of the file may be pannllell to the fabatiar in cither plane accordiang to the diftance of the third houre from the Cubfilar. . 1 :

ध i. !

Firft, draw $A V$ the meridian, and $A E$ the horizontalline crolling one the other at righe angles in the point -4 .

2 Trentake out $A K$, the fecart of the latitude of the place, which you may fuppofe to be sa gk . 30 m and pick it. downe in the meridian line from Aunto V .-

3 Becaufe it is a dectining plane, and you may fuppofe it to decline 40 gr . Eaftward, you are to make an angle: of the declinationupon the center is below the tofizontall lines and to the kft hand of the mendian- Iine, becaufe the declimation is Eaf ward, for other wife ic hound have bin to the tight hand, if the decination had bin Weftward.

4 Take A. H, the fecannt of tho complementic of the latitude ouc of the Sectar, \& priche it do wise in the line of dic chatiation from A unto H, as you did before for the femidiameter in the horizontall plane.

5 Draw a line at full lengrh through the point A, which mult be perpendicular unto A H, and cur the horizontall line according tothe angles of declination, and it will be as the equaror in the horizontall plane.
6 Take the houre points out of the Tangest line in the Sefer and pricke them downe in this equator on both fides from the houre of 12 at A .
7 Lay your ruker, \mathbb{E} draw right lines throash the center H \& each of thefe hoare points: fo have you all the houre lines of an horizonitat plane, onely the boure of 6 is wanting, and that may be dra wne through H perpendicular to HA .

Laifly, you ace to obferue and marke the interfections, which thete honres lines do mate with $A E$ the horizontanf line of the plane : and then if you draw right lines through the center V, and each of thete interfections, they fhall be ths boure lines required.
Theline H F drawne up to the Horizon and parallell to the meridian, will give the fubtilar V-F: The line FG drawne Perpendicalay to V F and equall to p He will give VG the
axis of che falce.

6 To pricke dow ze tbe boure points anotber way.

Hiving deax iea right line for the x juitor as before, and. madechoile of the poinc A, for th: houre of 12 : you may ac pleafure cus oftwo equall line; \mathbf{A} io, and \mathbf{A} 2. Then upon the dilt ance betweene ro a.id 2 , make an equila:erall triangle; and you hall have \mathcal{B} for the cencer of your x_{1} nitor, and the line A b hall give che dift ace fron A to 9 , and from A to 3. That done cakeone the diftuce betwiene 9 and 3 , and this thill give the diftuse fro. B ut:0 8 , and fron 8 unco 7 ; and from 3 anro 1 : and ag inas fron B unto 4, and from 4 unto ρ aid from 4 unto in. So have voa the houre points; andıt youtake oat the diftance BI, B $3, B 5, \& c$. You may finde the points not ouely. for the halfe houres, bur alfo for the quartersa
Bat if it fo fall oa:, that fom: of thefe howe poizts fall ourt of yoar plane, you may helpe your felfe by the larger tangent, booh in the verticall, and horizontall planes.

For if at the houre points of 3 and 9 , in fchem. p. 158 your đraw occult lin:s parallell to the meridian; the ditanc:s $\mathbf{D C}$ betweene the houre line of 6 , and the ho ire points of 3 and 9 , will be equall to the femidiamerer $A V$ in 2 verticall, and A Hisa horizontall plane, and if they bed vided in luath fort as the line A Cis divided, you fhall have the points of 4 , and 5 , and 7 , and 8 , with th ir halfes and quarters.

As in the horizontall plane, take ous the femidiameter A H; and mike it a parallell Radius b, fitting it over in the fines of 90 and 90 : Then take $1 \rho g$ gr. our of the larget tangens a 2 d lay them. on the lines of ines, where they will reach from the center unto the fines of 15 gr .32 m . therefore take our the parallell fine of $15 g \mathrm{~g} .3 .2 \mathrm{~m}$ and it fhall give the diftance fiom σ unto 5 , and from σ unto 7 , in your horizontall plane. That dose take our $30 . g r$. out of the larger taugest, and lay them on the fines, from the center unto the fines of 35 gr : 16 m . an 1 the parallell finu of $35 \mathrm{gr}, 16 \mathrm{~m}$ thall give you the diftance from: 6 ulto 4 , and from 6 unco 8 , in your horizontal
plane, Thelike may be done for the halfe houres and quarters.
So alfo in the verticall d ciining plane. It you firt take out the fecant of the declimation of the plane, and prick it dow ie in the horizonall line fro A A unco E , and through E draw right lines parallell to the meridaia, which will cat the former houre lines of 3 a ${ }^{\prime}{ }^{2} 9$, or one of them in the point C : then take out the femidianater A V, and prick it dowae in thofe parallells from anto D, and draw right lines from A unto C, and from V unto 1 ; the line V D ihill be the houre of 6 , and if you divide thefe line A C and D C, in fach fore as you divided the like line DC in the horizontal plane; you fhall have all the ho tre points required:

Or youmay find the poine D, in the hoare of 6; wittout knowled je erther of H or C. For having prickt downe A V in the merid an line, and $A E$ in the horizontall line, and drawneparallels to the miridian through the points at E, you may take the tanjent of the latituds out of the Sector, and fit it over in the fines of 90 and 90 : fo the paraliell fine of the declination miafared in the fain: tangent line, hall there thew the complement of the angle D V A, which the houreline of 6 maketh with the meridian; then having the point $D_{\text {; take out the femidiam reer } V} \mathbf{A}$, and pricke it downe ia thofe parallels from Diuto C : fo thall you have the lines. D C and A C to be divided as before.

The like mighe be ufed or the houre lines upon all other planes. But I mult not wote all that may be doae by the SeEtor. It may furtice that I have wrote fo nethisy of the ufe of: each line, and thereby given the ingenaous Readre occafion: to thinke of more.

The conclufion to the Reader.

rT' is well knowne to many of you, that this Seltor was thum can: trived, tbe moft part of this booke written is latin, manyy copies tranforibed and difperjed more then fixteene jeares fince. 1 am at the laft contented to give way that it come forth in Engligh. Nat that I thinke it woorthy either of my labour or the publisque vierw. but partly to fatisfie their importunity, who not underffanding the Lative; yet wereat the charge to buy the inftrument, and partly for mis awnecafo. For as it is paimefull for as bers to tranforibe wry copse, fo it is troublefo me for we to give fatisfallion bereim to all that defireit. If 1 finde this to give you content, it frall inm somrage me to do the like for my Crofle-ftaffe, and forme otben Inftruments. In the mane time beare mith the Priwers faultrs ${ }_{2}$ und fo I reft.

Grecham Coll so Maifo ska.3:

EG

FINIS.

THE

FIRSTBOOKEOFTHE CROSSESTAEFE.

C H A P. I.

Cf the defcription of the Staffe.

 He Crofe Staffe is an inftrument well known to our Sea-men, and much ufed bythe ancient Aftronomers \& others,ferving Aftronomically for obferuation of atriude and angles of diftance in the heauens, Geometrically for perpendicular heights and diftances on land and fea.
The defription and feuerall vess of it are extant in print, by Gemma Frifins in Latine, in Englifh by Dr. Hood. I differ fomething from them both, in the proiection of this S taffe, but fo, as their rules may be applied vnto it, and all their profofitions be wrought by it : and therefore referring the Reader to their bookes, 1 thall be briefe in the explanation of that which may beapplied from theirs ynto mine, and fo come to the vfe of thote lines which are of my addition; not extant heretofore.
\therefore Theineceflary parts of this Inflrument are five : the Staffe, the Croffe, and the three fights. The Staffe which I made for my owne ufe, is a full yard in length, that fo it may ferue for meafure.

The defoription of the lines.'

The Croffe belonging to it is 26 inches $\frac{1}{3}$ betweene the twu outward fights. If any would have it in a greater forme, the proportion betweene the Staffe and the Croffe, may bee fuch as 360 vnto 262.
The lines infcribed oat the Staffe are of foure fots. One of them ferues for meafure and protraction : one for obferuation of angles: one for the Sea-cart; and the foure other for working of proportions in feuer all kindes.

The line of meafure is an ixch line, and may be knowne by his equall parts. The whole yard being divided equally into 36 inches, and each inch fubdiuided, firt into ten parts, and then each tenth part into halfes,
The line for obferuation of angles may bee knowne by the double numbers fet on both fides of the line, beginning ac the fide at 20 , and ending $2 t 90$: on the other fide at. 40, and ending at 80 : and this being divided according to the degrees of a quadrant, I call it the tangent line on the Staffe.
The nextline is the meridian of a Sea-chart, according to Mercators proiection from the Equinoctiall to $\varsigma 8 \mathrm{gr}$. of latitude, and may be knowne by the letrer M, and the numbers 1.2.3.4-unto 58 .

The lines for working of proportions, may be knowne by their vnequall diuifioas, and the numbers at the end of each line.

I The line ofnumbers noted with the letter \mathbf{N}, diuided vnequally into 1000 parts, and numbred with 152.3 .4 . vato Io.
${ }_{2}$ The line of artiffciall tangents is noted with the letter T, divided uriequally iinto 45 degres, and numbred both wayes, for the Tangent and the complement.

3 The line of artificiall fines. noted with the letter S, di-. vided unequally into 90 degrees, and numbred with $\mathbf{1 . 2 . 3 \cdot 4 n}$ unto 90.
4 The line of verfed fine's for more eafic finding the houre and azimoth, noted with V, divided vnequally into about 164 gr .50 m . numbred backward with 10.20.30. vnto 164 .

Thus there are feven lines infcribed on the Staffe: there are five lines more infcribed gn the Crofle.

1 A Tangent line of 36 gr .3 m . numbred by 5. 10. 15. unto 35 : the midft whereof is at $20 . \mathrm{gr}$; and therefore I call it the tangent of 20 ; and this hath refpect vnto 20 gr . in the Tangent on the Staffe.

2 A Tangent line of 49 gr .6 mu , numbred by 5,10 . 15 . unto $45^{\text {; }}$; the midft whereof is at 30 gr . and hath refpect unto 30 gr . in the Tangent on the Staffe, whereupon I call it the tangent of 30 .
3. A line of inches numbred with I.2.3. vnto 26 ; each inch equally fubdiuided into ten parts, anfwerable to the inch line upon the Staffe.

4 A line of feuerall chords, one anfwerable to a circle of twelue inches femidiameter, numbred with 10. 20. 30 . unto 60. another to a femidiameter of a circle of fix inches; and the third to a femidiameter of a circle of thred inches; both numbred with 10. 20. 30. unto 90.

5 A continuation of the meridiarline from 57 gr . of latitude unto 76 gr ; and from 76 . to 84 gr .

For the infcription of thefe lines. The firt for meafure is equally diuided into inches and tenth parts of inches.

The tangent on the Staffe for obferuation of angles, with the tangent of 20 and the tangent of 30 on the Croffe, may all threebe infcribed out of the ordinary table of tangents. The Staffe being 36 inches in length ; the Radius for the tangent on the Staffe will be 13 inches and 103 parts of $1000:$ fo the whole line will be a tangent of 70 gr . and muft be numbred by their complements; and the double of their complements, the tangent of 10 gr . being numbred with 80 and 160 .

The Radius for the tangent of 20 on the Croffe, will bee 3^{6} inches, and the whole line betweene the fights a tangent of $36 \mathrm{gr} \cdot 3 \mathrm{~m}$. according as it is numbred. The Radius for the tangent of 30 gr . on the Croffe, will be 22 inches and 695 parts of 1000 : fo the whole line betweene the fights will containe a tangent of 49 gr .6 m .in fuch fort asthey are numbred.

The meridian line may be infcribed out of the Table which Ifet downe for this purpore in the vfe of the Sectory

7 The enfe of the lines of inches:

The line of numbers may be infcribed out of the 'firfi Chiliad of Matter Briggs Logarichmes : :and the reft of the lines of propartion out of my Camon of artificiall fises and tangents; and in recompence thereof this booke will ferue as 2 comment to explaine the ufe of my Canon.

CHAP. II,

The ufe of the lines of inches for perpen: dicular beights and diftances.

1N taking of heights and diftances, the Staffe may be held in fuchfort, that it may be even with the diftance, and the Croffe parallel with the height: and then if the eye at the beginning of the Staffe fhall ree his markes by the inward fides of the two firf fights, there will be fuch proportion between the diftanceand the height, as is betweere the parts intercepted on the Staffe and the Croffe. Which may be farther explained in thefe propofitions.

1 Tofind an beight at one fation, by knowing the diftance.

Set the middle loght unto the diftance upon the Staffe, the height

for beights and diftataces:

height will bee found vpon the Croffe. For.'
As the fegment of the Staffe vnto the fegment on the Croffe:
So is the diftance given,
unto the height:
As if the diftance $A \dot{B}$ being knowne to bee 256 feete, it were required to find the height BC : firt I place the middle fight at 25 inches and 6 parts of 10 ; then hoiding the Staffe levell with the diftance; I raife the Croffe, paralletl visto the height, in fuch forr, as that my eye may fee from A the beginning of the inches on the Staffe by the fight E, at the beginning of the inches on the Croffe unto the mark C : which being done, if 1 find 19 inches and 2 parts of 10 intercepted on the Croffe betweene the fights at E and \mathcal{D}, I would fay the height $\mathcal{B C}$ were 192 feere.

Or if the obleruation were to be made before the diftance: were meafured, I would fet the middle fight either vnto ro inches, or 12 , or 16 , or 20 , or, 24 , or fome fuch other number as might beft be divided into fererall parts, and then worke by proportion. Asifin the former example the middef fight were at 24 on the Staffe, and 18 on the Crofle, it fhould feem that the height is $\frac{3}{4}$ of the diftuace; and theren fore the diftance being $2 \sigma 6$, the height fhould be 192.

> 2 Tofinde an beight, by knowing fome part of thefame height:-

- As if the height from G to C were knowne to be 48, and it were required to find the whole height $B C$: either put the third fight or fome other runniing fight vpon the Croffe bet weene the cye and the marke G. For then

As the difference berweene the fights,
vnto the whole fegmentof the Crote:
Sois the part of the height given,
vito the whole height.
If then the difference betweectie the fights E and F, hall Az

The"uce of the limes of inches.
be asyind the fegment of the Croffe ED 180, the, Whole height \mathcal{B} C will be found to be 192.

3 To find an beight at two ftations, by knowing the difference of the fame ftations.

As the difference of fegments on the Staff, unto the difference of fations:
So is the fegment of the Croffe, unto the height.
Suppore the firft fation being at H, the fegment of the Croffe E D were 180, and the fegment of the Staffe $H \mathcal{D}$ 300:then comming 64 feete nearer vnto B, in a direct line, vnto a fecond ftation at A, and making another obferuation; fuppofe the fegment of the Croffe E D were 180; as before, and the fegment of the Staffe A D 240; take 240 out of 300 , the difference of fegments will be 60 parts. And As 60 parts unto σ_{4} the difference of ftations:
So $D E 180$ unto $B C 192$ the height required.
In thefe three Prop. there is a regard to be had of the height of the eye. For the height meafured, is no more then from thelevell of the eye upward.

4 To finde a diftance, by knowing the beight.
As the fegment of the Croffe, unto the fegment of the Staffe :
So is the height giuen, unto the diftance.
So the fegment E D being 18, and D A 24, the height $C B$ 192, will thew the diftance $A B$ to be 256 .
s. Tofirde a diffance, by knowing part of the heigbt.
As the difference betweene the fights, mato the fegment of the Staffe:

for beights and dijtances:

So is the part of the height given, unto the diftance.
And thus the difference betweene E and F being 45 ; and the fegmentD A 240; the part of the height $\mathcal{G} \boldsymbol{C}_{48}$, will give the diftance $A B$ to be 256 .

6 To finde a diftance at two jzations, by knowing the difference of the fame fatations.

As the difference of Cegments onthe Staff;
unto the difference of fations :
So is the whole fegment, unto the diftance.
And thus the fegment of the Croffe being 180; the feg: ment of the Staffe art the firt ftation 240, at the fecond 300, thedifference of the fegments 60 , and the difference of ta tions 64 , thediftance AB at the firf fation will be found to be 256 , and the diftance HB at the fecond fation 320 .

7 To fird a breadth by knowing the distance perpendicular to the broadth.
This is all one with the firft Prop. For this bredth is but an height turned fidewayes : and therefore

As the fegment of the Staffe,
unto the fegment of the Croflc;
So is the diftance
unto the breadeh.
And thus the fegment of the Staffe being 24, and the fegment of the Croffe 18 , the diftance AB 256 , will give the breadch BC to be 192.

8 To find abreadsh at two stations in a line perpendicular to the bredth, by knowing the diffe-. rence of the famic Etations.
This is alfo the fame with the third Prop.and therefore

As the difference of fegments on the Staffe, unto the difference of ftations : unto the bredth required.
And thus the difference betweene the ftations at A and H being 64, the difference of fegments on the Staffe 60, the fegment of the Croffe 180, the bredth B C will bee found to berg2.

In like manner may we finde the breadth $G C$ for having found the bredth B C che proportion will hold.

As DE is unto $\mathrm{F} E$, fo $\mathrm{B} C$ unto $\mathcal{G} C$. Or otherwife, As H a unto HA, fo F Eunto $\mathcal{G} C$.
Neither is it materiall whether the two ftations be cho: .eni as: one enid of the bredth propored, or without it, or within it,' if the line betweete the ftacions be perpendicular unto -the bredth : as may appeare if in ftead of the flationsat ef and H, we make choife of the like ftations at I and K.
There might beother wayes propofed to work thefe Prop. by holding the Croffe even with the diftannee, and the Staffe parallell with the height:but thefe would proove more troublefome, and thofe which are delivered are fufficient, and the fame with thofe which others have fet down under the name of the lacobs Staffo.

CHAP.

CHAP. III.
The ufe the Tangent lines intaking of Angles.

I Tafinde anangle by the Tangent
an the Siaffe:
I. Fthe mide Gight be alweies fet to the middte of the Crofeg noted with 20 and 30 , and then the Crofe
drawnenearer the eye, uatill the markes may be feene ctofe within the fights. For fo if the eye $x A$ (chat end of the Suaffe which is nored with 90 and 180) beholding, the marks K and $2 \mathbb{K}$, betweene the two firft fighrs, C and \mathcal{B}, or the markes \mathcal{K} and P betweene the two outward fights, the Croffe being drawne downe unto H , fhat ftand at 30 and 60 , in the Tangent on the Staffe: it heweth the angle $K A \mathcal{N}$ is 30 gr . the angleX AP 60 gr. the one double to the other; which is the re:fon of the double numbers on this line of the Seaffe $:$ and this way will ferve for any angle from 20 gr . toward' 90 gr . or from 40 gr . toward 180 gr . But if the angle bec kffe then 20 gr.we muft then make uile of the Tangent vpon the Crofie

2 To finde an angle by the Tangent of 20
upon the Croffe.
Set 20 unto 20 , that is, the middle fight to the middeft of the Croffe at the end of the Staffe, noted with 20 : fo the eye at A,beholdng the marks L and X, clofe betweene the two firfl fights, C and B, fhall fec them in an angle of 20 gr .

If the markes hall be nearer together, asaze M and \mathcal{N}, then draw in the Croffe from C vito $E_{\text {s }}$ if they be farther 2yunder,as are K and N, then draw eut the Croffef fom C vnto F; fo the quantity of the angle frail be ftill foond in the Croffe in the Tangent of 20 gr . at the end of the Senfe; and this will ferue for ary angle form 20 toward 358 r.

> 3 Tafinde an angle $b y$ the T angent of 30 . upon the Croffo.

This Tangent of 30 is here put the rather, that the end of the Staffe refting at the eqe, the hand may more cafily re-: mooue the Croffe:: for it fappoferh the Redius to be nolonger then $A H$, which is from the eyeat the end of the Staffe unco 30 gr. about 22 inches and 7 parts. Wherefore here fet. the mididefifght unto 30 g n . on the Scaffe, and then either draw the Ctoff in or out, untill dhe markes be feene betwewen
shetwo firt fights; (he guantitic of the angle will be found in the Tangent of 30 , which is here reprefented by the line $G \mathrm{H}$; and thas will ferve for any angle from $\circ \mathrm{gr}$. toward 48 gro

4 To objerwe the allititede of the Sunne backward.

Here it is fit to have an horizontal fight fet to the beginning of the Staffe, and then may you turne your backe toward the Sun, and your Croffe toward your cye. If the altitude be vider 45 gr. Fet the miiddie fighte to 30 on the Staffe, and looke by the middle fight through the horizontall vnro the horizon, mouing the Croffe vpward or downeward; untill the upper fight doe fhadow the upper halfe of the hoo rizontall fight : fo the allitude will be found in the Tangene of 30.

If the altitude n:albe more then 45 gr . fet the middle fight unto the midd \mathbb{I} of the Croffe, and look by the inward edge of the lowes fight throung h the horizontall to the horizon, moving the middle fight in or out, untill the upper fight doe fhadow the upper halfe of the horizontall fight: fo the alti-, tude will be found in the degrees on the Staffe betweene 40 and 180 .

s Tofat tbe Staffe to any angle given.

This is the conuerfe of the former Prop. For ifthe middlefight be fet to his place and degree, the eye looking clofe by the fights as before; cannot but fec his obieet in the angle given.

6 To obferme the alitude of the Sumine anotber way.

Set the middile fight to the middle of the Croffe, and bold the horizontall fight downward, 10 asthe Croffe may be pasallell to the horizon, then is the Staffe verticall; and if the outward fight of the Croffe do fhadow the horizontall fight, Bb \mathbf{z}
thecomplemear of the altixude will be found is the Tangent en the Staffe.

7 Toobferne an altituate by thread and planmet.

Let the middle fight be fer to the middelt of the Crofle, and to that end of the Staffe which is noted with 90 and $180 ;$ then having a thread and a plummet at the beginning of the Croffe, and turning the Croffe upward,and the Staffe toward the Sunne, the thread will fall on the complement of the altitude above the horizon. And this may be applied to other purpofes.

8 To apply the lises of incloes to the taking. of angles.

If the angles be oblerved betweene the two firlt fighrs, there will be fuch proportion betweene the parts of the Staffe and the parts of the Croffe, as betweene the Radias and the Tangent of the angle.

As if the parts intercepted on the Staffe were 20 inched, the parts on the Crolfe 9 inchos. Then by proportion as 20 vnto 9, fo roo000 unto 45000 the tangent of 24 gr .14 mm .

But ifthe angle fhall be obferved betweene the two outward fights, the parts being 2° and 9 as before, the angle will be $48 \mathrm{gr}_{\mathrm{i}} 28 \mathrm{~m}$. double vito the former.
In all thefe there is a regard to be had torthe parallax of the eye, and his height above the Horizon in obfervations at Sea; to the femidiamerer of the funne, his parallax and refraction, as in the vfe of other faves. And fothis will be as mack,or more.then that whch hath beene. heretofore performed by tite Craffe-Staffe:

CHAP. IIII.

The $\begin{gathered}\text { se } \\ \text { of } \\ \text { the lines of equall parts ioynaed }\end{gathered}$

 witt) the lines of Chords:THe lines of equall parts doe ferue alto for prorraction, as mas appeare by the former Diagrams, but beint ioyned with the lines of Chords, which I place upon one fide of the: Groff, they will farther ferve for the protraction and refolution of tight line triangles; whereof I will give one. example in finding of diftance at iwo ftations ocherwife. then in the fecond chap.

Let the diftance required be $\propto \mathcal{B}$. At A the firt ftation I make choife of a fation line toward C, and obferue the angle $B_{1} A_{1} C_{1}$ by the tangentlines, which may be 43 gr .20 m ; then

Bb 3
having
hạving goti an hundred paces toward $C_{0} 1$ make my fecond fition at D, where fuppore I fit:de the argle $B D C$ ro be s^{*} gr. or the angle $B D$. 10 be 122 gr g this being done, I may finde the diftance $A \mathcal{B}$ in this maner.

I Idraw a right line $\mathscr{A} C$, repriferiting the ftationiline.
2. I take 100 out of the lines ot equall parts, and pricke them downe from A the firft fation unto $\mathcal{D}_{\text {the }}$ fecond.

I open my compaffes to que of the cherds of 60 gr . and fetting one foote in the foint A, with the other 1 dereribe an orcult arke of a circle interfectting the ftation line in E.

4 I take cut of the fame line of chords a chord of $43 \mathrm{gr:}$ 20 m . (becaule fuch was the angle at the firft ftation) and this I infcribe into that occult arke from E unto F, which makes the angle FAD equall to the angle oblerued at the firft ftation.

5 I deicribe another like arke upon the center \mathbf{D}, and infcribe into it a chord of $5^{8} \mathrm{gr}$. from C unto G, and draw the right line D G, which doth meeet with the other line $A E$ in the point B, and makes the angle B D C equall to the angle oblerved at the fecond ftation. So the angles in the Diagram being equall to the angles in the field, their fides will be alfo proportionall : and therefore,

6 I take out the line $A \mathcal{B}$ with my compaffes; and meafaring it in the fame line of equall parts, from which I tooke A D, I finde it to be 335 and fuch is the diftance required.

C.HAP.

CHAP. V.

The afe of the Meridian line.

'THe Meridian line, noted withethe letter M, may Cerue for the more eafie divifion of the plane lea-cart, according to Mercators proiection, For if you frall draw parallell meridians, each degree being halfe an inch diftant from o:her, the degree of chis meridian line on the Staffe, Thath give the like d gress for the merridians on the chart, from the Equinoctiall toward to Pole : and then if through thefe degrees you draw ftraight lines perpendicular to the meridians, they fhall be parallels latitude.

If any defire to have the degrees of his chart larger then thole which I have put on the Sraffe, he may take thefe and increafe them in a double, or treble, or a decuple proportion at his pleafure.

2 This meridian line being ioyned with the line of chords, may ferue for the protration and refolution of fuch righe line triangles as concerne latitude, longitude, rumb and diftance in the practice of navigation. As may appeare by this example'

Suppore two places given, es in the latitude of 50 gr . D in the latitude of $52 \mathrm{gr}_{0} \cdot \frac{1}{2}$, the differece of longitude berween them being $\& g$. andlet ic be required to know, firft what Rumbe leade th from the one place to the other, lecondly how many degrees diftant they area funder.
I. I draw a right line $\mathcal{A} \varepsilon$, reprefenting the parallell of the place from wherice I depart.

2 I take $\sigma \mathrm{gr}$. for the difference of longitude, cither outof the lineof inaber, allowing halfe aninch for every degree, or out of the beginning of the Meridian line: (for there the meridian degrees differ very little from the equanoftiall degrees) and thefe 6 gr. I pricke downe inthe panallell from A COE:

3 In 1 and E, I ereft two percendiculars, $A M$ and $E D$, reprefating the meridians of both places.

4 I take the difference of the latitude from $50 \mathrm{gr} . \mathrm{to} 5 \mathrm{ggr}$. 30 m . out of the meridian line, and prick it down in the meridians from \mathcal{A} viro M; and from E to D, and draw the right line $M D$ for the parallefl of the fecond place, and the right line $A D$ for théline of diftance betweene both places; fo the angle M A D Thall give the Rumb that leadeth from the one place to the orfier,
-s To find iffe grantitie of this angle M A D, I may either make ufe of the Protractoo, or elfe of tine of chords, and fo I open my compafies vito one of the chords of 60 r, and : Eetting one foote in the point A; with the other I defribe © a
an occult arke of a circle, interfecting the meridian in F, and the line of diftance in G_{3} then I take the chord FG with my compatifes, and meafuring it in the fame line of chords as befors, I finde it ${ }_{5} 6 \mathrm{gr}_{\frac{1}{4}}^{\frac{1}{4}}$: and fuch is the inclination of the Rumb to the Meridian, which is the firft thing that was required.

6 To finde the guantitie of the line of diftance A D, I take it out with my compaffes, and mafuring it in the meridian line, fetting one foote beneath the leffer latitude, and the other foote as much above the greater latitude. I find about $4 g r^{\frac{1}{2}}$ intercepted betweene both feet : and fuch is the diftance upon the Rumb, which is the fecond thing that was reguired.
But if thisexample were protracted according to the common Sea-chart, where the degrees of the equinoctiall and meridian are bothalike ; the Rumb M A D would be found to be aboue 67 gr . and $A D$ ihe diftance upon the Rumbe about 6 gr . $\frac{1}{2}$.

- Suppofe farther, that having fet forth from \mathcal{A} toward D, upon the former Rumb of $\varsigma \sigma \mathrm{gr} .1 \rho \mathrm{~m}$. $\mathcal{N} \in \in \in E$, after the Ship had run 36 leagues, the wind changing, it ran sol leagues more upon the feuenth Rumb of $\varepsilon 6 \lambda$, whofe inclination to the meridian is 78 gr .45 m . And let it be required to know what longitude and latitude the hip is in, by pricking downe the way thereof upon the Chart.

Having drawne a blank chart as before, with meridians and parallels, according to the latitude of the places propored.

I I would make an angle $M A \mathcal{D}$ of 56 gr .15 m . for the Rumb of $\mathcal{N} E 6 E$, which is done after this manner: I open my compaffes to one of the chords of 60 gr . and fetting one foote in the point A, with the other I delcribe an occult arke of a circle, interfecting the meridian in F, then I take 56 gr. 15 m . out of the fame line of chords, and pricke them downe from F unto G : fo the right line $A G$ fhall be the Rumb of REEE.

2 I would take 36 leagues out of the meridians line, exC
tending

18 The mfe of the cMerridian line.'

rending my compaffes from $50 \mathrm{gr}, 5148 \mathrm{~m}$. or rather from much below so as above si, and prick them downe uponthe Rumb from A anto I; fo the point, I hall reprefent the place wherein the hip was when the winde changed. And this is in the latitude of 51 gr .0 mL . and in the longitude of 2 gr .21 m . Eaftward from the meridian $A M$.
3 By the fame reafon, I may draw the right line $I K$ for the Rumb of $E b N$, and pricke downe the diftance of so lcagues from I untc K : fo the point \mathbf{K} fhall reprefent the place whither the fhip came, af:er the running of thefe so leagues: and this is in the latitude of $s \mathrm{Igr} \cdot 30 \mathrm{~m}$.and in longitude 6 gr . 0 m . Eaftward from the firft meridian $A M$ and therefore 16 m . Eaftward from the fecond meridian, ED.
But if thefe two courfes were to be pricked downe by the common Sea-chart,the point I would fall in the latitude of 51 gr .0 m , and the point R in the latitade of sI gr : $30 . \mathrm{m}$. But the longitude of I would be onely 1 gr .30 m , and the longitude of K only 3 gr .57 mmore moth thefe do make but g gr . 27 m .for the difference of longitde berweene the firt Meridian $A M$, and the poin K : whereby it fhould feeme that the point K is yet 33 m . Weftward from the Meridian of the place to which the fhip was bound.

Such is the difference betweene both thefe charts,

CHAP. VI.

The ufe of the line of Numbers.

THe line of Numbers here noted with 1.2.3.4 unto 10 , is compleat in thofe divifions which are betweene 1 and 10 : the other like divifions at t e b bigning of the line doe fetue ta her to aniwere to the firft deg, ees of the two outher lines of Sines and Ta gents then for any receffity, which is the caute why fone of them ale omittcd. And here as in the ule of other S cales the figures 1. 2. 3. 4 aud fee downe u_{i} on the linie doe Iomctimes fignifie themfelues alone, fometimes 10.20. 30. 40, fumetimes 100. 200 . 300, 400, and fo forward as the matter hall require. The filf figure of every number is alwaves that which is here fer downe, the reftamuft be fupplied according to the nature of the queftion.

1 Having two numbers given to findea third in continuallproportion, a fourth, affth, and \int. forward.

Extend the compaffes from the firtt namber unto the fecond; then may you turne them, from the fecond to the third, and from the third to the foutth, and fo forward. - Let the two numbers givenbee 2 and 4 .

$$
C_{6}
$$

Extend

Extend the compaffes from 2 to 4 , then may you turne them from 4 to 8 , and from 8 to 16 , and from 16 to 32 , and from 32 to 64, and from 64 to 128.

Or if one foote of the compaffes being fet to 6_{4}, the 0 ther fall out of the line, you may fet it to another 64 neerer the beginning of the line, and there the other foot will reach to 128 , and from 128 you may tarne them to 256 , and fo forward.

Or if the two firt number given were 10 and 9 : extend the compaffes from 10 at the end of the line, backe unto 9 . then may you turne them from 9 unto 8. 1, and from 8. I unto 7. 29. And fo if the two firft numbers given were I and 9 , the third would be found to be 81, the fourth 729, with. the fame extent of the compaffes

In the fame maner, if the two firt numbers were 10 and 12, you may finde the third proportionall to be 14.4 , the fourth 17.28. And with the fame extent of the compafies, if the two firt numbers were. 1 and 12, the third would bee found to be 144 , and the fourth to be 1728 .

2 Having two extreme numbers given, to find a mease proportionallbetwesne them.

Divide the fpace betweene the extreame numbers into two equall parts, and the foote of the compaffes will flay at the meane proportionall. So the extreme numbers given being $8 \& 32$,the meane' betweene them will be found to be 16,which may be prooved by the former Prop. where it was thewed, that as 8 to 16 , fo are 16 to 32.

3 Tofind the. quadre rootcof any nime-

The Iquage roote is alwayes the meane proportionall betweener and thenumber given, and therefore to be found by
dividing
dividing the fpace betweene them into two equall parts. So the roote of 9 is 3 , and the roote of 81 is 9 , and the roote of 144 , is 12 , and the roore of 1440 almoft 38 .

If you fuppofe pricks under the number given, (as in Arithmeticall extraction) and the laft pricke to the left hand thall fall under the laft figure, which will be as oft as there be odde figures the unitie will be beft placed at 1 in the middle of the line : fo the roote and the fquare will both fall forward toward the end of the line. Burwif the talt pricke fhall fall under the laft figure but one, which will bee as oft as there be euen figures, then the unitie may be placed at I in the besioning of the line and the fquare in the fecond length or rather the unitie may be placed at 10 in the end of the line of the roote and the fquare will both fall backward toward the middle of the line, in the fecoad length.

> 4 Haviag two extreme numbers gives, to.
> find two mease proportionals betweene them.

Divide the fpace betweene the two extrem: numbers given, into three equall parts. As if the extreme numbers. given were 8 and 27. divide the fpace betweene them into three equall parts, the feete of the compafles will fand in 12 and 18.

s To find the subique roote of a number gives.

The cubique roote is alwayes the firtt of two meane proportionals betweene 1 and the number given, and therefore to be found by dividing the face betweene them into three equall parts.
4. So the roote of of 1928 will be found to be 32 . The roote
22.

The ufe of tbe line of Numbers."
of 172.80 is almolt 26 : and the toote of 172800 is almolt 56.

Ifyou fuppofe pricks under the number given after the maner of Arithmeticall extraction, \& the laft prick to the left hand Coall tall under the laft figure as it dothin 1728, the unitie will be beft placed at I in the middle of the line, and the roote the fquare and the cube will all tall forward toward the end of the line.

If the laft pricke fhall fall vader the laft figure but one as in 17280 , the unitie may be placed at 1 in the beginoning of the line, $\&$ the cube in the ficond length. or the unitie may be placed at 10 in the end of the line: and the cube in the firit length ; or if the cube fall out of.the line you may helpe your felfe as in the firft Prop.

But if the laft prick Shall fall under the laft figure but two, as in 172800 , then place the unitie alwaies at 10 in the ende of the line : fo the rcote the fquare and the cube will all fall backward and be found in the fecond iength between the middle and end of the line.

6 To mulliply one number by arother.

Extend the comparfes from I to the multiplicator; the fame extent applied the fame way, hall reach from the multiplicand to the product.

As if the numbers to be multiplied were 25 and 30 : either extend the compaffes from 1 to 25 , and the fame extent will give the diftance from 30 to 750 ; or extend them from ito 30 , and the fame extent fhall reach from 25 to 750 . -

7 To divide one nwmber by anotber.

Extend the compaffes from the divifor to 1 , the fame extent fhatl reach from the dividend to the quotient.

So if 750 uere to be divided by 25 , the quotient would befound to be 30 .

8 Thrice numbers being given to finde a fourth proportioniall.

This golden rule, the mof ufefullof all others, is performed with like eafe. For extend the compaffes from the firt number to the fecond, the fame extent hall give the diftanice from the thid to the fourth.

As for example, the proportion betweene the diameter and the circumference, is faid to bee fuch as 7 to 22 : if the diameter be 14 , how much is the circumference? Extend the compafies from 7 to 22 , the fame extent fhall give the ditance from 14 to 44 :or extend them from 7 to 14 , and the fame extent fhall reach from 22 to 44 -
Either of thefe wayes may be tried on feverall places of this line ; but that place is beft, where the feete of the compaffes may ftand nerefl together.

> 9 Tbree numbers being given to finde. a fourth in a duplicated proportion:

If any bavie daily mfe of this propofition be may caifcantotber live of Numbers to be made.

This propofition concernes queftions of proportion betweene Lizés and Superficer; where if the deno inination be of lines, extend the compaffes from the firth to the fecond nmmber of the fame denomination : fo the fane extent being. doubled, fhall give the diftance from the third number unto the fourth.
The diameter being 14 , the content of the circleis T 5_{4} : the diameter being 2 S , what may the content be" Extend the compales froin 14 4 t) 28, the fane extent doubled will reach
 and turning the compuffes once more, it reachech from 308_{2} unto6ı6; and this is the content required, The Mfe of tbe line of Ninmbers.
But if the firt denomination be of the fuperficiall content; extend the compaffes unto the halfe of the diftance, betweene the firft number and the fecond of the fame denomination : fo the fame extent hall give the diftance from the third to the fourth.

The content of a circle being 154 , the diameter is 14 : the co ntent being 616, what may the diameter be? Divide the diflance betweene 154 and 616 into two equall parts, then fet one foote in 14 , the other will reach to 28 the diameter requircd.

> 10 Three sumbers being given to find a fourth: in a sriplicated proportion.

This propofition concerneth queftions of proportion be: rweene lines and follads; where if the firlt denomination bee of lines, extend the compaffes from the firit number to the fecond of the fame denomination: fo the extent being tripled, thall give the diftance from the shird number unto the fourth.

Suppofe the diameter of an iron bullet being 4 inches, the weight of it was 9 : the diameter being 8 inches, what may the waight be? Extend the compaffes from 4to 8, the fame extent being tripled, will reach from 9 unto 72. For firlt it reacheth from 9 unto 18 ; then trom 18 to 36 ; thirdly from 36 to 72. And this is the weight required.

But if the firt denomination Dhall be of the Solid content; or of the weighr, extend the compaffes to a third part of the diftance betweeneithe firft number and the fecond of the fame denomination : fo the fame extent fhall give the diftance from the third number unto the fourth. \therefore The weight of a cube being $72 . \mathbf{P}_{\text {, }}$ the fide of it was 8 in: ches the weight being 9 I, what may the fide be? Divide the diftance betweene 72 and 9 , into three eguall parts; then fet onefoote to 8 , theother will reach to 4 , the fide required.

CHAP. VII.

The ife of the line of artificiall Sines.

THis line of f ines hath fuch ule in finding a fourth proportionall,as the otdinary Canon of Sines : and the maper of finding it, is alwayes füch as in this example.

As the fine of $g 0 \mathrm{gr}$. unto the fine of 30 gr . So the fire of 20 gr ounto a fourth fine.

Extend the compaffes from the Sine of 90 gr . unto the fine of 30 gr . the fame extent will reach from the fine of 20 gr . unto the fine of 9 gr . 50 m .-

Or you may extend them from the fine of 90 gr . unto the fine of 20 gr . the fame extent will reach foom the fine of $\hat{\rho} 0$ gr. unto the fine of 9 gr . 50 m . and fach is the fourth proportionall fine required,
In like maner if che queftion propofed were
As the fine of 30 gr unto the fine of 52 gr .
So the fine of 38 gr , to a fourth fine.
Extend the compaffes in the line of fines from 30 gr : unto 52 gr ; the fane extent hall give the diftance from 38 gr . unto 76 gr . Or extend them from 30 gr . unto 38 gr . the fame extent will reach from $\boldsymbol{y}^{2} \mathrm{gr}$, unto $7^{6} \mathrm{gr}$. which is the foarth proportionall fine required.

And thus may the reft of all finicall proportions bee wirought two wayes. The minutes which are wanting in the firf degree, may be fupplied by the line of Numbers, as I fhew in the next Chapter.

[^1]
CHAP. VIII.

The ufe of the line of artificiall. Tangents.

THis line of \mathcal{T} angents hath like ufe, but commonly ioy: ned with the line of fines : the manner of working by it, may appeare by this example.

> As the Tangent of 38 gr .30 m .
> is the Tangent of $23 . \mathrm{gr} .30 \mathrm{~mm}$.
> So the Sine of 90 gr .
> to a fourth Sine.

This Prop. and fuch others upon two lines, may bee wrought two wayes. For extend the compaffes from the Tangent of 38 gr .30 m . to the Tangent of 23 gr .30 m ; the lame extent hall give the diftance from the fine of 90 gr . to the fine of 33 gr .8 m . Or elfe extend them from $38 \mathrm{gr} .30 . \mathrm{m}$. in the Tangents unto $20 . \mathrm{gr}$. in the line of Sines; the fame extent from the Tangent of 23 gr . 30 m . Thall reach to the fine of 33 gr .8 m . Which is the fourth proportionall fine required.

And this croffeworke in many cafes is the better, in regard the tangents which Thould paffe on from 40 gr . to 50 $g r$. and fo forward, doe turne backe at 45 gr . Thefe two lines of Sines and Tangents, may ferie for the refolution of all fphericall triangles, according to thofe Canons which I have fet downe in the ufe of the Sector. Onely two cafes the19 and 20 will bee more eafily refolued by that which followeth in the latt \mathbb{C} bapter of this booke.

Or if at any time one meete with a Secant, Let him account the fine of 80 gr . for. a Secant of ro gr , and the fane of 70 er. for a Secant of 20 gr and fo take the fine

> As if the propofition were, As the Radius to the fecant of $5^{1} \mathrm{gro} 30 \mathrm{~m}$. So the fine ct 23 gr .30 mm . to a fourth ince.

Extend the compaffes from the Radius that is the fine of 90 gr . to the fine of 38 gr .30 nL . the fame extent will give the diftarce from the fine of $23 . \mathrm{gr} .30 \mathrm{~m}$. both to the fine of $14 \cdot \mathrm{gr} .22 \mathrm{~m}$ to the fine of 39 gr .50 m . But in this cale, the fine of 39 gr so m . is the fourth required. For the firf number being leffe then the fecond, that is, the Radius leffe then the fecant; the fine of 23 gr .30 m . which is the third, mult alfo be leffe then the fourth.

If the fourth proportionall number fhall at any time fall out of the line, by reafon of the minutes that are wanting in the firt degree, it may be fupplied by refoluing the third number given into minutes, and then working by the line of numbers.

As if the propofition were,

As the Sine of 90 gr.
to the Sine of 10 gr .
So the fine of 5 gr . to a fourth fine.
Or the Tangent of $s \mathrm{gr}$. to a fourth Tangent.

Extend the compaffes from the fine of 90 gr . unto the ine of 10 gr . the fame extent will reach from the Sine or Tangent of 5 gr . beyond the end of the ftaffe. Wherefore I refoive thefe 5 gr . into 300 minutes and find the former extent $t 0$ reach in the line of numbers from 300 m . unto 52 mm , and fuch is the fourth proportionall required.

If the the extent from the fine of 90 gr . unto the fine of 10 gr . be too large for the compaffes we may ufe the Sine of

And fo extending the compaffes from the fine of 5 gr .44 m. unto the fine of 10 gr . we fhall finde the fame extent to reach in the line of Numbers from 300 unto \boldsymbol{y}_{2} as before.

And by the fame reafon wee may ufe the tangent of $; g r$. 43 mu . inftead of the tangent of 45 gr . as I farther thew in the next Cbapter.

CHAP. IX.

The ufe of the line of Sines and Tangents iojned with the line of N Numbers.

THe lines of Sines and Tangents another like ufe joyned with the the line of 2 umbers, efpecially in the refolu-ion of right line triangles, whire the augles are meafured by degrees and minutes, and the fides meafured by abfolute numbers, whereof I will fet downe thefe propofitions.

> 1 Having three angles and one fide to finde the two other

fides.
If it be a rectrangle triangle whercin one fide-about the right angle being knowne it were required to finde the other. This may be found by the line of Tangenes aid line of Numbers, For

As the Tangent of 45 gr .

ro the tangent of the angle oppofite to the fide required, So the number belonging to the fide given

to the number belonging to the fide required.

As in the rectan: gle A B Cknowing the angle C A B to

be 9 gr I s m. and the fide A B to be r 3 s -parts; ifit were required to finde the other fide $B C$ abour the right aungle.

Extend the compafles from the Tangent of 45 gr . unto the Tangent of 9 gr . 15 m , the fame extent will reach in the line of Numbers trom 135 unto 22 , and fuch is the length of the fide B C. Or in the croffe worke extend the coinpaffes from the Tangent of $45 \mathrm{gr}_{0}$ unto 135 in the line of numbers the fame extent will reach fromethe Tanget of 9 gr .15 m . unt: to 22 in the line of N imbers.

If this extent fram the tangent of 45 gr. to 9 gr . Is mo or 135 parts bee toolarge for the compaffes, you may ufe the Tangent of $5 \mathrm{gr}_{-23} \mathrm{~m}$ inftead of the Tangent of 45 gr becaufe both alike anfwer to $10.8 c$, parts in the hine of Numbers.

And then either extend the compafes from $9 g r .43$ mo unto 9 gr .1 g m . ia the line of Tangentsthe fame exteat will reach from 135 unto 22 in the line of numbers, or eife exyend them from the tangent of sigr 43 m. unto 135 in the line of Numbers the fame extent will reach from he Tangent ohig g^{\prime}. 15 m . unto 22 in the line of Numbers as before.

In like manner if the fame rectangle $A B C$ knowing the angle A C B to be 80 gr .45 ms , and the fide B C to bee 22 parts, it were required to finde the other fide B A. You may ufe the Tangent of 84 gr .17 mi inftead of the Tangent of 45 gr . and fo the fide $B \mathbf{A}$ will be found to bee 135 parts.
This holdeth for finding of the fides of rectangle triangles but generally in all triangles, whither they be right or obtufe angles having three angles and one fide wee may finde the two other fides by the line of Sines and line of \mathcal{N} umbers.

30 The ufe of the lines of Sines and T angents:
As the Sine of angle oppofite to the fide given, is to the number belonying to that fide given, So the Sine of the angle oppolite to the fide required, to the number belonging to the fide required.

As in the eximple of the fourth Chapter. of this booke, where knowing the diftance betweene two ftations at A and D to be 100 paces, the angle $B A C$ to be 43 gr .20 m and the angle $\mathcal{B D}$ (to be .58 gr . it was required to find the diftance © B.

Firt having thefe two angles, I may finde the third angle $A B D$ to be $I_{4} g r .40 \mathrm{~m}$. eit her by fubftraction or by complement unto $\mathbf{8} 80$. Then in the Triangle $B A D, I$ have thice angles, and one fide, whereby I may finde both $A B$. and $\boldsymbol{D} \boldsymbol{B}$.
I know the angle $A B D$ oppofite to the meafured fide $A D$ to bee 14 gr .40 m. and the angle $A D B$ oppofite to the fide reguired, to bee 122 gr : wherefore I extend the compaffes in the line of Sines from 14 gr .40 m . unto 122 gr . or (which is all one) to 58 gr . (for after 90 gr . the fine of 80 gr . is alfo the fine of $100 \mathrm{gr} r_{0}$ and the fine of 70 gr . the fine of 110 gr and fo in the reft) fo (hall I finde the fame extent to reach in the line of numbers, from roo unto 335. And fuch is the diftance required betweene A and B :

In like maner if I extend my compaffes from the fine of $14^{\prime} \mathrm{gr} .40 \mathrm{~m}$. to the fine $43 \mathrm{gr}, 20 \mathrm{~m}$. the fame extent will reach in thetine of \mathcal{N} umbers from roo to 271. And fuch is the diftance betweene D and B_{0}

Or in croffe worke, I may extend the compaffes from 14 gr .40 m . in the Sines, unto 100 parts in the line of 2 zm bers. fo the fame extent will give the diftance from 58 grito 335 parts, and from 43 gr .20 m . to 271 parts.

2 Having two fides given and one angle oppofite to cit her of thefe fides, to finde the other. two Angles and the third fide.

As the fide oppofite to theangle given; is to the fine of the angle given:
So the other fide given,
a to the fine of that angle to, which it is oppofite

So in the former triangle, having the wo fides $A B 335$ paces, and AD 100 paces, and knowing the angle $A D B$, which is.oppofite to the fide $A \mathrm{~B}$, to be 122 gr . I may find the angle $A B D$, which is oppofite to the other fide $A D$. For if l extend the compaffes from 335 to 100 in the line of Numbers, I fiall finde the fame s x tent to reach in the line of Sines from 122 :gr. to $14 \mathrm{gr}$.40 m ; and therefore fuch is the angle A B D. :

Then knowing thectrow angles ABD and ADB,I may find the third angle $B A$ Be either by Yubtraation or by complement to 180 , to be 43 gr . 20 m ; and having three angles and two fides, I may. well finde the third fide D b, by the former. Prop:
This may be done more readily by croffe worke. For if I extend the compaftes from 335 parts, in the line of numbers, to the fine of 122 gr . the fame extent will reach from 100 parts to the firie of 14 gr .40 m . and backe from 4 gr . 20 m . to 271 parts ; and -uch is the third fide DB :-

> 3 Having two fides and the angle betweene them, to find the two otber angles and the tbird fide.

If the angle contained betweene the two fides bee a right angle, the other two angles will be found readily by this Ca. nop.
\therefore As the greater fide given, is to the leffer fide : So the tangent of $45 . \mathrm{gr}$. to the tangent of the leffer angle.

So in the rectanle triangle $A B B$ Rnowing the fide $A I$ to be 244 , and the fide $I \mathcal{B}$ to be 230 if I extend the compaffes from 24410230 in the line of numbers, the fame excent will reach from 45 gig, to about 43 gri 20 mo in the line
of Tangents; and fuch is the leffer angle \mathcal{B} \& I, and the complement 46 gro 40 m fhewes the greater angle $A B$. The mgles being knowne; the third Gide AB may bee found by the firft Prop.

So likewife in the ex ample of the third Chapter of this booke, concerning taking of angles by the line of Inches, Where the parts incercepted on the Staffe being :20 Inches, and the pars on the Croffe 9 Inches, is was required to finde the angle of the alritude. For,.

Imay extend the compaftes in the line of 2रumbers, from 20 unto:9; the fame extene will reach in, the line ot Taygentf,

Or in croffe worke,
I may exiend the compaffes from 20 parts in the line of 2umbers to the tangent of 45 gr ; the fame extent hall give the diftance from 9 parts unto the Tangent of 24 gr . 14 m.

And fuch is the angle of the altitude required.
If the parts, intercepted on the ftaffe being 20 inches and the parts on the Crolfe 9 tenth parts of an inch it were reguired to finde the angle of the altitude. Here the angle would be much leffe, and the 9 would fall out of the line of numbers.

To fupplie this defect, I ufe the Tangent of $\boldsymbol{5}$ gr. $43 . \mathrm{m}$. inAtead of the tangent of 45 gr . And then if I extend the compaffes in the line of Numbers from 20 unto 9 the fame extent will reach in the line of Tangents from $\varsigma . g r .43 \mathrm{~mm}$, unto 2 gr .35 m .

Or in Croffe worke if I extend them from zo, partes in the one line of numbers unto the Tangerit of 5 gr. 43 m. the fame extent will give the diftance from 9° in the line of Numbers unto the Tangent of 2 gr .3 m

And fuch is this angle of the altitude required:
But if it be an obligueangle that is contained betweene the the two fides given, the triangle may be redaced into two rectangle triangles and then refolued as before.

As in the triangle $A D B$, where the fide $A B$ is 335°, and the fide A:D ico, and the angle BAD 43 gr .20 m : if I let downe the petpendiculor $\overline{\mathrm{D}} \mathrm{H}$ upon the fide AB , I hall have two rectangle triangles, A H D, DH B; and in the rectangle AH D, the angle at A being 43. gr. 20 m. the other angle $A D H$. will be $46 . \mathrm{gr}^{\mathrm{g} .} 40^{\circ} \mathrm{m}$; and with thiefe angles and the fide $\angle D$, I may find both $2 H$ and DH, by the firt Prop.

Then taking $A H$ out of $A B$, there remaines HB for the fide of the reftangle $\mathrm{DH} B$; and therefore withrhis fide H B and the other fide HD , I may finde both the angle at B, and the third fide D B; as int the former part of this Prop.

Oi I may find the angles requiried, without letting downe any perpendicular, For,

> As the furmme of the fides; is to the differcice of the fides :
> So the tangent of the halfe fumme of the oppofite angles,
> to the Tangent of halfe the difference betweene thofe angles.

$A s$ in the former triangle $C \mathcal{D} B$, the fumme of the fides $A \mathrm{~B}, A \mathrm{D}$, is 435 , and the difference betweene them 235 ; the angle coatained $43 \mathrm{gr}, 20 . \mathrm{m}$; and therefore the fumme of the two oppofite angles 136 gr .40 m . and the halfe fumme 68 gr. 20 m . Hercuponil extend the compaffes in the line of Numbers from 455 to 235 , and I finde them to reach in the line of Tangents from 68 Gr .20 m . unto 53 Gr .40 m ; and fuch is the halfe difference betweene the oppofite angles at B and \mathcal{D}. This halfe diffrence being added to the hilfe fum, dorhgive i2e Gr. for the greater angle $A D \mathrm{~B}$: and being fabrafted it leaueth 14 Gr 40 m, for the leffer angle $A B D$. Then the three aingies peing knowne, the third fide E D may be found by the firlt prop.

4 Having whetbreafldesiof might binaribugh,

$$
\begin{aligned}
& \because \text { is } 10 \text {.jind the threesiongeresil bioncs } \\
& \text {-vin win milo manisiant ont zio? }
\end{aligned}
$$

Let one of the three fides given be the bafe, but rather the greater fide, that the perpendicular may fall within the triangle jthengather the fumme; and the difference of the twootherfides and othe proportion will hold.

Asthe bale of the triangle,
is to the fumme of the fides:
So the difference of the fides
to fouth' 'whith being taken forth of tite bare, the petperidicafar thall fall on triddle of the remainderositoctr:
A_{s} in the former triangle $A D B$ where the bafe A is 335, the fum tre of the fides A D and $B 37$ and the dip ference of thicm tif. If I teend the compathe in the line of 2 Kumbers from 335 unto 37 r, I hall finde the fame extent to reach from 17x unto 189, 4. This fourth number I take out of the bale 3350 , and the remainder is 45.6 , the halfe Whéreof is $\overline{7}$. : 8,'and doth 'he w the diftance from A uftio H, whefe the perpendiculat hall falf, fron the ang le D, ugon the bale $A B$, dividing the former triangle $A D$ B into two right angle triangles, D H A and DHB, in which the angles may be found by the fecond Prop.

And this may fuffice for the right line triangles. But for the more cafie protraction of thefe triangles, I will fet downe one propofition more concerning chords.
> s Having the femidiameter of a circle, to finde the Cbords of every Arke.

36 The aft of ter lime of simes and Tangents,

> As the fine of the Seminadius of 30 gr . to the fine of halfe the arke propoied : So is the femidiamiter of the circle given. to the chord of the fame arke.

As if in the protracting the former triangle $A D B$, it wefe required to find the length of a chord of $43 . \mathrm{gr}$. 20% \%agreeing to the femidiameter $A E$, which is known to be 3 inches. The halfe of $43 \mathrm{gr} .20 . \mathrm{m}_{0}$ is $21 \mathrm{gr} .40 . \mathrm{mm}$. wherefore I extend ihe compalfics from the fine of 30 gr . ta the fine of 21 gr. 40 m . and I finde the fame extent to reach in the line of T Lumbers from 3. 000 parts to $2.215: 5$ whigh thewes, that the femidiameter being 3 inches, the chord of 43 gr. 20 m. will be 2 inches and 215 parts of 100

In like maner the chord of 58 gr .agreeing to the fame fe midiameter, would be found to be 2 inchesand 909 parts. For the halfe of 58 being ig; if I extend the compafes in the line of Sines from 30 gro to 29 gr, the fame extent will reach in the linie of 2 umbers from 3.000 . unto 2.909:

Or in croffe worke, if I extednd the compactes from the
 the fame extent to reach from 21 gra 40 mo to 2 . 2 sls perts, and from $29 \mathrm{gr}$. to 2909 parts, and from $7 \mathrm{gr}^{2} 20 \mathrm{~m}$. to 765 .parts ; for the chord of figr. 40 mi for the chird angle ABD.

3nt
保音 \quad CHAP:

$$
52 T
$$

CHAP: X.
 The ufe of the line of roerfod Simes.

T His line of verfed Signes is no necffary line. For all trith:gles, both right lined and fephericall, may be refolued by the three former lines of Numbers, Stines and Tangenes; yet Ithought good topur it on the staffe for the more eafie finding of an angle having chree fides, or a fide having trues angles of a Pphericalltriangle given.
Suppofe the three fides to be, ane of them roogr. theother 78 gro and the third $38 \mathrm{gr} \cdot 30 \mathrm{~m}$. and let it be required to find the angle, whofe balc is 1 rogr.
Ifirtt adde them togethet, and from halfe the fimmme fubtrait the bafe, noting the difference after this maner.

> The bale
> The one fide The other fide

The fumme of all three .
The halfe famme The difference
"180850\%20
$.78 \div 0$
38 30
22630
$113 \quad 15$
3. 15

For fo the proportion will holde,

1. As the Radius the Sine of the one fide So the Sine of the other Side to the fourth Sing.

2 As this fourth Sine to the Sine of the halfe Summe So the Sine of the difference to a feventh Sine,

Si- 3 The meane proportionall betweene this feventh fine and the Radivs will thew the fine of the complement of halfe the angle required.

Ee3 This

This done, I come to the Steffe, and extend the compafles from the fine or 90 gr . to the fine of 78 gr . which is one of the fides, and applyng ums exientitronit rne inne of the other fide 38 gr .30 m . I find it to riach to a fourth fine, about 37 gr .30 m , Fropt, this fortlifue of 37 gr . $3 \stackrel{\mathrm{~m}}{\mathrm{~m}}$. I extend the compafles againe, to the fine of the halte fumme is 3 gr .15 m. (which is all one with the fine of 66 gr .45 m) apd this fecond extent will reach fromthe fine of the difference 3 gr . is 9 go to the fine of $4 g^{2 r}$. 54 m .
Then to finde the meare, proportionall fine betweene this Seventh fine of $48 r^{\circ} 54 \mathrm{~m}$, and the fine of $9 \circ$ gr. t might dividethe fpace betweene them into two equall pats, and f o I Chould finde the compatits to flay at it gr^{r}. whore complement is $73 g^{\circ} \cdot$ and the doable of $73 g r$. is 146% gr, the angle oppofite to 110 gr. which was required.

But becaufe this divifion is fomewhat troublefome I have therefore added this line of verfed Sines that having found the feuenth Sine you might looke over againf it and there finde the angle. And fo in this example having, found the feventh fine to be $4 \mathrm{gr} .54 . \mathrm{m}$. over againft this fine you fhall finde ${ }^{1} 46 \mathrm{gr}$.in the line of vorfod Sives for the angle tequired as before.

C. HA^{\prime} P

THE
 SECOND BOOKE OFTHE CROSSESTAFFE.

 Of the ufe of the former lines of proportion more particularly ex. emplified in feverall:kind.THe former Booke containing the -generall ufe of each line of proportion, may bee funticient for all thote which know the rule of Three, and the doctrine of triangles.

But for others, 1 fuppofe it would bemore difficult to fride either the declination of the Sunne, or his amplitude, or the like, by that which hath beene faid in the ufe of the line of Sines, un'effe they may haue the particular proportions, by which fuch propofitions are to be wrought.

And therefore for their fakes I have adjoyned this lecond booke, containing feverall proportions for propofitions of ordinary ule, and fet them downe in fich order, that the Reader confidering which is the firft of the three numbers given, may eafily apply them to the Sector, and alfo refolue them by Arithmetique, beginning with thofe which require helpe onely of the line of $22 u m$ bers.

CHAP:

The enfe of the lime of Nimbers:

C H A P. I.

The ufe of the line of λ xumbers in broade meafure, Such as boord, gla Be_{e}, and the like.

THe ordinary meafure for brediwand length are fete and inches, each foote divided into 12 inches, and euery inch into halues and quarters, which.being parts of feverall denominations, doth breed much trouble both in Arithmeticke and the ufe of inftuments.
For the auoiding whereof, where I may prevaile I give this coufell, that fuch as are delighted in meafure would ufe reueral lines, firft a line of inchmeafure, wherin euery inch may be divided into 10 or 100 parts; fecondly a line of foot meafure, wherein every foote may be divided into 100 or 1000 parts, both which lines may be fet on the fame fide of a two foote ruler, after this or the like manner.

Then if they be to give the content of any tuperficies or folid in inches, they may mealure the fides of ir by the line of inches and parts of inches; but if they be to give the content in feete, it would be more eafie for them to meafure thofe fides by the foote line and his parts.

For example, let the length of a plane be 30 inches, and the bredth $2 x$ inches and $\frac{5}{10}$ of an inch; this length multiplied into the bredth, would give the content to bee 648 inchess
inchest but if I were to:finde the content of the fame plane infeet, I would meafure the fides of it by the foote line and his parts $;$ fo the length would proue to bee 2 feete $\frac{\text { so }}{100}$, and the bredth I foote $\frac{80}{100}$, and the length multiplied by the bredth cutting off the foure laft figures, for the foure figures of the parts, would give content to bee $4-5000$, which is 4 foote and 5000 parts of a foote, divided into 10000 parts.

$\begin{aligned} & 21.6 \\ & 30.0 \end{aligned}$	$\text { 2. } 50$ $\text { 1. } 80$
648.00	$\begin{aligned} & 20000 \\ & 250 \end{aligned}$
	4.5000

FThe like reafon holdeth for yards and elnes; and all ocher meafures divided into 10,100 , or 1000 parts.

This being prefuppofed, the worke will be more eafie both by Arithmeticke and the line of \mathcal{Z} umbers as may appeare by thefe propofitions

I Having the bredth and length of an oblong fuperficies given in inchomenfare, to firde shecontent in inches.

As I inch unto the bredth in inches.
So the length in inches unto the content in inches.

Suppore in the plane A D_{2},the bredth $\angle \mathbf{F f}$ Cobe 30 inches:
and
and the length $A B$ to be 183 . inches; extend the compaifes from x unto 30 , the fame extent will reach from 183 unto 5490 ; or extend them from I unto 183 , the fame extent will reach from 30 unto 5490 . So both wayes thecontent required is found to be 5490 inches.

As suato 30 : fo are 183 unto 5490 .
2 Having the breadth and length of any oliong fuperficies given in inches, to finde the content.in fecte.

As 144 inches wnto the breadch in inches:
So the length in inches unto the content in feet.
And thas in the former plane A D, working as before, the: content will be found to bee 38. 125, which is 38 foote and: i in a foote.

As 144 unto 30 : foare 183 unto 38.125.
3. Having the length and breadth of any oblong fuperficesgiven in foote meafure, to finde the contens in feet.

A's 1 foote unto the bredth in foote meafure: So the length in teere unto the content in f et.
And thus in the former plane 'A D, the bredih will be 2 feete $\varsigma 0$ parts, and the lengt 15 foote 25 parts; then working as before, the content will be found to be 38.125 .

As I unto 2. 50: foare 15.25 unto 38 . 125 .
4 Having the breditiof any oblong faperficies given in insbes and the length in foote meafare, to. find ibe contens in feet.

As 12 inches to the bridet in inches: So the length in fecte to the content in feet.

So allo in the former plane, the content will be found to be 38.125.

As the 12 unto 30 : foare 15.25 unto 38.125.
5 Having tbe breadth of an oblong fuperficies givon in inches, to finde the leingth of a foot fuperficiall in insh meafure.

As the breadth in inches, unto 144 inches:
So 1 foote vnto the elength in inch meafure.
So the bredth being 30 inehes, the length of a foote will be found to be 4 inches 80 parts, the length of two feet 9 inches 60 parts.

As 30 vnto 144 : So are I unto 4.80 .

- Having the bredtb of an oblong fuperficies gives in fett, to find the length of affootefuperfaciall in foor meajure.

As the bredch in foote mealure to 1 foote:
So the number of feet to the length in foor meafure.
So the breadrh being 2 foote 50 parts, the length of a foot will be found to be 40 parts, thelength of 2 feet 80 parts,and the length of 3 feete 1 foot 20 parts, 8 cc .

As 250 unto I : foare a unto 0.40 .
7 Havingthe length and lreadtb of an oblong. Superficies, to finde the jide of afquare equall to the oblong.

Divide the fpace betwcene the length and the bredth into twoequall parts,and the foote of the compaffes will flay at the fide of the fquare.
Sothe length being 183 inches, and the bredth 30 inches, the fide of the fquare wil be found to be almont 74 inches and 10 parts of $x 00$.

Or the bredth being 2 foote and sarts, the length 15 foote and 25 parts, the fide of the fguare will be found to be about 6 fget and 17 parts.

As 30 unto 74. 10. To are 74. 10 unto 183.027. And as 2: 50 unto 6.174: foare 6,174 unto $15.247 *$

8 Having the diameter of a circle, to find the fide of a fquare equall, 10 thas circle.

As 10000 to the diameter: So 8862 unto the fide of the fquare.
So the diameter of a circle being 15 inches, the fide of the fquare will be found about 13 inches and 29 parts. As 10000 unto 8862 : fo are 15 unto 13.29.

2 Having the circmmperense of a circle tofinde the fide of a fquare eqwall to the
famse circle.
As 10000 to the circumference :
So 2821 to the fide of the fquare.
So the circumference of a circle being 47 inches 1_{3} pares, the fide of the fquate will beabout I_{3} inches 29 parts.
As 10000 unto 2821 : fo are $\mathbf{4 7} \cdot 13$ unto $\mathrm{I}_{3} .29$.
10. Having the diameter of a circle, tof fide the circump ference.

II Having the circinmference of a circle, to finde the diameter.

As rooo to the diameter: So 314^{2} to the circunference

- Csinland midfurce.

So the diameter being sy indies, the cirtunderence will be found about 47 inches 13 parts :or the circumference being 47, 13, the diameter will be 15 .

CHAP. II.

T be ufe of the line of N umbers in the sea-

 Jure of land by pearch and acres.1 Having the bredth and length of an oblong fuperfices, given in perches, to finde the content in perches.

As I perch to the bredth in perches:
So the length in perches to the content in perches:
So in the former plane $A D$, if the bredth $A C$ be 30 perches, and the length $A B$ I83 perches, the content will be found to be 5490 perches.

2 Having the lengts and breadth of an oblong fion perficies given in perches, to finde the cons: tent in acres.

As 160 to the bredth in perches:
So the length in perches to the content in aeres'
So in the former plane $A D$, the content will be found to be 34 acres, and 31 centefms or parts of an 100 As 160 unto $30: 10$ are 183 unto $34 \cdot 3$ I.

To augment a fuperficies in a proportion, To diminifh a fuperficies in a proportion given? f:

6
 The inforf ibe lime of Numbers

E 3 Having the lengtifind breds of an obleng fuperficies

 given in chaises, to finde the conient in acres.It being troublefome to divice the content in perches by 160, we may meafure the length and breadth by chaines,each chaine being 4 perches in length;and divided into 100 linkes, then will the worke be more eafie in Arithmetiquc. For

As io to the bredth in chaines: So the length in chaines to content in acres.

And thus in the former plane $A D$, the breadth $A C$ will be 7 chaines 50 linkes, and the length $A B 45$ chaines 75 links; then working as before, the contant will bee found as before, 34 acres 3 I part.

4 Having the perpendicular and bafe of a triangle given in perches, to find the content in acres.

If the perpendicular goe for the bredth, and the bafe for the length, the triangle will be the halfe of the oblong, as the triangle CE D is the halfe of the oblong AD, whofe content was found in the former Prop. Or without halfinget

> As 320 to the perpendicular :
> So the bafe to the content in acres.

So in the triangle C ED, the perpendicutar being 30, and the bafe 183 ; the content will be found to be about 17 acres and I_{5} parts.
s Having the perpendicular and bafo of a triangle given in ubaines, to find the contens in acres.

As 20 to the perpendicular:
SQ the barc to the content inacres.

And fo the triangle C ED, the perpendicular $\boldsymbol{E} F$ being 7.50 , and the bafe C C $45 \cdot 75$, the content will be found as before to be about 17 acres is parts.
6. Hauing the content of a fuperficies affier ome kind. of perch, to inae the content of the fame fü: perficies according to another kind. of pearch.

As's the length of the fecond perch. to the length of the firft perch:
So the content in acres to a fourth number;
and that fourth to the content in acres requirdd.
Suppofe the plane A D meafured with a chaine of 66 feete, or with a pcarch of 16 feete and an halfe, contained 34 acres. $3 x$ parts; and it were demainded how many acres it would: containe if it were meafured with a chaineof 18 foot to the perch 1 thefe kind of propofitions are wroughe by the backward rule of thbee, afier a duplicated proportion. Wherefore I extend the compaffes from 16 . 5 unto 18.0, and the fame extent doth reach back ward, firff from 34.31 to 31.45 , and then from 3^{1}. 45 to 28.84 , which fiewes the content to, be 28 acres 84 parts.
> 7. Having the plot of a plaine pith the content in acres, to fude the fcale by wbich it: was plotted.

Suppofe the plane, A D contained 34 acres 31 centefmes; if I fhould meafure it with a fate of 10 in the inch, the length: $A . B$ would be 38 chaines and ab ut 12 centefines, and the bredth $A C \sigma$ chaines and 25 centefmes ; and the content would be found by the third Prop. of this Chapter, to be about, 23 acres 82 parts, wherasit hould be 34 acres 31 parts. Where.

Wherefore I divide the diftance betweene 23. 82, and 54: 31, upon the line of $n \mathrm{mmbers}$ into two equall parts ; then fetting one foote of the compaffes upon 10 , my fuppofed fcale, I find the other to extend to 12 , which is the fcale required.
s Having the length of the furlong to finde the breadth of the acre.
As the length in perches to 160 . So I acre to the bredih in perches.

So the length of the furlong being 40 perches, the bredth of an acre will be found to be 4 perches. If the length be so the bredth for one acre muft be 3. 20. the bredth for two acres 6,40 .

Or ifthe length be meafured by chaines.
As the length inchaines unto 10 So I acre to his bredth in chaine meafure.

So the length of the furlong being ${ }_{12}$ Chaines so Liakes? the bredth for one acre will bee found to be 80 Links, the bredch for two acres I Chaine 60 Links.

As 12. ร0 unto 10 : Fo I unto 0.80 .
Or if the length be meafured by feet meafurẹ

> As the length in fecte unto 43560 . So I acre to his bredth in foot meafure.

So the length of the furlong being 792 feet, the breadth for oneacre will be found to be $s 5$ feer, the bredth for two acres nio feet.

CHAP. III.

The are of the line of N embers in solid measure, fuck as ftone, timber, and the like.

1 Having the gide of Square equall to the base of any folideiven in inch meafure to find the length of a foot Solid in inch measure.

THe fide of a Square equall to the bale of a fold, may bee found by dividing the face betweene the length and bredth into two dual parts,as in the 7 Prop. of broad measfare. Then

As the fade of the square in inches to 41. 57 :
So is 1 foote to a fourth number; and that fourth to the length in inches.

So in the folide $\mathcal{A} H$, the fine of the square equall to the bale $E C$, being about 25 inches 45 parts, the length of a toot fold win be found about 2 inches 67 parts, and the length of two foot folid 5 inches 33 parts.

As 25.45 unto 4157 : fo 1.00 unto 8.63 : and fo axe 1. 63 unto 2. 6%

2 Having the fide of a fquareequallto the bofe of any fo: lid given in foote measure, to find the length of a foot folid in foot measwre.

As the fide of the fguare in feet unto 1 : So is I unto a fourch number; And that fourth to the length in foot meafure.

So in the folid $\mathcal{A} H$, the fide of the fquare equall to the bale $E C$, being about 2 foote 120 parts, the length of a foot folid will be found about 222 parts of a foote.

> As 2.120 unta $1.000:$ fo 1.000 vnto 0.471 : and fo are 47 I unto 222.

3 Having tbe bredth and depib of a fquared folid gi: ven in foot meafure, to firsde tbe length of a. foot jolid in foose meafure.

As 1 unto the bredition foote meafure: So the depth in feet to a fourth number; which is the coutent of the bale in foot meature. Then

As this fourth number unto I :

So 1 unto the length in foote meafure.
So in the folid $A H$, the bredth being 2 foote so parts, the depth \& foot 80 parts, the content of the bafe $E C$ will be fou:d 4 foote so parts, and the tength of one foot folid abous 222 parts, the lengrh of two foot folid about 444 parts of 1000.

As 1. 00 anto 2.50 : fo are 1. Bo unto 4. 50. As 4,50 unto I, 00110 I. 000 unto $0,222$.

4 Having the bredib and depth of a Squared jolidgiven in inches, to finde the length of a foos

> folid in inch meafure.:

As x hath to the breadth in inches: So the depth in inches to a fourth number; which is the content of the bafe in inches: Then

As this fourth number unto 1728 : So I unto the length of a foot in inch meafure.

So in the folid $A H$, the breadth $A C$ being 30 inches, and the depth $A E 21$ inches 60 parts, the content of the balie EC will be found to be 648 inches, and the length of a foote folid abeut 2 inches 67 parts, the length of a foor folid s inches 33 parts.

As 1 unto 21. $6:$ fo 30 unto 648 ;
As 648 unto 7228 ; fo 1 unto 26670°
Or às 12 to the bredth in inches; So the depth in inches to a fourth number:

As this fourth number to 144 ;
So I unto the length of a foote folid in inch meafure:
So in the folid $A H$, the breadth being 30 inches, the depth 21 inches 6 parts, the fourth number will be found to b.e s.4, and the depth o foote folid 2 inches 67 parts.

As 12 untō 21. 6, fo 30 unto 54.0
As 54 unte 144 ; fo 1 unto 2.667:
Gg 2
3 Hȧ

s Having the fice of a quare equall to the bafe of any jolid,

 and the length thereof given in inch meafure, $t o$ find the contens thercof in fect.As 41. 57 to the fide of the fquare in inches: So the length in inches to 2 fourth number; and that fourth to the contenc in foot meafure.

So in the folid $A H$, the length $A B$ being 183 inches, and the fide of the fquare equall to the bafe $\mathcal{C} \subset$ about 25 inches 45 parts, the fourth number will be found about 122 , and the whole folid content about 68 feet 62 parts.

As 41.57 unto 25.45 : © 183 unto 112 : and fo are 112 unto 68. 62.

6 Having the fide of a square equall to the bafe of any fo-
lid, and the lengt b thereof given in foot meafures,
to find the consemt rbereof infect.
As a to the fide of the fquare in foot meafure:
. So the length in feet to a fourth number; and that fourth to the content in foot meafure.

So in the former folid $A H$, the fide of the fquare equall to the bate $A E$, being about 2 foot 12 parts, and the length $A B$ 15 foot 25 parts, the content will be found to bee about 68 foot 62 parts.

As 1 unto 2. $12:$ fo 1 g. 25 anto 32. 35 : and $f a$ are 32.35 unto 68.62 .
$\overline{7}$ Having the fide of a fquare equall to tbe bafe of any folid given in inch meaf fure, and tbe length of
thefolid given in foote meafure, to find the contensthereof infect.

As 12 to the fide of the fquare given in inches: So the length in feet to a fourth number; and that fourth to the content in foot meafure:

So in the former folid $A H$, the fide of the equall fquare being 25 inches 45 parts, the content will be found to bee about 68 feet 62 parts.

As 12 unto 25.45 : fo 15.25 unto 32.35 : and fo are 32.35 vnto 68.62.
\& Having the length, bredsh and depth ofa fquared folid gives in inches, to find she conient:

> in insfer.

As 1 unto the bredef in inches: So the depth in inches unto the bafe in inchese. Thein

As I unto the bafe :
So the length ininches unto the folid content in inchesi
F. So in the folid $A H$, whote bredth' $A C$ is 30 mehes, the depth $A E 21$ inches and 6 parts of 10 , and length $A \mathcal{B}$ 183, the content of the bafe $E C$ will be found 648 inches, and the whole folid content about 118500 inches.

As runto 21. 6 1fo are 30 unto 648 : As I unto 648 : fo are 183 to 11858,40
Gg
2. $H \omega_{j}$
$54 \quad$ The metofthe line of Numbers

- Having the length, breds b and depth of a fquas red jolid given is inches, to firsde the constent in fecte.

As 1 to the bredth in inches:
So the depth in inches to the bafe in inches:
As 1728 to that bate:
So the length in inches to the content in feet.'
So in the rolid $\mathcal{A} H$, the content will be found to be about 68 fette 62 parts.

Asi unto 21.6: fo 30 unto 648 :
As 1728 anto $648:$ iv 183 to 68.62 .
Or as is to the bredth in inches:
So the depth in inchesto a fourth number.
As 144 to that fourth number:
So the lergth in inches to the content in feet:
And fo alfo in the fame folid AH, the content will bee found to be abouc 68 feet 62 parts.

As 12 unto 21, 6: fo 30 unto 54 :
As 144 unto 54 : 10 183 unto 68. 62.
Io Huoving the length, bredth and depthofa Squarad Solidigraum in foot smeafore, to finde the content in feose.
As i unto the bredthin foote meafurce:

As I unto that bale:
So the length in feet to the content in feet.
*- And thus in the former Solid A. H , the bredth $A C$ will be 2 foot 50 parts, the depth $A E$ I foot 80 parts, and the length $A \mathcal{B}$ is foot 2ρ parts ; then working as before, the content of the bale $A F$ will be found 4 feet 50 parts, and the whole fold content about 68 foot 62 parts, which of all others may. uery eafily be tried by Arithmetique.

As I unto 2. 50 : 501,80 unto 4.50 .
As Tanto 4 so: 1015.25. unto 68.625.
is Having the breath and depth of a Squared fou lid given in inches, and the length in foot manure, to find the contents ibureaf in feet.

As int the breed in inches: : $:$
So the depth in inches ante a foamed number: which is the content of the bale in inches.

As 144 hath unto that fourth number:: So the length in feet so the concent in forest
And fo in the fame folid $A H$, the content will be found to be about 68 feet 62 parts.

As it unto 21. 6: 50 30 unto 648. As 144 vito 15. 25. fo 648, unto 68. 62:

Or ass i 44 unto the breath in inches: So the depth in inches unto a fourth number:
which is the content of the bafe in feet.
As I hath unto that fourth number:
So the length in feet to the coutent in fecta
And fo in the fame folid A H , the content will be found to be about 68 feet 62 parts.

As í́4unto 21. 6 : ©0 30 unto4.50.
AS 1 unto 4. 50 : 1015.25 unto 68.62.
Or as 12 unto the bredth in inches: So the depth in inches unto a fourth aumber.

As $x 2$ unto this fourth number:
So the length in fect to the content in feer. \therefore
And fo alfo in the fame folld $A H$, the content will bee found to be abour 68 feet 62 parits. :

> As 12 unto 21 . 6 : fo 30 unto 54° As 12 vato 5_{4} : 1015.25 unto 68.620°

All there varieries (and fuch like not here mentioned) dee follow upon making of the bafe of the folid; to be $E C$; there would be as many more if any fhall begin with the bafe E H, and \{o likewife it they make the bale to be ED.

12 Ha:

12 Having the diameter of a Cylindier given in inch menjure, to find the length of a foot
foitdon inches.
As the diameter in inches unto 46.90: So is I unto a four h number: and that tcurth to the length in inches.

So the diameter of a Cylirder being 15 inches, the tourth number will be about 3 .ir , and the length of a fuote tolid 9 inches 78 Farts .

As 15 unto 46.90: fo 1 vnto 3. 127 :
and io are 3.127 unto 9.778 .
13 Having the diameter of a Cylinder given infoote meajure, to fiude the length

$$
\begin{gathered}
\text { of a foote jolid in foote } \\
\text { meajure. }
\end{gathered}
$$

As the diameter in feet unto 1. 128 : So is I unco a fourth number; and that fuurth to the length in foote meafure.

Sothe diameter being 1 foote 25 parts, the length of a foot solid will be found about 8. I4 parts of nooo:

> As I. 25 anto 1. $128:$ fo I. oo to . 9027 : and fo are 9027 unto 8148 .

14 Having the circumperence of a Cylinder given in inches, ro finde the length of a foot folid in inch meafure.

As the circumference, in inches to 147.3.6:
$S O$ is I to a fourth number; and that fourth to the length in inches.

So the circumference being 47 inches 13 parts, the length of a foo:e folid will be found about 9 inches 78 parts.

As 47. 13 unto 147.36: \{o 1.00 to 3.13. and foare 3. 13 unto 9.78 .

$$
\approx
$$

15.Having thecircumference of a Cylinder given'in foot meafure, to finde the length of a foot.
folid in foote meajure.
As the circumference in feete to $\mathbf{3 . 5 4 5}$:
So is I to a fourth number;
and that fourth to the length in foote meafure.
So the circumference being a foot 927 parts, thelength of a foot folid will be found to be abour 815 parts.

As 3.927 unto 3.545 : fo $1.0 c 0$ ụ.to $0.90 .3:$ and fo are 903 unto 815%,

16 Having the fode of a fquare equall to the bafe of a Cylinder, to finde ibe lengeth of a foot folid.

The fide of a fquare equall to the circle, may bee found by the eighth Prop. of broad meafure, and then this Prop. may be wrought by the firft and the ficond Prop. of folid meafure.

17 Having the diameter of a Cylinder, and the lengthgiven in inches, to finde the conzent in inches.
As 1.128 unto the tiameter in inches:
So the length in inches to a fourth number; and that tourth number to the conent in inches.

So the diameter being 15 inches, and the lengah ro5; the content of the Cylinder will bee found to bee about 18560 inches.

As 1.1284 unto 15 : fo are 105 unto 1395.87 : and fo arc 1395.87 unto 18555.34.

18 Having the diamseter and length of a Cylisder in foote meafare, to finde the content infecte.

As 1.128 to the diameter in feet: :So the length in feet to a fourth number; and that fourth to the cont nt in feet.

So the diameter being x foote $\mathbf{2 5}$ parts, and the length 8 foor and 75 parts, the content of the Cylinder will bee found about lo foote 74 parts.

As 1. 128 anto 1. $25:$ fo 8.75 unto 9.69 : and fo are 9.69 unto 10.737.
19 Having the diameter of a Cylinder, and the lengtb given in inches, to find the content in feet.
As 46.90 to the diameter in inches:
So the length in inches to a fourth number; and that fourch to the content in feet.

Hh?
So

Sothe diameter being is inches, and the length ros, the content will be found about 10 foote 74 parts.

> As 46. 906 unto is :fo 105 unto 33. 58: and to are 33.58 unto 10.737.

20 Hawing the diameter of a Cylindex, given in incho es and the length in feete, to find the cantent
in feete.

As 3.54 the diam:ter in inches: So the length in feere to a fourth number; and that fourth to the content in feete.

So the diameter being 15 inches, and the length 8 foote 75 parts, the content will be found about 10 toot 74 parts.

> As 13.54 unto $15:$ fo 8.75 unto $9.69:$ and fo are 9.69 unto 10.74.

21 Having the circumference and length of a Cylindergiven in inches io fina the content in inches.

As 3.545 to the circumference in inches: So the length in inches to a fourth number; and that fourth to the content in inches.

So the circumference being 47 inches 13 parts, and the length 105 inches, the content will bee found about 18560 inches.

> As 3.545 unto 47.13 : fo 105 unto 1396 : and fo are 1396 unto 18555 .

22 Having the circumference and length of acylinder given in inches, to find the content in feet.

As, $47 \cdot 36$ to the circumference in inches : So the learin inches to a fourth number; and that furth to the content in feet.

So the circumference being 47 inches 13 parts, and the length 105 inches, the content will bee found about 10 toote 74 parts.

As 147. 36 unto 47. 13 : fo 105 unto 33. 58 : and foare 3.58 unto ro. 74.
23. Having the circumference and length of a Cylinder given in foote meafure, to find the content in feete.

As 3.545 to the circumference in feet: So the length in feer to a fourth number; and that fourth to the content in teet.

So the circumference being 3 foote 927 parts and the length 8 foot 7.5 parts, the content will be tound to be io foot 74 .parts.

As 3.545 unto 3.927 : fo 8.75 unto 9.69 . and fo are 9.69 unto 10. 74 .

24 Having the circumference of a Cylindergiven in inches and the length in foot meafare, to find:
the content infecte.
Hh_{3}

As 42 . 54 to the circumference in inches: So the length in feet to a fourth number; and that fourth to the content in feet.

So the circumference being 47 inches 13 parts, andithe length 8 foore 75 parts, the content will bee found as before, ro toot 74 parts.

As 42. 54 unto 47. 3 : fo 8.75 unto 9.69 : and fo are 9.69 unto $10.74{ }^{\circ}$

CHAP. IIII.

The afe of the line of Numbers ingaugeing of reeßell.

THe veffels which are here meafured, are fappofed to be Cylinders, or reduced unto cylinders, by taking the mean betweene the diameter at the head aad the diameter at the bongue, after the vfuall maner.

> I Hauing the diamseter and the lengit of a veffell with the content thereof, to firade the gavge poist.

Extend the compaffes in the line of Numbers to halfe the diftance betweene the content and the length of the veffell, the fame extent will reach from the diameter to the gauge point.

I put this propofition firf, becaufe thefe kind of meafares are not alike in all places.

The ufe of the line of Numbers ingauging:

Hereat London it is faid that a wine veffell being 66 inch ${ }^{1}$ es in length, and 38 inches the diameter, would contane 324 gallons. which if it be true, we may divide the fpace betweene 324 and 66 into two equall parts, and the middle will fall about 146 , and the fame extent which reacheth from 324 to 146 , will reach from the diameter 38 unto 17. I5 the gauge point for a gallon of wine or oyle after London medefure.

Thelike reafon holdeth for the like meafure in all other places.
2. Having the meane diameter and the lengts of a veffell; to finde the content.

Extend the compaffes from the gauge point to the meane diameter, the faine extent being being doubl:d, hall give the diftance from the leng h to the content.

So the meane diameter of a wine veffell being 20 inches, and the length 25 inches, the content will be found to be 34 gallons after London meafure.

For extend the compaffes from11.15. unto 20, the fame extent will reach from 25 unto $29.15, a=d$ from 29 , 15 unto 34.

In like maner if the meane diamerer were 16 tidetes; and the length 23 , the content would bee found to bee aboat 20 gallons.

For the fame extent which reacheth backe from 17 . 15 unto 16 , will reach from 23 to 2 I. 45 , and from 21.45 unto 20.

So that if the meane diameter fhall be 17 inches and 15 : centefmes or parts of 100 , the number of inches in the length of the veffell, will give the number of inches in the lergth of the veffell, will give the number of gallons contained in the fame veffell: if the diameter thall be more or leffe then 17. 15 , the content in gallons will bee accordingly more or leffe then the length in inches.
64. The une of the line of Numbers inganging?

3 Having the diameter and content, to fixd the length.

Extend the compaffes from the diameter to the gange point, the fame extent being doubled hall give the diftance from the content to the lenghth of the veffecll.

So the gauge point flanding as before, if the diame-: ter bee 38 inches, and the content 3.4 gallons wine mealure, the length of the veffels will bec found about 66 inches.

> 4 Hauing the length of a veffell and the content, to finde tbe
> diameter.

Extend the compaffes to halfe the diflance betweene the length and :he content, the fame extent fhall reach from the gauge point to the d'ameter.

So the length bcing 66 inches, and the content 324 gallons wine meafure, the gauge point ftanding as before, the diameter of the veffell well beefound to be about 38 tuchess

CHAP:

CHAP. V.

Containing fuch:Aftronmicall propofitions aif are of ordinary ufe in the practife of Narigation.

> x Tofinde the altitude of the Sminme by the /Jadowes of agnomion fet perpendicular to tothe horizon.

> As the parts of the Chadow are to the parts of the gnomon: So the tangent of 45 gr : to the tangent of the altitude.

Extend the compaffes in the line of Numbers, from the parts of the Chadow to the parts of the gnomon; the lame extent will give the diflance from the Tangent of 45 gr . to the Tangent of the Sunnes ali itude.
So the gnomon being 36 ; and the fhadow 27 , the altitude will be found to be 36 gr . 52 mu . Or the gnomon being 27 , and the fhadow 3σ, the altitude will bee found to bee $\varsigma 3 \mathrm{gr}$. 8 m . Or the fhadow being 20 , and the gnomon 9 , the altitude will be found to be $24 . \mathrm{gr}^{2} .14 \mathrm{~m}$, as in the eighth Prop. of the ufe of the Tangent line. Pag. 12.
If the gnomon be 22 and the fhadow 135 the alitude is 9 gr : 15 m . as I Ihewed before. Pag , 24.

2 Having the diftance of the Sunpe, from the next equimoctiall point, rafind bos declination.

As the Radius is in proportion
Ii

Thenfo of the line of Sines and tangents
tothe fine of the Sunnes greateft declination:
So the five of the Sunnes-diftance from the next equid. notiall point, .
to the finc of the declination reguired.
Extend the compaffes in the line of fwes, from 90 gr . to 23 gr .30 m . the fame extent will give the diftance from the Sunnes flace unco his declination.

So the Sunne being cither in 29 gr of b , or 1 gr . of mm , or 1 gr . of Ω, or $29 \mathrm{gr} . \mathrm{v}: \mathrm{m}$, that is 59 gr . diftant from the next equinoctiall point, the declination will be found about 20 gr .

If the Sunne be fo neare the equinoctiall point, thar his declination fall to be under $1 g r_{0}$ ir may be found by the line of numbers. As if the Sunne were in 2 gr .5 m . of r, that is. 125 m . from the equinofiall point, the former extent of the compaffes from the fine of 90 gr . to the fine of 23 gr .30 m . will reach in the line of numbers from 125 anto 59 , which Chewes the declination to be about 50 m .
> 3. Having the latitude of the place, and the declina: tion of the Sun, to find the time of the Sans rifing and fetting.

As the cotangent of the fatitude to the tangent of the Suns declination:
So is the Radius
to the fine of the afcentionall difference betweene the houre of 6 and the time of the Suns rifing or fetting.

Extend the compafles from the tangent of the complement of the latitude, to the tangent of the declination: the fame extent will reach from the fine of 90 dogr. to the fine of the afcentionall difference.

Or extend the compaffes from the cotangent of the latitude to the fine of 90 gr . the fame extent will reach from the.
the tangent of the decliaation, to the !ine of the afcentionall difference.

So the latitude being 51 gr .30 m . Northward, and the declination. 20 gr . the difference of afcention will be found to be $27 \mathrm{gr} .{ }^{4} \mathrm{~m}$. which refolved into houres and minutes, doth give I boure and almolt 49 m . for the difference betweene the Sunnes rifing or fetting, and the houre of 6 , according to the time of the yeare.

4 Having the latitude of the place, and the distance of the Swn from the next equinoctiall pornt, to find bis amplitude.

As the cofine of the lariude to the fine of the Sunnes greateft declination:
So the fine of the place of the Sun, to the fine of the amplitude.

So the latitude being 5 I degree 30 misutes, and the place of the Sunne in I degree of ant, that is 59 degrees diftant from the next equinoctiall point, the amplitude will bee found about 33 degrees 20 m . For extend the compaffes in the line of fines, from 38 degrees 30 m . the fine of the complement of the latitude, unto 23 degrees 30 the fine of the Sunnes greateft declination; the fame extent will reach from 59 degrees unto 33 degr. 20 m . Or extend them from 3^{8} degrees 30 min. unto 59 degrees, the fame extent will reach from 23 gr .30 m . unto $33 \mathrm{gr}, 20 \mathrm{~m}$. as before. $\because \because$
> s Having the latitude of the place, and the decli: nation of the Sun, to fird bis amplitude:

As the cofine of the latitude is to the Radius:
So the fine of the declination, to the fine of the amplitude.

68 The nfe of the lines of sines and Tangents;

Extend the compaffes from the cofine of the latitude to the fine of 90 gr the fame extent will reach from the fine of the Suanes declination to the fine of the amplitude.

Or extend them from the tangent of the latitude to the fine of the declination, the fame extent will reach from the fine of 90 gr . to the fine of the amplitute.
So the latitude being 51 gr .30 m . and the decliaation 20 gr . the amplitude will be found to bee $33 \mathrm{gr}, 20 \mathrm{~m}$.

> 6 Havingg the latitude of the place, mind the declimations of the Sun, to finde the time soben the Sun commeth to be due Eaft or Weft.

> As the tangent of the lacitade, is to the tangent of the decination: So the Radius
> to the cofine of the houre from the meridian:

Extend the compafies from the tangent of the latitude to the tangent of the declination; the rame extent will reach from the fine of 90 gr : to the fine of the complement of the houre.

Or extend them from the tangent of the latitude to the fine of 90 gx ; the fanme extent will reach from the tangent of the declination to the fine of the complement of the houre.

So the latitude being 51 gr .130 m . and the declination 20 gr . the Sunae : will bee $73 \mathrm{gre}: 10 \mathrm{~mm}$: that is 4 houres. and 53 m. . from the meridian, when he cometh to be in the Eaft or Weft.

> 7 Having the latitade of tbe place, and the declination of the Sunne, faffud pubationtitude ibe

> Swn fall have, when be camimetth to be duc Earif or ixtess.:

As the fine of the latitude is to the fine of the declination: So the Radius
 to the fine of the altitude.

Extend the compaffes in the line of Siwes from the latitude to the fine of the declination, the fame extent will reach from the fine of 90 gr . to the fine of the altitude.

Or extend them from the five..of the latitude to the fine of oogr; the fame extent will reach from the fine of the.declination to the fine of the altitude.

- So the laitude being $5 \mathrm{gr} . \mathrm{gr}^{20} \mathrm{~m}$. and the declination 20 gr thealciude will be found about $25 . \mathrm{gr} .55 \mathrm{~m}$.

\& Having the latiude of ibe place, and the decline-

 tion of the Sunne, to find what altitude the Sunn hall bave at the boure of fix.
As the Radius is in proportion to the fine of the Suns declination:

So the fine of the la litude. to the fine of the alcizude.

Extend the compafes in the line of Sines, from 90 gr. to the declination; the fame extent will reach from the latitude to the alciude.

Or extend them from 90 gr . to the latitude, the fame extent will hold from the declibation to the altitude.
So the latitude being 5 I gr .30 m . and the declination of the Sunne 20 gr . the alctitade of the Sunne will be found to be about $15 \mathrm{gr} . \mathrm{3}^{\circ} \mathrm{O}$

Tbe nfe of the lines of sines and T angents;

9 Having the latitude of the place, and the declination of the Sun, to find what Azimuth the Sum fhall have at the houre of fix.

As the cofine of the latitude is to the Radius:
So the cotangent of the Suns declination, to the tangent of the Azimuth from the North part of the meridian.

So the latitude being 51 gr .30 m . and the declination 20 gr.the Azimuth will be found to be 77 gr .14 m . For extend the compaffes in the line of fives, from 38 gr .30 m. to 90 gr.the fame extent will reach from the tangent of 70 groto the tangent of 77 gro . 4 m .

10 Having the latitude of the place, and the declina tion of the Sun, asd the altitude of the Sun; to find the Azimuth.

Firft confider the declination of the Sunn, whether it be toward the North or the South, fo have you his diftance from your pole : then adde this diftance, the complement of his altitude, and the complement of your latitude, all three together, and from halfe the fumme fubtract the diftance from the pole, and note the differeace.

> I As the Radius is in proportion to the cofine of the altitude:
> So the cofine of the latitude, to a fourth fine.
> 2 As this fourth fine is to the fine of the halfe fumme :

So the fine of the difference, to a feventh fine.

Then find a meane praportionall betweene this feventh Gine and the Radius, this meane thall be the fine of the complement of halfe the Azimuth from the North part of the meridian.

Suppefe the declination of the Sun being knowne by the time of the yeare to be 20 degree s Scuthward, the altitude aboue the horizon found by obfervation 12 degrees; and the latitude Northwards 5 a degrees 30 m . it were required to find the Azimuth.

The declination is Southward, and therefore the diftance from the pole 110 degrees; then turning the altitude and latitude unto their complements, I adde them all three together, and from halfe the fumme fubtract the diftance from the pole, noting the difference after this maner.

This done, I come to the Staffe, and extend the compaffes from the fine of 90 gr . to the fine of 78 gr and find he fame extent to reach from the fine of 38 gr .30 m . un1037 gr ; 30 mm . Or if I extend them from 20 gr . to 38 gr . 30 ms . the fame extent doth reach from 78 gr unto 37 gr . 30 m , which is the fourth fine required.
Then I extend the compaffes againe, from this fourth fine of 37 gr .30 mb antothe fine of the halfe fummex $13 . \mathrm{gr} .15 \mathrm{~mm}$. that
that is to the fine of 66 gr .45 m . (foriftef 90 gm . the fine of 80 gr . doth fland for a fine of 100 gr . and the fine of 70 gr . fora fine of 110 gr .) and to the reft for thofe which are their complements to 180 gr .) and this fecond extent doth reach from the fine of the difference $3 \mathrm{gr} .15 . \mathrm{mb}$. to the fine of 4 gr .54 m . Or if I catend hem from the fourth fine of 37 gr .30 m . to the fine of the difference 3 gr .15 m . the fame extent will reach from the fine of the halfe fumine 113 gr . I 5 m . unto 4 gr .54 m . which is the feventh fine required.
Lafly, I divide the fpace betweene this feventh fne of 4 gr .' 54 nL . and the fine of $9 \circ \mathrm{gr}$. into two equall parts, and I finde the meane proportionall fine to fall on 17 gr . whofe complemenc is 73 gr ; the double of 73 gr . is 146 gr . and fuch is the Azimuth requircd.
Or having found the feventh fine to be 4 gr .54 m . I might looke over againft it, in the line of verfed fines, and there I Thould finde 146 gr . for the azimuth from the North part of the meridian ; and the complement of 146 gr . to a femicircle being 34 g . will give the azimuth from the South part of the meridian.
But if it were required to find the azimuth in the fame latitude of 51 gr .30 . Northward, with the fame altitade of 12 gr. and like declination of 20 gr . to the Northward, it would be found to be onely 72 gr .52 m , though the maner of worke be the fame as before.

Here as the Radiuslis to the fine of $\mathbf{7 8 \mathrm { gr }}$: fo the fine of $\mathbf{3} 8$ gr. $30 \mathrm{ms:}$
gr .30 m. to the fine of 37 gr .30 m . whichts the fourch fine, and the fame as before.

Then as this fourth fine of 37 gr .30 mi is to the fine of 93 gr .15 m . fo the fine of $23: \mathrm{gr} .15 \mathrm{~m}$. to the fine of 40 gr .20 ws. which is the feventh fine.

The halfe way betweene this feventh fine anduthe fine of 90 gr . doth fall at $53 \mathrm{gr} \cdot 34 \mathrm{~mm}$ whofe complement is 36 gr . 26 m. and the double of that is 72 gr .52 m . the Azimuth required.

Or I may find this fame Azimuth in the line of verfod fines,jover againt the feventh fine of 40 gr .20 ms .

11 Having the latitude of the place, the declisation of the Sun, and the altitude of the Sun, to find the bourc of the day.

Adde the complement of the Sunnes atcitude, and the diftance of the Sunne from the fole, and the complement of your latitude, all three together, and frotm halfe the fumme Jubtract the complement of the alcitude, and note the diference.

1 As the Radius is in proportion to the fine of the Suns diftance from the pole So the fine of the complement of the latitude, to a fourch fine.
2 As this fourth fine
is to the fine of the halfe fumme:
So the fine of the difference
to a feventh fine.
The meane proportionall betweene this feventh fine and the fine of 90 gr . Will be the fine of the complement of halfe the houre from the meridian.

Thus in our latitude of g gr .30 m . the declination of the Sunne being 20 gr . Northward; and the altitude: za gr . I might find the Sunne to be 95 gr .52 mm . from the meridian.

Altitude
12 gr .0 mm . The complement is 78 gr .0 mo Kk De-

74 Thevfe of the lines and T angents is Aftronomy: Declin. North 20 o the dift. from the pole 70 o Latitude 51,30 the complement is 3830 $\begin{aligned} & \text { The fumme of all three } \\ & \text { The halfe fumme: }\end{aligned} \quad \frac{186}{93: 15}: \frac{30}{15}$ Thedifference : 25

Hereas the Radius, is to the fine of 70 gr .
So the fine of 38 gr .30 m . to the fine of 3 sgr .48 m :
As this fine of 35 gr .48 m, , is to the fine of $93 \mathrm{gr} . \mathrm{I}_{5} \mathrm{mb}$.
So the fine of 15 gr . is m , to the fine of 26 gr .40 m .
The halfe way between this feventh fine of 26 gr .40 m , and the fine of 90 gr . doth fall an 42 gr .4 mm , whofe complement is 47 gr .56 m . and the double of that, 95 gr . 52 m . which conuerted into houres, doth give 6 hoores and almoft 24 mm .from the meridian.
Or 1 might find thefe 95 gr . 52 m in the line of verfad fines, ouer againft the feuenth fiae of 26 gr .40 m :

> 12 Hawing the azimuth, the Suns allitude, ana the declisation, to find the hourc of the day.

As the cofine of the dedination. is to the fine of the azinnuth:
So the cofine of the alutude to the fine of the houre.
Thus the declination being 20 gr . Southward, the alvitude 32 gra and the azinath found by the renth Propg 146 gr. I might finde the time to be $35 \mathrm{gr}, 36 \mathrm{~m}$. that is 2 houres 22 m . from the meridian.

13. Having the beure of tbe day, the Sunnes allitude, and the declination, ta find the aitunth.

i Asthe cofine of the altitude is to the finc of the houre:

So the cofine of the de clination, to the fine of the azimuth.
So the altitude of the Sun being 12 gr . and the declination 20 gr . Southward, and the angle of the houre 35 gr .36 m . I fhou'd find the azimuth to be 34 gr . And fo it is it it be reckoned from the South; but 146 gr . If ic be taken from the North part of the meridian.

14 Having the diftance of the San from the next equi-. noctiall point, to find bes right afcenfion.
As the Radius
to the cofine of th: greateft declination:
So the tangent of the diftance,
to the tangent of the right afcenfion,
So the Sun being in the firt degree of ${ }^{m}$, that is 59 gr. diftant from the next equinoctiall point, and the grcarelt declination 23 gr .30 m . the right afcenfion will be found to be 56 gr .46 m . Chort of the beginning of r, and therefore 303 gr .14 m .

15. Having the declination of the Sus, to find bis right afcention.

As the tangent of the gratef decination is to the tangent of the declination giuen: So the Radius
to the fine ofthe rightafcenfion.
So the greateft declination being 23 gr .30 mm . and the declination of the Sun giuen 20 gr . the right afcenfion will be found about 56 gros 0 m .

16 Having the longitude and latitude of a ftarre To finde the right afienfion of that ftarre
17 .To finde the declination of that Starre.

The flarres have litele or none alteration in their latitade; in therir longitude they moue forward, about $12 \mathrm{gr}$.2 sm .in an hundred yeares. Thefe being knowne,

> As the Radius
> to the line of the ftarres longitade from the next equnoctiall point :
> So the cotangent of the flarres latitude to the tangent of a fourch arke.

Compare this fourth arke, with the arke of diftance betweene the poles of the world and of the ecliptique. If the lougiade and latitude of the flarre be both a like, as when the longitdde falleth to bee amonge the Northerne fines $\gamma \succ \leadsto \dot{g} \Omega$, and the latude is North from the ecliptique : or the longitude among the Southerne fignes \bumpeq m. $v_{0} \approx x$, and the latitude Southward, then thall the difference betweene this fourth arke and the diftance of poles, be your fifth arke

But if the longitude and latitude fhall be unlike, as the longitude in a Northerne figne, and the latitude South, or the longitude in a Southerne fine, and the latitude North, then adde this fourth arke to the diftance of both poles, the fume of both fhall be your fich arke. And

> As the fine of the fourth arke: to the fine of the fifth arke, So the tangent of the farres longitude to the tangent of the flarres right afcention, from the next equinoctiall point.

As the cofine of the fourth arke. to the cofine of the fifth arke, So the fine of the flarres latitude, to the fine of the farres declination.

Then for proofe of the worke, if there bee ao former erroar, the proportion will hold

As the Cofine of the latitude to the Cofine of the right afcention:
So the Cofine of the declination to the Cofne of the longitude.

For example, take the vpper of the two former ftarres in the fquare of the little Beare, which fea-men call the Former Guard. This in the yeare 1625 , will be in 7 degr. 38 ms . of Ω. and to his longitude from the beginning of \approx 52 degr. 22 m . But his latitude is fill the fame $72 \mathrm{gr}^{\mathrm{gr}} .5 \mathrm{tm}$. Northwards. Wherefore

As the fine of 90 gr. is to the fine of $\mathrm{s}^{2 \mathrm{gr} .22 \mathrm{~m} .}$
So the cotangent of 72 gr .51 mi .
to the cangent of 13 gr .44 mb
Which is the fourth arke. Then becaufe the longitude and latitude are both Northward, the difference berweene this fourth arke and $23, \mathrm{gr}_{0} 31 \mathrm{~m}$. the diftance of both poles will give you 2 gr .47 mu . for the fiftharke. And

As the fine of $13^{\prime} \mathrm{gr}$.44 m .
to the fine of 9 gr .47 m .
So the tangent of $5^{2} \mathrm{gr} .23 \mathrm{~m}$. to the tangent of 42 gr .53 m .
Which is the right afcention of this farre, from the be: ginning of \approx but 222 gr .53 mL . from the beginning of γ_{0}

As the cofine of 13 gr .44 m .
to the cofine of $9 . \mathrm{gr} .47 \mathrm{mi}$
So the fine of $7^{2} \mathrm{gr} .51 \mathrm{~m}$.
to the fine of 75 gr .46 m.
Which is the declination of this farre from the mquaros?
As the cofine of $7^{2} \mathrm{gr}_{\mathrm{g}} \mathrm{gI} \mathrm{mt}$

Which agrecing fo well with the longitude of the ftarre propoled is a good proofe, that the right alcenfion and declination were truly found.

Thefe are fuch Aftronomicall propofitions as I take to be vetuilf for Sea-men. For the firft and fecond will help them to find their latitude; the third to find the Sums rifing and fetting s the 4.5.6.7.8.9.10.1 3. Prop, to finde the variation of their compafie; the 11 and 12 Prop. to find the houre of the day; and the reft toward the finding of the houre of the night. For hauing the latitude of the place, with the declination and altitude of any ftarre, they may find the houre of the ftarre from the meridian, as in the ia Prop. Then compaing the right afcenfion of the ftarre with the righafcenfion of the Sunne, they may hauc the houre of the night.

All thefe propofitions and fuch others may be wrought alfo by the tables of fines and taiggents. For where foure numbers do hold in proportion; as the firft to the fecond, fo the third to the fourth; there if we multiply the fecond into the third, and diuide the product by the firlt the quotient will giue the fourth required: As in the example of the 15 Prop. where the declination being given, it was required to find the right afcenfion. The tangent of 20 gr . the declination giuen is 3639702 , whith being multiplied by the Radius, the product is 36397020000000 , and this diuid by 4348124 the tangent of 23 gr .30 m . the quotient is 8370741 the fine of 56 gr .50 m . for the righr afcenfion required.

Or if any will vfe my tables of artificiall fines and taxgents; they may adde the fecond and the third together, and from she fumme fubtract the firf, the remainder will giue the fourth required Andio my tangent of 20 gr . is 9561.0658 , which being added to the Radius, makes 19561.0658 ; from this if they fubrract 9638.301 g the tangent of 23 gr .30 mL .
they fhall find the remainder to be 992 2. 7639 ; which in my Canon is the fine of 56 gr. 49 , pm 36 fecond d; \& fuch is the righs afcenfion required, if it be reckoned fromthe next equinoctiall point.
The like reafon ho deth for all other Atronomicgll propofitions, as I will farther hew by thofe two examples which I gaue before for the finding of the azimuth in the to P ropo becanfe they are thought to be harder then the reft, and require three operations.

Inche firt example.

Dedin. Sonth 20 gr .0 m . The diftance ${ }^{\text {Altitude }}$ Iogr. 0 m . Altitude I2 $_{2} \quad 0$ the complement Latitude Nor. 51, 30 the complement

The firftoperation will beto finde the fourth fine; and that is done by adding the fine of the complement of the alticude to the fine of the complement of the latitude, and fubrracting the Radius: fo adding 9990.4044 the fine of 78 gr . vnto 9794 .149s the fine of 38 gr .30 m : the fumine wll be a9784. 59 39: Andrbie Radius being fubitraited, the remainder 97845×3 is 15 the fourthfine; and belongecth 50.37% 30 m .

The fecond operation will be to find the feuenth fine; and that is done bv adding the fine of the halfe flumme to the Fine of the diff rence, and fabracting the fourth, fine. So the halfe fumme being iI 3 gr . 15 m .1 take his complement to a femicircle, and fo find his fine to be 9963 ,is 68 , to which Iadde 8753: 5278 , the fine of the difference' $3 \mathrm{gr} . \mathrm{x} ; \mathrm{m}$; and the fumene is 18716 7446. From this Itake the fourthfine 9784.5539 , and the remainder will be 8932.1907 , whichis the feuenth line , and belo geth to $4 \mathrm{gr}, 5.4 \mathrm{~m}$.?

The third operation will be to finde the meane proportionall fine betweene the feuenth fioe and the Radius. This in tremes, and taking the fquare toote of the product. As in findiog a meane proportionall betweene 4 and 9 ; we multiply 4 into 9 , and the procuct is 36 , whofe fquare root is 6 , the weate proportionali betwécene 4 and 9 . But here it is done by adding the fine and the Radius, and taking the hatfe of them. So the fumme of the laft feventh fine and the Ridiuius is 18932 . 1907 and the halfe of that 9466.0953 , which is the meane proportionall fine required, and belongeth to 17 gr . whole complement is. $73 . \mathrm{gr}$. and the double of that $14^{6} \mathrm{gr}$. the fame Azimuth as before.

In the fecond example.
Declin. North 20 gr .0 ma . The diftance 70 gr .0 m . Altitude ${ }_{12} \div$ the complemen Latitad.North $5 \mathbf{5} 30$ the complement The fumme of all three Thic halfe fumme

78	0
38	30
186	30
93	15

Thè difference 2315

The firft operation will be to find the fourth fine; and that is here 9784.5539 , as in the former example.
The fecond operation will beto find the feventhfine; and To here the fine of the haff fumme 93 gr ris mon being the fame with the fine of $86 \mathrm{gr}, 45 \mathrm{~m}$. his complement to 180 gr . I find it to be 9999.3009 , to whioh I adde 9596.3153 the the fine of the difference $23 . \mathrm{gr}$. 15 m . and the fumme is
 and the remainder will beg8iix. 0623 for $!$ the feventh fine, and belongeth to $40 \mathrm{gr}, 20 \mathrm{~mL}$.
The third operation will te to find the meane proportionall fine betweene the feventh finteand the Radius. And $\frac{1}{0}$ here the Radius being added to the feventh fine, the fumme will be 19811.0623 , and the halfe of that 9905 . 5311 , dothgive the meane proportionall fine belonging tolabout

8r. 34 m. whofe complement is 36 gr .26 m. 8 the double of that $7^{2} \mathrm{gr}_{\mathrm{g}} \mathrm{s}^{2}$ io the fame Azimuth as before:.

I have fer downe thete three examples thus particulartys chat I might ohew the agreement between the Steffe and the Camon. But orherwite I might detiwer boththe precept and the woke, for the wo taxt, mote compendiouily. Forgenerally in all fphericall triangles, where three fides are knownes and an angle required, make that fide which is oppofice to the angle required, to be the bafe; and gather the iummen the halfe fumme, and the difference as before.

As the rectangle contained vnder the fines of the fides; is to the fquare of the whole fine:
So the reftangle contained vnder the finge of the halfe fumme and the difference, to the fquare of the cofine of halfe the aiggle,
Thenfor the worke, we may for the mof pattleayo onc

83 Tbe ofe of the lines of fines and tangents. them out of the Radius, and writedowne the refidue, and then adde them togecher with the reft. As in the fame fecond eximple; the fines of 78 gr . and of 38 gr .30 m . being the numbers to be fubraatod; if I take 2990. 4044 the fine of 78 gr . out of the Radius 10000:0000, the refidua is 905956% and fo the refidue of 9794.1495 is 205.8505 . Wherefore in head of fubtracting thofe fines; I may adde thefe refidues after this maner :

Hauing thefe meanes to find the Suanies azimuth, we may, compare it with the magneticall azimuth, and fof finde the variation of the needle.

 rais
plane.
plane, parallell to the horizon; \mathcal{A} the point whereon the Sun beareth from vs, M thè North point of the magneticall needle, and the angle $A Z M$ the magneticall Azimuth. If we find the Sunnes Azimuth as before, to be $7 \mathbf{2 g r} .52 \mathrm{md}$ from the North to the Weftward, we may allow to many degrees fiom A vnto \mathcal{X}, and fo we haue the true North poin of the meridian'; and confeguently the Eaf, South, $8 c$ Weft points of the horizon; and the diftance betweene $2<$ and $K A$ fhall be the variation of the needle. So that if the magneticall Azimuth $A Z M$ fhall be $84 g r$. $7, m$ and the Suns azimuth $A Z_{1} \mathcal{N} 72$ gr. 52 m. then muft $22 Z M$ the difference betweene the two meridians, giue the variation to be II gr . is m . as Mr . Bourough heretofore found it by his obferuations'at Limbonfe in the yeare 1580 . But if the magneticall Azimuth ZCM fhall be 79 gr .7 m , and the Suns Azimuth $A Z \mathrm{~N} 72 \mathrm{gr}$. 52 m . then fhall the variation $N \mathrm{Z} M$ be only 6 gr .15 m , as $/$ haue fometimes found it of late. Herevpon I enquired after the place where Mr.Bourough obferued, and went to Limehoufe with fome of my friends, and tooke with vs' a quadrant of 3 foote femidiameter, and two need'les;, the one aboue 6 inches', and the other 10 inches long, where I made the femidiam ter of my horizuntall plane $A Z$ 22 inchiss: and toward night the 13 of Iune 1622 , I made 'obferuation in feserall parts of the ground, and found as follpweth

84
 Trangents in Navigation

CHAP. VI.

Containing fucb nauticall gueftions; as,

 are of ordinary $v f e$, concerning longitude, lititude, Rumb, and diftance.
a To kecpe anaccount of the fbips way

THe way that the thip makech, may be knowne to ah old learman by experience, by others it may be fourd for ferme frmall portion of time, ether by the logge line, or by thedifance of two knowne markes on the fhips fide. The these in whichit maketh this way may be meafured by a watch,or by a glaffe,or by the puile or by repeating a certaine number of words. Then as long as the widd continaethat the fame flay it followeth by proportion, As the time ginen is to an houre:
So the way made, to an houres way.
Suppofe the ime to be Is feconds, which make a quaiter of a minute, and the way of the thip 88 feet : then becaufe there are 3600 fecond: in an houre, I may extend the compaffes in the line of x : mbers, from 15 unto 3600 , and the fame extent will reach from 88 unto 21420 . Or 1 may extend them from 15 unto 88 , and this extent will reach from 3600 unto 21220 ; according to thé ordinary worke in Arithmetique,

As 15 vnto 3600
So 88 vnto 21120
which fhewes that an troures way came to 21120 feete.
But this were an vnneceffary bufineffe, to hears ken after feet or fadoms. It furficeth our fea-men tofiad the way of their hip in leagues or miles.

Andthey fyy that there are 5 teetina pace, 1000 paces in a mik, and 60 muies in a degree, and therefore 300000 feete in a degre. Yec comparing feuerall obferuations, and there nicatures with our feere vfuall about London, I finde that we may allow 3520 oo feete to a degree;'and then it Iextend:he conpaftes in the line o: wumbers from 352000 vito 21120 , I hall find the fane extent to reach from anolsaguer th. malureo one degree, to $\cdot .2$, and from 60 miles to 3 . 6 ; according to Arcthm tique which thewes the houres way to be a league and 2 tenths of a league; or 3 miles and 6 tenths of a mile.

As	352000 vnto 2 inio	
So	$20-00$	vito
and	$1-20$	
	$60-00$	vnto

But to anoid thefe fractions and other tedious redactions; I fuppote is would be mach better to keepe this account of the fhips way (asalfo of the difference of latitude, and the difference of longitude) by diegrees and parts ot degrees allowing in 100 parts to each degree; which we may therfore call by the name of centefmes. For fo doing there would be fome agreement betweene the account aird the dayes fayling. Ordinarily the thip goes a degree in a day, as it may appeare by comparing feverall Icurnalls to the eaft and weft Indies. The cime of paffage betweere the lizard and the fouther-moft Cape of Africu is commonly faid to be about three moneths and the diftance is not much different from 90 degrees.

Againe this account by degrees and Centefmes would be more exact and the addition, fubtraction, multiplication, divifion of them more eafie. Neither would this be 'hard to conceauer For;

And foin the former example of 88 fercin in 55 feconds ha: In 3: The vico of limes of fives and tangents. riing firt found that hch houres way is abour 21120 feer: It Iextend the compaffes from 352000 unto 21120 as before I fhall find the fame exient to reach from roo vito 6 as before; which thewes that the houres way required is 6 cent. fuch as 100 do make a degre, \& s do make an ordinary league.

This might alfo be done at one operation. For vpon thefe. fuppofitions, diuide 44 feet into 45 leagths, and fet as many of them as you may conueniently betwsene two markes on the fhips fide, and note the feconds of time in which the hip goeth thefe lengthes; fo the proportion will hold, As the f.conds, to the lengths
So 1 houre, vnto the Centefmes
The lengths diuided by the time, fhall give the cent, which the fhip goeth in an houre.

Suppote the diftance betweenethe two markes to be 60 lengths(whichare 58 feer and 8 inches) \& let the time be 12 feconds:extend the compaffes from 12 to 1 , in the line of mand bers; fo the fame extent will reach from 60 vnto 5 . Or exterd them from 12 vnto $60, \%$ the fame extent will reach from 1 wnto 5 . This hewes that the fips way is according to 5 Cent 0 in an houre.

This may be found yet more eafily, if the logg line fhal be fitted to the time. As if the time be 45 feconds, the log line may have a knot at the end of cuery 44 feete; then doth the lhip xun fo many. Eert in an houre, as thereare knots vered out in the fpace of 45 feconds. If 30 fecond do ferme tobe a more conuemientime, the loggline may have a knot at the end of euery 29 feet and 4 inchessand then alfo the cente/mes will be as many as the knots. Or if the knots be made to any fet number of fectithe time may be fitted vino the difance As if the knots be made ar the end of euery 24 feet, he glaffe mayy be made 24 fecond \& fome what more then an halfe of a ficond, and to thefe knots will fhew the certilf ifhere be 5 kriors vered out in a glaffe, thé 5 cent; if 6 knots, then the fhip goeth 6 cent in the fpace of an hourc; \& fo in the reft. For vpon chis (appofition the proportio between the time $\&$ the teetsobil be as 45 vnto 44. But according to the common fuppofition it fhould feeme to be as 45 xnto $37 \frac{7}{2}$, or inleffer terme's as 6 vinto 5. Thofe which are vpon the place, may make proofe of both, and follow that which agrees beft with their experience.
2. By tbe latitude and difference of longitude, to find
the diftance rupon a courye of East and Wraf.
As the fine of 90 gr .
to the coline of the latitude
So: tho difference of lonigitude at the aquator.
to the diftance required on,the paralleh.
Extend the compaffes from the fine of 90 gr . vnto the fine of the complement of the latitude; the fame extent fhall reach in the line of numbers from the difference of longitude to the difiance.

So the meafure of one degree in the xquator, being' rtoo cent. the diftance belonging to one degree of longitude in the latitude of 5 Igr .30 m . will be found abour 62 cemt. and ${ }^{\frac{s}{2}}$.

Or if the meafure of a degree be 60 miles, the diftance will be found about 37 miles and ${ }^{\frac{v}{2}}$. If the meafure be to leagties, then almoft 12 leagues and $\frac{\leq}{2} \cdot$ If the meafuine be $14 \frac{1}{2}$) as in

88: The ere of abe limes of fines and
the Spanish charts, themfornewhat jefe then it fondues fri-- ling upon this parallel, will give an alteration of one degree of longitude.

3 By the latiente and distance oppose a care: of East or Weft, to find the difiereme. of longitude.
-If the diftance be given in leagues or miles reduce them into centelpues, then will the proportion holden.
As the cofion of the latitude so the fine of go.gr.
Sothediftanceon the parallell to the difference of longivade:
Extend the compaifles from the fine of the eomplememe of the hturude, to the fine of 90 o gr ; the fame extent will reach in the fine of numbers from the distance to the difference of longitude.
So the diftance ripon a course of Eat or Weft; in the lati etude of $5 \mathbf{1 g r}, 30 \mathrm{~m}$. being 100 cent. the difference of longtude will be found r .60 , which make one degree and 60 centepees or 1 gr: 36 m :

Or if fiche 60 miles, the difference of longitude will be 960 which alto make I gr. 36 m , as before.

4 The longitude and latitude of two places being giucon, to find toke Rumblleading from the one. 10 the other.

As the difference of latitude ra the difference of longiunde So the tangent of 45 sir.
tie the tangent of the common Rumbi

Extend the compalies in the line of numbers from the difference of laticudes to the difference of longitudes; the fame extent will give the diftance from the tangent of 45 gr . vnto the tangent of the Rumb, according to the proiection of the common fea-chart.

So the latitude of the firft place being 50 degree the latitude of the fecond' 52 degree 30 m . and the difference of longitude 6 gr . the Rumb will'be found to be about 67 gr .23 m . which is neare the inclination of the fixth Rumb to the metridian. But this Rumb fo found, is alwayes greaxer then it fhould be, and therefore to be limited; which maty be done fufficiently for the Sca-mans vfe, after this maner:

> As the fine of 90 gr .
> to the cofine of the midile latitude

So the tangent of the common Rumb
. to the tangent of the Rumb required.
P- Extend the compaffes either from the fine of 90 degree vito the fine of the coniplement of the mifte latitude, the fame extent will reach from the tangent of the, Rumb before found, to the tangent of the Rumber timited.

Or elfe extend them from the fine of 90 degree vatot the tangent of the Rumb before found; the fame extent will reach from the fine of the complement of the middle latitude, vnto the tangent of the: Rumb limited.

So the middle latitude between songread an ghrisorom. being 51 gr. IS m. and the Rumb before found ong gr. 23 m. the Rumb limited will be tound to be abomm fig gro 20 m. which is bur fue minutes more then thefinclingign of the fiff Rumb to the meridian.

If lany pleafe to worke by the Canon hs may joing bof h thete in one dotation worn

2 This Rumb may be found by the helpe of the meridiam line vpon the Staffe. For if I take the, difference of latitude out of the moridian line from 50 degree vnto 52 degree 30 a. and meafure it in his equinoctiall, or at the beginning of the meredian line, I thall find it there to be equal to' 4 degree with may be calledthe differonce of las titude in larged. Wherefore I work as if the diference of latitude were 4 gr .

Ass the difference of antixude io lageted to the difference of longitude
 So the tangent of $45 g r$.
 to the tangent of the Rumb required.

And oxtend the compaffes in the line of monters frome 4 vito 6: fo fhall 1 finde the fame extent to reach fromi the tangent of 45 degree vnto the cangent of 56 degreet 20 th. and this is the inclination of the Rumb requir: red.
ai, σ Ry tite Resmbi and toub latitudes, to find.

$$
\text { Etoothefife } b \mathrm{~F} \text { gogt }
$$

© Co the diffitefire between both latitudes:

${ }^{1}$ Etcend the compafies from the fine of the cogmplement of the Rumb; vato the fine of $g 0 \mathrm{gr}$. the fame extent in the
line of numbers fhall reach from the difference of latitude vnto the dittance vpon the Rumb.
So the latitude of the firft place being 50 gr . the latitudo of the fecond 52 gr .30 mmand the Rumb the fift from the nieridian. If I extend the compaffes from 33 gr .45 m . vnto the Gine of 90 gr . I haill find the fame extent in the linic of num bers to reach from $2 \mathrm{gr} \cdot 50$ cemts to 4 gr . gocmm , and fuch is the diftance required.

7 By the diftance and bath Laticudes to fand: the IRMmb.

- As the diftance on the Rumb
to the difference between both latitades
So the fine of 90 gr.
to the cofine of the Rumb from the meridian.
Extend the compaffes in the line of numbers from the difance vnto the difference of laritudes ; the fame extent will reach in the line of fines, from 90 gr , vnto the complement of the Rumb.
W. So the one place being in the latitude of 50 degree the other in the latitude of 52 degree 30 m . and the diftance between them 4 degres 50 cent. If I extend the compafies from 4. 50 vnto 2 . so. in the line of numbers, I hall find the fame extent to reach from the fine of 90 degree vito the complement of 56 degree 15 m . and fuch is the inclination of the Ramb required.

8 By one latitude, Rumb, and diftance;": to find the difference of latitrudes.

As the fine of 90 gr

to the cofine of the Rumb from the meridian

So the difance vuoa the Rumb to the diff rence between both latitudes.
Extend the compaffes inthe line of fines, from 90 gr . vnto the complement of the Rumb; the fame extent in the line of numbers, will reach from the diffance, vnto the difference of lititudes.
So the 1ether latitude being so degres and the difance 4 degres 50 cent. Opon the fifth Rumb froin the meridan: if I extend the compaffes fiom the fine of 90 gr . to $33 \mathrm{gr} .4^{3}$ m. I hall finde the fame extent to reach from 4.50 in the line of numbers, vnto 2.50; and therefore the fecond latitude to be 52 gr .30 mo

9 By the Rumb and batb tatitudes, to find the difference of tom-
 gitudes.

As the tangent of 45 gr .

to the tangent of the Rumb from the Meridiai)
So the difference of latitude
to the difference of longitude in the common tea-chart.
Extend the compaffes from the tangent of 45 gr . vnto the rangent of the Rumb ; the fame extent will reach in the line of nembers from the difference of latitudes vato the difference of longitude, according to the proiection of the $\mathcal{J} J$ mon fea chart.
So the firft latitude being 50 gr , and the fecond 52 gr .30 m . and the Rumb the fifth from the meridian: if Iextend the compalces from the tangent of 45 gr . vnto $56 \mathrm{gr} .15 \mathrm{mm.I}$ Thal! find the fame extent to reach from 2.50 in the line of numm .bers to about 3.75 , which make 3 gr. 45 m . But this difference of longitude fo found, is alwayes 1 fifer then it fhould be, and therefore to be enlarged, which may be done fufficiently for the fea-mens vfe, alter this maner:

- As che coline of the middle latitude to the fine ot $\mathbf{9 0 g r}$.
So the difference ot iongitude in the common fea chart to the difference of longitude inlarged.
Extend the compaffes from the fine of the complement of the middle latitude, unto the fine of 90 gr .the fame extent will reach in the line of numbers from the difference of longitude before found, vate the difference of longitude inlarged.

So the middle latitude in this example being g 1 gr .15 m , and the difference of longitude before found $3 \mathrm{gr}, 75 \mathrm{cent}$. the difference of longitude inlarged will be found about $5 \mathrm{gn}^{\mathrm{m}}$ 99 cent. which are neare 6 gr .

If any pleafe to worke by the Canon he may ioyne both thefe in one operation.

> As the cofune of the middle latitude to the tangent of the Rumbe from the meridiant
> So the difference of latitude to the difference of longitude required.

Fr 2 This difference of longitude may be foand by helpe of the meridian line vpon the staffe. For if I take the proper difference of latitude our of the meridian line, and meafure it in his equinoctiall, or at the beginsing of the meridian line, I Thall find the latitude inla ged to be equall to foure of thofe degrees.

As the tangent of 45 gr .
to the tangent of the Rumb from the meridian So.the difference of laritude inlarged
so the difference of longitude required.
Wherefore having extended the compalfes as before from the tangent of 45 gr , vnto the tangent of g 6 gr .15 mi . Mm 3
che fame extent will reach from 400 in the line of numbers?, vnto 5. 99; which fhewes the difference of longitude to be 2bout g g . 99 cent.or about haffe a minute fhort of fix degrefs.

10 By the Rumb and both latitudes, to finde the diftince. belonging to the chart of Mercators projection.

Take the proper difference oflatitudes out of the meridian line of the chart, and meafure it in his equinoctiall, or one of the parallels, and it will there giue the difference of latitudes inlarged,

As the cofine of the Rumb from the meridian to the fine of 90 gr .
So the difference bet ween both latitudes to the diftance vpon the Rumb.

Then extend the compaffes from the fine of the complement of the Rumb vnto the fine of 90 gr . the fame extent will reach in the line of numbers, from the lacitude inlarged, vnto the diftance required. Or extend them from the complement of the Rumb to the latitude inlarged, the fame extent will reach from 90 gr . vnto the diftance.
For example, Iet the place ginen be A in the latitude of 50 gr . $D_{\text {in the latitude of } 52 \mathrm{gr} .30 \mathrm{~m} . A M \text { the difference } . ~}^{\text {. }}$ of latitudes, and the Rumb $M A \mathcal{D}$ the fifth from the meridian. Firft take out $A M$ the difference of latituder, and meafure it in $A E$ one of the parallels of the xquinoctiall; I find it to be very neare 4 gr . this is the difference of latitudes inlarged. Then ifI extend the compaffes from the fine of 33 gr. 45 m . the complement of the fifth Rumb vnto the fine 90 gr . I fhall find the fame extent to reach in the line of numbers trom 400 vnto 7:20. And this is the difance belonging to the chart. Wherefore I take out thefe g gr .20 cemt . out of
the fcale of the parallell $A E$, and pricke itdowne vpon the Rumb from A vno D, where it meeteth with the parallell of che fecond latitude. Latly, I meafure it in the meridian line, fetting one foore of the compaffes as much below the leffer latitudeas the other aboue the greater latitude, and find it to be 4 gr .50 cent. which is the fame diftance that I found before in the s. Prop.

11 By the woy of the fitp, andtwo angles of pofition, to find the diftance betwrene the fhip and the land.
The way of the fhip may be knowne as in the firft Prop: The angles may be obferued either by the Staffe, or, by a neede fet on the S taffe. For example, luppole that being as A,

I? had fight of the landat B, the Ship going Eaft Northeaft fram

'وo : The the ofe of llmes of fines and T angents

from A roward C, and the angle of the thips pofition B $A C$ being 43 gr .20 m : and after that the hip had made so cent, or 2 leagues of way from A vito D, I oblerued againe, and teund the fecond angle of the chips pofition $B \mathcal{D} C$ to be 58 degree or the inward apgle $B D A$ to be 112 degree then may 1 finde the third angle $A B D$ to be 14 degree 40 m . either by fubtration or by complement vnto 180 gr .
In this and the like cafes, I haue a sight sine triangle, in which there is one fide and three angles knowne, and it is required to finde the other two fides and the Canon for it, is this:

As the fine of the angle oppofite to the knowne fide, is to that knowne fide :
So the fine of the angle oppofite to the fide required, is to the fide required.

Wherefore 1 extend the compaffes from 14 gr .40 m. in the fines, to 10 in the line of numbers, and this extent doth reach from 58 gr. to $33^{\frac{1}{2}}$, and fuch is the diflance between A and B, and it reacheth from 43 gr .20 mL . vnto 27 in the line of numbers; and fuch is the diftance from D to B.
Thefe two diftances being knowne, I may fet out the land vpon the chart. For hauing fet downe the way of the fhip from A to D by that which I fhewed before :n the vfe of the meridiax: line, I may by the fame reafon fet off the diftance $A B$ and $\mathcal{D} \mathcal{B}$, which meeting in the point \mathbb{B}, fhall there refemble.the land required.

11 By knowing the daftance between two places on the lavd, and how they beare one from the otber, and having the angles of pofition at the Ship to find the disfance betweene the fiip and the land.

If it may be conueniently, let the angle of pofition be obferued at liuch time as the fhip cometh to be right ouer againft oue of the places. As if the places be Eaft and Weft, teeke to bring one of then South or Noith trom you, and then oblerue' the angle of pofition : fo 'hall you haue a righr liae triangle, with one fide and three anges, wiereby to find the two other fides. Firft you hauc the angle of pofition at the hip; then a tight angle at the piace that is ouer agiaglt you; and tho third angle at the other place is the complement to the angle of pofianon. Wherefore

As the fine of the angle pofition,

 is to the diftance bet weene the two places:Sothe cofine of the angle of pofition,
to the diftance berweene the fhp and the nearer place. And fo is the fine of 90 gr . to the diftance from the fhip to the farther place.

So the places being 15 cent. or three leagu s one from the other, and the angle of pofition $2 g \mathrm{gr}$, the nearer diftance will be found about 27 cent. and the farther diftaice about 3^{1} cent.
Or howfoeuer the angle of pofition were obferued, the diftance betweene the fhip and the land may be found getierally as in this example :
Suppofe 4 ard D were two head lands knowne to be Eaft Northeaft, and Weft Sourhweft, 10 cemt, or two leagues
one from the other; and that the thip being at \mathcal{B}, I oblerued the angle of the fhips pofition $D B \cdot \mathcal{A}$, and found it to be 14 gr .40 m . and that \mathcal{D} did beare 9 gr .30 m . and $A 24 \mathrm{gr} . \pi \mathrm{m}$. from the meridian B S, this example would be like the former. For if the angle $S B D$ be 9 gr . 30 ms. from the S cuth to the Weftward, then fhall NDB be 9 gr .30 m .from the Norch to the Eaftward. Take thefc 9 gr .30 m . out of the angle NDE which is 67 gr .30 m . becaule the two head lands lie Eaft Nor heaft, and there will remaine 58 gr . for the angle BDE, and the inward angle BDA hall be 122 gr . Take thefe two angles $A B D$ and $B D A$ out of 180 gr . and there wil remaine. 43 gr .20 m . for the third angle BAD. Wherefore here alfo are threeangles and one fide, by which I may find the two other fides, as in the laft Prop.

Thefe propofitions this wrought by the S taffe, are fuch as I thought to be viffull for iea-men, and thofe hat are skilfull may apply the example to many others. Thofe that be-gin, and are willing to practife, may bufie rheinelaes with. this which followeth.
Suppofe toure ports, L, N, O, P; of which Lis in the lative tude of 50 degrees N is North from L 200 leagues or 10.00 centefmes; O W.eft-from L 1000 centefmes and P weft from N tooo cente/mes fo that L and O will be in the fame latitude of 50 gr . N and P both in the latitude of 60 gr , Then let two fhips depart from L, the one to touch at O, the other at \mathbb{N}, and then both to meet at P, there to lade, and from thence to returne the neareft way vnto L. Here many queflions may. be propofed,

1 What is the longitude of the portat O ?
2 What is the longitade of P ? And why Oand P fhould' not be in the fame longitude :

3 What is the Rumb from O vnto P ?
4. What is the difance from O vnto P? And why the , way hould be more from L vnto P; going by \mathbf{O}, then. by. N ?

5 What is the Rumb from P vnto L ?

6 What is the diftance from P vnto L ?
7 What is the Rumb from \mathbf{N} vnto \mathbf{O} ?
8 What is the diftance from N vnto O ? And why it fhould not be the like Rumb and diftance from \mathbf{N} vato \mathbf{O}, as from P vnto L ?

Thefe queftions well confidered, and either refolued by the Staffe, or pricked downe on the Chart, and compared with the globe and the common Sea-chart, fhall giue fome light to the disection of a courfe, and reduction of places to their due longitude; which are now fouly diftorted in the common Sea-charts.

Nn_{2}
 An

An Appendix concerning

The defcription and ofe of an inftrument, made in forme of a Crofle-bow, for the mare eafie finding of the latitude at Sea.

THe former Prop. fuppofe the laxitade to be knowne I will here fhew how it may be talily obferued.
Ypon the cen:er A and fem diameter $A B$, deltribe an ark of a circle S B N. The lame femidia neter will lit of 60 gr . trom B.unto Slor the Sourheid, and orher 60 gr. from is vnto \mathbb{Z} for the North end of the Bow: fo the whale Bow will containe $\mathbf{2 0} 2 \mathrm{gr}$. the third part of a circle. Let it therefore be diuided into to many degrees, and each degree fubdiaided. int., fix farts, that each part may be ren minute'? but let the numbers fet to ic be 5 . 10.15 vnco 90 gr . and then againe5. 10.15, vaio 25 . that 55 may fall in the middle, as in this. figure.

The Bow being thas diuided and numbred, you may ta
the
the moneths and dayes of each moneth upon the backe, and fuch ftarres as are fi: for obferuation vpon the fide of the Bow.

If you defire to make vfe of it in North latitude, you may number 23 gr .30 mm . from 90 towards the end of the Bow at N , and there place the tenth day of Iune. And $23 \mathrm{gr} .30 \mathrm{~m}_{0}$ from ρ o towards $S_{\text {; and there at }} 66 \mathrm{gr} .30 \mathrm{~m}$ place the tenth day of December. And to the reft of the dayes of the yeare, according to the declination of the Sume at the fame dayes.

The ftarres may be placed in like maner according to their declinations.

Arfturus $\quad 21 \mathrm{gr} .10 \mathrm{~m}$.
The Buls eye 15
The lions heart 13
The Vulcures heart 7

Aquariesleg : 20
The Whales taile 18
The Scorpions beart $25 \quad 30$
Fomahant $\quad 3^{2} \quad 30$ And fo the South crowne, the triangle, the c 'onds, the crofiers or what other ftarres you thiak Git for abferuation, This I call the fore fide of the Bow.

If you defire to make vfe of it in Sou'h latitude, you may turne the Bow, and divide the backe fide of it, and number

102 The defoription of the Bow.:
it, in like maner; ; and then put on the months and dayes of the yeare, placing the tenth of December at the South end, and the tenth of lune toward the middle of the Bow, and the reft of the dayes according to the Sunnes declination as before.

The chiefeft of the Northerne flarres may here be placed in like maner according to their declination, Anno 1625.

The pole flarre at	87 gr .20 m .	
The firft guard	75	45
The fecond gua	73	25
The great Beares backe	63	45.
, 7 frit	58	2
In the great $\}$ fecond	57	55
Beares taile third		15
The fide of Perfeus	48	28
The goate	45	33
The taile of the fwan	44	-
The head of Medufa	39	30
The harp	38	30
Caftor	32	38
Pollux	28	52
The Norch crowne	28	0
The Rams head	21	40
Arcturus	21	10
The Buls eye	15	42
The Liois heart	13	45
The Vultures heart	7	88
Orions right fhoulder	r	17
Orions left fhoulder	5	57

And fo any other farre, whofe declination is knowne vato you, which being done. The vfe of this Bow may be.

1 The day of the msoneth being knowne, to fiade the declination of the Sunne.

2 The declination being giren, to finde the day of the moseth.

- Thefe two Prop. depend on the making of the Bow. If the day be knowne, lookeit oat in the backe of the Bow: fo the declination will appeare in the fide. Or if the declination be knowne, the day of the moneth is fet ouer againft it. As if the day of the moneth were the 14 of Iuly: looke for this day in the backe of the Bow, and you fhall find it ouet againft 20 gr . of.North declination. If the declination giuen be 20 gr o to the Southward, you fhall find theday to be either the eleuenth of November, or the eleuenth of lanuary-.

3. To find the alitude of the Sumne or farres.

Here it is fit to have two running fights; which may be cafily moued on the backe of the Bow. The vpper fight may be fet either to 60 gr . or to 70 gr . or to 80 gr . as y ou fhall find to be moft conuenient: the other frght may be fet on, to any place betweene the mids and the other end of the Bow. Then with the one hand hold the center of the Bow to your eye, fo as you may fee the Sunne or ftarre by the upper fight, and with the other hand moue the lower fight up or downe vntill haue you brotight one of the edges of it to be euen with the horizon (as when you obferue with the Croffeftaffe:) fo the degrees contained betweene that edge and the vpper fight, fhall hew the altitude reguired.

Thus:

Thus if the vpper fight fhall be at 80 gr . and the lower fight at 50 gr : the altutude required is $30 \mathrm{gr}_{2}$.

6 To fina any North latitude, by the meridian altituac of the Sun at a forward obfervation know. ang etther the day of the msoneth, or the declization of the Sunne.

Asofo as you are to obferue in North latitude, place both the fights on the tore fide of the Bow, the vpper fight to the declination of the Sunne, or the day of the moneth at the Norch end; and the lower fight toward the South end. Then when the Sumne cometh to the merdian, tarne your face to the South, and with the one hand hold the center of the Bow woyour eye, fo as you may fee the Sunne by the vpper fight; with the other hand mouz the lower fight, vntill you haue brought one of the edges of it to be euen with the horizon: fo that edge of the lower fight hall hew the laticude of the place in the fore fide of the Bow.

Thus being in North laritude vpon the ninth of OAtober: if I fet the vpper fight to this day, at the fore fide and Nurth end of the Bow, I hall find it to fall to the Southward of 90 vpon 80 gr . and therefore at ro gr .of South declination. Then the Sanne coming to the meridian, I may fet the center of the Bow to mine eye as it I went to find the altitude of the Sunne, holding the North end of the Bow vpward, with the vpper fight betweene mine eyeand the Sunne, and mouing the lower fight, vntill it come to be euen with the horizon. If hedre the lower fight hall fay at 50 gr . I may well fay, that the latitude is gogr. For the meridian alti ude of the Sunne is 30 gr . by the third Prop. and the Sunne hauing to gr . of South declination, the meridian alitude of the aquator would be $40 g r_{3}$, and therefore the obfruation was made in sogr. of North latitude.

By the fame reafon, if the lower fide had ftayed at 51 gr . 30 mm , the lacitude mult have beea 5 g gr .30 m and fo in the ref.

s Tofind any North latitude, by the meridian allitade

 of the Starres to the Southward.Let the vpper fight be fet to the flarre, which you intend to obferue, here placed in the fore fide of the Bow. Then hold the North end of the Bow vpward, and turning your face to the South, obferue the meridian altitude as before: fo the lower fight thall thew the latitude of the place in the fore fide of the Bow.

Thus if in obferuing the meridian altitude of the great Dog-ftarre, the lower fight hall ftay at 50 gr , it would ihew the latitude to be 50 gr . For this farre being here placed at 73 gr .48 m . if we take thence 50 gr . his meridian altitude would be 23 gr .48 m . to $t /$ is if we adde 16 gr .12 m . for the South declination of this ftarre, it would thew the meridian altitude of the equator to be 40 gr . and ther fore the latitude to be 50 gr .

6 To find any North latitude, by the meridian altitude of the ftarres to the Nortbivard.

If the Bow be intended onely for north latitudeit may fuf: fice to haue the degrees diuided onely on the forefide, and then the farres to the northward may be placed either on the backifide or the infide of the Bow by thefe degrees : the pole flarre at $87 \mathrm{gr}, 20 \mathrm{~m}$. neere the 20 day of September, the formoft glard at 75 gr .45 m . the hindmoft guard at 73 gr .25 m . and the reft according to their declinations before mentioned fo the 90 degree fhall reprefent the north pole of the , world.

When any of thefe ftarres come to be in the meridian and vnder the pole fet the vpper fight to that farre, hod the north end of the Bow vpward and turning your face to the northoobferue his altitude as before fo the degrees contained between the 90 degree and the lower fight fhall fhew the altitude of the pole.

Thus the former guard coming to be in the meridian vnder
the pole if you obferue and find the lower fight to flay at 40 gr. the eleuation of the pole is 50 gr . according to the diflance betweene 49 and 90 .

If you would obferue any of thefe farres at fuch time as they come to be in the meridian and aboue the pole, you may place thefe flarres in the Bow aboue 90 gr , the north ftarre at 2 gr .40 m , ureere the fourth day of september the formoft guard at 14 gr .15 m . the hindmoft guard at 16 gr .35 m . and luch others as you thinke fitteft according to their diftance from the pole : then fetting the vpper fight to the place of the flarre aboue the pole, the reft of the obferuation will be the fame as before.

But if the Bow be made to ferue at large both in South and north latitude then thefe northerne flarres would be let placed on the backfide of the Bow by the degrees on that fide according to the complement of their declinations, that the north flarres may anfwer to the north fan in fouth latitude in fuch lort asthe foucherne farres did to the fouth fun in north latitude in the former $P_{r o p}$. This being done let the vpper fight be fet to the fare which you intend to obferue, here placed on the backe fide of the Bow. Then hold the North end of the Bow vpward. and turning your face to the North, obferiue the altitude of the flarre when he cometh to be in the meridiai and vnder the pole: fo the lower fight hall hew the altitude of thie pole in the back fide of the Bow.

Thus the former guard coming to be in the meridian vnder the pole, if you obferue and find the lower fight to fay at 50 gr . fuch is the cleuation of the pole, and the latitude of the place to the Northward. For the diffance betweene the tiwo fights will fhew the altitude to be 35 g な. $45 \mathrm{~m} . \infty$ the far is 14 gr .15 m . diftant from the North pole. Thefe two do make vp sogr. for the eleuation of the North pole, and therefore fuch is the North latitude.

7 To find any Sonth latitude, by the meridian altitude of the fun at aforwardobferuationgknowing either the day of the moneth, or the dectination of the Sumne.

When you are come into South latitude, turne both your fights to the backfide of the Bow : the vpper light to the declination of the Sun, or the day of the moneth at the Souch end, and the lower fight toward the North end of the Bow. Then the Sun coming to the meridian, turne your face to the north, and holding the South end of the Bow vpward, obferue the meridian altitude as petore: fo the lower fight ghall fiew the latitude of the place in the backs fide of the Bow.

Thus being in South latitude, vpon the tenth of May if you obferue and find the lower fight to flay at 30 gr . on the back fide of the Bow, fuch is the latitude. For the declination is 20 gr . northward, the alcitude of the Sunne betweene the two fights 40 gr . the altitude of the equator 60 gr . and therefore the latitude 30 gr .

8 To find any Southlatitude, by the meridian altitude of the Starres to the Nerthward.

Let the vpper fight be fet to the flarre which you intend to obferue, here placed on the backe fide of the Bow. Then hold the South end of the Bow vpward, and turning your face to the north, obferue the meridian altitude as before : fo the lower fight fhall hew the latitude of the place in the back fide of the Bow.
Thus being in South latitude, and the former guard com $^{-}$ ming to be in the meridian ouer the pole. If you oblerue and inde the lower fight to flay at 5 gr . fuch is the latitude. For this ftarre is 14 gr . 15 m . from the north pole, the alcitude of the flarre betweene the two fights 9 gr . 15 : fm . the north pole depreffed g g . and thereforethe latitude $\varsigma \mathrm{gr}$. to the Southward.

9 Toobferue the altitade of the Surne by the Boto or with as ABrolabe.

Hereit is fir to haue a third fight (like to the horizontall fight belonging to the ftaffe) which may be fer to the center of the Bow.
If thefun be neere to the zenith, hold the Bow as when you oblerue with the \mathcal{A} Strolabe, fo as the center being downward the line $A B$ may be verticall and the line $\mathrm{S} N$ parallel to the horizon, then turning one end of the Bow toward the fun you may mouc one of the fights on the back ofthe Bow, vntill the fhadow thereof fall on the middle of the horizontall fight fo the degrees contained betweene the verticall line A B and that vppir fight Shall thew the diftance of the Sume from the ze. nich.

If the funne be neerer to the horizon, you may hold the Bow fo as the line $S \pi$ may be verticall and the line \mathcal{A} B parallell to the horizon, then obferuing as before the degrees contained between the line $A \mathrm{~B}$ and the vpper fight fhall hhew the altitude of the fun aboue the horizon.

10 To find a fouth latitude by the meridian altitude of the farres to the Soutbward.

Letthe vpper fight be fet to the flarre which you intend toobferue which might be here placed on the fore fide of the Bow by the complement of their declinations if we knew the true place of fuch as neere to the fouth pole.

Then hold the fouth end of the Bow vpward and turning your face to the fouth, obferue the altitude when he cometh tobe in the mexidian and vader the pole fo the
lower
lower fight fhall fhew the altitude of the pole in the fore fide of the Bow.

II To obferue the altitude of the Sunne backward.

Set thevpper fight either to 60 , or 70, or 80 gr . as you Thall find it to be moft conuenient, the lower fight on any place betweene the middle and the other end of the Bow, and haue an horizontall fight to be fer to the center. Then may you turne your ba cke to the Sume, and the back of the Bow toward your felfe, looking by the lower fight through the horizontall fight, and mouing the lower fight vp \& downe, vntill the vpper fight doe caft a hadow vpon the middle of the horizontall fight : the degres contained betweene the two fights on the Bow, fhall giue the altitude requird.
Thas if the vpper fight Thall be at 80 gr and the lower fight at 50 gr . the altitude re guired is 30 gr . as in the third Prop.

Or if you tourne the other end of the bowe vpwardand fet the vpper fight to the beginning of the quadrant and then oblerue as before, the lower fight will hew the altitude.

12 To find any North latitude by the meridian altitude of ibe fus at a backe ob fervation, kno. wing either the day of the moneth, or the declination of the

Sunne.
Place your three fights as before on the fore fide of the Bow : the vpperfight to the declination of the Sun, or to day of the moneth, at the North end; the lower Eight to. Ward the South end of the Bow ; and the horizontall fight
so the center. Thenthe Sunne coming to the meridian, tyro ne your face to the North, \& holding the North end of the Bow ypward, the South end downeward, with the back of it toward your lelfe, oblerue the hadow of the vpper fight as in the former part of the, 5 Prop. fo the lower fight fhall thew the latitude of the place in the fore fide of the Bow.

Thus being in North latitude vpon the ninth of OCto ber, if you obferue and find the lower fight to ftay at 50 gr. on the fore fide of the Bow, fuch is the latitude. For the declination is to gr. Southward, and the altitude of the Sunne betweene the two fights 30 gr . the altitude of the equator 40 gr . and therefore the latitude 50 gr . as in the fixth Prop.

13 To find any South latitude by the meridian altitude of the fun at a back obferuation, knowing either the day climation of the

Smnne.

When you obferue in South latitude, place your three fights on the backe fide of the Bow : the vpper fight to the declination of the Sunne, or the day of the moneth at the South end; the lower fight toward the North end of the Bow, and the horizontall fight to the center. Then the Sun coming to the meridian, turne your face to the South, and holding the South end of the Bow vpward, with the backe of it toward your felfe, obferue the fhadow of the vpper fight as before: fo the lower fight fhall hew the latitude of the place in the back fide of the.Bow.

Thus being in the South latitude vpon the tenth of May, if you oblerue and find the lower fight to fay at 30 gr on the backe of the Bow, fuch is the latitude of the Sume betweene
the two fights 40 gr . the altitude of the equator 60 gr and therefore the latitude 30 gr , as in the feuenth Prop.

> 14 Tofind the day of the mpareth, by knowing the latitude of the place; and obferuing the sueridian altitude of the Sunne.

Place your three fights according to your latitude; the horizontall fight to the center, the lower fight to the latitude, and the vpper fight among the moneths. Then when the Sunne cometh to the meridian, obferue the altitude, looking by the lower fight through the horizontall, and keeping the lower fight ftill at the latitade, but moung the vpper fight vntil it give fhadow $v p$ n the middle of the horizental fight: fo the vpper fight fhall fhew the day of the moneth required.

Thus in our latitude if you fet the lower fight to 51 gr .30 mas. and obferuing finde the altitude of the Sunne betweene that and the vpper fight to be 28 gr .30 m . this vpper fight will fall vpon the ninth of Oftober, and the twelfth of Februarie. And if yet you doubt which of them tiwo is the day, you may expect another meridian altitude; and then if you find the vpper fight vpon the tenth of Oiober, and the treuenth of Februarie, the queftion will be foone refolued.

> 1s To find the declination of any vonksowne starie, and fo to place it on the Bow, knowing the lat itude of the place, and obferwing the Meridian altitude of the Starre.:

F When you find a farre in the Meridian that is fit for obferuation. Set the censer of the Bow to your eye, the lower fighs.
fighe to the latitude, and moue the vpper fight vp or downe vnill you fee the horizon by the lower fight, and the flarre by the vpper fight, then will the vpper fight fay at the declination and place of the ftarre.
Thus being in 20 gr . of North latitude, if you obferue and find the meridian altitude of the head of the Crofier to be 14 gr .50 m . The vpper fight will ftay at 34 gr . 50 m. and there may you place this flarre. For by this obferuation the diftance of this ftarre fro ma the South pole fhould be 34 gr . 50 m and the declination from the equator 5.5 gr . Io m . And fo for the reft:
The farres which I mentioned before, do come to the meridian in this order, after the firtt point of Aries.

16 Tofind any north latitude on landly obferuation

 with thread and pismmet.Set the fight to the day of the moneth at the fore fide and fouth end of the Bow: then when the fun cometh to the meridian turning the north end in your left hand toward the fouth, fo as the fight at the center may fhadow the fight at the day, obferue where the thread fallecth and abate 20 gr . If it fall on 70 gr : the latitude is 50 gr . If on $7 \mathrm{I} \mathrm{gr} \cdot 30 \mathrm{~mm}$. in the latitude is 5 I gr. 30 in . And fo in the reft

If the Bow had ben made onely for finding the latitude on land I might then hauc fet fuch numbers to it as needed no allowance.

17 To find any South latitude on land by obfervation with thread and plummett.

Set the fight to the day of the moneth at the back fide and north end of the Bow, and when the fun cometh to the meridian turning the fouth en di your left hand toward the north obferue as before, and abate 20 degrees.
${ }^{5}$. Or you may fet the fight to the day of the monethat the fore fide and north end of the Bow, and fo obferiwg as before, the thrad will fall on the complement of the latitude.

	(HO, Mi.		H10. 210	
The pole ftarre at	- 29	The lionshart	, 9	48
The rams head	46	The grear bearesbacke.	10	40
The head of Medufa	44	Firft in gr beares taile	12	27
The fide of Perfeus	$2 \quad 58$	The Virgins fike	13	5
The Buls eye.	415	Second in gi beares taile	13	9.
The goate	449	Third iu grobeares taile	19	33
Orions left froulder	55	Artarus	13	58
Orions ${ }^{\text {the firft }}$	513	The formoft guard	14	52
$\begin{aligned} & \text { Orions the fecond } \\ & \text { girdle } \end{aligned}$	$5 \quad 17$	The North crowne	15	19
girdle the third.	522	The hindmoft guard	15	25
Orions right Choulder	535	Scorpions hart	16	7
The great dog	6. 29	The harpe	18	24
Caftor	710	Vulturs hart	19	33
The little dog	720	Swans taile	20	29
Pollux	7.22	Fomahant	22	3^{6}
TheHydra'shart	$9 \quad 9$. -		

$\mathbf{P p}_{p}$
114

THE THIRD BOOKE.

 of the vife of the lines of Numbers,
Sines and Tangents for the drawing of Houre-lines on allforts of Plants.

THERE are ten feuerall forts of Planes, which take their denomination from thofe great circles to which they are parallels, and may fufficiently for our vfe be reprefented in this one fundamentall Diagram and be knowne by their horizontall and perpendicular lines, w.furb as know the latitude of the place, and the circles of the fphare.

I An horizontall plane parallell to the horizon, here reprefented by the outward circle ESW 2

2 A verticall plane parallell to the prime verticall circle which pafferh through the zenith and the points of Ealt and Weft in the horizon, and is right to the horizon and the meridian; that is, maketh right angles with them both. This is reprefented by $E Z W$.
3. A polar plane parallell to the circle of the houre of 6 , which paffeth through the pole and the points of Eaft and Weft, being right to the Equinoctiall and the Meridian, bur inclining to the horizon, with an angle equall to the latitude. This is here repretented by $E P \mathscr{W}$.

4 An xquinoctiall plane parallell to the Equinoctiall, which pafleth through the points of Eaft and Weft, being right to the Meridian, but inclining to the Horizon, with an angle equall to the complement of the latitude. This is here reprefented by $E A W$.
5 A verticall plane inclining to the horizon, parallell to. any great circle, which paffeth through the points of Eaft and Weft, being right to the meridian, but inclining to the horizon, and yet not paffing through the pole, nor parallell

to the xquinoctiall. This is herc reprefented either by E IW; or $E Y W$, or $E L W$.
σ A meridian plane parallell to the meridian', the circle of the houre of 12 , which pafferh through the zenith, the pole, and the points of South and North, being right to the borizon, and the prime verticall. This is here reprefented by $S Z Z$
: 7 A meridian plane inclining to the horizon, parallell to any great circle, which paffeth through the points of. Southand North, being right to the prime verticall, but inclining

The Protractor:

Place the figure page riso of the Sefor:

17:

Tofind thê inclinatien of a Plane: : 117

clining to to the horizon. This is here reprefented by SGX.
8 A verricall declining plane, parallell to any great circle, which pafferh through the zenith, being righic to the horizon, but inclining to the meidian. This is reprefented by $B \mathrm{Z} D$.
9 A polar declining plane, parallell to any great circle, which paffech through the poie, being right to the equino - : Ctiall, but inclining to the meridian. This is here reprefented by $H P 2$.

10 A declining inclining plane, parallellto any great circle, which is right to none of the former circles; but declining from the prime verticall, and inclining both to the horizoa and the meridian, and all the houre circles. This may behere reprefented either by $B M D$, or $B F \mathcal{D}$, or $\mathcal{B K D}$, or any fuch great circle, which pafferh neither through the South and North, not Eaf and W.eft points, nor thipugh he zenich nor the pole.

Each of thefe planes (exceprthe horizontall) hath two faces whereon houre-lines may be drawne ; and fo there are x_{9} planer in all. The meridian plane hath one face to the Eaft, and another to the Weft: the other verticall planes haue oue to the South, and another to the North, and the reft one to the zenith, and another to the ngdir: but what is. faid ot thes one, may be vndertood of the ocher.

To defribe the fundamentall Diagramo.

The defrription of chis diagram is fet downe at large in the vie of the Seftor Pag. 65. but for this purpofe it may faffice if it haue the vericall circle, the houre circes, the equator and the tropiques firf drawne in it, other circles may be fupplyed afterward as we fhall haue vie of them. And thofe may be readily drawne in this ma, ner.

Let the outward circle reprefenting the horizon be drawee PP3
and
and diuided into foure equall parts with $S N$ the meridian \& $E W$ the verticall and each fourth part into 90 gr . That done lay a ruler to the poynt S, and each degree in the quadrant $E 2<$ and note the interfections where the ruler croffeth the verticall, fo, hhall the femidiameter EC be diuided into other 90 gr . and from thence the other femidiameters may be diuided in the fame fort. Thefe may be numbered with $\mathbf{1 0 . 3 0}$ 30. \&c. from E toward C, and for varietie with 10.20 .30 . . \&c.from C toward W. But for the meridian the South part would be beft numbered according to the declination from the equator and the North part according to the diftance from the pole.

Then with refpect vnto the latitude which here we yappofe to be 51 gr .30 m . Open the compaffes vnto 38 gr .30 m . from C toward W, and prick them downe in the meridian from C vnto P fo this point P fhall reprefent the pole of the world, and through it mult be drawne all the houre circles.

Hauing three points E, P, W, finde their center which will fall in the meridian a little without the point S, and draw them into a circle $E P$, which will be the circle of the houre of 6 .

Through this center of the houre of 6, draw an occult line at length parallell to $E W$, lo this line fhall containe the centers of all the other houre circles. Where the circle of the houre of 6 croffeth this occult line, there will be the centers of the houre circles of 9 and 3. The diftance between thefe centers of 9 and 3 , will be equall to the femidiameters of the houre circles of 10 and 2. And wherethefetwo circles of 10 and 2 thall croffe this occule line there will be the centers for the houre circles of $\mathrm{I}_{1} \& 7$ \& 5 and 1 . Againe diuide the diftance between the centers of 10 and 2 , into threc equall parts, $l o$ the feet of the compaffes will reft in two points : the one is the center of the houre circle of 8, and the other the center of the houre circle of 4 . \& the extent of the compaffes to one of thefe third parts hall be the true femidiameter of thefe circles if there be no error committed in the finding of the other centers.

The houre circles being thus drawne, take 51 gr .30 m .from C toward W and prick them downe in the South part of the metidian from C vnto A, and bring the third point E, A, W, into a circle this circle fodrawne fhall reprefent the equator.
The trupique of ${ }^{\text {Gis }} 23 \mathrm{gr}$: 30 m . aboue the equator, and. 66 gr .30 m diftant from the pole, and fo in this latitude it will croflc , he South part of the meridian at 28 gr . from the zenit',, and the N , , 'h part of the meridian at $\mathrm{I} s \mathrm{gr}$. below the horizo. Take therfore $28 . \mathrm{gr}$. fro C toward W \& princk them downe in the meridian tion C vnto L,fo haue you the,South interfection. Thenlay the ruler to the point $E \&: 15 \mathrm{gr}$. in the guadrant $N E$ numbered from Ntoward E, and note where it croffeth the meridian, fo hall you haue the North interfection. The halfe way between thefe two interfections will falluin the meridian at thepoint a a aa, \& the circle draw on the center a_{2} and femidiameter a L, fhall repretent the tropique of 9 , and here croffe the horizon before 4 in the morning \&after 8 in the euening, about 40 gr . nortwhard from E and W. according to the rifing and fetting of the fun at his entrance into. so.

The tropique of wis is $23 . \mathrm{gr} .30 \mathrm{mb}$. below the equator, 8 : 113 gr .30 m : diftant from the north pole, fo that in this latitude it croflech the South part of the meridian at 75 gr . from the zenith, and the north part of the meridian at 62 gr .below the horizon. Take therfore 75 gro from C toward W, and: pricke them downe in the meridian fron C vnto r fo haue you the South interfection, then lay the ruler to the poins E \& 62 gr in the quadrant $2 N E$ numbered from N toward E and note: where it croffech the meridian,fo fhall you haue the North niter fection. The halfe way between thefe two interfections Ghallbe the center whereon you may delcribe the tropiguc of $v s$. and this tropique will croffe the horizon afier 8 in the morning and before 4 in the euening, about 40 gr . fouthward from E and W.according to the rifing and fetting of the fun at his entrancejigento?

To find the inclination of amy Plane.

Forkhe diftinguifhing of thefe Planes we may finde whether they be horizontall, or verticall, or inclining to the horizon, and how much they incline, either by the vfuall inclinatorie guadrant, or by fitting a thread and plummet vnto the Sector.

For let the Sector be opened to a right angle, the lines of Sines to an angle of 92 gr . the inward edges of the Sector to 90 gr , and let a thread and plummet be hanged vpon a line

parallell to the edges of one of thencer, if that leg thall be verticall, and the other leg paralleh to the horizon.

If the plane feeme to be verticall (like the wall of an vpright building) you may trie it by holding the Sector, fo that the thread may fall vpon his plumet line. For then if the verticall edge of the Sector hall lie clofe to the plane, the plancis erect, and therefore faid to be verticali; and if youdraw a line by that edge of the SeEter, it Chall be a verticall line.
-If the plane feeme to be leuell with the horizon, you may trie it by fetting the horizontall leg of the Sector to the plane, and holding the other leg vpright: for thenifthe thread thall fall on his plummet line, which way foeuer you turne the Sellor, it is an horizontall plane.

If the one end of the plane be higher then the other, and yet not verticall, it is an inclining plane, and you may find the inclination in this manner.

Firt hold the verticall leg of the Sector vpright, and uirne the horizontall leg about, vntill it lie clofe with the plane, a:d the thread fall on his plummet lire fo the line drawne by the edge or that horizoniall leg, thall be an horizontall line.

Suppofe the plane to te $B G E D$, and that $B D$ were thus found to be the horizontall line vpon the plane then may youcroffe the horizontalline atright angles with a perpendicular CF: that done, if you fet one of the legs of the Sector ypon the perpendicular line $C F$, and make the other leg with a thread and p'ummet to become verticall, you thall haue the angle betweene the verticall line and the jerpendicular ou the Plane, as before in the vfe of the Secter, pag. so. and the complement of this angle is the inclination of the plane to the horizon.

To find the declination of a Plane.

The declination of a Plane is alwayes reckoned in the horizon betweene the line of Eaft and WGA, and the horizontall line vpon the plane. As in the fundamentall Diagram, the prime verticalline (which is tie line of Ealt and Weft)

But becaufe a Plane may decline diuers wayes, that we may the better diftinguifh them, we confider three lines belonging to euery Plane: the firft is the horizontall line; the fècond the perpendicular line, croffing the horizontall at right angles; the third the axis of the plane, croffing both the horizontall line, and his perpendicular, and the plane it felfe at right angles.

The perpendicular line doth help to find the inclination of the plane as before, the horizontall to finde the declina tion, the axis to giue denomination vnto the plane.
For example, in a verticall plane in the fundamentall diagram reprelented by E ZW, the horizontall line is $E C W$, the fame with the line of Eaft \& Weft,\& therefore no declination; the perpendicular croffing it is $C Z$, the fame with the verticall line, drawne from the center to the zenith,right vnto the hosizon, and therefore no inclination. The axis of the plane is $S C N$, the fame with the meridian line, drawne from the South to the North, and accordingly giues the denomination to the plane. For the plane hauing two faces, and the axis two poles, $S_{\text {and }} N_{i}$ the pole \mathcal{S} falling directly into the South, doth caufe that face to which it is next to be called the South face; and the other pole at $\mathbf{N}_{\text {, }}$, pointing into the North, doth giue the denomination to the other face, and make it ro be called the North face of this plane.
In like manner in the declining inclining plane in the fundamentall diagram reprefented by B F D,the horizontall line is BC D, which croffsth the prime verticalline I C HF; therfore it is called a declining p ane,according to the angle of declination ECB or $C D$. The perpendicular to this horizontall line is $C F$, where the point F falleth in the plane $2 z F$ perpendicular to the plane propofed, betweene the zenith and the North part of the horizon, and therefore it is called: a plane inclining to the Northward, according to the arke F. 2, or the angle FCO. The axis of the plane is here reprefented by the line $C K$, where the pole K is $9^{\circ} \delta^{2}$. diftant
from the plane, and fo is as much aboue the horizon at H." and the other pole as much below the horizon ar Q, as the plane at F is diftant from the zenith : and this pole E here talling betweene the meridian and the prime verticall circle -into the Southweft part of the world, this vpper face of the plane is therefore called the Souttiweft face, and the lower the Northeaft face of the plane.

The declination from the prime verticall may be found by the needle in the vfuall inclinatoric Quadrant, of rather by comparing the horizontall line drawne vpon the plano with the azimuth of the Sunne and the metridian line, in fach fort as before we found the vatiation of the magneticnill needle. For takeany boord that hath one fideftraight, and draw as in the laft diagram the line HO parallel to that fide, \&e the line $Z M$ perpendicular vntoit, and on the center Z make a femicircle H M Othis done, hold the boord so the phaie, fo as HO may be parallel to BD the horizontilline on the plane \& the boord parallel to the horizon; then the Sun hining $v p-$ on it, hold out a thread and plummet, fo as the thread being verticall, the fhadow of the Sunne may fall on the center \bar{E}, and draw the line of fhadow $A Z$ reprefenting the common: fection, which the Azimuth of the Sunne makes with theplane of the horizon, and let another take the altitude of the Sumne at the fame inftant: fo by refoluing a criangle, as I thewed before pag. 65 you may find what Azimuth the Sun: was in when he gade fhadow vpon $A Z$.

Suppofe the azimuth to be (asfefore pag. 64:)72 gr. $52 . \mathrm{mp}$. from the North to the Weftward, and therefore 17 gt .8 it . -from the Weft, we may allow thefe 17 gr . 8-m. from el voto F, and draw the hine $Z V$, anid fowe haue the true Wef point of the prime verticall line: then allowing gotiontrom y to S, we hatue the South point of the meridian line $z S_{5}^{*}$ and the angle HZV fhall gine the cleclination of the plane from the verticall, and the angle $O Z$ Sthe declintion ol the plane from the meridizn.

Or we may take out onely the angle A ZH, which the line of chadow males with the horizantall line of the plane,
and compare it with the angle $\mathcal{A} Z V$, which the line of thidow makes with the prime vericall. Aild fo here if $A Z V$ she Sunues Azimath fhall be 17 gr .8 m paft the Weft, and yet the line of hadow $A Z 7 \mathrm{gr} .12 \mathrm{~m}$. Chore of the plane, the declination of the plane fhall be 24 gr .20 m as, may appeare by the lite of the plane and the circles.

If che altit de of the Sunne be taken at fuch time as the thadow of the thriad falleth on B D or HO, and then a triangle refolued, the declination of the plane will be fuch as the Azimuch of the Sunne from the prime verticall.

If at fuch a time as the fhadow falleth on $M Z$, the decliagtion will be fuch as the Azimuth of the Sunue from the: meridian.

If it be a faire Summers day you may firft finde what altitude the Sunne will haue when h: cometh to be due Eaft or Weft, and then expet vntill he cone to that altitude; fo the declination of the plane hill be fucb as the angle contained betweene cheline HO and the line of the ghidow.

Hauing diftinguithed the Planes, the next care will be for the placing of the ftyle and the drawing of the hourelines.

The fyle will be as the axis of the world, fometimes parallelto the plane, tometimes perpendicular, fonetimes cat the plane with obligut angles.

The houre-lines will b exther parallell one to the other: or meere in a center withegaill angles, or meere with vnequallangles, If the ftyle beperpendicular to the plane, the anglesat che cencer will becquall; and this falls gut onsly in the Squ: hand North face of anequino tidl place: if the fylle be parallet to the plane, the troure-lines will be alfo parallell one to another; and this falls out in all polar planes, as in the Eaft and Weft meridian planes parallel to the circle ofthe houre of 12 , in the yeper and lower direa polats parallell to the circles of the houre of 6 , and in the vpper and lowperdeclinipgeolass whichare parallel to any of the other houre circles.

But in the horizontall and all other planes, the ftyle will cut the plane with an acute angle, and the houre lines will meet at the root of the ftyle, and there make vneguall angles.

CHAP. I.

To dravo the boure-lines in an equinoctiall Plane.

AN equinoctiall plane is that which is parallell to the equinotiall circle here reprefented by $\varepsilon \& V$, whereip the

spaces betweene the houre circles being equall ; there isno need of further precept, but onely todraw a circle and to divide it into 24 equall parts for the 24 houres, and fubdiuide each houre into halues and quarters, and then to fervp the ftyle perpendicular to the plane in the center of the circle. The help which thefe lines of proportion doe here afford vs, is onely in the diuifion of the circle, which may be done readuly by that which I hewed before, Pag. 29.
For example, fuppofe the fermidiameter of the equinoctiall circle to be fix inches, and that it were required to know the diftance of the houre-points each from other: here each houre being 15 gr . diftant from other, I extend the compaffes from the fine of 30 gr . vnto the fine of 7 gr .30 m . the halfe of 15 gr . and I find the lame extent to reach in the line of numbers from 6.00 vare 1.56.
Or in croffeworke I extend them from the fine of 30 gr . vato 6.00 in the line of numbers, the fame extent will reach from the fine of $7 \mathrm{gr} .30 \mathrm{~m} . \mathrm{vnto} \mathrm{I} .56$ in the line of numbers; which fhewes that in a circle of fix inches femidiameter, the diftance of thehoure-points each from other will be about 8 inch and 56 centefmes or parts of 100 . The like reafon bolds for the infcribing of all other chords in the Prop. follo-
wing.

CHAP. II.

- To draw the boure-lines in a direct polar plane.

A-Direct polar plane is that which is parallell to. the houre of 6, herc reprefented by $E P W$, wherein the fyle will be parallell to the plane, and the houre-lines parallell one to the other, and therefore may be beft drawne by that which I have thewed in the vfe of the S_{e}. Etor. They may be allo drawne by the helpe of thefe lines of proportion, in this maner.

Firft drawa right line W E for the horizon and the x quator, and croffe it at the point $\mathbf{C ,}$, bout the midie of the line with CB another sight line, which may ferue for the metidian and the houre of $\mathbf{2 2}$, and muft alfo be the fubfylar line wherein the fyle fhall fand. Then, to proportion the fyle vnto the plane, confider the length of the horizontall line, and what houre-lines you would have to fall on your plane.

For the diftance of any one heure-line from the meridian being knowne, we may finde both the length of the flyle and the diftance of the reft : becaufe.

> Asthe tangent of the houre given; is to the difance from the meridian : So the tangent of 45 gr . to. the heighto of the Ityle?

Suppofe the length of the horizontall line to be 12 inches, and that it were required to put on all the houre-lines from z in the morning vnto 5 in the euening. Here we haue s houres and 6 inches on either fide the meridian. Wherefore I allow 15 gr . for an houre, and extending the compafies from the tangent of 75 degrees I find the fame extent to reach in the line of numbers from 6.00 to about 1. 6x. This thewes both the height of the ftyle; and the diltance of the houre-points of 9 and 3 from the meridian to be 1 inch, 61 parts.

> To find the length of the Tangent betweene the fubstylar and the houre-
> points.

As the tangent of 45 gr .
to the tangent of the houre :
So the height of the ftyle
to the length of the cangent line betweene the fubltylar and the houre-poines.

Thus baning found the length of the ftyle in our example
ple to be i. 6i, ifI extend the compaffes from the tangent of 45 gr . vnto the tangent of 15 gr . the mealure of the firlt houre from the fubitylar, Ihall find the fame extent to reach in the line of numbers fromy. 6 vito 0.43 , for the length of the tan gent betweene the fubfylar and the houre-points of 11 and I. IfI extend them from the tangent of 45 gr . vnto the tangent of 75 gr . the meafure of the fift houre, I Thall finde them to reach in the line of numbers from 1.61 vnto 6.00 . for the length of the tangent from the fubftylar to the houre-points of 7 and 5. For howfoever it be the fame diftant in the line of tangents from 45 vato 75 , as from 45 vnto 15 ; yet becaule 75 are more, and 15 leffe then 45, the tangent lines that anfwer to them wil be accordingly more or leffe then the length of the fiyle.

Againe, if I extend them from 45 gr . in the tangents p to 30 gr . che mealure of the fecond houre, I hall finde thein to reach in the line of numbers from I . 61 unto 0.93 for the' houre of 10 and $2:$ it I extend them from the tangent of 45 $g r$.vnto the rangent of 60 gr .for the fourth houre, I fhall find them to reach in the line of nambers from 1.61 vnto 279 , and fuch is the length of the tangent line from the fubftylar vnto the houre of 8 and 4. And the like realon holdeth for theinferibing of all other tangent lines in the propofitions following.

But for fuch tangents as fall vnder $45 \mathrm{gr} . I$ may better vfe croffe worke, and extend the compaffes from the tangent of 45 gr . vnto I .6 I in the line of numbers, fo fhall I finde the Game extent to rach from 30 gr . in the targents, to 93 parts in the line of numbers, for the diftance of the fecond hotites and from 15 gr.in the tangents to 43 parts for the diftance of the firft houre from the meridiant.

Or ifthis extent from 45 gr . backward to 1.61 be too large for the compaffes, I may extend them forwardfrom the tangent of $s g^{r} .43 m$ to 161 parts in the line of numbers, \& the fame extent fhall reach from is gr in the tangents, to 43 parts in the line of nuinbers, for the diftance of the firft houre; and from 30 gr . to 93 parts, for the diftaice of the lecond houre, as before.

Hauing found the length of the tangent lines in inches and parts of inches, and pricked them in the x guator on both fides of the meridian, from the center C; if we draw right lines through each of thofe points, crofling the xquator at right angles, they fhall be the hourelines required; and if we fet a ftyle oucr. the meridian, fo as the edge of it be parallel to the plane, and the height of it be as much aboue the meridian as the diftance between the meridian and the houre-points of 3 or 9 , it fhall reprefent the axis of the world, and be truly placed for the calting of the fhadow vpon the houre-lines in a polar plane.

> CHAP. III.
> To draw the boure-lines in a meridian plane.

AMeridian plane is that which is parallell to the meridian circle in the fundamentall diagram reprefented by $S Z$ 2 ; it hath two faces, one to the Eaft, and the other to the Weft; in each of

platie; and the houredine parallell one to the other, as in ${ }^{2}$ poler plane, the difference being onely in the placing of the sequator and in numbring of the boures.

For in thefe meridian planes hauing drawne on occult verticall line $C \mathbf{Z}$, and an occult horizontall live $C \mathbf{N}$, crolfing one the other at right angles in the point C, the zguator $A C$ will cur the verticall with an angle Z C A, equall to the latitude of the $\mathrm{f}^{\text {lace }}$: then may we croffe the xquator at right angles with the line $C B$ for the houre of 6 , and trom this fet off the houre-points in the æquator as in the former Prop.

For fuppofing the length of the ftyle CB to be teh inches, the length of the tangent line belonging to the firt: houre wil be 2 in, 68 p . the length of the feco.d 5 in 77 p . as Rr 2
in the Table. Then the tangent of $I_{5} \mathrm{gr}$. being prickt downe in the aqueter on both fides from 6, fhal ferue for the houres of 5 and 7 , and the cangent of 30 gr . For the houres of 4 and 8 , and fo in the ref. This done, if we draw right tines through sach of thefrs points, crofing the squacor at fighty angles, they thal be the houre lines required: and if we fer a fyle puer the houre of 6, to as the edge of if may be parallell to the plane, and the height of is may be equail to the diftance betweene the houres of 6 and 9 in the aquator, it hall reprefent the axis of the world, and be truly placed for the calting of the Shadow vpon the houre-lines in a meridian plane.

CHAP. IIT.

To drats the boure-lines in an borizontall plane.

AN boiizontal plane is that which is parallell to the hozizon, reprefented in the fundamentall diagram by the outward circle ESHRC, in which the diameter $\boldsymbol{s} \boldsymbol{\sim}$ drawne from the South to the North, may go both for the meridian line and the meridian cirele, Z for the zenith, P for the pole of the world, and the circles drawne through $\underset{P}{\boldsymbol{P}}$ for the houre-circles of A . 7. 3. 4. 8ec, asthay wecenumbred fram the masidiath.

Thsfe

FiThefe are equall at the pole and at the aquator but vnqqually difantais the horizom the diffance betwern the wrea ridian and the firt houre being not fulliiz gr, the diftance between the'fift and fixth hourtaboue 18 gr . which inequalify bring obferued, if you fugpofe right lines frawne from the center C to the interfedions of thefe/houre-cirdet with the horizon, the lines to drawne fhal be the hourelines here inquired. And then if yot can imagin a line drawne from the centir C, toward P the pole of the world and; raifed aboue the meridianiline $C 2$ fo 2 s the angle $P \quad C N$ may be equallto the datictde dit the place, tbis right line CP hall be the axis of the ftyle. And fo you haue borth ftyle, and houre-lines ready drawne to your hand. Buit mort particularly to ourpurpofe.
Thefe houre-circles confidered with the meridian and the horizondoe make diuers trinugles, $P N$ i, P N $2 ; P 2 X_{0}$ 3. in which we haue knowns firft the rightangle at \sim the North interfection of the meridian and the horizon; fecondly thefide. P. AC-, the arke of the maridian between the pate and the horizon, whictigulwayes equall to the latitude of the place; thirdty the garfles at the pole made by, the meri-: diman and the hourecircles, the angle χP i being -15 .

 inthe ferond coturine of this table. And thefe three being. known. we may finde the arks of the horizon beeween the meridian ard the hourc-circles $N_{3}, \mathrm{Z}_{2}, N_{3}$, \&c. For.

Asthe tineof $90 . \mathrm{gr}^{r}$ is to the fineop the latitude:

So the tangent of the hpore

to the tangent of the houre line from the meridiagh

Extend the compafles firan the fine of 50 gr . to cthefiner. of the latitude, fo the fame extene fhall reach troon the tane gent of the hopureacestbetangen tof che hourd-lincefiom the -it. 3

Rr 3
meridian.

meridian. Thus the latitude, being 51 gr .30 m . I extend the compalfes from the fine of 90 gr . to the fine of 51 gr .30 m, \& find the fame ex ent to reach from the tangent of 3 $\mathrm{gr}_{\mathrm{o}} 45 \mathrm{~m}$. vnto the tangent of 2 gr .56 mm . for the diftance of the firft quarter from the meridian; and from the tangent of 7 gr .30 m . vnto the tangent of 5 gr .52 m . for the halfe houre; and from the tangetit of 11 gr . is m . to the tangent of 8 gr . si m . for the thid quarter; and from the tangent of 15 gr .0 m . vnto 11 gr . 30 m . for the firt houre: and forthertit: as in the third columne of this table vider the attice of the ank sof the planc.:
: Onty when I same to fet one frote of the compafles to : - 55:023
4^{8} gr.

$43 \mathrm{gr}, 45 \mathrm{~m}$. for the finding of a quarter paft 3, the other toore w:ll fall out of the line, and then I may either take out fo much as is out of the line be yond 45 gr . and turne it backe into the line, and it will reach from 45 gr . to $4^{1} \mathrm{gr} .45 \mathrm{~m}$. or I may vie croffe worke, extending the compaffes from the fine of 90 gr . to the tangent of 48 gr .45 m . fo the fame extent wil reach from the fine of $\mathrm{si}^{\mathrm{I}} \mathrm{gr} .30 \mathrm{~m}$. to the rangetit of : 4 T gr .45 m . And fuch is the diftance of the line of 3 houre $\frac{\pi}{4}$ from the meridian.

This done, I come to the Plane, and there according as the lines do fall in the fandamentall diagram,

I I draw a right line $S \boldsymbol{\pi}$ reruing for the meridian, the houre of 12 and the fubsylar.

2 In this meridian I make choice of a center at C, and there defcribe an occult circle reprefenting the hori$z o n$.

3 I find a chord of 11 gr .50 m . and infcribe it into this circle on either fide of the meridian for the houres of 18 and I ; in like maner, a chord of 24 gr .20 m . for the houres of 10 and 2 ; and 2 chord of $38 \mathrm{gr} .3 . \mathrm{m}$. for the houres of 9 and 3 ; and fo for the reft of the houres, their halues and quarters.

4 I draw right lines through the center and the termes of thefe chords ${ }_{2}$ and thefe lines to drawneare the houre-line required.

The line be-forging to the houre of 6 will be perpendicular to the mecidian, and the houre-lines before 6 in the morning, or after 6 in the evening may be fupplied by continuing their oppofet houre-lines be yond the center. As the hourc-line of 7 in the morning continued will be the houre-line of 7 in the eueming and fo the reft.

Lafly, I foe vp the fylle ouer the meridian; fo as it may cur the plane in the center, and there make an angle with the meridian equall to the latitude of the place, fo it fhall reprefent the axis of the world, and be truly placed for cafting of the dhadow vpen the houre-lines in an hori: zontat plane.

The defoription of the ionure-limes

CHAP. V.

To drass the boure-lines in a roerticall plane.

AVerticall plane is that which is parallel to the prime verticall circle in the fundamentall diagram reprefented by E ZW. It hath two faces, one to the North, the other to the South; in each of them the fubftylar will be the fame with the meridian line, and the angle of the fyle aboue the plane will be equall to $\boldsymbol{Z} \boldsymbol{P}$ the complement of the latitude and the houre-lines here inquired may be fupplied by imagining right lines drawne from the center C to the interfections of the houre-circles with $E Z W$.

The triangles here confidered are made by the verticall, the meridian, and the houre-circles, in which we know the fide $Z P$, the angles at the pole, and the right angle at the zenith, and therefore may find the arks of the verticall, between the meridian and the houre-circles after this maner:

As the fine of 90 gr
is ta the cofine of the tatitude:
So the tangent of the houre
to the tangent of the houre-line fom the meri-
Extend the compaffes from the fine of 90 gr . to the fine of the complement of the latitude, fo the fame extent fhal reach from the tangent of the houre, to the tangent of the houre-line from the meridian.

Thus in the latitade of 51 gr .30 mo I extend the compaffes from the fiac of 90 gr . to the fine of 38 gr .30 mond

138 The defcription of th: bswre-lines in s vettical Plame. find the fame exteat to reach from the tangent of 15 gr . to the taingent of 9 gr .28 m , for the diftance of the firft houre from the meridian: and from the tangent of 75 gr . vato the tangent of 66 gr .42 m , for the fife houre: and fo in the reft as in the Table following.

Thefeatks bentgknotives; I mayiconatro the plane, zud
 feruing both for the meridian sund :hetiothe of: p_{2}, atdethe
 athereio incribe the chotas of thefe formernider; ahd ditidw E.

.The defription af the howrelines is

the houre-liness and fet up she siyle. asbefore in the horizontall.plane,
If it be the Soutb face of the plane, the 'center will be vpward, and the ftyle mult point downward; if the North face, the center muft bein the lower part of the meridiantine, and the fylle-point vpward in all fuch places as are to the Northward of the equinoctiall line, as it may appeare by confidering how the lines do fallin the fundamentall Diagram.

CHAP. VI.

To drabs the boure-lines in a reerticall incli=
 ning plane.

ALl thofe Planes that hane their horizontall line lying Eift and Weft, are in that refpect faid to be verricall; if they be alfo vpright and paffe through the zenith, they are di rect verticals; if they incline to the pole-they are direct polars: if to the equinoctiah, they are properly called equinotiall planes, and are defcribed before : it to none of thefe three
 points, they are then called by the generall name of inclining verticals.

Thefe may incline either to the North part of the horizon, or to the South; and each of them hath two faces, Sf 2
ons firft to confidir the height of the pole aboue the plane, by comparing the inciination of the plane to the horizon, with the latitude of the place.

As in our latitude of $5 \mathrm{rgr}$.30 m . if the inclination of the plane $E I$ in the fundamentall diagsam thall be I 3 gro Northward, that is, if $1 \cdot \mathbf{N}$ theark of the meridian berween the plane aud the North part of the horizon fhall be 13 gr . we may take thefe 13 gr . out of $P^{2} N 5^{1} \mathrm{gr} \cdot 3^{\circ}$ in. the eleuation of the pole aboue the horizon, and there wil remain $P I_{3} 8 \mathrm{gr} .30 \mathrm{~m}$. For the eleuation of the North pole aboue the vpper face of the plane, and therefore 38 gr . 30 mm . For the height of the South fole aboue the lower tace of the plane.

Or if the inclination of the plane fhall be found to be 62 $g r$. to the Southward, we may number them in the meridian tiom S the South part of the horizon vnto E, and there draw the arke $\mathcal{E} L W$ reprelenting this plaine; fo the arke of the meridian $P L$ Chall give the height of the North pole aboue the vpper face of this plane to be $66 \mathrm{gr}_{i} 30 \mathrm{~m}$. and therefore the height of the South pole aboue the lower face of the plane is alfo 66 gr .30 mm .

In like maner if the inclination of the plane ETW fhall be 15 gr . Southward, that is, if $S Y$ the arke of the meridian between the South part ofthe horizon and the plane, thall be 25.gr. The height of the North pole aboue the vpper face of the plane, and the height of the South pole aboue the lower face of the plane, will be allo found to be $66 \mathrm{gr} \cdot 30 . \mathrm{mon}$.

But if the plane flhall fall betweene the zenith and the North pole, then will the North pole bee eleuated aboue the lower face, and the South pole aboue the upward face of the plane, as may appeare by the proiection of the fpheare in the fundamentall Diagram.

Then in the triangles made by the plane, the meridian; and the houre-circles, we haue the fide which is the height of the pole aboue the plane, together with the angles at the
pole ${ }^{\prime \prime}$ and the right angle at the interfection of the meridian with the plane, by which we may find the arks of the plane betweene the meridian and the houre-circles, after this maner.

As the frine of 90 gr : is to the fine of the pole aboue the plane:
So the tangent of the houre to the tangent of the houre-line from the meridian:

Thus in the former example, where P I the height of the pole aboue the plane was found to be 38 gr .30 mm . it you fhall extend the compaffes from the fine of 90 gr .oo the fine of 38 gr .30 m . the fame extent will reach from the tangent of 15 gr . vnto the tangent of 9 gr .28 m . for the diffance of the firt hourefiom the meridian, and from 30 gr . vnio 19 gr .46 m . for the fecond houre, and foforward as in the direct verticall.

And for the two laft examples, you may extend the compaties from the fine of 90 gr . vnto the fine of 66 gr .30 mmo the fame extent fhall reach in the line of tangents from 15 gr. vnto 13 gr .48 m . for the firf houre, from 75 gr . vato 73 gr . 43 m . For the fif houre, from 30 gr . vnto 27 gr . 54 m . for the fecond houre, from 60 gr . vnto 57 gr .48 m . for the fourth houre, and from 45 gr . wato $4^{2} \mathrm{gr} .3 \mathrm{~F}$. mi for the thirdioure from the meridian

Thefe arkes being knowne, you may firtt draw the horizontalline, and croffe it in the middle with a perpendicular that may ferue both-for the meridian and the houre of 11 , and the fubfylar; then knowing which pole is cleuated abouc the plane, you may accordingly make choice of a fit point in the meridian for the center of your houre-lincs, and thence defcribe an occult arke of a circle, infcribe the chords. of thofe former arkes, and draw the houre lines, and fetoup the Ayle, as I thewed before in the horizontall plane.

To draw the boure-lines ing anteriticall'

declining Plane:.

ALl vpright planes whereon a man may draw a verticall line, areain chistefpect faid to be vertical; If they Chall alfo: fand directly Eaft and Weft, they are direg vericals; if difectly North and \$ourh, they are properly called meridian planes, and are defetibed beforentif they behold none of thefe foure prgincipall parts of the wolrd, but hallidenad between the prime ucrticall and the meridian, they are then called by the generall name of declining verticals.

Thefe haue two faces, one to the South, the other to the Northmardo which may bediftinguifhed in thefe Northerne parts of the world afere this manuer if the Sunne coming to the meridian Chall thine vpon the plawe it is the South face; if not it is the North face of that plane, Againe, if the Sunne ghall hime ypon the plane at high noone, and yet longer in the forenope chan in the afernoon, it is the, Southeaft face; if laager in the afterapone then in the forenoones, it is the Southweit face of the plane. But how much the declination cometh fog in beft found as before.

Whenthedeclination is found, there be foure things mote to be confidered before we can came to the drawing -of the houre lines r!
\because LThemeridian of the planeand his inclination to the meridian of the place.
:13 Tha bight of the pola aboue the plase.
ity Thiberdiatace of the fubitylar foom the meridian linas:

And thefe foure may all be reprefented in the fundamentall Dingrame asin this example:-

Suppofe that in our latitude of $5 \mathrm{I} . \mathrm{gr} .30 \mathrm{~m}$. northward the declination
 angle ${ }_{2}$ and the angle at \mathbf{Z}, for $j t$ is the complement of the. declliation, end the bate. Z, for it is the complement of the latitude, And there three being knowne we may find the otheir angkRPZ, which is the angle of midtuation betweine böthoieridiants.

As the fine of the latitude

$144:$

The defariprio in of the bource. lines in
Sothe tangent of the dectination to the tangent of inclination of ueridian.
Thas in our former example I extend the compaffes from the fine of the latitude 51 gr .30 m , vato the fine of 90 gr . the fame extent will reach in the line of tangents from $34 . \mathrm{F}_{\mathrm{r}}$. 30 m.the declination giuen, to abour 30 gr and fuch is $Z P R$ the angle of inclination between the meridian of the place and the meridian of the plane; and therefore the meridian of the plane will here fall vpon the circle of the fecond houre from the mpridian of the place, (as it may alfo appeare by opening the compaffes to the neireit extent, between the pole and the. plane) and there I place the letter R to make this rectangle $\mathcal{T} R \mathrm{Z}$.

Tafind the hight of the pole abome ibeplanc.

The herightof the pole is to meafured in the meridian of the pláne it is here reprefented by the arke P R, and may be found bythat which we have knowng in the formery triangle PRZ.

> As the fine ofgogr:
> to the cofine of the lativude:
> So the cofine of the declination
> to the fine of the highe of the pole aboue the plane

Extend the compaffes from the fine of 90 gr . vnto the fine of 38 gr .30 mo the complement of the latitude, and the fame extent will reach from the fine of 65 gr. 40 m. the comple: ment of the declination, into the fine of 34 gr .33 mm

Or if you pleale to make vfe, bo the angle of the inclinatie: on of the two meridims, the proportion will hold.

> As the fine of 90 gr .
> to the cofine of the inclination of meridiansel

So thic cotangent of the latitude

 to the tangent of the height of the pole aboue the plane?And then you may extend the compaffes from the fine of 90 gr . vnto the fine of 60 gr . the complement of the inclina tion of the meridians, and the fame extent will reach from the tangent of 38 gr .30 m . the complement of the latitude, vnto the tangent of 34 gr .33 m . and fuch is the arke P. R_{9} the hight of the poleaboue the plane.

3 Tofind the diftance of the fubftylar from the meridian.

This is here reprefented by the arke $\mathbf{Z} \mathbf{R}$,and may be found by that which we haue knowne in the former triangle $\boldsymbol{P} \boldsymbol{R} \mathbf{Z}$

> As the fine of 90 gr .
> to the fine of the declinations
> So the cotangent of the latiude.
> to the tangent of the fubitylar from the meridian:

Extend the compaffes from the fine of 90 gr . vnto the finie of 24 gr .20 m , the declination giuen, and the fame extent will reach from the tangent of 38 gr .30 m . the complement of the latitade, vnto the tangent of 18 gr .8 m . and fuch is the arke $\mathrm{Z} R$, the diftance of the fubitylar trom the meridian.

4 Tofind thediftance of each houre-line from the fabfylar.

The diftances of the houre-ines from the fubtylar, are here reprefented by thofearks of the declining verticall belonging to the plane, which are intercepted betweene the proper meridian of the plane and the houre-circles.

To this purpofe we have diuers triangles made by the declining plane, together with his proper meridian and the houre circles. I'n thefe we have knowne, firt the right angle gt the interlection of the proper meridian with the planeytich
the fide which is the hight of the pole aboue the planes and thirdlythe angles at the pole. For knowing the angle of inclination berweene the meridian of the plane and the meridias of the place, which is alwayes the houre of 12, we may Gude che angle bet weene the meridian of the plane and the houre ot I , by allowing in $\mathrm{I} 5 \mathrm{gr}^{\text {. and the angle betweene }}$ the meridian of the plane and the houre of 2 by allowing in 30 gr . and fo for the reft, which being knowne and fet down in a table we may find the arks of the plane from the fubltylar to the houre-circles, in this maner.

> As the fine of $90 \mathrm{gr} \mathrm{r}_{0}$
> to the fine ot the hight of the pole aboue the plane: So the tangent of the houre from the proper meridian, to the tangent of the houre-line from the fubitylar.

Thus' in our latitude of $3 x$ dogrees 30 minutes, if the declination of an vpright plane fhall be found to be 24 gr .20 m. from the prime verticall, the one face open to the South weft, the other to the Northeaft, I may number thefe $24 \mathrm{~g}^{r}$. 20 ms in the horizon of the fundamentall Diagram, from E vnto B, according to the fituation of the plane, and there draw the verticall $B Z D$, which thall reprefent the plane propofed.

The two poles of this plane will fall in the horizon at H^{*} and 2 and therefore the proper meridian drawne through the poles of the plane, and the pole of the world mult be the circle HPQ which here croffeth the plane at right angles. in the point R_{2} and inclineth to $P \mathbf{Z} \mathcal{S}$ the meridian of the place, according to the angle $\mathbb{R} \boldsymbol{P} \mathbf{Z}$.

The quantity of this inclination may be readily found by the houre, circle where the proper meridian fallerh. As here in fallethon the focond houre circle, and fo the inclipation is 394

The height of the pole above the plane which giucth the height of the filic aboue the fublyylar is here reprefented by thearke P.R. Forasin the Horizontail, $f o$ in this and all o-
ther planes the line $C P$ the axis of the world is alwaies the axis of the file, and the neereft line that can bedrawne vpo the plane to the axis of the world is the fiteft for the fibftylar, and that is the line $C R$, fo the angle $P C R$ is the angle betweene the axis and the plane, commoily called the height of the ftyle and the meafure of this angle is the arke $\boldsymbol{P} \boldsymbol{R}$, This arke is alwayes leffe then the complement of the lacitude, and may be eftimated by taking the diftance $P \boldsymbol{R}$ with the compaffes, and meafurtng it in the Meridian from T toward Z. So in this example it will appeare to be about $34 \mathrm{gr} . \frac{1}{2}$.
The diftance of the fab\&ylar from the meridian is here reprefented by the arke Z R. For the meridian line vpon the plane is $C Z$, the fubftylar line is $C R$, fo the angle contained betweene them is $Z C R$, and the meafure of this angle. is the arke $Z R$, which taken with the compantes and menfured in the femidiamiter $C W$, from C towand W, will be found about 18 gr .

The diftances of each hoare line from the fubfylar are here reprefented by the arks of the plane betwoen the point R and the inerfections of the houre circles. For the:fituAtylar line is $C R$, and the houre circle of I croffing the plane in the point O, the houre line of I vpon the plane, muff be $C O$, So the angle betweene the fubitylar and the houre line of x is $C O$, and the meafure of this angle is the arke RO. In like manner the houre line of 12 will be C Z, and the diftance from the fubfylar $R Z$. The houre line of 11 , will be C^{X} and the diftance from the fubftylar $R X$ and fo the reft: Thefe diftances R $O, R Z, R X, 8 c$: may alfa betaken with the compaffes, and meafured as before.

Befides thefe foure reprefentations the diagrane will Shew what pole is elevated above the plane; and what time the Sun fhineth vpon the plane. If it be the North. Eaft fice of this plane, you may thinke P to be the Northipole, and. the houre circles to be drawne on a convex blemifphsere, fo. CR the lubtylar, and CP the axis of the file will both point upward, and having drawne the tropique of 5 you Tt 2

Shall find by the meeting of the plane with the tropique, and the houre circles, that the Sun at the higheft, may fhine opon the plane, from the time of the rifing untill it be paft gin. the morning, and from 7 in the Evenning unto the time of his fetting. But if it be the South-weft face of she plane, then yod thay eisher fuppote the fubitylar, and the axis to be continued downe belowe the center, like unto the houres before and after 6 in an horizontall plane, or elle you may. tume the diagrame and thinke P ta be the South pole, and the houre circles to be diawne in an horizontall concave fo C R the fubtylar, C P the axis of the. Atile will both point downward, and fo alfo the houre lines from 8 to the, morning untill after 7 in the Evening, as it doth appeare by the meeting of the plane with the horizon, and ehe houre circles.

Thus with the drawing of one line in the diagram to reprelent the plane according to his declination, you may bave the houre lines fieted to any declining verticall. with the fiyle and fubftilar in their due place, which may fuffice ta free you from groffe error, but for more exactneffe; wee confider three triangles.

1. Io find the inclination of Meridians.

The meridian of the place is a circle paffing through the potes of the world, the Zenith and the nadir. The proper meridian of the plane is a circle paffing through the poles of the worldand the poles of the plane. The circle of the plane, and thefe two meridians doe mate atriangle, fuch as $P R Z$, wherein we know the angle at R.

I confider the angle of inclination of the meridians RP. Z_{j} and there fee how that PZ the meridian of the place which is the houre of 12 , being $30 g$.difant fía $P R$ the meridian of
the plane, and that one face of the plotrie teing open to the Southweif, and the other to the Nor itheafts this meridian of the plane fallech to be the fame with the boite of $2,(\delta-)$ therwife with the hource of tre: Y' therefore allowing ${ }^{2} 5 \mathrm{gro}$ for an houre, the hourc of is $R \notin: O$ will be $x 5 \mathrm{gr}$. and R^{\prime} $P \times$, he houre of $¥$ rwill be 45 gig diflant frotn P R the proper meridian of the plarie : and $\mathrm{m}_{\mathrm{t}}{ }^{\prime}$ gather the incliation of the reft of the LatitudeN. 5 I 30. hourecircles tawards this meridian, Decliniztio: 24 20. according to heir angles atithe pole, Difft merid: 300 . ass in the fecond colume of this Table. Alt. Styl: 3433.
 hand, I extend them from the fine Hourctangone of $9 \circ \mathrm{gr}$. vito the fine of 34 gr .33 m. the hight of the potzaboue the plane, and find them to reath-in the line of tangents from In 5 dr. the? inclination of the houre of 1 , to 8 gr. 38 m . for the arke of 1 , from the fubftylar, and fom 39 gr .vnto 18 gr .8 m . Ger the houre of 1 Ia, at greeable to the third Piop.: from 45 gr . vito 29 gr .33 m . for the houre of II, and fo the reft, which Ialfo fet downe in the thindicoJumne of the Table.
Thefearks being thus found, will ferue for the drawing of the houre

Haure	Ang	
M.E.	Gr.M.	Gr. M.
	$20-9$	90
5	75 60 60	64 42
7-5	45°	${ }_{29}^{44} 33$
8.4	30.	
910 ${ }^{1}$	${ }_{\text {ris }}$	8 fubfyl 8
${ }^{11} 1$	150	8.38
12	30	18
4	44^{5}	29.32
3 r 0	60 O	44.30
38	95 0	6442

I By the helpe of athread and plammet Idraw a verticall line, feruing both for the meridian of the place and the hodre of 12 .
In this meridian line I make choire of a center at 6 incthe vpper part of the line, ifit be the South face, astligfe we fap-XK

150
Thedefaription of the bourc-limes. pole it, that the flyle may have roome to point downward; but in the lowess past ot the line, if it be the North face of the plane; for there the tyle mult poins vpward : and vpon thic center 1 defcribe an occule carcles, reprefenting the declining verticall belonging to the plane.
3° I find a cho dut 18 gr. 8 mo theddifance of the fubstylar from the meridian of the place, and interibe it inco this circle, from the meridian vato A toward che right hand, becaure in this exanaple the meridian of the plane talls among the houres atiter noone, (for otherwife it muft have

been inferibed roward thereft hand) and there I draw the line C A feruing for the fubifylar.

4 Accondingto the Table of the arkes of the plase fromthe fabitylar, I find a chord of $8 \mathrm{gr} \cdot 38 \mathrm{~m}$ - and infcribe it into this circle, from the fabotylar toward the meeridian, for the houre of x .In like maner a chord of 29 gr .23 m. for the houre of 1 I , and a chord of $44, \mathrm{gr} .30 \mathrm{~mm}$. for the houre of 10 , and. fo for the relt of the houres, their halues and guarters.

5 I draw right lines through the center and the termes of thefe chords; and thefe lines fo drawne are the houre-lines required.

Laftly, I fet vp the ftyle over the fubftylar, fo as it may cut the plane in the center, and there make an angte with the fubftylar of 34 gr .33 mo accordiag to the height of the pole above the ptane; fo it Thall reprefent the axis of the world, and be truely placed for cafting of the fhadow upon the houre lines in this declining plane.

> A fecond example.

Suppofe another vpright plane in the fame latitude to decline from the verticall 6.5 gr .44 mm . with one face open to the South-Eaft, the other to the North: weft. Thele 6s:g. 40 m . would be numbred from E unto Q and from whi to H_{i} and the plane reprefensed by 2 द FI. For fo the one pole will fall at B in the South-Eaft, andthe other at D_{s}. in the North-weft according to the fuppofision The proper meridian of this plane may be fupplyed by the cirele R P \mathcal{D}, croffing the plate in the point T, betweene the houre of 7 and 8, and there is the place of the fulinylain. The South-Eaft fuce will containe all'the honces from Sin rifing vaco two afternoone, and the Northwert frec all the houref from one after noome ypto Sume Cexing. Then workipg as before.

- The angle ZPT the inclination of the swo meridians

2 The arke P T the mealure of the angie PC F, the hight, of the pole-abouc orbe plane, and fo the hight of che fyyle aboue the fubftylar will be $14 \mathrm{gr}, \mathrm{g} \mathrm{m}$.

3 The arke $Z \mathrm{~T}$ the mealure of the angle $Z \mathrm{C} \mathrm{T}$, (hewing the ditance of the fubetylar from the meridian will be $\mathbf{3 5}$. gr. 56 m .
4 The arks of theplane be. tweene the. fubftylar and the houra lines depending on the difference of meridians which is here 70 gr. 30 mmor 4 Ho .42 2n. Thort ot che meridian I firft draw a table with three ceo kumpes, one for the morning and cuening houres,another for the angles at the pole and the third for the arks of the plane and there write 70 gr .30 mm . by the houre of 12 and place the meridian and fubitylar between the houres of 7 and 8 according as the poles of the plane do fall in the Diagram.
Then will the angle at the pole betweene the proper tmeridian and the houre of ii be 55 gr .30 sistheinoure of so will be 40 gr .

Lacitude Declinati	$\begin{array}{llll}\text { N. } & 51 & 30 \\ \text { cion. } & 65 & 40\end{array}$
Diff, meri	ride 70
Altitude	eftyl: 145
Diff, fubs	(tyl:35
Hours	An.Po Ar. Pla.
M. E.	Gr.M. Gr. Me
210	79.3054 .12
$3 \quad 96$	64302816
4 - 814	49301642
5.73	
$\begin{array}{ll}6 & 6 \\ 7 & 19\end{array}$	1930
8.4	$1030 \begin{array}{lll}10 & 43\end{array}$
9 : 3	25306.58
10.2	$40.30 .12 \quad 21$
	$553020 \cdot 28$
	70303556
1118	85 30)72 56

With this teble thuts made, youmay draw the houre: lines andifot vip the flyde on cither fade of this or the like
 the fubltylar and that is refolued by the fight, ot the Diai. gfan

Athird example of a Plane falling neere the Meridian.

After the like manner if in our latitude an vpright plane Chall decine 85 .gr. from the prime verticall, the one face ofit being open to the Northweft, and the ocher to the Southeatt, we may in fome fort reprefent it by the verticall $2 Z H_{\text {; }}$ and then working as before.

I The angle $Z \boldsymbol{P} \boldsymbol{T}$, the inclination of the two meridians will be found to be $86 \mathrm{gr} . \mathrm{s} \mathrm{m}$. fo that $P T$ the msxidian of this plane, will here tall betweene the houre-circles of 6 and 7 from the meridian.

2 The arke $P \cdot T$ the meafure of the angle $P C T$, the beight of the pole aboue the plane will be onely 3 gr .6 m .

3 The arke $Z T$ the meafure of the angle $Z C T$, the diflance of the fublylar from the meridian 38 gr .23 m .

Fr 4 The Table of the angles ac the. pole will be allo gachered, by comparing the meridian of the plane with the reft of the houre-circles. For the angle $T P Z$ betweene $P T$ the meridian of the plane, PZ the meridian of the place, and the houre of 12 . being $\$ 6 \mathrm{gr}$.
 an houre, the houre of $11 \frac{1}{2}$ will be 78 gr .35 m . and the houre of 1171 gr .5 m . dutant from the meridian of the plane; and fo the reft of the houres. Or becaufe the difference of meridıans $86 \mathrm{gr} . \mathrm{g}_{\mathrm{m}} \mathrm{m}$. refolyed into time makes. s: boures, 44. mo. and fo the meridia of the plane falls betweene the houres of 6 and 7 from the meridian. 1 firlt place chis meridian betweene thefe houres; sind then taking $75 \mathrm{~g}^{r}$, the common meafure for s houres out of $86 \mathrm{gr} . \mathrm{sm}$. there remaine is $\mathrm{gr} . \mathrm{sm}$. for the angle at the pole
 betweene the meridian of the plane and the houre of 7. againe I take $86 \mathrm{gr} ; 5 \mathrm{~m}$. out of 90 gx . the common mealure for 6 houres, and there remaine 3 gr .5 .5 m . for the angle at the pole betweene the meridian or the plane and the houre of 6 . To thefe ang'es fo found I allow 15 gr . for cuery houre, as in the fecond columne of this Table.

Then bauing the height of the pole aboue the plane, and thefe angles as the pole; the arkes of the plane, betweene the fubltylar and the houre-ciscles, will bee found as in the third columne.

Thele arkes being found, will ferue for the drawing of the houre-lines on either face of this or the like plame.
\because By the helpe of a thread and plummet Idraw $Z C$ a verticall line, feruing both for the meridian of the place and the hourc of iz-
2. Inthis meridiau line I make choice of a center in the

in a verticall declising Plane,

vpper part of the line; if it had brene the Southerne face of the plane, bat herc in C she lower past of the thene, becaute we luppored it to bee the Northwelt tace of the plane, and the lyyle mult point vpward; and vpon this cencer I defcelibe an occult circle reprefentiog the decluning verticall belonging to this plane.

5 . Ifinde a chord of 38 gr. 23 mo. che dittance of the fub-

Atylar from the meridian of the place, and infcribe it into this circle, from Z in the meridim, vato T roward the left hand, according as the proper meridian $P T$ falls in the fundamentall Diagram; and here Idraw the line CT feruing for the fubltylar.
:4 The fubitylar being dawne, I may inferibe the chords of tyearkas ofthe plane from the fubftylar and draw the hidupe-dines, and fet up the fyle as in the former plane.
Or the arkes of the plane from the fubltylar being found as before, uec:may draw, the houre-lines vpon the plane otherwife then by chords. For hauing drawne the hourc-lines, arin the laft figure, ypon paper or paitt boord, we llaill finde the moft part of them, in this and fuch like plates that haue tgreater declination, to fall fo clofe together, that they can hardly be difcerned: wherefore to deaw them at fargeto the beft aduantage of the plane, I leaue out the cemes, anddraw: them by tangents, as in the dolar plank.,

1. I. I oonfider the length and bredth of fhe plang whereon I am to drait the thoure-lines, which I fuppofe to be a fquare, (whofe fide is 36 inches, and find that the Xitcle Iquare $A B D$ 安 -will containe borh the fybftytar, and all hofe houre-liness which are required in the great fuare AZ CQ.

2 I draw two paraliel fites FN, GM, croffing the fubiftylar at right angles in the points Fand G, for as they may beft croffe all the houre-lines, and yet the ope be diftant fiom the other as farre as the, plane will giue me leaue; and I finde by the fighe of the figire that if $A \mathcal{B}$ the fide of the leffer 'fquare fholl be 3.6 inches, the line C F will be about 115 inches, and the line CG abous 100 inches, and therefore FG. 15 inches. Agoine, that the psint F will fall about σ inches below the vpper horizontall fide $A \mathcal{B}$, and abour 12 inches. from the next verticall fide $\mathcal{B} D$; for I need not here fiand: vpon parts.
-3 Becure thefe two parallel lines are tangent lines in refpect of circles drawne vpon the femidiameters C F, CG, bund uch tangent as belong to the arkes of the plane, being tweene-the tublylar and the houre-lines, the proportion will hold,.

- So the length of the femidiameter

Th © فut जd, fol

As for example, the arke of the plane betweene the fubAtylar and the houre, $\mathrm{of}_{2} \mathrm{I}_{2}$ is. $5 . \mathrm{gr}$. $88 . \mathrm{ms}$. in the former Table, the femidiameter $C F$ irsinches, and the femidiancter $C G$ 100 inches 3 whenefore I extend she compaligs from the tan-
 tent will reach from is in the line of nambers vnto 31, 82, which Ghewes the length of the tangent line betweene \mathbf{F} in the fubitylar and the houre-line of 1 , to be $3 x$ inches, 82 aento: or parts of roo. Againe, the fame extent will reach from 100 vato 27,67 ; and fuch is the leng th of the leffer cangent from \mathcal{G} to the houre of I .

The like reafon holds for the length of the other tangents from the fubitylar to the reft of the hquyes, as in the Tables. as alfo for the heighi of the, fyyleabipue, inefe rapigent lipeq: and fo the angle of the tyle ahoue: he plane beifog 3 3 gri 6 . the height FK will be foundite be 6 inches 23 centa and the height $G L 5$ inches 4^{2} cerit.
'Where the Reader may oblerue, that if the extent from the tangent of 45 grothe tangent of 3 gre 6 orto 345 in the line of humbers, betoolatge for bis compafes, here may vfe the tangent of $5 \mathrm{gr} .43 \mathrm{~m} . \mathrm{inftrad}$ of the tangent of 45 gr . as I noted before Pag. ice:

4 Hauing found thefelengths and heights, and fet them downe in a Table, I come to the plane here refembled by the leffer fquare $A B \mathcal{D}$, inghere Irpegin with an occult verticall F H, about 12 inches from the fide $B D$, and vpon the center F, abount 6 inçhes below the Gide $A B$ defcribe an occuit

 diftance of the fur ftylar from the meridian, to make the angle $H F G$ equall to the angle $Z C T$; fo the hine Fgighal

 gentlines before'nientfofité e enclat

[^2]7 Thefe two cccult tengent lines being thus drawne, 1 looke vato the former Table for the houre of 1 , and there finde the arke of the plane berwetne the fabitylar and the houre of 1 ; to be $15 \mathrm{gr}, 28 \mathrm{~m}$. and the length belonging to it in the greatertangenc line to bee 3 I inches, 82 cent. in the lefer tangent line 27 inches, 67 cent: wherefore I take out 31 inches 82 parcs, and pricke them downe in the greater tangent from F to N_{s} and then 27 inches 67 parts, and prick them downein the leffer tangent from G to M, and draw the line $M 2 \mathcal{V}$ for the houre of 1 , which if it were produced would croffe the fubflylar $F G$ in the center C, and there make the angle $\mathbf{F} C$ 2 15 gr. 28 mo . The like reafon holdeth for the drawing of all the reft of the houre-lines.

Laftly, I fet vp the ftyle tight orier the fubitylar, fo as the height $F K$ may be 6 inches 23 temt.and the height $G L S$ inches 42 cent. then fhall $K L$ reprefent the axis of the world, and if it were prodaced would crofe the fubltylar F G in the center C , and there make the angle FC K to bee $3 \mathrm{~g}_{\mathrm{r}} 6 \mathrm{~m}$. and fo be traly placed for' cating of the thadow vpon the houre-lines in this declining plane.:-

CHAP. VIII.

To dran the boure-lines is a meridian

: inclining Plane?

AU thofe planes wherein the horizontall line is the fame with the tueridian line, are therefore called meridian planes: if they be right to the horizon, thay are culled by the; gencral itiante of meridian planes withour farther addition, and are defcribed before: ifthey leage to the horizon \times thoy are efien called meridian inclipeqs.

Thefe may incline eitherto the Eaft part of the horizon, or to the Weft, and each of them hath two faces, the vpper toward the zenith, the lower coward the Nadir, wherein knowing the latitude of the place, and the inclination of the plane to the horizon, we are to confider.

I The inclination of the meridian of the plane to the meridian of the place.
2 The height of the pole abour the plane.
3 The diftance of the fubltylar from the meridian.
4 Thediftiace of each hourre-line from the fubitylar.
And all thefe foure are reprefented in the fundamentall Diagram, as in this example.

In our latitude of 51 gr .30 mm .2 meridian plane inclineth Eaftward $j 0 \mathrm{gr}$; thele 90 gr . I number in the verticall circle from E vnto \mathcal{G}, according to the inclination of the plane, and there draw the arke $\mathcal{S G} \mathbb{Z}$ reprefenting the plithe propofed. Againe 1 number so from Z vato K, fo the point K (being $90 g r$. from the plane at G) hall bee the pole of this plane and the proper meridian of this plane may bee fupplied by a circle drawne chrough K and P. This meridian doth here fall betweene the houres of 4 and 5 , and croffing. the plane at right angles in the point V, in the right line C V Oball bethe fubltylar, and the angle PC F the height ot the ftyle aboue the plane and right lines drawne from the center C to the interfections of the houre-circles with $S G N$ fhall bee the house-lines here ingaired. The lower face of the plane will containe all the houre-lines from funrifing vnto is in the morning, and the vpper face the houres from 9 in the morning vnto fundetting. Then haue Ia rectangle triangle $P D \mathcal{X}$, wherein the bufe $P \mathcal{X}$ is the height of the pole aboue the Notth part of the horizon, and the angle $P \boldsymbol{N}$ Fthe complement of the inclination to the horison;and thefe being knowne,

[^3]As the cofine of the latitude is. to the fine of 90 gr . So the tangent of inclination to the horizon, to the tangent of inclination of meridians.

Extend the compaffes from the fine of 38 gr .30 ms . the complement of the latitude, vnto the fine of 90 gr , the lame extent will reach from the tangent of $50 \mathrm{gr}, 0 . \mathrm{m}$. theinclination of the plane to the horizon, vnio the tangent of $\sigma_{2} \mathrm{gr}^{2} 25$ m. and fuch is the inclination of the meridian of the plane to the meridian of the place; which being refolued into time, doth giue about 4 houres and to m. from the meridian, for the place of the fubltylar among the houre-lines,

2 The height of the pole aboue the plane is here reprefented by the quaptity of the arke of the proper meridian $P W$, begweenc the pole;and the plane, and may bee knowne by that which wee haue giuen in the former triangle \boldsymbol{P} $V^{\prime} 2$ EFor

As the fine of $9 \mathrm{~g} \mathrm{gr}^{\circ}$.

to the fine of the latitude:
So the cofine of the inclination to the horizon, to the fine of the height of the pole aboue the plane.
Extend the compafies fromothe fne of 90 gr vnto 5.1 gr 30 m . the fine of the latitude, the fame extent will reach from the fine of 40 gr . the complement of the inclination of the plane to the horizon, vnto the fine of $30 \mathrm{gr} .12 . \mathrm{mm}$.

Qys the fincof 90 g .

- tothe cofine of inclination of meridians:
${ }^{-}$So the tangent of the latitude
to the ringent of the beight of the pole abougdae plane
Extend the compaffes from the fine of 90 gr.vnto the tah-
 tent will reach from the fine of 27 gr .35 m. .the complament is
of the inclination of the two meridians; vnto the tangent of 30 gr .12 m . And fuch is $P \mathrm{~V}$ the height of the pole aboue the plane, and fuch muft bee the height of the fyle aboue the fubftylar.
- 3 The diftance of the fubstylar from the meridian is here reprefented by 2 CV thearke of the plane betweene the two meridians, and may be found by that which we haue giuen at the firft in the former triangle $P \vee$ V. For

As the fine of $90 \mathrm{gr}_{0}$.
to the fine of the inclination to the horizon:
So the tangent of the latitude to the tangent of the fubftylar from the meridian:

Extend the compaffes from the fine of 90 gr . vnto the tangent of 5 Igr .30 m . the latitude of the place, the fame extens will reach from the fine of 50 gr . the inclination of the plane to the horizon, vnto the tangent of 43 gr .55 m . And fuch is. the arke $2<V$ the diftance of the fubltylar from the meridian.

4 The diftances of the houre-liaes from the fubltylar,are here alfo reprefented by thofe arkes of the plane, which are here intercepted betweene the proper meridian and the houre-circles, and maybee found by that which we haue giuen in the triangles made by the plane, with his proper meridian and the houre-circles. For the angle at V, betweene the plane and the proper meridian, is well knowne to bee a right angle, and the fide PV is the height of the pole aboue the plane, and the angles at the pole betweene the proper meridian and the houre-circles are eafily gathered into a Table. The angle V P N betweene V P the proper meridian of the plane, and $P N$ the generall meridian of the place being 62 gr .25 mo. the angle betweene the proper meridian and the

25 m . and the angle belonging to the houre of $1,47 \mathrm{gr} .25$. m, and lo the reft of the angles at the pole. Then

As the fine of 90 gr .
wo the fine of the pole aboue the plane:
So the tangent of the angle at the pole, to the tangent of the houre-line from the fubftylar.

Wherefore I extend the compaffes from the fine of 90 gr . vato the fine of 30 gr .12 m . the height of the pole aboue the plane, and I finde the fame exrent to reach in the line of tangents from 27 gr .25 m, vnto 66 gr .4 m . for the diftance belonging to the houre of 11 ; and from the tangent of 62 gr .25 .0 m . to 43 gr .55 m . for the houre of 12 as when If found the the diftance of the fubitylar from the meridian. And fo for the reft of the aaks of plane betweene the fubbtylar and the houre-circles, as in the Table

Thefe arks being thus found, will ferve to draw the bourelines on either fide of this plane: bur fuppofing it to bee the upper fide,

I Idraw the horizontall line CN , feruing for the meridian and houre of 12 .
2. In this line I make choice of a center at C a and thence defcribe an occult arke of a circle reprefenting the plane propoled.

3 I find a chord of 43 gr .55 m. the diftance of the fubAtylax from the meridian, and infcribe it into this circle from. N vnto A, according as I fiade the proper meridian PV to fall in the fandamentall diagram, and there I draw the line C A, feruing for the fubstylar.

4.The fubitplar being drawne, I may infcribe the chords of the arkes of the plane from the Gubitylar, and draw the houre-lines, and fet vp the ftyle, as in the former planes.

CHAP. IX.

To dras the bownenlizes in a polar declining Plane.
Hole planes whercin a line may be drawne paratielit to
theacis of the world, are called polar planes, becaute
$X \times 2$
--uchee line poinpock vito the-poles and thefe planes are always parallell to forme one ót the houre-circles. If they be parallell to the hourc of 6, they are called direct polar planes; if to the houre of 1.2, they are called meridian planes; and both thele are defribed before? if to any other of the houre-circies, they afe then calted byite niame'of polar declinirg planes, becau'e of theis inclining to the pole, and declinng from the verticall.

- Trée kind of plates may be knowne in this fort: Fint confider the inclination of the plareto, the horizon, which inthefe parts of the world muft alwages be Northward, and more shen the latitude of the place. Then find the declinationfrom the verticall. Thefe two being knowne if the proportionthold

Asthe fine of 90 gr . to the cofine ot the declination:
So the tangent of the inclination to the tangent of the latitude; it is thena polar declining plane, otherwile not.

Por example, in our fatitude of 5 gr .30 m a plane is propofed declining from the verticall 65 gr .40 m . and inclining Northward 71 gr . g 1 m . the upperface being open to the Southeaft, and the lower to the Northweft: If I number there 65 gr .40 m in the herizen of the fundamentat diagram from $\varepsilon_{\text {vnto }} 2$, and draw the line $H C$, it Gall reprefent the horizontall line of the plame; then croffing 'it at righe angles wath the plane $B Z D$ drawne through the tenith oI number ${ }^{13} \mathrm{gr}$. $\mathrm{g}^{\mathrm{m}} \mathrm{m}$. For the inclination from \mathcal{D} vato \mathbb{R}_{j} wid there draw the circle $H R$ Q. this circle fo drawne thall reprefent the plane propofed;and becaule itaffo paffeth through the pole, it is therefore a polar plane. But for farther triall I extend the compaffes from the fineopigagrito the fine of 24 $\mathrm{gr}, 20 \mathrm{~m}$. the complement of the declination, and I find the fame extent to reach from the tangent of 71 gr .51 m . the inclination propefed unto the tangent of 5^{2} gra 30 om, which
is the true latitude of the place, and therefore it is a polar plane.

Agane I number the inglination 7 rigras sm, in the circle $\mathcal{B} Z D$ from Z vnto M. Govhispoint $M 1$, willifallhathe meetting if $\mathcal{B} Z D_{1}$ with fhe jeguargt and bengeo es. from the plane at R, it hall be the pole of this plane, and y gircle drawn through M and P will be the proper meridian of this plane. This meridian $M P$ hero falling on the houre of 8 . doth give M P Z ste augle of indination of metidn be be 4 houtes or 60 degrees, then crofling chs plape at the point 3 it thewes that the lubltyhar hould be $C P$ and be placed at the house of 8. But brcaufe R is the pole and Se Pothe axisparineworth u hercin all the houre clicles doe meet, and (j , thanes would be no diftinetion betweene the axis, the fubftylar and the
 HR Qaccording to the diftance that I would haus berweene the axis of the ftyle and the fabluylas then will the style bee parallell tof baplane pag 128 lius I_{k}, is

Here then the ftyle will be parallell to the phae, and the houre-lines parallell one to the other, as in the meridian and dircet polar. planes... Yot that wesmy better know how to draw the houresines, and whete to places-the folfows are to

In a meridian plane the arke betweene the harizon and the-
 houre-lines, is albse esigquaturisthwatiunde of the place; in a direct polar it is anarke of 90 gr ; in thefe declining po-

 g2od XX_{3} - As

As the fine of 90 gr . to the cofine of the hatitude:
 So the fine of the dedination
 to the cofine of the arke betweene the horizon ind the Pole.

Extend the compaifes from the fine of 90 gr . vnto the fine of 38 gr .30 mm . the complement of the latituder, the fame ex temt will reach from the fine of $\sigma 5 \mathrm{gr} .40 \mathrm{~mm}$. the declination propofed, vato the fine of $34 \mathrm{gr}^{3} .34 \mathrm{~m}$. whofe complement is 65 gr .26 m. the arke ofthe plane required betweene the horizon and the pole.

Or as the cofine of finclination to the horizon, to the fine of 90 gr .
So the cotangent of the declination to the tangent of the arke betweene the horizon and ; the pole.

And fo extending the compaffes from the fine of $18 \mathrm{gr}, 9$ m. the complomenr of the indination to the tangent of 34 gr . 20 m . the complement of the declination the fame extent doth reach from the fine of 90 gr . vnto the tangent of $55 . \mathrm{gr}$. 26 m . Andfuch is \mathcal{Q}; P the axke of ohe plane baweene the horizon and the pole themeafive of the angle QCP betweene the horizontall line and the fubltylat.

的?
I 2 Tbeinclipation of bo merridine of the plewes

 che hourc-line of 6: in there decliniag polars' it thuft'be placed betweene 12 and 6 , according to the inclination of the mecidima of the plane to the meridian of the place, which is 2f
here reprefanced by $N P P Z$ the complement of the angle R P Z, and thus knowne:

As.tbe fine of $\boldsymbol{g} \mathrm{g} \mathrm{gr}$. to the fine of the latirude : So the tangent of the deccination of tho plane, to the tangent of the inclination of meridians.

Extend the compaffes from the fine of 90 gr . to the fine of $\boldsymbol{5 I} \mathrm{gr} . j \mathrm{~m}$. the latitude of the place, the fame extent will reach from the tangent of 6 g gr .40 m . the declination propofed, vnto the tangent of 60 gr . and fuch is the angle of inclination betweene the meridian of the place and the propers meridian of the plane, which retolued into time doth make touse houres; and fo the fubftylar muft here be placed vpon the houre of 8 in the morning.
This angle being knowne, the reft of the angles at the pole are eafily gathered. For it the houre of 12 be 60 gr . ditant from the meridian of the plane, the houre of I will be 75 gr .and the houre of Ir , will be 45 gr . diftant, and the reft of the houres, asin the Table following. Then comming to the plane.

1 Idraw an occult horizontall line H Q, whercin I make choice of a center H, and defrribe an occult circle for the horizon of the plane.
2 I find a chord of $\$ 5 g^{2} .26 \mathrm{mb}$ and infcribe it into this cir. cle, from Q yno \mathcal{B}, according to the fituation of the plane; fo the line $H \mathcal{B}$ fhall be the meridian of the plane, and there: fore the fubtylar : and the line $A C$ croffing it at righr angles, Thall be the equator.
3 I confider the length of the plane, and how many hoyres. I am to draw vpon it, that fo. I may proportion the height of the Ayle; and I finde by the fundamentill diagians and the former uble, that it will contrioce all the hourres from Sun rifing vntill it be paft a fiternoone: and chereffireche meridian of the plane filting on the lyourcof s in the: moraing, there will be foure houres on the one fide, and fiue on
the other fide of the fubftylar. But in all polar planes the height of the ftyle aboue the fubftylar muft be equall to the diftance of the third houre from the fubfylar, or about 4.0 of the fourth houre, or little more then $\frac{1}{4}$.of the fift houre, and thereupon I allow the height of this fyyle to be equall to $C \boldsymbol{B}$, which you may. fuppofe to be ten inches.

4. Becurfe the equator ATC is a tangent line in refpect of the Radius $\mathcal{B} B$; and cheparts thereof arg fuch as belong to the angles betweene the meridian of the plane and the; houre lines, whichrangles are fet dovne inthe table followings I maysfinde the leogh of each fenerall tangent in this 3 manacro ab, \therefore 人

As the tangent of 45 g .
 is to the tangent ot the houre:
 So the parts of the Radius,
 tothe parts of the tangent line.

The angle $A \mathcal{B} C$ betweene the meridian of the plane and the houre of 12 , the meridian of the place is 60 gr . in the tormer table, and the Radius $B C$ is fuppoled to be ten inches; whereupon lextund the compaffes from the tangent of 45 gr . vato the tangent of 60 . gr. the-fanse extent will reach from:o in the line of nur, bers, vnto 17.32, which tho wes the length of the tangent $A C$ betweene the fubftylar and th. ho re of ro, to be 17.32 cext. The like reafon ho!ds tor the reft of the hourcs.

5 Thefe lengths being thus found and ler downe in he table, 1 take out 97 inches 32 cent. and prick them in the equaror trotn C vnto A for the houre of 12 , and 37 inches 32 eent. and prick them downe for the houre of I . And fo the reft of the hourepoints.

- This done, if I draw right lincs through cach of thefe points, croffing the equator at right angles, they fhall be the houre-lines required : a d if I fet the ftyle oner the fubttylar, fo as the edge of it may be parallel to the plane, and the height of it be ten inches equall to the form.r Radius B C, it Thall reprefent the axis of che world, and be truly placed for cafting of the fhadow vpon the houre-lines in this declining polar plane.

CHAP. X.

To draw the boure-lines in a declining incltning plane.

1F a plane fhall decline from the prime verticall, and inclire to the horizon, and yet not lie cuen with the poles of the world, it is then called a declining inclining plane.

Of thefe there are feuerall forts; for the inclination being Northward, the plane may tall betweene the horizon and the pole, as the circle B MD in the fundamentall Diagram; or betwoene the zenith and the pole, 28 BFD: or the inclination may be Southward, and fo be reprefented by B K D , it may aifo fall cither below the interfection of the meridian and the equator, or aboue it ; and each of thefe haue two faces, the vpper toward the zenith, and the lower toward the nadir; wherein hauing the latitude of the place with the diclination and inclination of the plane, we are farther to confider,

1 The arke of the meridian betweene the pole and the plane.
2 The inclination of the plane to the meridian.
3 The arke of the plane betweene the horizon and the me-ridian-
The angle of inclination betweene both meridians.
The height of the pole aboue the plane.
6 The diftance of the fubltylar from the neridian.
7 The diftances of each houreline from the fubflylar.

And all thefe feuen may be reprefented in the fandamentall diagram, as in this example.

In our latitude of 51 gr .30 m . a plane is propofed, declinung from the verticall 24 gr .20 m . and inclining Northward 36 gr. the vpper face lying open to the Southwef, the lower to the Northeaft. If I number thefe 24 gr .20 mos in the thori$z o n$ from E to B, and there draw the line $B C D$, it thall reprefent the horizontall line of the plane: then croffing it at right angles with the plane $H Z Q$ drawne through the zenith, I number 36 gr . for the inclination from 2 vnto $A 1$, and there draw the circle B M D, croffing the meridian in the point $a f$. this circle fo drawne thall reprefent the plane propofed; and becaufe it doth not paffe through the pole, is therefore no polar, but an ordınary declining inclining plane.

1 The arke of the meridian of the place betweene the pole and the plane, is here reprefented by $\mathcal{P} a$, and may be found by refoluing the triangle $\mathcal{D} \boldsymbol{\sim}$, wherein the angle at 2 Lis knowne to be a right angle, the angle at D is the angle of inclination, the fide $D \mathrm{~N}$ the complement of the declination, which being knowne,

> As the fine of 90 gr .
> to the cofine of declination :
> So the tangent of inclination to the horizon, to the tangent of the meridian betweene the horizon and the plaine.

Extend the compaffes from the fine of 90 gr . vnto the fine of 65 gr .40 mm the complement of the declination, the fame extent will reach from the tangent of 36 gr . the inclination propofed, vnto the tangent of 33 gr .30 m . and fuch is the arke of the meridian $\mathcal{N} a$, between the horizon and the plane. This arke \mathbb{N} a being compared with the arke $\mathcal{N} P$, which is the elevation of the pole aboue the horizon, and is here fuppofed to be $51 \mathrm{gr} \cdot 30 \mathrm{~m}$. the difference 2 K a commeth to 18. $g r$ and fuch is the of the meridian reguired betweene the pole and the plane.

172

The defcription of the house-lives

2 The inclination of the plane to the meridian is here rem prolented by the angle $\mathcal{N} a \mathcal{D}$, and may be found by that. which we haus giuen in the former trangle ' D. N.A. For
> - As the fine of 90 gr . to the fine of the declination from the verticall : So the fine of inclination to the horizon, to the cofine of inclination of the plane to the me: ridıan.

Extend the compaffes from the fine of 90 gr . Fnto the fine of 24 gr .20 mm . the daclination of the plane, the lame extent will reach from the fine 36 gr . the inclinationgizen, vato the coline of 76 gr . And fuch is $2 \mathbb{N a} D$ the angle of inclinar tion betweene the plane $D a_{3}$ and $N a_{2}$ the meridian of the place. Or

As the fine of the arke of the meridian betweene the hoizon and the plane. is to the fine of 90 gr . So the cotangent of the declination to the tangent of inctination of the plane to the meridian.

Extend the compalfes from the fine of 33 gr .30 m , the arke of the meridian betweene the horizon and the plane, vnto the fine of 90 gr . the fame extent will reach from the tangent of 65 gr .4 m . the complement of the declination vato the tangent of 76 gr . And fuch is the inclination of the plane to the meridian, the lame as before.

3 The arke of the plane between the horizon and the meridian, is be re reprefen ed by $D a$, and may alfo be found by that which we have giuen in the former triangle $\mathcal{D} \mathcal{N}$.

As the cofine of ir clination to the horizon. is to the faue of 90 gr .

 rizon to the meridian.Extend the compaffes from the fine of 54 gr . the complement of the inclination of the plane to the horizon, vnto the fine of 90 gr . the fagne extent will reach from the tangent of 65 gr .40 m . the complement of the declination, vnto the tangent of 69 gr .54 m . And fuch is \mathcal{D} a the arke of the plane, betweene the horizon and the meridian of the place.

4 The inclination of meridians is here reprefented by the angle $a P b$. For hauing drawne the proper meridian $b P k$, or let down a perper dicular $P \cdot$ 'fiom the pole voto the plane, this perpendicular fhall be the meridjan of the plane; and we fhall haue another triangle $a b P$, wherein the angle at b° is a right angle, becaute of the perpendicular, the angle at a is the iuclination of the plane to the meridran of the place, and the fide $\mathcal{P} a$, is the arke of the meridian betweene the pole and the plane, which being knowne,

As the cofine of the arke of the meridian between the pole and the plane

is to the fine of 90 gr .
So the cotangent of the inclination of the plane to the meridian,
to the tangent of inclination of thermeridian of the plane, ro the meridian of the place.

Extend the compaffesfrom the fme of $\mathbf{7 2} \mathrm{gr}$. the complement of the arke $P a$, betweene the pole and the plate, vito the fine of 90 gr . the lame extent will peach from the tangent of 14 gr . the compiement of the inclination of the plane to the rasridian, vnot the tangent of 14 gr .4 mm . And fuch is therangle a P 6 of inclination betweene the meridian of the place and the proper meridian of the plane, which refolued into time, doth make about 59 minktes, and fo the fubftylar: molt hicre beplaced neere rhe houre of 1 , after noone.

5 The height of the pole aboue the plane is here reprefensed by P 6 , the arke of the proper meridian betweene the pole and the plane, and may be found by that which we haue giuen in the triangle $a b$ P. For

> As fosthe fine of $90 g r$.
> to the fine of the meridian of the place betweene the pole and the plane :
> So the fine of inclination of the planeto the meridian, to the finc of the height of the pole aboue the plane.

Extend the compafes from the fine of 90 gr . vnto the fine of 18 gro the arke Pa of the meridian of the place from the pole to the plane, the fame extent will reach from the fine of $\sigma_{a} \mathrm{P}$ the inclination of the plane to the meridian of the place, vnto the fine of 17 gr .26 m . Or

As the fine of $90 . \mathrm{gr}$.
 to the cofine ot inclination of meridians:

So the tangent of the meridian of the place betweene the pole and the plane,
to the tangent of the height of the pole aboue the plane.

Extend the compaffes from the fine of 90 gr . vint the fine of 75 gr .19 m . the complement of a P the inclination of the two meridians, the fame extent will reach from the tangent of 18 gr . the arke P of the generill meridian betweene the pole and the plare, vnto the tangent of 17 gr .26 mm . And fuch is $P b$ the height of the pole aboue the plane; and fach muft be the height of the fyle aboue the fabfylar.
6 This diftance of the fubtelylar from the meritidian of the place, is here reprefented by a b the arke of the plane between the two meridians, and may be found by that which we had given ac the firf in thetormer triangle 6 P P. For

As the flie of 90 gr . to the cofine of the inclination of the plane to the meridian:
So the tangent of the meridian of the place betweeme the pole and the plane,
vito the tangent of the fubfylar from the meridian of the place.

Extend the compaffes from the fine of 90 gr . vnto the fine of 14 gr . the complement of 6 \& P, the inclination of the plane to the meridian, the fame extent will reach from the tangent of 18 $g r$. the arke of the generall meridian betweene the pole and the plane, vnto the tangent of 4 gr .30 m . And fuch is the arke of the plane betweene the two meridians;and fuch muft be the diftance from the houre of 12 to the fubftylar.

7 The diftances of the houre-lines from the fubtylar, are here alfo represented by thofe arks of the plane, which are intercepted between the proper median and the houre-circles. For in thefe triangles the angle at b betweene the plane and the proper meridian is a right angle, the fide $P b$ is the height of the pole aboue the plane, and then the angles at the pole betweene the proper meridian and the houre-circles being gathered into a table.

> As the fine of 90 gr .
> to the fine of the pole abeve the planet So the rangent of the angle at the pole,
> to the cangens of the houre-line fromthe fiabtylar: of $77 \mathrm{~g}^{\prime} .26 \mathrm{~m}$, the height of the pole abouc the plane, the

fame extent will reach from the tangent of 14 gr .41 w. the angle at the pole belonging to the houre of 12 , vnto the tangent of 4 gr .30 m . For the arke of the plane betweene the fubfty lar and the houre of 12 ; and from the tangent of $29 \mathrm{gr} \mathrm{4I}^{\mathrm{I}}$ m . vnto the tangent of 9 gr . 4 m . for the houre of II , and fo for the reft of the arks of che plane between the fubftylar and the houre-lines, as in the former table.

Thefe arkes being thus found, will ferue for the drawing of the houre-lines on eicher fide of the plane: but fuppofing 6
it to be the upper fide, I confider bow the lines doefall in the fundamentall diagram, and accordingly

- I Idraw an occult horizontall line DD , wherein I make choice of the center C, ard thence draw an occalt circle for the horizon of the p ane.
2 If finde a chord of 69 gr .54 m , the arke of the plane betweene the horizon andihe meridian, and defribe it into this circle from D vnto a, and there draw the line C a for the houre of 12.

31 finde a chord of 4 gr .30 m . the arke of the plane betweene the two meridians, and infcribe it.into this circle from a vito b, and there draw the line $(6$ for the fubly las.
4 The fubftylar being drawne, I may infcribe the chords of the arkes of the plane from the fubitylar, and draw the houre-lines, and fet vp the fyle as in the former planes.

A fecondexample of a Plane falling betweene the pole and the zenith.

' In like maner if in our latitude a plane be propofed declining from the verticall $24 \mathrm{gr}^{2} .20 \mathrm{~m}$. as before, bat inclining to the horizon 75 gr .40 m . Northward, the vpper face being open to the Scuthweft, the lower to the Northeant, this plane Shall be here repretented by the circle BF D, creffing the mesidian in the point d, betweene the pok and the zenith, and the proper meridian of this plane, by the perpendicular arke Pc.

Then in this triangle DN d knowing the fide DN the compiement of the declination, with the angle of inclination to the horizon ai D, and the right angle at N, thele former Canons will giue $\mathcal{N} d$ the arke of the meridian betweene the horizon and the plane to be 74 gr .20 m ; and therefore P d the alke of the meridian betweene the pole and the plane will be 22 gr . 50 m . the angle $\boldsymbol{D} d$ र रof the inclination of the plane to the meridian, will bee found to be 66 gr .29 m .
and $D d$ the arke of the plane betweene the horizon alid the meridian 83 gr .36 m .

Againe, in the triangle P ed knowing the fide $P d$ the arke of the meridian betweene the pole and the plane, with the angle of inclination to the meridian at d, and the right angle at e, the angle $d P e$ of the inclination of the two meri-dians will be found to be 25 gr .17 m . and $P e$ the height of the pole aboue the plane to be 20 gr .50 ns. and $d e$ the diftance of the fubitylar from the meridianab ut $9 \mathrm{gr} \cdot 3^{2} \mathrm{~ms}$.

Laftly, hauing tound the height of the pole aboue the plane, and gathered the angles at the pole, the arks of the plane from the fubltylar to the hourelines will be as in this table.

This done, if we confider how the lines doe fall in the fundamentall dagram, wee may there fee how the North pole is eleuated aboue the lowerface, and the South pole aboue the *pper face of the plane, and accordingly make choice of a center, draw the horizontall, the meridian, the fubftylar, and the hourelines, and fet vp the fyle as in the other planes.

> A:bird excmple of a Plane inclining is the Southwaxd.

If in our latitude a plane were propoled declining from the verticall $24 \bar{g} r .20 \mathrm{~m}$. as before, but inclining to the horizon 14 gr .20 m ; Southward, the vpper face being open to the Northeaft, the lower to the Southweft, this plane thath be here reprefented by the circle $\mathcal{B} K D$ croffing the meridian in the point f betweene the wquator and the horizon, and the proper meridian of this plane by the perpendicular
dicular arke $P \mathrm{~g}$ let downe from the pole to the plane, neere. the houre of it, at the North part of the horizon, as may partly appeare by the neereft extent of the compaffes, if the circle $B K D$ were drawne round; and the twotetrers f and g 3 upplied.

Then in the triangle \mathcal{B} Sf, knowing the fide \mathcal{B} S the complement of the declination, with the angle of inclination to the horizon at B, and the right angle at S, we may find $S f$ the arke of the meridian betweene the harizon and the plane to be r 3 gr .6 m . And therefore $P f$ the arke of the meridian betweene the pole and the plane to the Southward I $15 \mathrm{gr}_{\mathrm{r}} 24 \mathrm{~m}$ 。 but $64 \mathrm{gr}_{\mathrm{B}} 36$ m. to the Northward, the angle $\mathcal{B} f S$ or $\operatorname{Df} \mathcal{2}$ of the inclina ion of cle plane to the meridian, will bee found 84 gr .9 m ; and $b f$ or $D f$ the arke of the plane betw een the honzon and the meridian 66 gra 20 m .

Againe in the triangle $P g$ gnowing the fiue $P f$ the aske of the meridian be weene the pole and the plane, with the angle of inclination to the meridian at f, and the right angle at g, the angle $f(g$ of the inclination of the two meridiaas will be found to be 13 $g r .72 \mathrm{~m}$ and $P g$ the height of the pole aboue rhe plane, about 64 gr . and fg the diftance of the fubftylar from the meridian $12 \mathrm{gr} .8 \mathrm{~m} .-$
Hauing found the height of the pole aboue the plane, and gathered the an= gles at the pole, the arkes of the plane from the fubfylar to the houre-lines will be found as in this table.

This done, if we confider how the lines doe fall in the fundamentall diagram, we may there, fee how the North pole is eleuated aboue the Ypper face, and
the South pole aboue the lower face of this plate, and accor- ${ }^{3}$ dingly make choice of the center, draw the horizontall, the meridian, the fubtylar, and the houre-lines, and fet vp the Ayle as in the former planes.

CHAP. XI.

To defcribe the Tropiques and other circles. of declination in an aquinoctiall Plane.

SVch circles as are parallell to the equinoctiall , and yet fixl within the tropiques, may be defcribed on any plane by help of thefelines of proportion, but after a different maner, according as the fyle fhall be either perpendicular, or parallell to the plane, or cut the plane with obligue angles.
In an zquinotiall plane where the fyle is perbendicular to the plane, the tropiques and other circles of declination will beep : rfect circles : wherefore confider the length of the ftyle in inches and parts, and the declination of the circle which you intend to defrribe in degrees and minutes, the proportion will hold.

As the tangent of 45 gr r
to the length of the fyle:-:
So the corangentof the parallell,
to the femidiamerer of his circle:
Suppofe the length of the flyle aboue the plane to bee 10 inches, and that it were required to finde the femidiameter of the tropique, whofe declination is knowneto be 23 g'r. 30 m: extend the compaffes from the tangent of $45.5{ }^{5}$. vnto the tangent of 66 gr .30 m . the fame exxent will reach in the line of numbers froni 10 vnto 23 , which Chewes the femidiameMer of the tropique to be 23 inches. Soif the declination bee 20gre the femidianaeter will bee 27 inches 47. ceme 5 it 5

The defrription of the Tropiques:

gr. then 37.32 ; if 10 gr , then 56.71 ; if 5 : gr , then I 14 . 305 . and fo in the reft.

Or ifit were rcquired to proportion the fyle to the plane,

> As the tangent of 45 gr. to the tangent of the declination:
> So the femidiameter of the plane, to thelength of the fyle.

As if the femidiameter of the greateff parallell vport the plane were but fix inchos, and that parallell fhould be the fift degree of declination : extend the compoffes from the taugent of 45 . g^{7}. vnto the tangent of $5 g$. the fame extent will reach in the line of numbers from 6.00 vnto about $0: 53$,
which Thewes that the length of the fyle muft be 53 parts of an unch aiulded into 100 ; then the length of the ftyle being knowne, the iemidameter of the other circles will be found as betore.

I begin here with the fift parallell, and thence proceed vnto the tropique, becaule the fhadow of the reft neere the xquinoctiall, would be ouerlong, and the equinoctiall it felte cannor be defaribed. The parallels of North declination are to be fet on the North tace, and the parallels of Sourh deciination on the South face of the plane. Neither need thele parallels to be drawne in full circles, but onely to the horizontall line, which thall be defcribed in Cap.xviij.

Hauing by thefe meanes fet vp the ftyle to his true height, and drawne the circles of declination, if we Chall place the plane fo as it fhall make an angle with the horizon equall to thecomplement of the latitude, and then turne it vntill the. top of the ftyle caft the fhadow vpon the parallel of declination belonging to the time, the mend an of the plane will fhew the meridian of the place, and the fhadow of the ftyle the houre of the day, without the helpe of a magneticall needle.

CHAP. XII.

To defcribe the Tropigues and other circles of declination in a polar Plane.

1 N all polar planes, whether they be parallel to the meridian or to the circles of the houre of σ, or orherwife declining, the equinoctiall will be a right line, but the tropiques and other circles of declination will befections hyperbolicall, and be thus defcribed.

Confider the length of the ftyle, the declination of the paralle, and the angle at the pole betweene the fubflylar and the houre-line, whereon you meane to defcribe the parallel.
If you would find where the parallels doe croffe the fubftylar;

As the tangent of 45 gr .
to the tangent of declination:
So is the length of the ftyle,
to the diftance of the paralle from the xquinoctiall:

As in the example of the polar plane, where the length of. the ftyle \mathcal{B} C was found todbe I inch, 6i cent. if yon defire to know the diftance betweene the xquinoctiall and the tropigue vpon the fubfylar line $;$ extenc the compafles from the tangent of 45 gr . vnto the tangent of $23 . \mathrm{gr} .30 \mathrm{~m}$. the fame extent will reach in the line of numbers from 1. 6 I vnoo 0. 70 ; and therefore the diftance required is 70 parts of an inch diuidedinto 100 . The like reafon holdeth for all other parallels of declination croffing the fubity lar.
But if your would finde where the parallels doe croffe any other of the houre-lines, firft find the diftance beweene
18.4 The defoription of the Tropiques the axis of the ftyle and the hour--line, then the diftance betweene the zquinoctiall and the parallel, both thefe may be rep refented in this maner.

On the center \mathcal{B} and any femidiameter BD defcribe an occule arke of a circle, tand therein infcribe a chord of 23 gr . 30 m . form D vite T, with fuch other intermediat declinations as you intend to defcribe on the plane, fo the line B D fhall be the xquator, and BT the tropigue, and the other intermediate lines the lines of declination.

That done, confider your plane, which for example may be either the meridian or the declining polar plane, wherein hauing drawne both the xquator, and the houre-lines as before, firtt take out the height of the ftyle, and prick that downe in this æquator from B vnto C; then take out all the diftances betweene \mathcal{B} the top of the fyle and the feuerall points wherein the houre-lines doe crofle the - squator, transferre them into this xquator $\mathrm{B} D$ from the cen$\operatorname{ter} B$, and at the termes of thefs diftances erect lines perpendicular to the equator, croffing the lines of declination, and note them with the number of the houre from whence they were taken : fothefe perpendiculars hall reprefent thofe houre-lines, and the feuerall diftances betwieene the aquator and the lines of declination, thall giue the like diftances betweene the aquator and the parallels of declination vpon your plane, Vpon this ground it followeth.

To finde' the difance betmeene the axis and

 the boure lises.As the cofine of the heure from the fublylar, is to the fine of 90 gr . So the length of the ftyle, to the diftance between the axis and the houre-line:

As if in the former example of the meridian plane, where B C the height of the ftyle is fappofed to be ro inches, it were required to find the difance between. B to the top of the flyle and the point wherein the houre of 11 in the morning Aaa
doth croffe the equator, which is here reprefented by B 5 , becaufe it is the fift houre from the fubitylar, whoie angle at the pole is 75 gr . Extend the compaffes from the fine of 1.5 sr. the complement of the fift houre from the fubltylar, vnto the fine of 90 gr . the fame extent will reach from 10.00 in the line of numbers unto 38.64 ; and therefore the diftance $B \leq$ betweene the axis and the houre-line, is 3δ inches and 64° cent. and may be called the fecant of the houre. Then in the rectangle B, T, hauing thie fide B 5 , and the angle of declination ar B.

To finde the diftance betweene the equinoctiall axd the paraliell.

As the tangent of 45 gr . to the tangent of the declination:

So the diftance betw eene the axis and the houre-line, to the diftance betweene the xquinoctiall and the parallel.

Extend the compafles from the tangent of 45 gr . ynto the tangent of 23 gr .30 m , the declination of the tropique, fo the fame extent will reach in the line of numbers from 38 , 64, the diftance betweene the axis and the 6ft hourc-line vnto 16.80 ; and therefore the diftance is 16 inches and 80 cent. The like reafon holdeth for all the reft, which may be gathered and fet downe in fuch a Table as this which fol-
loweth.
Wherein I haue fet downe thefe diftances for feuerall de-: clinations, for 1 rgr .30 m . for 16 gr .55 m . for $20 \mathrm{gr} .12 . \mathrm{m}$.: for $21 \mathrm{gr} .4^{1 \mathrm{~m}}$. and for the declination of the Tropique 23 $g^{r} .30 \mathrm{~m}$, which may be applied to the like declinationsituall meridian and direct polar planes.

As in the former example of the polas plane, where B. C the beight of the fyle is found to bs x inch 6 o cint if ic' were sequired to find the diftance betwe cad B cherop ofthe owle and the points wherein the houre-lines of y in the maming or 5 ffer noone, doe croffe the equator (which diftancess Icalled the fecants of thofe houres, either yon may extend the compaffies from the fine of 15 gr . the complement of the houre from the fublfylar vato the fine of 90 gr . fo the fame

extent will reach in the line of mumbers from 1 . 6 the length of the yle, varo 6. 21, according to the former Canon. O_{r} ello you may make vfe of the former Table, extending the comparfes in the line of numbers from 10.00 the length of the ftyle in rhe Table, vnto 1.61 the length of the ftyle belonging to your plane, fo the lame extent fhall reach from 3^{8}. 6_{4} the fecant in the Table, vnio 6.21, and fuch is your fecant required, the diftance betweene the top of the fyle and the point of interfection, wherein the fift houre-line from the fabtylar doth croffe the xquator.

Againe, the fame extent will reach from 16.80 the difance in the Fable belonging to the fift houre-line betweene the aguatour and the parallel of 23 gr .30 m . declination, vnto $2 . j 0$ tor the the like diftance vpon your plane; and fo for the reft, which may be gathered and let downe in a Table.

That done, and the xquator drawne as befote, if you would draw the tropiques in the polar plane, looke into the Table, and rake 70 cent. out of the line of inchos, and pricke them downe in the tubhylar an either fidenot the aquatour,and fo 72 cent. on the firft houre, and 80 on thefecond'houre, and 2 in-
 ches 70 cent . on the fift houre from the fubftylar, and the reft of thefe diftances on their feuerall houre-lines, and thendraw a crooked line through all thefe' points, fo as it makes no ang'es, the lipp fo drawne fhall bee the Tropike requirred. In like maner you may draw any other parallelf of declination.

C.E.A P. XIII.

To defcribe the Tropiques and otber circles of declination in fuch a Plane as is neither equinoEtiall nor polar.

I
 be a right line, the tropiques and orber paratels of declination will bee conicall fections, fome of them parabolicall, fome ellipticall, but the moft of them hyperbolicall.

To finde the points of interfection of thefe parallels with the houre-lines, wee areto confider, filt the leng:h of the axis of the ftyle in inches'and parts of inches; Tecondly the height of the ftyle aboue the pland; thirdly the angles at the pole betweene the proper meridian and the houre-circles. Thefe being knowne, will help vs to find, firft the angle betweene the axis and the houre-lines on the plane; and then the diftance betweene the center and the parallels : boththefe may be reprefented in this maner.

Aai 3
Let

1

1p * The defroiption of be Troidquis

Let the triangle $A B C$ be made equall to the ftyle belonging to your plane, $A C$ the fubfilylar, $B C$.the axis of the fyte, A B the length of the fyle perpendicular to the plane. Then hauing drawne the line $B D$ perpendicular to the axis on the center B , and any femidiameter BD defcribe an occult arke of 2 circle, and therein infcribe a chord of 23 gr .30 m . from D. vntof, on either fide of the line, with fuch other intermediate declinations as you intend tex oxefribe on the plape, fo the perficthdicular BD fhall be the aquator, and BT the tropiques, and the other intermediate lines the parallels of declination. Wherefore you may take oux the diftance $C \checkmark$ from the centerto the xquator, and pricke it downe on the fubfylar of your plane from the center at C vnto r, fo the line drawne through
through r perpendicular to your fubfylar, fhall be the x quat cor ot your plane.
That done, take the difance of each houre-line betweene the center aud the equator of your plane, and pricke them downe in the aquator of this figure, from the centerat C, noting the place, where they croffe the xquator, with the n umber belonging to the houre, and drawing the houre-lines from C through the lines of declipation.
 pendicilar to the axis B, C, and the edin pricke downe the tangent of the height of the ftyle aboue the plane, from C vnso E. Then draw the line $E F$ parallell to the axis, croffing the fubbtylar produced in the point F, this line $E F$ will bee the tine of finesvponthesobors and thercin youmay pirickec downe the finies of the complement of the angles at the pole from E toward F, and draw the haure-lines by. thefe points through the lines of declination, fo the angles at C betweene the laxis B. C and thofe hourclines, that be the angles betweene the axis of your fiyle and the hourc-lites-on your plane, and the feverall diffances betweene the point C and the lines of declination, Chall give you the like diftances betweene the center, and the parallels of declination vpon the houre-lines in your plane Vpon this ground it followeth, -

1 To propertion the fyle vnto the plane.

Confider the height of the fyle aboue the plane, and the length of the fubifyllar betweene the center and the place which you intend for the trodique. If it bee the tropique which is fartheff from the center, adde 13 gr .30 m : if the neerer tropique, adde 66 gr .30 . m . vnto the height of the fyle, the remainder vnto 80 gr . Thall giuc you the altititide of the Sunne aboue aboue the plane when becommath to thias. tropique. As in our latitude the height of the ftyle aboueign horizontall plane is 51 gr .30 m . adde vnto this $\mathrm{x}_{1} 3 \mathrm{gr} .30 \mathrm{~m}$.
 remainder will be $\mathrm{x} \$ \mathrm{gr}$. and fuch is the alrisude of the Sunne aboue this plane u hea he commeth to be in the Wietes roo pique: but it you adde 60 gr .30 m . veto g 1 gr .30 mo . the re mainder to tre g . Will be 6 g gr . And luch is the alitude of the Sunintt e summer I ropique. I het.

As the lipe of $66 \mathrm{gr}, 30 \mathrm{~m}$. ro the fine of the Suns altitude :
So the kength of the Jubitylar line; to the ength ot theiaxis of the ftyle.

As in the firft examples of the declining verticall, where the height of the ftyle was found to be 34 gr .33 m . and is here reprefented before pag. 1 so. by the angle $\mathcal{B} C$ ${ }^{2}$; adde to this height 113 gra 30 m . for the angle $\mathrm{C} B$ or,the fum will be $14^{8} \mathrm{gr} .3 \mathrm{~m}$. and the remainder to 180 gr . will be 3 r gr .57 m.and fuch is the angle $B \leftrightarrows C$ of the altitude of the Sun aboue the plane, when he cometh to be in the tropique of 9 , which is here the fartheft cropique from the center.

Then fuppofing the length of the fublylar line: berweene the center and the place which is fit for the fartheft tropique to be about 21 inches, extend the compaffes from the fine of 66 gr .30 m . vnto the fine of $3^{1} \mathrm{gr} .57 \mathrm{~m}$. the fame catent will reach in the line of numbers from 21 vnto 12.11 , and fo the length of the axis of the ftyle fhould be 12 mich. is cent. Or it may fuffice to make it inft 12 inches, as a more eafie ground for the reft of the worke.

But if it were required to proportion the ftyle vnto the plane, fo as it may caft the fhadow to the full length of the fubitylar line at all times of the yeare, you may then confider the Sun in the tropique, which is to be fet neareft vnto the center, and adde 66 gr .30 m . vato 34 gr .33 m . Fo the remainder vnto 180 gr . will be 78 gr .57 m . And if you extend the compaffes from the fine of 66 gr .30 m . vnto the fine of 78 gr .57 m . the fame extent will reach in the tive of numbers. from 21 unto 22.47 for the lengthefthe axis iof the fyle.

> 2 Haning the kength of the axis, and the lieight of the ftyle aboure the plane, to find the lengtls of. the fides of the Al_{t} te.

The extco of a plane neither xyuinoctiall nor polar, mayte. cither a frall rod of iron fet parallell to the axis of the world, or perpendicular to the plane, or effe athin plate of iron or brafte made in forme of a rectangle triangle $\bar{z} \boldsymbol{z} c$, with the bare $\mathcal{B} C$ parallell to the axis of the world, the fide $A B$ perpendicular to the plane, and the fide $A C$ the fame with the fablylar line, whercin knowing \mathcal{B} Cand the angle B A C, E\&b?:

The defcription of theiT ropigwes
As the fine of 90 gr . to the length of the axis:
So the finc of the herght of the ftyle, to the length of the perpendicular fide : And fo the cofine of the highe of the fyle, to the length of the fubity ylar fide.

Thus in the former example, the length of the axis being fuppofed to be 12 inches, and the height of the ftyle $34 \mathrm{gr}^{3} \cdot 3$ m. Extend the compaffes from the fine of $90 g r$. (or elfe from the fine of 5 gr .45 m .) vito i 2 in the lind of numbers', the fame extent will reach from the fine 0 . $34 \mathrm{~g}_{0} \cdot 33 \mathrm{~m}$ vnto 6.80 in the line of numbers for the length of the perpendicular fide, and from the fine of $55 \mathrm{gr}$.27 m . vnto 9: 88 for the. length of the fubsty lar fide.
> 3. To find the diftance betweene ibe center and the aquator vpon the fubfylar line.

This is here reprefented by C, r, and may be found by refoluing the reCangle triangle $C B r$.

As the cofine of the height of the ftyle, is to the fine of 90 gr .:
So the length of the axis, to the diftance of the aquator from the center.

Extend the compaffes from the fine of 55 gr .27 ms . vnto the fine of 90 gr . the fame extent will reach in the line of numbers from 12 vnto 14. 57. Wherefore it you take 14 inch. 57 cent. and pricking trem downe on your fubitylar line from C vnto r_{2} draw a line through r, croffing the fubitylar atright angles the line fo drawe fayt be the xquaror.

4 To find the angles contained betweene the

 aquatour and the boure-lines opon your plane.Thefe angles made by $B r$ and the houre-lines, are complements ot thofe which are at C , betweene BC the axis and thofe feuerall houre-lines, and depend vpon the angles at the pole, betweene the proper meridian and the houre-circles.

> As the fine of 90 gr .
> io the cofine of the angle at the pole :
> So the cotangent of the height of the fylle,
> to the tangent of the angle betweene the xquator and the houre-line.

- In our examplethe height of the fyle is 34 gr .33 mo and the proper meridian falleth to be the lame with the circle of the fecond houre after noone, whereupon the angle at the pole, betweene this proper meridian, and the circles of the houtc ol I on the one fide, and 3 on the other fide, will bee 15 gr ; fobetweene this meridian and the houre-circles of 12 and 4 , the angle will be 30 gr . 8 cc . as in the Table.

If theni it be reguired to find the Angle, which the houreline of 4 after noone doth make with the plane of the equa-

[^4]tor, that is the angle $C_{4} B$ contained betweene the houreline C_{4} and the line B_{4}, drawne from the top of the ftyle vnto the interfection of the houre-lief of 4 with the \$quator.

Extend the compaffes from the fine of 90 gr . vnto the fine of 60 gr . the complement of the angle at the pole, the fame excent will reach from the tangent of 55 gr .27 m . the complement of the height of the poic, vnto the tangenc of 51 gr: 30 m , and fuch is the angle C 4 B in the diagram Pag. 1 so.

Or in croffe-worke, if it were requited to finde the angle C 9 B, looke into the Table for the houre of 9 , and there you thall find the angle at the pole to be 75 gr ; and it you extend the compaffes from the fine of 90 gr . vnto the tangent of 55 $g^{5}-27 \mathrm{~m}$. the fame extenc will reach from the fine of $\mathrm{I} 5 \mathrm{gr}_{\mathrm{o}}$ the complemint of 75 gr . vito the tangent of 20 gr .36 m . and fuch is the angle C 9 B , made at the aquator betweene the line B 9 drawne from the top of the ftyle, and the haureline C 9 dra wne from the ceriter. The like reafon holdeth for the reit, which may be found and fet downe in a table: them may you either draw thefe angles'at ζ in the former figure more perfetty, and thence finilh your worke, or elfe proceed

5 To finde the dife ance betweene the center and the parallels of dectination.

The diftances betweene the center and the parallels of declination, may be found by refoluing the triangles made by the axis 'B C, the fines of declination, and the houre-lines For hauing the angles at the aquator, and knowing the dedination of the parallell, if the parallell thall fall berweene the $x-$ quator and the center, adde she declination vito the angle at the aquator 3 or if it hall fall withouthe aguator, sake the declination out of the angle at the wquator; fo thall you haue the angle at the parallell Then .

As the fine of the angle at the parallell,
 to the cofine of the declination:

So the leng th of the axis of the fyle,
to the diftance betweene the center and the parallello
Thus in our example, the angle at the aquator belonging to the houre of 4 atter noone, was found before to be 51 git. .30 m : ifyou would find the diftance betweene the ceater and
 *atofhe fine of 90 f. the complemeint of the declipation. the fame ex ent will reach in the line of numbers, from if unto 15. 33 , and fuch is the diltance vpop the houre-lipe of 4 betweene the censer and the zquator.

If you would finde the diance ypon khis houre fine, boitweene the center and the inner tropiqué, whofe dectination is kuowne to be 33 gr .30 m , adde the declination to the angle at the equator, lo the angle at the parallel will be 7.5 er. wherefore extend the compaffes from the fine of 75 gr . vnio the fine of $60 \mathrm{gr} \cdot 30 \mathrm{~m}$. the complement of the declination, the fame extent will reach in the tine of nümbers, from 12 vnto II. 40 , and fuch is the length of the houre-line of 4 be tweene the centerand the tropigne of $2 \mathrm{~L}_{\mathrm{B}}$

If you would finde the diftance vpon this houre-line betweene this center and the tropique of $\sigma_{\text {, }}$ which is here the fartheft trom the certer, take this dectingiog tat dx the angle at the xquator, io the angle at the parallell will be 28 gr . wherefore extend the compaffes from the fine of 28 gr . vnto the fine of 66 gr .30 m . the tame extent will reach in the line afnumabers, firion $i 2$ vnto 23 ,443 and fuch iscter diftaicee betweenc the center and the tropique of 5 . upon this Fouteline of 4 . Thelike rapon bold 5 thitor all the reft, which may be gathered and fer downeina toble.

That doagend the gitator drenwe as before; if yourvould draw the tropique of 5 , looke into the table, and there fiading vinder the tive C So the diftance of the fablyylambetwicen the center and the pamalkel of is to orizoingh. So coma make

30 inch. 80 cent. out of the line of inches, and prick them downe in the fubitylar of your prane from C vato 5 .

Or if either the center fall without your plane, or the éxeent be too large for your compaffes, youp may prick downe the difference betweene $C r$ and C. As here the diftance C r betweene the center and the zquator is 14.57 , the diItance C 宁20.80, the difference 6.23 , therefore taking 6 inches is cert. prick them downe on the fubitylar from r vnto σ; and vou fhall haue the fame interiection of the tropiqueard the fubitylar, as betore ; and the like reafon holdeth'for pricking downe of the reft of theie diftances on their fex erall houre-lines.

Then hauing the points of interfection betweeu the houre. lines and the parallel, you may iofne them all in a crooked Thine without making of any angles, the tine fo draw thatl be 'the tropique'reguired. And affer this maner may you draw any other parallel of declination, whercof you haue examples in the molt of the former Diagrams.

CHAP. XIII.

Tardecribe the parallels of the Signes in iny of the former Plalles:

THexquator and thes troplifures before def ribed, doe Thuthe Suns entrance into 4 of the Signes, the xqua or
 the reft of the intermediate Signes will be defcribed in the Samemamier as the tropiques, iffitfoe know their dectina--dionatr!!

The manner of finding the declination not onely of the besimniagrofthe Signes; but of all other points of the ecliptique, 1.
is before fet downe in 2 . Prop. Aftronomicall, pag. 52. by which you may find the declination of the beginning of b, m, ano m, \because to be 11 gro 30 mm , and of I, Ω, 7 and m to bee 20 gr .12 m . If then you inkribe the chords of 1 tg .30 m and of 20 gr .12 m . into the former figure. B. D.I Pag. I +5 . from \mathcal{D} coward \mathcal{T}, the lines drawne from B through the tetmes of thote chords foall be the Signes required.

And with thete declinations, the heighe of the ityle, and the lengrh of the axis, youmay finde the aggles at the parallels and then the diftances betwecne the centerand the paialielts which being pricked downe upoatheir fegesal! boursolinas Shall gitue yu uthe points of interfection, by which you may draw the paratels of the Signess, as in the figures belonging to the polar planes.

To defribe the parallels of the lengtbiof the day in any of the former Planes.

THe length of the day will alwayes be is houres long when the Sumue commeth'to be in the aquator, and this holderh in all latitudes; but at other times of the yeare the fame place of the Sume, will not give the fame length of the day in another latitud; ; wherefore the latitude being known, - we are firt

To firde the declination of tbe Swnse agreeing to the
length of the day.

Conifider the difference betwectie tio leng th of aquinoCtall day and the day propofed, and turne the grees ànd minues.

As the fine of 90 gr r.
is to the fine of halfe ethe difference
So the cotangent of the tatitude.
to the cangent of the declination.
As if the length of the day propofed were 15 houres, the difference betweene this and an aguinoctiall day (whofe lenget is alwaics 12 houres) would be three houres, which unger $43 \mathrm{gr}^{r}$ and the balfe difference is 23 gr .30 m . wherefore exuend the compaffes from the fine of gogr. wite the engent of 38 gr .30 m . the complement of the latitude, she mnat exrent will reach from the Gine of 22 gro 30 mm . vio thie tangent of 16 gr . 55 m . for the declination of the Suane as

fuch time as the length of the day is either 9 or Ig houres; and trom the fine of 30 gr . vnto the tangent of 21 gr .40 mm for the dechnation belonging to 8 or 16 houres, and trom the fine of 15 gr . vnto the tangent of 11 gr .38 mm . tor the declination belonging to 10 or 14 hourts, and from the fine of 7 gr .30 ms . vnto the tangent of 5 gr .56 m . tor the decination of the Sun when the length of che day is either 11 or 13. hourés.

If then you inicribe the chords of thefe arkes into the for-

Cce
mers
mer figure $\mathcal{B} D T$, the lines drawne from \mathcal{B} through the termes o: thefe arks, fhallbe the lines belonging to the diurmail arkes, and the eucrill diftances berweene them and the point C giue the like dittances betweene the center and the paralieis of the lungth of the day vpon the houro-lines in your planc.

Or comparing thefe angles of declination with the a igles at the xquator, you may haue the angles at the parallel, aud then find the diftances betweene the center and the parallel, which being pricked downe vpon the feuerall hourc-lines, Ahall give your he poims of imeerfetion; by whtitt yot mäy draw the parallels of the length of the day, whereet you haue an ther example in the diagram belonging to an horizontall plane pag. 105: And by the fame realon you may draw the parall is of thofe circles to which the Sunne is verticall, the parallels of the princidall fealts, or what clie depends on the declination of the Suane.

CHAP.XVI.

To draps the old vnequal boures in the former Planes.

IT was the manner of the Ancients to diuide the day into cwelue cguall houres, and the night into twelue other equal houres, and fo the whole day and night into 24 houres. Of thele 24, thole which belonged vnio the day, were cither lonyer or thorter (excepting the two xquinoctiall dayes) then thole which belonged vnte the nighr; and the Summer houres alw yes longer then the houres in the Winter, accor: ding to the lengthening of the dayes, whereupon they are cala ledthe old vnequall (and by fome the Planetary) houres.

To expreffe thefe in the former Planes: firft draw the common houre-lines, the æquaror, and the tropiques, as before: then defcribe two occult parallels of the length of the day, one for 9 houres, the other for 15 houres; for fo you mav draw a ftraight line for the firft vnequall houre through $5 \mathrm{bo.45} \mathrm{~m}$ in the parallel of I 5 , and through 8 bo 15 m in the parallel of 9 . This ftraight line fhall paffe direetly through 7 bo. 0 m . in the xquator, and fo cut off a twelfth part of the arkes aboue the horizon, both from thefe two parallels and the xquator : and being continued vnto the tropiques, it thall alfo cut off about a twelfth part from them, and all the reft of the parallels of declination, without any lenfible error:

In like manner may you draw the fecond verequall houre through 7 ho . in the parallel of I , through 8 bo . in the aqua-

204 Houres from Sunrifing and Sunfetting:
ecr, and through 9 bo, in the parallel of 9 , and foin the reft, as in this I able.

And of thefe vrequall houres you haue a farther example in the diagram belonging to the polar declining plane, Pag. 130.

CHAP. XVII.

To drato the boures from Sunne rifing and Sunne fetting in the former Planes.

Oknow how many houres are paff fince the Sun rifing, or how many remaine to the Sun fetting ; firf draw the commoa
common houre-lines, the aguator, and the tropiques, as before : then defribe two occult parallels of the length of the day, one for 8 houres, and the orher for 16 houres. For fo

you may draw the firt houre from the Sun rifing through the common houres of 5 in the parallell of $\mathbf{1 6}$, of 7 in the zquator, and of 9 in the parallel of 8 . In like manner the fecond houre from Sun rifing throagh the common houres of 6 in the parallel of 16 , of 8 in the $x q u a t o r$, and of win the parallee of 8. And fo the ereft in their order.

The firft houre before Sun fetting, or the 23 houre from Ccc 3

206

To draw the herizontall line.

the laft Sun fetting, m. y be diawne in like fort through the common houres of 3 atter noone in the parallel ot 8 of s in the equazor, and ot 7 in the parall lot 16. The fecond houre before Sun letring, or the 22 houre afier the laft Sun ferting through the conmon houres of 2 in the parallel of 8 , of 4 in the xquator, and of 6 in the patallicl of 16. And fo the relt in the like order, whereof you 1 ause another example in the Dingram belonging to the declining verticall, Pag. 116 .

CHAP. XVIII.

To draw the borizontall line in the former planes.

THe common houre-lines doe common depend on the fhadow of the axis, but the parallecls of the Signes, and of the length of the day, the houre-lines from Sun rufing and Sun fetting, with many orhers, depend on the fhadow of the top of the fyle, or fome one point in the axis, which here fignifieth the center of the world, and is reprefented by the point B. And thefe lines fo depending, are then onely vfefull when they fall betweene the two tropiques, and within the horizon.

There may be feucrall horizontall lines drawne vponeurery plane, as I fhewed before in finding the inclination of a plane ; but the proper horizontall line which is here meant, muft alwaies be in the fame plane with B the top of the fyle; fo that in an horizontall plane there can be no fich horizontall line, but in a!l other planes it may be found by applying the horizontall legge of the Sector vnto the top of the Ityle, and then working as before; and the interfection of this line with the meridian or fubfylar line, may be found by propor-

1 To finde the interfection of the horizon with the meridian, in an aquinoctiall plane.

As the tangent of 45 gr .
to the tangent of the latitude :
So is the height of the fyle,
to the diftaice between the fiyle and the horizontall line.

As in the example of the former zquinoctiall plane, Pag. 142. extend the compafies from the tangent of 45 gr , vnot 51 gr .30 mi . the tangent of the latitude, the fame extent will rcachin he line of numbers, from 52 the length of the ftyle vito 66 , and fuch is the diflance betweene the fyle and the horizontall line; wherefore I take 66 parts out of aline of inches, and prick them downe in the meridian line from \mathbf{C} vnto H aboue the flyle in the upper face; but below the fyle in the lower face of the plane, lo a right line drawne through H, parallcl to the huure of 6 , fhall be the horizontall line.

2 To find the interfection of the berizon with the meridan, in a direCZ polar plane.

As the tangent of 45 gr . to the cotangent of the latitude :
So the length of the fyle, to thediftance betweene the fylleand the horizontalliae.

As in the example of the former polar plane, Pag. 144. extend the compartes from the tangene of $45 \mathrm{~g}^{\mathrm{r}}$. vnto tangent of 38 gr .30 m . the complement of the latrude, the lame ex$t \in$ nc will reach in the line of numbers, from 1.61 the length of the fyle, vnto 1,28 , and fuch is the difance vpou the nacridiau
ridian betweene the fyle and the horizontall line.
In all upright planes, whecher they be direct verticall; or declining, or meridian planes, the horizontall line mußt alwayes be drawne through A the foot of the fyle, as may appeare in the examples before, Pag, 102, 107. 116 .

And generally in all planes whatfoeuer, the horizontall line nuft be drawne through the interfe ction of the zquacour with the houre of 6 . Or if that interfection fall without the plane, yet if any arks of the length of the day be drawne on the plane, the horizontall lime may be drawne through their interfections, with the houres of the Suns rifing or fetring.

C H.A P. XIX.

To defcribe the verticall circles in the former Planes.

THe verticall circles commonly called Azimuths, are great circles drawne through the zenith, by which we may know in what part of the heauen the Sun is, how far from the Eaft or Weft, and how neere vnto the meridian.

In all vpright planes, whether they be direct verticals, or declining, or meridian planes, the femidiameter of the horizon will be the fame with $A B$ the perpendicular fide of the Ityle, and thefe Azimuths will be parallels one to the other, and the diftance of each Azimuch, from the foote of the ityle vpon the horizontall line, may be found in this mancr.

Confider the length of the ftyle in inches and parts of inches, and the diftance of each Azimuth from the ftyle, according to the angle at the zenith in degrees and minutes.

> As the tangent of 45 gr .
> to the tangent of azimuth :

So the length of the fyle,
to the ieng th of the horizontall line betwoene the fyle and the azimurh.

As ifit were required to draw the common azimuths on the South face of the verticall plane before delcribed, where $A B$ the length of the fyle may be fuppofed to be 10 inches. Here the plane hauing no declinatió,the fyle is in the plane of the meridian, and io pointech directly into the South. The point of $S .6$ is 11 gr. 15 m . diftant from the flyte, and Ddd SSE
$S S$ E 22 gr .30 m . and the relt in their order : wherefore extend the compaffes from the tangent of 45 gr. vi to to in the tive of numbers, the fame extund will reach'from the tangent of $11 \mathrm{gr} 15 m.$. vnto 1: 99 inf the line of numbers for the length atthe tancene time, betweene thw ftyle and the poind $S 6 E$, and from the tangent of 22 gr .30 m vito 4. 14 for $\varsigma s \varepsilon$, and fo for the rett, as in this Table.

In like manerin the trat exanppte. of the dectiming plane, where the ftvle ftandeth according to the deelinati $n 24$ gro, $20^{\prime} m$ diffant from the South toyard the Weit. The
 2n. diftant fromine Aty condiof SSWongly 1 gr so po.and thentifd oi SWGS is againe $9 g^{2 r} 25$ mand the reftintheir orddr Wherfore haupag tefore found the kength of theifyl to be Ginctes 80 parts, Extend the copapaffer from the tangept of 45 gr . vnto 6.80 parts in De line of numbers, the fane axcentwill reach from the cangent of 24 gr 20 me . tr . 3.07 in the line of numbers for the leigth of the tangent line betweend the ftyle and the
4 Soun end from the tangent of ' 3 $g r . s m$. vnto 1. 58 for the point of $S 6 \mathrm{~W}$; and fo for the reft, as in this Table.

That done, if you take thefe parts our of a line of inches, and pricke them downe in the horizontall line on either fide of the ftyle, drawing
right-lines perpendicular to the horizon through there interfections, but fo as they may be contaised betweene the horizontall and the trepiques, the lines fo drawne thall be the azimuths rtguired.

In an horizoncall plane there azimuths are drawne :moro eafily. For here the perpendicular fide of the ftyle is the fame with the axis of the hosizon, and the foote of the fyyte is the verticall point, in which all the azimuth lines doe micete as theireiretes doe inthe-zenith: wherefore let any circle defcribed on the center 1 , at the footeof the olyle, be diuided fint into foure parts, bieginning at the meridian, and then each quarter fubdiuided either into eight equall parts; accotding to the points of the Mariners compaffe, or into $90.8 t$. according to the Aftronomicall diuifion ; if you draw right liness through the center add thefe diuifions, the lines fo drawne haill be the azimurhs required.

In all other planes inclining to the horizon, thefe verticall circles will meete in a point, but that verticallpoint being more or leffe diftant from the foote of the ftyle, the anglesar this point will bèvnequall,

1 To find the diftance betweere the foote of the ftle, and the verticall point.

The verticall point wherein all the verticall lines do meet, will be alwayes in the meridian, directly vnder or ouer the top of the ftyle; and-the angle betweene the perpendicular fide of the ftvle and the verticall line, will be equall to the iो clination of the plane to the horizon. Wherefore

As the tangent of $4 \mathrm{~s} \mathrm{gr}_{2}$
 to the tangent of the inclination of the plane:
 So is the length of the ftyty
 to the diftance betweene the foote of the ftyle and the verticall.point.

Thus in the firft example of the declining inclining planes, where che vpper fice of the plane looking Southweft, the declination was 24 gr .20 m . the inclination 36 gr ;and you may fappofe $A \mathcal{B}$ the length of the fyle to be 6 inches :if you extend the compaffes from the tangent of 45 gr . vnto the tan-

gent of 36 gr . the fame extent will reach in the line of numbers from 6.00 vnt0.4.36, for the diftance $A V$ betweene A the foote of the flyte and V the verticall point.
\therefore ant
2. To find the diffance betweene the foote of the fiyte and the horiZontall line.

As the tangent of the inclination of the plane, is to the tangent of 45 gr -
So the length of the ftyle;
to the diftance betweene the foote of the fyle and the horizontall linea

So the fame extent of the compaffes as before, will reach in the line of numbers from 6.00 vnto 826 for the diftance $A H$ betweene the foote of the ftyle and the horizontall line.

Then may youtake 4 inches 36 cent. and pricking them dowae from A the foot of the ftyle unto V the verticall poine in the meridian, draw the line $V A$, which being produced fhall cut the horizon in the point H with right angles, and be that particular azimuth which is perpendicular to the plane.

Or you may take 8 inches 26 cext. and pricke them downe in the former line $V A$ produced from A vnto H, and fo draw the horizontall line through H perpendicular vnto $V H$, which horizontall line being produced will croffe the zquatorin the fame point wherein the æquator croffeth the houreline of 6 , vnleffe there be fome former error.

3 To find the angles wisade by the aximutb lines at the verticall point.

The angles at the zenith depend on the declination of the plane, as in our example, where the ftyle ftandeth according to the declination 34 gr .20 mm diftant from the Sou.h toward the Weft, the azimuth of 10 gr. from the meridian Eaftward will be 34 gr .20 m . the azimuth of rogr. We@ward will be their order.

Or if you would rather defribe the common azimuths, the point of $\mathrm{S} 6 \varepsilon$ will be 35 gr .35 m . the point of 36 W 13 gr. 5 m . diftant from the fyle, and fo the reft in their order, Then

> As the fine of 90 gr . to the cofine of the inclination of the plane:

So the tangent of the angle at the zenith, :
to the tavgent of the angle at the verticall point betweene the line drawne through the foot of the fyle and the azimuch required.

Wherefore the inclination of the plane in our example being 36 gr . extend the compaffes from the fine of 90 gr . vato the fine of 54 gr . the fame extent fhall reach in the line of tangents, from 24 gr .20 m . vnto 20 gr .5 m . for the angle $H V a$ at the verticall point, betweene the line $\bar{V} H$ drawn through A the foore of the ftyle and the South. Againe, the fame extent will reach fiom the tangent of 13 gr .5 m . vnto 10 gr .38 m . for the angie beionging to 66 W ; and fo for the reft, as in this table.

There angles being knowne, if on the center V, at the verticall point, you defribe an occult circle, and therein infcribe the chords of thefe angles from the line $V H$, and ihtn draw right lines through the verticall point, and the terms of thofe chords, the lines fo drawne fhall be the azimuths ${ }_{4}$ required.

The
: The like reafon holdeth for the drawing of the azimuths oponall other inclining planes, wheredt you haue another exansple in the Diagtam belonging to the meridiah inctiner, - Fag 126.

Oi for further fatiffaction you may finde where each azimuth line fhall croffe the equator.

> As the fine of 90 gr .
> to the fine of the latitude :
> So the tangent of the azimuth from the meridian,
> to the tangent of the eguator from the meridian.

Extend the compaffes from the fine of $90 . \mathrm{gr}$. vnto the fine of our latitude ${ }^{1} 1 \mathrm{gr} .30 \mathrm{~m}$, the fame extent will reach in the line of rangents from 10 gr . vnto 7 gr .50 m . for the interfeCtion of the xquator with the azimuth of 10 gr . from the meridian. Againe, the fame extent wilt reach from 20 gr vnto 15 gr .54 m . for the azimuth of 20 gr . And fo the reft, as in thete rables.

0 0 18 0 24 0

By which you may fee that the azimuth 90 gr . diftant from the meridian, which is the line of Eaft and Weft, will croffe the xquator at 90 gr . from the meridiais in the fame point, with the horizontall line and the houre of 6. And that the $2-$
zimuth

216 The defcription of the parallels of the horizow zimuth of 45 gr . will croffe the xquator at 38 gr .2 m . from the merid an, that is, the line of SE will croffe the aquaror at the houre of 9 and 28 mm . in the morning, and the line of $S W$ ac 2 bo. 32 minv. in the afternoone $;$ and fo for the refl, whereby you may examine your former worke.

CHAP. XX.

To defcribe the parallels of the borizon in the former planes.

THe parallels of the horizon, commonly called Almicanters, or parallels of altitude (whereby we may know the altitude of the Sun aboue the horizon) haue fuch refpect vnto the horizon, as the parallel's ofdeclination vato the equator . and fo may be defcribed in like maner.

In an horizontall plane, theie parallels will be perfect circles; wherefore knowing the length of the ftyle in inches and parts, and the diftance of the parallell from the horizon in degrees and minutes.

> As the tangent of 45 gr is the length of the ftyle:
> So the cotangent of the parallell to the femidiameter of his circle.

Thus in the example of the horizontall plane, Pag. 164. if $A B$ the length of the ftyle hall be s inches, and that it were required to finde the femidiameter of the parallell of 62 gr . extend the compaffes from the tangent of 45 gr . vnto 5.00 in the line of numbers, the fame extent will reach from the tangent of 28 gr . the complement of the parallell vnto $2.6 \mathrm{~g}_{3}$ and if you defrribe a circle on the center A to the femidiameter of 2 inches 65 cent. it thall be the parallell required.

In all vpright planes, whether they be direct verticals, or declining ; or meridian planes, thefe parallels will be connicall fections, and may be drawne through their points of interfection, with the azimuth lines, in the fume maner as the parallels of decliaasion, through their points of interfection with the houre-lines. To this end you may firt finde the diPance between the top of the Ayle and the azimuth; and then the diftance berweene the horizon and the parallell, both which may be reprefented in this maner.

On the center B and any femidiameter $3 B$, defribe an occult arke of a circle, and therein inderibe the chords of fuch parallels of alcitude as you intend to draw on the plane, (I haue here put them for 15.30 .45 and 60 gr .) then draw right lines through the center and the termes of thofechords, to the line $\mathcal{B} H$ hall be the horizon, and the reft the lines of altitude, according to their diftance from the horizon.

That done, confider your planie (whitiblere for extmple is Eec the
218. The defription of the paralelels of the horizom.' the South face of our verticall plane; page 168) wherein hauing drawne both the horizontall and verticall lines, as I Thewed before, firf take out $\mathcal{A} B$ the length of the fyle ${ }_{z}$ and pricke that downe in this horizontall line from \mathcal{B} vato A; then take out all the diftances betweene B the top of the fyle and the feuerall poins whercin the verticall lines doe croffe the horizontall, transterre them into this horizonrall line B H, from the center B, and at the termes of thefe diftances erect lines perpendicular to the horizon, noting them with the number or letter of the azimuth from whence they were taken, fo thefe perpendiculars fhall reprofent thofe aziinuths, and the feuerall diftances betweene the horizon and the lines of altitud: fhall giue the like diftances, betweene the horizontall and the parallels of altitude vpon the azimuths in your plane. Vopon this ground it followeth,

1 To find the diftance betweene the top of the fiyle, and the fenerall points whecein the azimuths doc croffe the borizontall lime.

Hauing draune the horizontall and azimuth lines as be-. fore, looke into the tabie by which you drew them,and there. you Shall haue the angles at the zenith. Then

As the cofine of the angle at the zenith, is to the fine of 90 gr . So the length of the ftyle, to the diftance reguired.

Asin our example of the verticall plane, where $A \mathcal{B}$ thes Jength of the Ryle was lappoled to be xo inches, extend the compaffes froun the fine ot 78 gr .45 m . (the complement of $11 \mathrm{gr} .1 \mathrm{~s} m$, the angle at the zenith, belonging to S. $b \mathrm{E}$ and $\$ 6 \mathrm{~W}$) vito the fine of 90 gr . the fame extent will reach from 10, Op the lengit of the ftyle, vnto 20.20 for the ditance beoweenethe top of the ftyle and the interfection of the azimuth $S 6 \varepsilon$ with the horizontall line, which diftance may eo calfed the fecant of the azimuth, and may ferve for the draw. ing of the parallel of 45 gr . fromthe horizon. The like rea fon holdeth for the reft of thele diftances here reprefented in: the line $\mathcal{B} H_{0}$ -

2 To finde the diftance betmeenc the boricon: and the paraliels.

As the rangent of 45 gr . to the tangent of the paralliell :
So the fecant of the azimuth, to the diftance required.

A if it were required to draw the parallell of isgr: from the

the horizon, vpon this verticall plane; exteud the compaffes from the tangent of 45 gr. vato the tangent of 1 sgrathe fame extent will reach in the line, of numbers from 10.00 the fer cant of the South azimuth vnto 2.68, and therefore the diftance betweetie the horizon- and the parallell of 15 gr is 2 inches 68 cent. Vpon the South azimuth. Againe, the fame extent will reach from 10.2 the fecant of $S 6 E$ vnto 2.73 for the like diftance belonging to $S 6 E$ and $S 6 W$; and fo for the reft, which may be gathered and fet downe in the table.

That done, and the horizon and azimuths being drawne, pricke downe 10 incles from the horizontall line vpon the Sourh azimuth, and so inches 20 cerst. On the azimaths of $S 6 E$ and $S 6 W$, and 10 inches $\$ 2$ cent, on the azimuths of $S S E$ and $S S W$, and $\mathbf{i} 2$ inches 3 cemt , on the azimuth of $s \in \in S$ and $S w b S$, and fo the reft of thefe diftances on their fcuerall azimuthst then if you draw a crooked line through thefe points, that may make no angles, the line fo drawne thall be the parallell of 45 gr . from the horizon. In like manner may you draw the parallel of $15 . g$ r. orany other parallell. of altitude vpon any verticall plame.

It the plane incline to the horizon, after we hauefound the verticall point, and drawne the horizontall line, weare farther to finde the length of the axis of the horizon, then the angles betwixt this axis and the awimult lines, and fo the feuerall ditances betweenc the parallels and the verticall point, all which may be repreferted in this manner.

On the center β, and any femidiameter, defcribe an occult quadrant of circle, and therein infribe the chords of fach parallels of altitude as you intend to draw on the plane, drawing right lines through the center and thie termes of thefe chords, to the line B. H. fhall be the'horizon, and his perpendicular $B V$ the axis of the horizon, and the reft the lines of alcitude, according to thisir diftance from the horizon

Fhat done, confider your plane, which here for example E.ce 3
is the firft of our three declining inclining planes, wherein hauing drawne both the horizontall and verticall lines as I lhewed before , firt take our the axis of the horizon, which

is the line between $\boldsymbol{B}^{\boldsymbol{B}}$ the top of the ftyle and V the verticall point, and pricke that downe in this figure from \mathcal{B} vnto V; then take out both the line $V H$ and all the reft of the diftances betweene V the verticall point and the feuerall points wherein the verticall lines doe crofic the horizontall line of this figure, from the point V, noting the place where they croffe the horizontall line with the number or letter of the azimuth from whence they were caken, and drawing the azimath lines from V through the lines of altitude.

Or hauing the Sector you may draw an occult line $V E$ perpendicular to the axis $V B$, and therein prick downe the tangent of the complement of the inclination of the plane from V vnto E : then draw the line $\varepsilon \mathrm{F}$ parallel to the axis, croffing the line $\forall H$ produced in the point F, fo this line E F will beas the line of fines vpon the SeEtor, and thercia
you may prick downe the fines of the complement of the angles at the zenith from E towards F, and draw the vertical lines by thofe points through the lines of altitude, fo the angles at V, betweeue the axis $V B$ and thofe azimuth lines, thall be the angles betweene the axis of the horizon and the azimuth lines on your plane, and the feuerall diftances betweene the point \mathbf{V} and the lines of altitude, fhall giue the like diftances betweene the verticall point and the parallels of atitude vpon the azimuths in your plane. Vpon this ground if followeth,
> *
> I To. finde the length of the axis of the Horizan.

The verticall point is al wayes either directly ouer or vnder the top of the fyle, and the diftance betweene them is that which I call the axis of the horizon, which may thus be found,

As the cofine of the incligation, to the fine of 90 gr .
Sothe length of the ftyle, to the length of the axis of the horizon.

For example in the firft of the three déclining incicining planes, the ipclinatiou to the horizon is 36 gr . the length of the fyle A B fixe inches, extend the compafies from the fine of 54 gr . the complement of the inclination vato the fine of 00 gr . the fame extent will reach in the line of numbers from 6.00 vato 7.42 , and ficch is $V B$ the length of the axis ree: quixed.

224 The defoription of the parallels of the borizon

2 Tofinde the angles contained betweene the berizon and the verticall lines

 opon your plase.The angles at the verticall point betweene the axie of the horicon and theazimuth linis vpon your plane are reprefented in this figure by thofe at V, betweene V B and the azimaths. The angles betweene the horizon and the acimuth lines being complements to the former, are feprefen-

ted either by thofe which are made by VE or by BH, and the azimuth lines which are drawne from V .

That you may finde them, looke into the Table, by which you drew the azimuth lines, there fhall you finde the angles at the zenish. Then

As the fine of 90 gr .
to the cofine of the angle at the zenith :
So the tangent of the inclination to the horizon; to the tangent of the angle betweene the horizon and the vericall linte.

In our example where the inclination to the horizon is 36 gr . and the angle at the zenith betweene the azimuth at the ftyle and the meridian, is according to the declination 24 gr .20 m . extend the compaffes from the fine of $\$ 0 \mathrm{gr}$. vnto the tangent of 36 gr . the fame czeent will reach from the fine of 69 gr. 40 m. the complement of the angle at the zenith, vnto the tangent of 33 gr .30 m . for the angle contained betweene the hor 2 on and the. Sputh part of the meridian line. Againe, the fame extent will reach from the cofine of 35 gr . 35 m . the angle at the zenith belonging to $S 6 E$ vito the tangent of $30 \mathrm{gr} .3 \mathrm{~m}_{\text {- }}$ - for the angle betweene the hori$z o n$ and the azimuth line of $S 6 \cdot E$. Thie like reaton holdeth for the reft, which may be found and fet downe in the Table.

226 The defcription of the parallels of the boviening

Then may you either draw thefe angles at V in the former figure more perfectly, and thence fïilh your worke, or elfe. procced.

> 3 To finde the diftance betweene the verticall point, and the parallells of the borizon.

Thefe diftances may be found by refolving the triangles in laft figure made by the axis, the lines of altitude, and the. the azimuth aximuth lines. For haxing ehe length of the axis and the anigiec at the horizon, if you adde the diftance of the parallell trom the horizon vnto the angle at the horivon, you fhall haue the angle at the paralle. Then

As the fine of the angle ax the parallch, to the cofine of the altitude :
So the length of the axis,
to the diftance betweene the verticall point and ettic parallell.

Thusis our example if it were reqgired to fande the diflance vpon the fylar azimuth \mathbf{V} H, berweene the verticesll point ard the horizon, you haue the ceftangle triangle V BH wheren the angle at the horizon here ecpreferted by B $H V$ is (equalit to the melination of the plane) $3^{6} 8 \mathrm{gr}$ and $\mathrm{B}: \mathrm{V}$ the -axis of the horizon betweene the plane and the top of the ftyle, is 7 inches 42 cent. Wherefore extend the compaffics from the fine of 36 gr . ano the fine of 90 gr . the complemebe of the alkitude, the fante extent will reach in the lime of numbers from 7.44^{2} vnto 12.62, and finch is the diffance of the perpendicular azimuth line VH betweese the verticalf point and the horizon.

In like manner if you woild finde the diftance vpon the meridian between the verticall point and the-horizon, 'extend the compaffes from the fine of 33 gr .30 m . the angle at the horizon, to the fine of 90 g . the lame extent will reach in the line of numbers from 7.42 vnto 13.44 , and fuch is Va the diftahce betweenc the vertizall point and the horizon vpon the line of the South azimuth, फhat is, upon the meridian line.

But if you would finde the diftance vpon the meridian betweene the verticall point and any other parallell of the horizon, as vpon the parallel of $26 \mathrm{gr} \cdot 34 \mathrm{~m}$. then adde thefe 26 gr .34 m . vnto 33 gr .39 m . the angle at the horizon, fo hall you hauc $60 \mathrm{gr} \cdot 4 \mathrm{~m}$. for B D V the angle at the paralle.. And if you extend the compaffes from the fine of 60 gr .4 m . vnto Fff 2
the fine of $63 \mathrm{gr}, 36 \mathrm{~mm}$, the complement of the parallell from : the horizon, the fame extent will. reach in the line of numbers from 7.42 the length of the axis, vato 7.66 , and fuch . is the diftance $V D$ betweene the verticall poinc and the paparallell of 26 gr . 34 mm . ypon the meridian line. Thelike reafon holdert for all the reft, which;may be gathered and: fet downe is the table.

That done, and the horizon drawne as before, if you would : draw the parallel of 26 gr .34 m .from the horizon, looke inte. the cable, and there finding vnder the title of the parallel of 26 . 34, the diftance on the Sonth azimuth line to be 7.66, take 7 inches 66 centrout of aline of inches, and prick them down on the meridian of your plane, from the verticall point at V.

Or it either che verticall point fall without yotisplase, or the extent at any time betoo large for your compaffes, you may pricke downe the diftance betweene the horizon and s the parallel.As here the diftance betweene the verticall point . and the parallel is 7.66 , betweene the verticall point and the . horizon 13.44 , the differenceberweene them 5.78 is the diftance trom the horizon to the parallel, which being pricked downe upon the meridian, fhali giue the fame interfection as . before. And the like reafon holdeth for the pricking downe. the reft of theie diftances on their feucrall azimuths. 1

Hauing the points of interfection betweene the azimaths and the parallel, you may ioyne theon all in a crooked line: without making of angles, the line.fo drawne fhall be the pa-. rallell reg itite. And vpen this gneund it followeth.

> To defaribe fuch parallels on the former plames, as inay foem. ihe propartien of she fhadow unto the gromon.

The proportion of a mans thadow vnto his beight, or on ther fhadow to his gnomon fet perpendicular to the horizon, may be thewed by parallels to the horizon, if they be drawne. toa due altitude, which may thus be found:

As the length of the fatow, to the length of the gupmen:
So the tangentof 458 .
to the cangent of the altitude.
As if it were required to finde the alfitnde of the Sunae when the fhadow of a man Chall be decuple to his height, extend the compafees from 10 vato I in the line of numbers, the fame evtent will reach in the tangent of 45 gr . vnto the tangent of $s g_{0} .42 \mathrm{~m}$; which fhewes that when the Sun commetrto the alticude of $s g^{2} 42 \mathrm{~m}$, your fhadow, vpon a levell ground, will beten times as much as your height. In thefame maner you may finde that at 7 gr .7 m . of altitude your Chadow will be octuple, at 9 gr .27 m . fextuple, at 11 gr .18 ms . quintuple, at 14 gr .2 m . quadruple, at 18 gr .26 m . triple, at 26 gr .34 m . double to your height, at 33 gr .4 Im . as 3 vnto 2 , as 36 gr .52 mas $4 \mathrm{vnto} 3,2 \mathrm{ta} 3 \mathrm{gr} .40 \mathrm{~mm}$ as 5 vnto 4 ,at 45 gr . equall,at 5 gr gr. 20 mm as 4 vito 5 , at 53 gr .7 mas 3 vnto 4 , at . 56 gr .19 m . as 2 voto 3 , at $59 \mathrm{gr}$.2 mm as 3 vito g , at 63 gr 。 26 m as i vnto 2, \&c.

If then you draw a parallell to the horizon at 5 gr .42 ms . another at 7 gr .7 mb and fo the reft, when the thadow of the flylefalleth on the parallell, you have the proportion, and thereby may you know the hadow by the height, and the height by the fhadow, whereof you have examples Pag.i 26: and 137 .

I might here proceed to thew the defcription of the circ'es of poftion, the Signes of the Zodiack in the meridian; the Signes afcending and delcending, with fuch other gnomo nicall conclufions ; but the fe would proue faperfluous to fach as vnderitand the doefrine of the Sphere; and for others, that which is delivered may fuffice for ordinary vfe, tt being my intention not fo much to explane the full vfe of hadowes (whereof I haue lately ginen a large example in an other place) as the vfe of thefe limes of proportion, that were not extant heretofore.

An Appendix concerning

The defription and rofe of af fmall purtable Quadraut, for the more ecsfie finding of the boure and Azimuth.

CHAP. 1. Of the defcription of the Quadrant.

HAving defcribed thefe ftanding planes, I, will nown thow the moft of thefeconclufions by a fmall Qaidrant. This mighe bedone generally for all latitudes, by a quarter of the generall Agtrolabe, deferibed before in the wfe of the Soctar, pag. 58 . and particularly for any oue latitude, by a quarcer of, the particular AAtrolabe,there alfo dofcribed, pug. 63 . which if it be a foote femidiancorer, may frew the azimuth vito 2 degree, and the time of the day vnto a minure; but for ordinary wfe this fmailer Quadrant may fuftice; which nay bee made portable in this manner.

I Vpon the center A, and femidizmeter $\mathcal{A} B$, defcribe de arke $\mathcal{B} C$: the fime famidiameter will Set of 60 gr . and the halfe of that will be 30 gr . Which being addod to theformer 60 gr will makerhearke B.C to be 90 gr the fourth part of the whole circle, and chence comes the name of a Quadrant.

- Leauing fome little fpace for the infcription of the moneths and dayes, on the lame center A, and femidiameter AT, defcribe the arkeT D, which hall feruefor either tropique.

3 Divide the line ΔT in the point ε, in fach proportion, as that $A T$ being 10000, $A E$ may be 6556 , and there draw another arke $\mathcal{E} F$, which Shall fewe for the Equateor, or $A E$ heing 10000 let $E T$ be $525.3:$
4. Divide 4 E the femidiameter of the xquaror in the point G; fo as A F being 1000 , the line $A G$ may bee 43433 and

Intimfription of the gtherall limes: 23

 5 This pasi of the ectiptique may be twitida afcenfion ot the firt point of 5 being 27 gr .54 m . you may lay a ruler to the ceater A and 27 gr .54 m . in the Quadrant $B C$, the point where the ruler crofferh the Ecliptique, hall be the firlt point of 8 : In like manner the right afcenfion of the firft point of II being 57 gr . 48.m. it you lay a raler to the center \mathcal{C}, and 57 $\mathrm{gr}^{2} .4 \mathrm{~m}$. in the Quedrant, the point where the ruler croffeth the ecliptique, hall bee the firt point of II. And fo tor the reft : but the lines of diftinction betweene Signe and Signe, may bee beft drawne from the center G.

6 Tbe line $E T$ betweene the squator and the wopique, which I call the line of declination, may be divided into 23 gr : $\frac{1}{2}$. out of this Table. Forlet $A E$ the femidiameter of the z quator be 10000 , the diftance terweene the zquator and 10 gr. of deelination may bee 1917 . more; between the xquator and $20 \mathrm{gr} .4^{281}$; the diftance of the tropiqua from the equator 525 .
7 You may puc in the moft of the principall ftarres betweene the xquator and the tropique of σ, by their declination from the $x q u a t o r$, and righta afcention from the next equinoctial point. As the declination of thie wing of Pogafus, beging 13 gr .7 m. che right afcenfion 358 gr .34 m , from the firlt point of r, or 1 gr. 26 molhort of it.Ifyou draw an occult parallel through $\$ 5 \mathrm{~g}^{2} 7 \mathrm{~mm}$ of declineffon, and then lay the ruler to the center \mathcal{A},

 (80以な
etthe name and the time when he cometh to the South, ate midnightin this maner, W. Pog. * $23 \mathrm{Ho} .54 \mathrm{M.}_{\mathrm{a}}$ and fo for the reft of thefefiue, or any other farres.

		$\mathrm{Ho}_{0} \mathrm{M}_{0}$	R. Acees	Dea
Pegafine ming :	March 8	2354	1. 26	13-7
PArctarus: \because :	Oftobar 14	13 58:	29: 37	2180
Liomsikeart	Auguf 7	948	32. 58	${ }^{1} 345$
	cray 16	4 415	63 63	1542
Vulturus bentt *	Iamexa	19.33	66561	

8 Therebing fpace fufficient betweene the equator and the center, you may there defcribe the quadrat, and diuide each of the two fldes fartbeft from the center A into 100 parts, fo thall the Quadrant be prepared generally for any E tieude.

Bus before you draw the particular lines,youare to fit foure tables vnto your latitude.

Firft a table of meridian altitudes for diuifion of the circle of dayes and moneths, which may be thus made: Confidgr the latitude pfthe place and the declinationof the sun for cach day of the yeare. If the lacitude and declipation beabke bogh North or both Sou h,add the declination to the complements of the lasitade, if they bee vnlike, one North and thegrher South, fubftract the declination from the complementogf:the tatiturde, the remainder will be the meridian altitude batonging vnto the daye

Thus in our latitudeof 51 gr .30 m . Northward, whofe complement is 38 gr .30 m . the declination vpon the tenth dayof Iune will be 23 gr : zo man Northward, wherefore I adde 23 gr .30 m . Nato 3 Rigr. $30 . \mathrm{m}$, the fumme of both is 62 gr .for the meridian altitude at the tenth of Iune, The declination vpponpfDecember will be 23 gr 30 m . Southward, wherefore I take thefe 23 gr .30 m . opt of $38 . \mathrm{gr} .3 \mathrm{mpm}$, there will remaine 15 gr . for the meridian alititude at the tenth of Decembers and inflis maner youmay find the meridion altitude for each day of the yeere, and fer them downe in a table.

$$
\text { Ggg } \quad \text { The }
$$

234 A sable of the meridiam altitudes.

The Table being made, you mayo infcribe the moneths, and dayes of eachmonethinto your quadrant, in the fpace left below the tropique. For lay the ruler vato the center A, and $16 \mathrm{gr} \cdot 3^{1 \mathrm{~mm}}$ in the quadrane $B C$, there may you draw a line for the end of Decermber and beginning of Ianuary ; then laying your ruler to the center A and 24 gr .17 m . in the quadrant, there draw the end of lanuary and beginning of February, and fo the reft, which may be nored with $I, F, M, A, M \in$, I, \&e. the firfletters of each moneth, and will here fall betweene $15 g^{r}$, and 62.gr.

The fecond Table whieh youareto fit, may ferue for the drawing and diuiding of the horizon. For drawing of the horizon.

As the cotangent of the latitude,

to the tangent of the greateft declination: So the fine of gogr.
to the fine of interfetion, where the horizon €hall croffe the tropiqques:

So in opr latitade of s gr .30 m. we hrall find chic horizon

A table for dimiding of bōiziệm.

to'cus the tropique in 33 gr .9 m : wherefore if you lay the ruler to the center A, and 33 gr. $9 . \mathrm{mm}$. in the quadrats, the poin where the ruler crofert the tropique fhall be the point where the hotizon crofetb the tropique. Andif youtinde a. point at H, in the line $A C$, whereon letting the compinfes, you may bring the point at E, and this point in the tropique bothinto a circle, the point \boldsymbol{H} hall be the centeriand the arke fo drawne hall be the horizon. Then for the diuifion of chis harizop.

As the gine of 90 gr.
to the fine of the letitude; So the tangent of the horizon,
to the tangent of the arke in the quadrant, which/hall diuide the horizon.
So in otr latitude of 51 gr .30 m . we fhall finde 7 gr .52 m . belonging to 10 gr . in the horizon, and $\mathrm{Y} \varsigma \mathrm{gr} .54 \mathrm{~m}$, belonging 30 gr . And to the reft, as this Table.

Wherefore you may lay the ruler to the center A, dind η gro 52 m in the quadrant $B \cdot C$, the point where the iuler crof fathene thorizon thati beiso grit in the horizon; and do for the.
 will be befldriwne from the cediter F_{s}

The ehird rable for drawing of the houre liness, maft bed Table of the alciude of the Sumne abone the horizon at tivery houre, elpecially when he cometh to the zquator, theitiopiques, and fome other intermediate décinations. si
If the Sunne be in the xquator, and fo haue no alcclination.
As the fine of 90 gr .
to the cofine of the latirudes $3: 0.0$ a s : b
So the cofinc ofthe hourfrometemeridine s!
to the fine of the altiude.

Thus in our latitude of $51 \mathrm{gr} .3^{0 \mathrm{~mm}}$. at fix houres from the meridian the Sun will hatic no altitude, at fuie the altitude will be $9 \mathrm{gr}_{\mathrm{o}}, 17 \mathrm{~m}$; at foure 18 gri 8 m ; at Arree 26 gr 7 m mé two 32 gr .37 m , at one 36 gr .58 mg at noone it will be 38 gr . 30 m equall to the complement of the lasieude:
If the Sun haie declination, the meridiag alitude siv be Sound as before, for the Table of dayes and monethsw
If the houre propofed be fix ia the morningor fixtatnight.
As the fine of $g a g r_{5}$
to the fine of the latitude:
So the fige of the declination
$\therefore:$ tothe fine of the atcitude.
Thus in our laxixude chadeclination of the Stn beingi 3 giv.
 nacion being \boldsymbol{y} gr. 30 m ahe altitude will ive 9 gro.

If the howe propofed be neither twelue nor fix.
as ene eotine of the houre from the meridian; to the fine gogr.
"So the tangent of the latitude, to the tangent of a fourtharkse.

- Wdo'n or ratitude zrod one houre from the enesidian, this fouth arke will be fund to be 52 gr .28 m . 7 two $/ 5$ gr. 26
 from the meridiain $78 \mathrm{gra}_{\mathrm{a}} 22 . \mathrm{m}$.
- Then confider the declimation of the Syn and ehe Foure prôpofed"; if the latitude and deetination bo both alike, as with vs iti North latitude, North decfifiation, and the houre fall betweene noone and fri, take the decmination our of the fourth arke, the remainer fhall be your ffityixté

But if either the houre fall betweene fix and midnight, or the latitude and declination fhall be vnlike, adde che declination vato the 'lourthiarké, andt Ake'fumme of Both fall be your fith arke : or if she fumme fhall exceed $9 \circ$ gr. you may take the complement vnit 180 gr . This fifth arke beidg knowne:

As the fine of the fourth arke,
tothe fine of the latikude:
So the cofine of the fiftarke, to the fing of the 'atitude.

 red to finde the altirnde if the Surn for feacn in the, maiomings.
 Northward, and the houre propofed falleth betweene noone
 on out of 78 gr .22 m , the foarth arke belonging to the fift houre from the meridiant, Fo thorewilf sommenest gr .52 m . for your fift arke. Theid thorking mowling tacthe Canon, you fhall find,

As the fine of $78 \mathrm{~g}^{2}$ r. 22 m, your tourtharke ; :. - to the fine of sr gr .30 m . for chelatixude. Ggg 3

To finde ite alititade of tife Smanc:

In rettanguld $0 \Phi H$, ot $O E$ Radius Id E M Cotamblat. ita $Q D$ Cojahara. ad D H Tan,DH. Cui aqualis oft F R exius compl. $D R$, novis dr. arcus quartme.
Conferatur arcus $\mathcal{D} \dot{H}$ cinn arcu declinationis D S, ita dabitur arcus $H S$, с未iw complo of S R of prius dr. arcus quis. tun. Vinde erit

$$
\begin{aligned}
& \text { et Cofi PR boceft wt Sim.DR. } \\
& \text { ad Cofor } P Z \quad a d \operatorname{Sin} E Z \text {, } \\
& \text { ita Cofio } S R \text { : ita Sin.HS. } \\
& \text { ad Cofis SZ ad Sim. } A \text { S. }
\end{aligned}
$$

Hinc forte preftabit vocare 'H arcuin quintuns itafecunda operatio inftitnetur per folos Sines,'

Vel filibet fubtraltionem finus quarti arcus evitare, inveniatur angalus OHD quod fieri poteft varís modis. IV amo
 ad Sim. ang. O ad Sis. O..... adTinn D O ad Sim EZ; sta Coffida DD its Sis. DO ite Radius ita Rad.

- Ditome emanquesingulo $d d H$, eris in roctangulo H AS
\therefore : or fincruadisicngwis H AS ;

.isa finus anguli ad horiz. S i A, ad fmalolaris altitndivis S A.

for ang boure andlatitude propofed.:

So the fine of $35 . \mathrm{gr}^{\mathrm{o}} 8 \mathrm{~m}$. the complement of your fife arke, to the fine of 27 gr : 17 m. the altitude required.
If in the fame latitude and declination, it were required to finde the alcitude for fue in the morning, here the boore falling betweene fixe and midnight; if younadde: $\mathrm{x}_{3} \mathrm{gr} .30 \mathrm{mo}$ voto 78 gr. 22 wis the fumme wiltbe 101 gr .52 mi. and the complement to 180 gr . will be 78 gr 8 m . tor your fifth arke. Wherefore
"As the fine of 78 gratz m.
to the fine of 5 Igr .30 mb
So the cofine of 78 gr .8 mm .
to the fine of $9 \mathrm{gr}^{5} .32 \mathrm{~m}$. for the alitude required.

If in the fame latitude of 51 gr .30 mm . Northward, the Sunne hauing 23 gr . 30 m. of Sourt declination it were required the altitude for nine in the morning, here becaule the latitude and declination are vnlike, the one North, and the other South, you may adde 23 g .30 mm , che axke of declination, vtro $69 \mathrm{~g}_{\mathrm{t}} .39 \mathrm{~m}$. the fourth arke belonging to the third houre from the meridian, fo that yeuhape of gro 9 ma for your fift arke. Wherefore

> As the fine of. $60 . \mathrm{gr}$. 39 mo
> to the fine of $5 \$ \mathrm{gr} .30 \mathrm{~mm}$.
> So the colisc of $84 \mathrm{gr} .9 . \mathrm{m}$.
> to the fine of s gr. 1 s m. for the akitude required.

Andfb by one or other of the fe menaes youi minj finde the altitude of the Sump for any poine of the ecliptigiverat all houres of the day, andifet themdowne incincha Táleias this.

180

ATable for drawing of the houre dimus.
A Täble for the altitride of the Suinve in she beginning of \therefore gech Sigue at all bonxes of the day, calciulated for $\operatorname{sig} \mathbf{g r} .30 \mathrm{mb}$ of North Latiticme.

\therefore Iafly; you may frad whardeclination the gun hath when he rifeth or fetteth at any houre,

 to the tangent ofche docinationi.

And fo in the latitude ofyr grogivy yoithall finde that when the Sun rifeth, either acfine in the Suthmer, or feuen in the Winter, his declinative is axiga. 37 when whe rifeth defoupriaxthe Saminery or eighrin the Wihter, his declination is $2 \mathrm{Igr}$.40 m . which may be alfo fet downe inthe Table. Fh Thendone, yousury thete fee thatrim ohis datitudtithe me-

 beginning of ξ and $v o$ is reprefented by the tropiques: $T^{\prime} D$, drawne at 23 gr .30 m . of declination, and the beginning of r and \leadsto, by the xquator $\mathcal{E} F$. If you draw an occult parallell thetweene the zquator and the tropique, at II $\mathrm{gr}_{4} 30 \mathrm{~m}$. of declination,

I he manner of drawing the bourcolines. $24 x$

 clination, it thall reprefent the beginning of γ, \underline{y}, m, and x : if you draw an other 9 ccult parallell through $20 \mathrm{gr} .12 \mathrm{~m}, \mathrm{of}^{-}$ declination, it fhall reprefent the beginning of $I r, \Omega, f$, and n n.Then you may lay a ruler to the center A, and 62 gr . in the quadrant $B C$, and nore the point where it croffeth the tropique of 9 ; then moue the ruler to 58 gr .52 m . and note where it croffeth the parallell of II; then to 50 gr . and note where it croffeth the parallell of 8 , and againe to 38 gr .30 ms . noting where it croffeth the xquator; fo the line drawne shrough thefe points fhall hnew the houre of 12 in the Summer, while the Sunne is in $\gamma, 8, I \pi, \$, \Omega$, or 8 . In like maner if you lay the ruler to the center A, and 27 gr . in the quadrantgand note the point where it croffeth the parallel of x_{3} then moue it to 18 gr .18 m . and note where it crofleth the parallell of \approx; and againe to 15 gr . noting where it croffech the tropique of vp ; the line drawne threugh thefe points Chall thew the houre of 12 in the. Winter, while the Sunne is in $\approx M, f, q, y$, , and x, and fo may you draw the reft of thefe houre-lines: onely that of 7 from the meridian in the Summer, and s in the Winter, will croffe the line of declination at I 8 gr .37 mo and that of 8 in the Summer, and 4 in the Winter at 21 gr .40 m

The fourth table for drawing of the azimuth lines, maft ikewife be fitted for the altitude of the Sun aboue the horizen at cuery azimuth, efpecially when he commeth to the zquab tor, the tropiques, and fome other intermediate declination.

If the Sume be in the æquator, and fo haue no declination:

As the fine of 90 gr .
to the cofine of the azimuth from themeridian:
So the cotangent of the latitude, to the tangent of the altitude at the wquator.

[^5] will be $21 \mathrm{gr} \mathrm{H}^{1 \mathrm{~m}}$.

If the Sun haue declinacion, the meridianaltitude will be eafily found as before, for the table for dayes and moneths. And for all orher azimuths.

> As the fine of the lacitude, to the fine of the declination :
> So the cofine of the altitude at the xquator, so the fine of a fourth arke.

When the latitude and declination are both alike in alrazimuths from the prime verticall vnto the meridian, adde this fourth arke vnto the arke of altitude at the æquator.

When the laritude and declination are both alike, and the azimuth more then 90 gr . diftant from the meridian, take the altitude at the equator out of this fourth arke.

When the latitude and declination are valike, take this fourth arke out of the arke of faltitude at the xquator, fo fhall you haue the altitude of the Sun belonging to the azimutho.

Thus in our latitude of 51 gr .30 m . Northward, if it were required to finde the altitude of the Sunne in the azimuth of 60 gr . from the meridian', when the declination is 23 gr .30 m. Northward, you may finde the altittde at the xquator belonging to this azimuth to be $21 \mathrm{gr} .4^{1} \mathrm{~m}$; by the former Ca non, and by this laft Canon you may finde the fourtharke to be 28 gr .15 m . Then becaufe the latituds and doclination are both alike to the Northward, if you adde them both together, you fhall haue 49 gr .56 mm for the altitude requirea.

If the declination had been 23 gr .30 m ; to the Southward, your fhould then hane taken this fourth arke out of the ark as the zequator, which becaule it cannot here be done, it is at a figne that the Sunne is not then aboue the horizon. But if you take the arke at the xquator out of this fourth tke, y ous thall haue $6 \mathrm{gr}_{\mathrm{i}} 34 \mathrm{~m}^{\mathrm{m}}$. for the altirude of the Sunne when he is

0 MRadiai Me Cotan. lat.: OACof.azim. AB Tan equa.

EZ Sing lat. ZB Cofo AB: DS Sin. decli. SB Smorarc. 4 .

Tables for abe a tisude of the sun in the beginning of coch Sger for eucry temet arizimutb.
 reft of thefe altitudes, which maxy be gathered and fet downe ina table.

Lafly when the Sun rifeth or fetteth vpou any azimuth, to find his declination.

As the fine of 90 gr .

 to the cofine of the latikude:So the cofine of azimuth from she meridian, to the fine of the declination.

And thus in our latitude of 51 gr .30 m . when the azimuth is 80 gr . from the meridian , the declination will be found to be 6 gr .12 m ; if the azinuth be 70 gr . the declination will be found $12 \mathrm{gr}$.18 m ; if 60 gr. then 18 gr .8 m . And fo for the reft, which may be alfo fet downe in the Table.

A Table for the altitude of the Sunne in the loginning of each figne for euery tenth azimath, in s 1 gr. 30 m . of Nerth latitude.

That dowe, if you would draw the line of Eaft or Weft, which is 90 gr . from the meridian; tay the rater toithe center A, and $30 \mathrm{gr} .3 .8 . \mathrm{m}$. numbred in the guadrant frem C towiand \mathcal{B}, and note the point where it croffeth the trodique of 5 ; then mouc the ruler to 26 gr .10 m.and note where it croffeth. the parallell of I; then to 14 gr .45 m . and note where it croflech the parailell of \forall; then ro 0 gr .0 aı。 and you fhall find it to croffe the æquatour in the point F; foa line drawne through thefe points, fhall hew the azimuth belonging to Eaft and Weft. The like reation hoiderh for all the reft.

Thefe liges being thas drawne, if you fet two fights vpon the line $\boldsymbol{A} C$, and hand a thread and plammer on the center, A with a bead vpon the thread, the forefide of the quadrant fhall Thall be fully finighed.

On the back fide of the quadrant you may place the Noiur. nall delcribed before in the vie of the Sector pag. which confifteth of two parts.
The one is an houre-plane diuided xqually according to the 24 houres of the day and each houre into quarters, or minutes as the plane will bearc. The center reprefents the North pole, the line drawne through the center from XII to XII, Atands's for the meridian and the lower XII ftands for the houre of XII at midnight.

The other part is a rundle for fuch ftarres as are neere the north pole together with the twelue moneths, and che dayes of each monech fitted to the right alcenfion of the Sunne and ftares this in manner.
Firft confider where the Sun will be at the beginaing of the $5,10,15,20,25,30$, and if you will euery day ot each moneth, and finde the right afeenfron belonging to the place of the fun a_{3} I hew before Pay.

For example the fim at midnight the talt of Decenatier or beginning of Ianuary will be commsunibus annis about 20 gr . 40 m . of ys_{0} whole right afcenfion is 292 gr 20 m . At midnight thelaft of January or beginning of February he will be about 22 gn .12 m . of mmofe wight afcenfion is 324 gr 35 m . and fo the reft which may be fee downe in a table.

That done consider the longitude and latitude of the ftarres and thereby finde their right afcenfion and declination as I hew before, Paf. and let them downe in a Table. Thefe Tables thus made, let the vtterrooft part of the randle be made euen with the innermoft circle of the houre-plane, and a comarnient fface allowed to containe the devifions tor the dayes and names of the moncths. Then lay tle center of thas rundle vpon the eenter of fome other circle divided into 360 gr . and by the center and 292 gr .20 m . in that circle draw a line for the beginning of lanuary. In like maner by the center and 324 gr .35 m . draw a line fog the end of lanualy and beginning of February, and fo the reft of the dayes of each moneth.

For the infcription of the ftarres.let one of the lines from the center as that at the beginning of Iuly, or rather let a moueable index be diuided from the center toward the inward circle of the moneths into 40 gr . more or leffe, which may be done for fpeed equally, buc for exactneffe in fach maner as the iemidiameter of the generall Aftrolabe was divided before, Pag. So laying the Index to the iight afcenfionin the outward circle you may prick downe the ftarres by their declination in the Index.

For example, if the right afcenfion of the pole-ftarre be 6 gr .28 ms . end his declination 87 gr . 20 m . hauing fit the center of the Index both to the center of the rundle and of the other circle, turne the Index to 6 gr .28 mo in that outward circle, and prick downe the ftarre by 87 gr .20 m . in the edge of the Index, that is at the diftance of 2 gr .40 m . from the pole. The like realon holdeth for the reft of the ftarres, which may be diftinguihed according to their magnitudes, and then be reduced into their formes, as in the rexample. So the quadrant will bee fitted both for day fand night.

The vfe of the Quadraut, and of the Eeliptique. 247

CHAP. II.

Of the rofe of the Quadrant in taking the altitude of the Sunne, Moone; and. Starres.

THe Quadrant is the fourth part of a circle, diuided equa 1ly into 90 gr. and here numbred by 10.30 .30 . \&c. vnto $90 . \mathrm{gr}$ e each degree being fubdiuided into 4.
Lift vp the center of the Quadrant, fo as the thread with the plummer may play eafily by the fide of it, and the Sunne beames may palfe through both the fights; fo thall the degrees cut by the thread, thew what is the altitude at the time or obferuation, as may appeare by this example.
Vpon the 14 day of Aprill, about noone, the Sun-beames paffing through both the fighiss, the thread. fell vpon 51 gr . 20 m . and this was the true meridian altitude of the Sunne for that day in this our latitude of 5 gr gro 30 m . for which this Quadrant was made.
Againe, towards three ofthe clock in the afternoone, the. thread fell vpon $3^{8} \mathrm{gr} .40$ m.and fuch.was the. Sunnes alcicude at that time,

CHAP.

CHAP. III.

Of the Ecliptique. .

1 The place of the Sunne being giwen to finde bis right afcernjon.

THe Ecliptigue is here reprefented by the arke, figured with the charaters of the twelve Signes, $r_{2}, y_{i}, \mathcal{F}, \mathrm{c}$. each S igne being diuided vnequally into 30 gr . aud they are wo be reckoned from che charater of the S igro.

Let the thread be laid on the place of the Sunne in theEeliptique, and the degrees which it cutteth in the Quadrant fhat be the right afcention required.
As if the place of the Sume giaen be the fourth degree of II, the thread laid on this degree fhall cut 62 degrees in the Qaadrant, which is the right afcenfion required.

Bux it the place of the sumne giuen be more then 90 gr . from the beginaing of V, there muff be more then 90 gr.allowed to the right afcenfion; For this inftrument is buta .quadrant : and lo if the Sunne be itit $26 . \mathrm{gr}$. of $\$$, you fhall find the chicad to fall in the fame place, and yet the right afeenfion to the $1 \mathbf{1 8} \mathbf{g r}$.

> 2 The right afcention of the Sunne being given, so finde bis place in the Ecliptique.

Lee theithread be laid on the right afcenfion in the Quadrant, and it thall croffe the plate of the Sun in the Ecliptique, is may appeare in the former example.

The effof the lime of docilimations

CHAP. IIII.

Of the line of declination.

1 The placc of the Surne being given to finde hé dectination.

THe line of declination is heredrawne fromithe ceniorto the beginning of the Quadrant, and divided fiom the boginning of Y downward into 23 gr . 30 m .

Let the thread be laid, and the beade fet on the place of Sunue in the ecliptigue; then moue the chread to the line of the declination regnired.

As if the place of the Sunne given be the fourth degrec of II, the bead firft ferto this place, and then moued to the line of declination, fhail there fhew the declination of the sunne. at that time to be 11 gro fom the equator.

2 The declination of the Sumno being given, rof finde: -his place inthe Ęcliptigue.

Let the thread and beade be firt laid to the declination,and then moued to the Ecliptique,
As if the declinatiou be 21 gr. the bead firt fer re this declination, and then moued to the ecliptigut, foull there fhew the fourth of \bar{I}, the fourth off, the 36 of $\%$, and the 36 of ws; and which of thefe foure is the place of the Sumenc, may, appeare by thequarter of the yeere.

, CHAP. $V \cdot$

Of the circle of Moneths and Dayes.

THis circle is here reprefented by the arke, figured with thefe leters. $I, F, M, A M$, \&ec. fignifying the moneths. Ianuary, February, March, Aprill, \&cc. each moneth being divided vnequally, according to the number of the dayesthat: are therejin.

ATable for the infoription of ibe moneths in

 the Nocturnail.

CHAP.

The wre of the circle of moneths and dayes.

1 The day of the moneth being given, to fimde the

 altitude of the Swme at noone.Let the thread be laid to the day of the moneth, and the degrees which it cutteth in the Quadraņ Thall be the meridian altitiade reguired.

As if the day giuen be the 15 of May, the thread haid on: this day Thall cut 59 gr .30 m . in the quadrant, which is the meridian altitude required.

> 2 The meridian altitude being given, to finde the day of the manerth.

The thread being fet to the meridian altitude, doth alfo fall on the day of the moneth.

A sif the altitude at noone be 59 gr .30 mm . the thread being fet to this alcitude, d duh fall on the 15 of May, and the 9 of Iuly ; and which of thefe two is the true day, may te knowne by the guarter ot the yeere, or by another daje iobferuation. For if the altitude prove greater, the thread will fall on the 16 day of May and the 8 of Iuly : or if it proue leflor, the thread will fall on the 4 of May and the 10 of Iuly; whereby the queftion is fully anfwered.

CHAP. VI.

Of the Hourc-lines.

THat arke whichis drawne vpon the center of the qua:drant by the b ginning of declination, doth here reprefent the equator: that arke which is drawne by 23 gr .30 m .
of declination, and is next aboue the circle of moneths and dayes, reprefenteth the tropiques: thote lines which are betweene the rquator and the tropiques, being vadivided and numbred at the zquator by $6,7,8,9,10,11,12$. at the tropique by $1,2,3,4, \& \mathrm{cc}$. do reprefent the. houre-circies : that which is drawne from $i z$ in the xquator to the middic of Iune, reprefentert'the houre of $\mathbf{i z}_{2}$ at noone in the Summer; and shofe which are drawn with ie to the right hand, are for the houres of the day in' the Summer, and the houres of the night in the Whter. Thiat which is drawne from 12 in the zquator to the midde of December, reprefenteth the houre of 12 in tic Winter ; and thufe which are drawne with it to the left hand, are for the houres of the day in the Winter, and the boures of the night in the Suininer; and of both thefe, that which is drawne from $11 t .1$, ferves for 11 in the forenoone, and s in the afternoone. That which is diawne from 10 to 2 , ferues for 1, in the torenoone, and 2 in the afternoone: for the Sunne on the fame day is about the fane height two houres before noone, as two houres after noone. The like reafon. hoideth for the reft of the houres..

1 The day of ibe moxeth, or the height at noone being. knespre, to finde the place of the Sumne. inathe Ecliptiquea.

The thread being laid to the day of the moneth, or the height at noone, (for one giues the other by the former propofition) marke where ic croffeth the houre of 12 , and fet the beadto that interfection; then moue the thread till the beade fall on the ecliptique, and it thall fall on the place of the Sunne.

As if the day giuen'be the 15 of May, or the meridian altitule 59 gr .30 m. lay the thread accordingly, and pur the bead tocthe interiection ot the thread with the house of 12 ; then moue the chread till the bead fall on the ecliptigue, and in thall there fhew thefourth of I_{2} the tourth of f, the 26
of 5 , and the 26 of w; and which of the ee is the place of the Sunne, may appeare by the guarter of the yeare, or anothet dayes obfervation.

2: The place of the Sume in the Ecliptique being knowwe; $t o$ fiode the day of the mometh, ofo.

Let the thread and bead bee firf laid on the place of the Sunne in the Ecliptique, and then moued to the line of. 12.

As if the place of the Sunne giuen be the fourth of II, the bead being laid to this degree, and then moued to the houre. of 12 , in the Summer, the thread will fall on the 15 day of May, and the 9 of luly; or if ic be moved to the houre of 12 in the Winter, the thread will fall of the 6 of Ianuary and the x6 of Noucmber; which of thefe is the day of the moneth required, may appeare by the quarter of the yeare.

In this and the former propofitions, you haue two wayes to rectifie the bead, by the place of the Sunne, and by the day: of the moneth ; the better way is by the place of the Sunne, for in the other the Leap.yeare may breed fome fmall difference.

There is yet a third way. For the Sea-men hauing a table for the declination on each day of the yeare, may fet the beadthereto in the line of declination ${ }^{\prime}$
> 4. Tbé houre of the day being ginen to find sbealsitude. of the Sunne aboue the horizon.

The bead being fet for the time by either of the thrice wayes, let the thread be moved from the houre of 12 toward the lime of declnarion, till the bead fall on the houre given; and the d grees which it cuts in the Quadrant, fhall fhew the alritude.of the Surne at that time.

As if the time ginen be the tenth of Aprith, the Sunne be- - fhall finde the heighr at noone 50 gr .0 mac an in the morning 48 gr . 12 m . at io but 43 gr .12 m . at 9 but 36 gr . at 8 . but 27 gr .30 m. at 7 but 18 gr .18 m . at 6 but 9 gr ac s it meeterh with the line of declination, and hath no altitude at all, and therefore you may thinke it did rife much about that, houre.

Then if you moue the thread againe from the line of decliration toward the houre of 12 you fhal find that the Sunne is $8 \mathrm{gr}+33 \mathrm{~m}$: below the horizons at 4 in the morning; and neere 16 gr at 3 , and 21 gr .5 mm at 2 , and 25 gr .40 mo at I, and 27 gr , at midnight.

4. The altitude of the Snnene being ginen, to finde the buare of the day.

The altitude being obferued as before, let the bead bee fet for the time, then bing the thread to the alcitude, fo the bead Shall fhew the houre of the day.

As if the so of April hauing fet the bead for the time, yon fhall find by the guadrant, the altizade to bee 36 gr . she bead at the fame time will fall vpon the houre-line of 9 and 3: wherefore the houre is 9 in the forenoone, or 3 in the afternoone. If the altitude be neere 40 gr . you thall find the bead at the fame rime to fall halfe way betweene the houre-line of 9 and 3 and the houre-line of roand 2 : wherefore it muft be either halfe an houre palt 9 in the morning, or halfe an houre paft 2 in the afternoone; and which of thefe is the true time of the day, may be foone knowne by a fecond obferuation: for if the Sunne rife higher, it is the forenoone; if it become lower, it is the afternoone.

s : The houre of the wight being giuen, to fiowd bow wnoch the Sume is belo:d

the borizom.

The Sunne is alwayes fo much below the horizon at any houre of the night, as his oppofite point isaboue the horizon at the like houre of the day;and therefore the beadebeing fer, if the queftion be made of any houre of the night in the Summer, then moue it to the like houre of the day in the Winter; if of any houre of the night in Winter, then moure it to the like houre of the day in Summer; fo the degrees which the thread cutteth in the Quadrant, hall fhew how much the Sun is below the horizon at chat tume.

As if it be required to know how much the Sunne is below the horizonshe 10 of Aprilat 4 of the clocke in the morning; the bead being fet to his place according to the time in the Summer houres, bring it to 4 of the clocke in the afternoone in the Winter houres, and fo thall you finde the thread to cur 8 gr . and about 30 ms, in the quadrant ; and fo much is the Sun below the horizon at that time.

6 The depresfios of bhe Swnencfuppofed, to give the bouria: of the wight hates, or ibe biene of the
day té our cintipoder.
Here allo becaule the Smne is fo much aboue the horizonat all houres of the day, as his oppofite point is below the horizon at the like houre of the night; therfore firft fet the bead according to the time, then bring the chread to the degree of the Suns depreffion below the horizon, fo fhall the bead fall on the contrary houre-lines, and there fhew the houre of the night in regard of vs, which is the like houre of the day in regard of vs, which is the like houre of the day to our Antipodes.

As ifthe 10 of April the Sumne being then in the beginning
ning of 8 , and by fuppofition $8 \mathrm{gr}, 30 \mathrm{~m}$. below the horizon in the Ealt, it be required to know what time of the night it is; firt fet the bead according to the day in the Summer houres, then bring the thread to 8 gr .30 m . in the quadrant, fo Shall the bead lall among the Winter houres, on the line of 4 of the clocke in the afternoone : wherefore to our Antipodes it is 4 of the clocke in theirafternoone, and to vs it is then 4 of the clocke in the morning.

7 The time of the yeare or the place of ibe Sunne being gimen, to find the beginning of day-breake,
and end of tomi.light.
This propoficion differeth little from the former: for the day is faid to begin to breake, when the Sun cometh to be but - 8 gr . below our horizon in the Eaft, and twi-light to end when it is gotten 18 gr . below the horizon in the Weft; wherefore let the bead be fet for the time, and then bring the thread to 18 gr . in the quadrant, to fhall the bead fall on the contrary houre-lines; and there fhew the houre of twi-light as before.

So if it be required to know at what time the day begins to breake on the tenth of April, the Sun being shen in the beginning of ${ }_{\xi} ;$ firft fet the bead according to the time in the Summer houres, and then bring the the thread to 18 gr in the quadrant, fo thall the bead fall among the Winter houres a little more then a guarter before 3 in the morning; and that is the time when the day begins to breake opon the tenth of April.

CHAP.

CHAP. VII.

Of the Florizon.

THe Horizon is here reprefented by the arke drawne, fiom the beginning of declination towards the cad of Fi bruary, divided vnequally, and numbred by 10: 10. 30. 40.8 cc

1 The dey of the moseth, or the plecs of tbe sumue being knowne, to finde the amplitude of the Sunnes rifing and jetting.

Let the bead reftified for the time, be brought to the herizon, and thers it thall hew the amplitude required.

As if the day ginen bee the 15 of May, the Sunne being in the fourth degree of II, the bead rectified and brought to the, horizon, thall there fall on 35 gr. 8. m. fuch is the amplitude of the Sunnes rifing from the Eaft, and of his Iecring from the Weft ; which amplitude is alwayes North when the Sunne is in the Northerne fignes, and when he is in the Souththerne Gignes alwayes Southward.

2 The day of the inaneth, or the place of the Samne
being giuen, to finde the affeenfionall defference.

Let the bead rectified for the time, be brought to the borizon, fo the degrees cut by the thread int the quadrant, thall thew the difference of afcenfiops.

As if the day given bethe is of May, the Supnebeeing in che fourth degree of $\bar{\pi}$, let the bead be retetified and brought Kkk

To find the boure of the rifong and fetting of the Sun， and thereby the length of the day and night．

Thie time of the Sunnes rifing may be gueffed at by the 3 ： of the laft C app．but here by thea！cenfronall difference it may be better found，and that to a minute of time．Forit the af－ cenfionall difference bee conuerted into time，allowing an houre for 15 gr and 4 minutes of an houre for each degree，it Iheweth how long the Sun rifeth before fix of the clocke in the Summer；and after fix the Winter．

As if the day giuen be the 15 of May，the Sun being in the fourth of II，and his alcenfionall difference found as before 28 gr .50 m ；this conuerted into time，maketh i bo．and fome－ what more then 5 sm ．of an houre：wherfore rhe Sun at that time，in regard it was fimmer，rofe 1 bo，and tull 55 m ．before 6 of the clocke，and fo hauing the guantity of the femidiur－ mall arke，the length of the day and night need not be vn． knowne．

CHAP．VIII．

Of the fiue Starres：

1Might hate put in more ftarres，but thefe may fuffice for he finding of the houre of the night at all times of the yeare ：and firt I make choice of Ala Pegafi，à ftarrein the extremity of the wing of Pegajus in regard in wants but 6 ． minutes of time of the beginning of x ；bur but becaufe it is but of the ferond magnitude，and not alwayes to be feene，I made choiot bf foure more，one for each quarter of the Eclip－ tigue， tique ${ }_{5}$ as Qculas the Buls eye, whoferightafenifion conurrc d into, time, is 4 . 60.15 m ; then of Cor Statre Lions hearty whole right aicenfion is 9 bo. 48 m ; next of $A x$ हiturich, whofe right afcenfionis 13 H .58 m ; and lafty of Aquila, or the Vultures heart, whofe right atcerifion is ig $\mathrm{H}_{3} 33$ w. Thefe fiue ftarres bauc all of them Northerne declination ; and if any 'others, fome of thele will be feene at all rimes of the yeert. The vfe of them is,

The altitude of any of thefe fine Starres being knowne to find ibe houre of the night:

Firlt purt the beade to the flarre which you intend to obCerue, take his altrude, and finde how many hourcs he, ffiom the meridan by the fourth Prop. of the fixt Chap; then out of the right afcenfio ot the flarre, take the right afcenfion of the fun con erted;into houres, and marke the difference'; for this difference being added to the obferued houre of the ftarre from the meridian, fhall fhew how many houres the fanne is gone from the meridian, which is in effect the houre of the night.

As if the 15 of May, the fun being in the fourth of ir, I fhould fet the beade to Arcturus, and obieruing his alitude thou!d find him to be in the Weft about 52 gr . high, and the bead to tall on the heure-line of 2 afternootie, the houre would be II bo. 50 m . palt noone, cr Io m. Chort of midnight.

For 62 gr . the right afcenfion of the funne, conuerted into time, makes 4 bo. 8 m . which if we take out of $\mathrm{r} 3 \mathrm{ho}$.58 m . the sight afcenfion of Arcturus, the difference will be 9 bo. 50 m . and this being added to 2 bo. the obferued diftance of Arcturus from the meridan, thewes the houre of the night to be ni bo. 50 m Anether examplewtitmake all more plaine.

If the 9 of Iuly the funne being then in 26 gr of $\mathfrak{5}$, I fhould fet the beade of Oculus \succ, and oble ruing his altitude fhould find him to be in the Ealt about 12 gr . high, and the bead to fall on the houre-line of σ before noone, which is Kkk 2

For 188 g r. the right afcenfion of the Sun, conuerted into. time, makkes 7 ba y 2 m ; this taken out of 4 ho .15 m .the right doerfiion of Ocmulw , adding a whole circle, (tor otherwife there could be no fubltration) the difference will be 20 boe 23 m. and this being added to 18 bo . which was theoblerued diftance of O cwluw $ช$ from the meridian, hewes that the Sim (abating 24 bo. for the whole circle) is 14 bo: 23 m . paft the meridian, and therefore 23 m .paft 2 of the clocke in the morning.
 drant you may auoid this equation of right afcenfions. For. knowing the time of the yeere when the flarre will be in the fouth at midnight you may bring that tione to the houre obYerued, then will the day of the moneth wherein you made: the obleruation point at the hoare of the night requised.
As in the firft example where on the is of May the bead. Iet to Arturus fell on the houre-line of 2 affernoone, becaufe Arcturus will be in the fouth the 14 of Oitober compleat at midnight you may place the 14 ,ot Ofober at the houre of 2, Io the 15 of Ma y will point to 11 bo. so main.
Inthe fecond example, where the 9 of Iuly the bead fet tothe Bulls eye fell on the houre-line of 6 before neone, becaufe the Bulls eye will be in the fouth the 16 of May compleat at midnight you may tourne rhe 1 Gof may to the houre of σ,and fo you fhall finde the, of laly to pointro $2 \mathrm{ba}, 23$ miv, as be fore.

С HAP .

Of the Azimutbalines.

THofe lines which are drawne betweene the sequator and the tropiques, on that fide of the quadrant which is neareft vnto the fights, and are numbred by $\mathbf{2 0 . 2 0 .}$ 30. \&c. doe reprefent the azimuihs, the vtermoft to the left hand reprefenteth the meridian, that which is numbred with ro the tenth azimuch from the meridian, and that which is numbred with 20 the twentith, and fo the reft. Thofe lines which are drawne from the aguator to the left hand, doe Shew the azimuth in the Summer; and thofe other to the right hand, doe hew the fame in the Wineer. The vfe of them is.

1. The azimuth whercon the Swnve beareth from os being knowne, to find the altitude of the Sunabowe the borizon.

Firttet the bead befte for the time, as in the former Chapter, then moue the thread varill the bead fall on the azimuth;, fo the degrees which the thread cuteresh in the guadrant, Mhall Shew the alcitude of the Sun at that time. Where you are ∞, nbferue, that fecing the azimuths are drawne on the tighe fide of the quadrant, you are alfo to begin to number the degises of the Sumness alcievde frem the right hand.orvard the left. As if the fightrs had been geton the line $A B$ of and you had turned your right hand towards the Sun in obferuing of of his altutude, conurary so our practice in the former Chapter.

As if the time given were the 2 of Augut, when the Sumhathabout 15 gr.of North declination, you may fas the bead: tor the time, io you folll find the heightat noone when tho

Sun is in the fouth, to be 53 gr .30 m . when he is rogr . from the fouth 53 gr. Io w. when 20 gr .then about 52 gr .8 m . when 30 gr . then 50 gr .20 m . when 40 gr . then 47 gr .48 mm . when 50 gr . then 44 gr .12 m , when 60 gr .then 39 gr .35 mm . when $70 \mathrm{gr}^{\circ}$ then $33 \mathrm{gr}^{\circ} .50 \mathrm{~m}$. when 80 gr . then 27 gr when he is in the Eaft or Weit 90 gr. trom the meridian. then is the height neare 19 gr .20 m ; when he comes to be 100 gr , then II gr_{o} I m . when 110 gr .then 3 gr .20 m ; and before he commeth to the azimuth of 120 gr . he hath no altirude. For the fun hauing $15, g r$. of North declination, will rile and fet at $\times{ }^{1} 4$ $\mathrm{gr} .34^{\mathrm{m}}$. from the ureridian.

2 The altitude of ibe Sun being giuen, to find os what azimuth be bearest from ws.

Let the beade be fet for the time, and the altitude obferued as before; then bring the thread to the complement of that altitude, fo the bead ihall thew the azimuth required.

As if the fecond of Augult, haning fet the beade for the time, you thall find the altitude of the fun to be 19 gr .20 mm . remoue the thread vnto 70 gr .40 me . the complement of the altitude ; or, which is all one, to $19 \mathrm{gr}, 20 \mathrm{~m}$. from the right hand toward the left, and the bead will fall on the line of 90 gr. from the meridian. And thercfore the point whereon the funne beareth from vs, is one of thefe two, either due Ealt or dae Weft. And which of thefe is the true point of the compaffe, may be foone knowne by a fecond obleruation : for if the funne rife highier, it isthe forenoone; if it be lowet, it is the atternoone.
By knowing the azimuth or point of the compaffed whereon the.funne beareth from os, it is eafy to find,
: . $1 . \operatorname{dinididian~line,~and~thereby~}$ Tbe coqfing oft the Cguntrey. Thbe fife of a building. Tbe yariation of ibe compaffe
$=A A$ As

As if the fecond of Augut in the afternoone, I hould find by the height of the fun that he beares from me 60 gr . from the meridian toward the Weft : then there being 90 gr. belonging to each quarter, the Weft will be 30 gr. to the right hand, the Eaft is oppofice to the Weft , the North and South lie equally betweene them.

C H A P. X.

Of the Quadrat.

TH E Quadrathathtwo fides djuided, theother two fides next:the Center may be fuppofed to be diaided, each of them into 100 equall parts : of the fides divided, that which is next the horizonialline connaines the paits of right hadow, the ocher next the fightes, the parts of contrary fiadow. The vie of che Quadratis,

I Any point being given, to finde whetber it be lencli' moith tbe eye.

Lift vp the center of the guadrant, fo as the thread with the plumnefy may play rafly by the:fide pfit: then looke through the fights to the place giuen : for now if the thenead thall fall on $A B$ the hor zontall lioe, then is the place given: leucll with the eye : but ific fhall fall withinthe faid line on as ny of the diaifions, then it is higher: if without, then it is lower thea the feciell ef the eyr.

2 Te find an beight aboue the levell of the eye, orn difancie at one obfermation.
Looke through the fighs to the place goingenarer or far: ther from it, till the threadfall fall on 100 parts in the quadrat of 45 gr . in the quadrant, fo mall the heie hit of the place aboue. the lcuell of the cye, be cgadll to the difance betweene the phice and the eye.

If the thread fall on 50 parts of a right Anadow, the height is but halfe thadiftance: if it fall ou 25 , it is a guarter of the diftance: if on 75 , it is threc quarters of the diftinace. For as oft as the thread fallecth on the parts of right fhadow,

As 100 to the parts on which the chread falleth : So is the diftance to the height required.

And on the contrary,

As the parts cut by the thread are to 100 : So the height vato diftance.
Bow when the thred thall fall on the parts of contrary findowne: if it fall on 50 parts, the height is double vnto the diftance; if on 25 , it is foure times as the diftance. For as oft as the thrend fallech on the parts of contrary fhadow,

As the parts cut by the thread are vnto 100:
So is the diftance vnto the height.
And on the conttary,
As 200 are vnto the parts cut by the thread: So is the beight vato the diftance.
And what is there faid of the beighe and diftance, the Etue may be vaderfoopd of the height and ghadow.

30 Io finde a beight or il diffance at twoo obfervations.

F As if the place which is to bee meafured might not otherwife bee approached, and yet it were required to finde the height BC , and the diftance: firf if 1 make choice of a flation at Λ, where the thread may fall on 100 parts in the quadrat, and 45 gr , in the quadrant, the diltance A B will bee equall to the height $B C$; then if I goe farther in a direct line with the former diftance, and make choice of a fecond fation at $\cdot \mathrm{D}$, where the thread may fall on so parts of right fhadow, the diftance B D would bee double to the height B C: wherefore I may meafure the difference betweene the two fations Λ and D, and this difference D (Mill bee equall both to the diftance A B and the height A B.

Or if I cannot make choice offuch ffations, I take fuch as I may , one at D , where the thread falleth at so parts of right, Ghadow; the fecondat E , where it falleth on 4° parts: and
 fuppofing the height $B C$ to bee roo, I find that

As 50 parts are vnto 100 , the fide of the quadrat: So roo the fuppored height, vito 200 the diftance B D, And as 40 parts, at the fecond itation, vnto 100 : So 100 the fuppofed height, vnto 250 the diftance B E.

Wherefore the difference betweqpe the fations D and E Thould feeme to bee 50 ; and thenif in the meafuring of it, 1 hhould finde it to bee cither more or telle, the proportion willion, as from the fippoled difference to the meafured dirierence, fo from height to height, and from diftance to diflance.

As if the difference between the two ftations D and E being meafured, were found to be 30.

As 50 the fuppofed diference, vnto 30 the true difference: So zoo the fuppered height, voto 60 the true height. And 200 the fuppofed diftance, ${ }_{2}$ vnto 120 the truie diftäce: And 250 at the fecond ftation, vinto 150 the diftance B. E.

The like reafon holdech in all other examples of this kind: and if an Indexwith fights were fittedto turne vonthe Ceater, it might then ferue by the fame remon for the finding of. all other diftances.

$$
F I N I S
$$

THE

GENERALL YSE OFTHE CANON AND TABLE of Logarithmes.

Ogarithmetique is a Logicall kinde of Arichmerique., or arificiall vte of numbers inuer: ted for the eafe of the calculation whertin each tumber is firted with an Artificiall, and thele aruficiall rumbers fo orderd, that what is produced by multiplication of naturall numbers, the fanee may be effected by the addi ion , f thefe their artifi. iall numbers ; what they performe by diuifion, the fame is he, edone by fubrraction: and fo the hardeft part of calcu'acion auoided by an caly profthapharefis.

All this thall be vade plane by applying that to thefe Artificial numbers, whis hl haue fer downe before tor the vfe of my Lines of numbers fines and Tangents in the ore of the Sector and Croffetaff. Wherein the 1 cader is to obferue that, what is to be wr cugh: by round numbers only, is beft done by M. Trigges his Logarithmes,but the aftronomiA22a call part conc ming arks and angles, by my Canon of Anti-. facial fines and Tangents.

CHAP. I.

Concerning the rove of the line of N numbers, 1 Set donne ten generall Propofitions an the role of the Crofeftaff. p. 18. and the fe may bee applied to the table of Lggarithmes.

To multiply one number by another.

THis is the VI. Proposition of the ten : but I begin with the cafieft, ede the Logarithme of the multiplicator to the Logarithme of the multiplied, the fame of both hall be the Logarithme of the product.

As when we multiply 25 by 30 the product is" . 750 So here add the Logarithme of 25 . viz. 1397.94001
to the Logarithme of 30 1477. 12125
the fame of both will be And this is the Logarithme of 750.

In like manner, if we multiply 10 by 10 the prod. is 100. if 100 , by 10 ; the product t is 1000 .

The Lngarithme of to being
The Logarithme of 1000 Shall be

1000 10000
100000

And fo forward: All intermediate numbers which have intermediate © Logarithmes.

If we multiply 101 by 10 , the product is 1010 of roz by. ro the product is 1020 :

The Logarithme of ro viz. fo here
added the Log. of ior
giues the Log. of 1010
The fame Logarithme of 10
added to the Logarithme of 102
giues the Logarithme of 1020
1000. 00000
8004. 32137
$3004 \cdot 32137$
1000. 00000
2008. 60017
3008. 60017

The difference being only in the firft figure, and that is alwayes leffe by one then the number of places, in the number giuen. As when we find the Logarithme to be-2008:60017 the firft Ggure, 2, is characterifticall, i. the Index fhewing that the whole number 102 belonging to this Logarithme, confifts of three places. If the Logarithme had beene ro08. 60017 the whole number muft haue been 10. 2 confilting of two p aces, and the reft a fraction of $\frac{2}{18}$.

If the Logarithme were - -0008.60017 the number belonging to it would be. 1. 02. I. I and $\frac{\circ_{1} 10}{100}$ And this is one of the realons why the differences were omitted in the firft hundred Logarithmes. All thofe Logarithmes may be found afterwards vnder a larger Index.

Againe, if we multiply 201. by 5 , the product is 1005: io here: if we adde the Logarithme of 5 vnto the Logarithme of 201 , the fumme of both, thall be the Logarichme of 1005 and the fumme of the Logarithmes of 5 and 203 hall be the Lngarithme of -101 5. Thus the moft part of the table may be continued beyond 1000.

$$
P_{n, 0} \mathrm{P}_{0}
$$

To diuide one number by another.

Subtract the Logarithme of the Diuifor out of the Logar: rithme of the Diuidend, the Remainder, faall be the Logas rithme of the Quotient.

Thegeterall vo of of tbe Caxan.

Aswber we diuid 750 by 25 the quorient is 30.50 here from the Logarithme of 75° : viz 2875.06126° fubtract the Logarithue of $25 \quad 1397.94301$ There remaines the Logarithme of $30 . \quad 1 \begin{aligned} & \text { 47.12125 }\end{aligned}$

In like manner when we dinide 1 I by 4 the quotient is $2 \frac{3}{4}$ fo here the Logarithme of. 4 viz. 0602,05999 taken from the Logarithme of 11 . 1041. 39269
leanes the Logarithme of $2^{\frac{3}{4}} \quad 0439.3$ 3270 wherefore, if it were required to find the Logarichme of a: whole number with a traction annexed (as one $2 \frac{3}{4}$) we might firf reduce it into an improper fraction of $\frac{11}{4}$ (or rather of ${ }_{105}^{2,5}$) and then lubtract as before.
lfit were required to find the Logarithme of a fingle fraCtion', as of $\frac{4}{1}$, we may fubtract as before: But this fraction bei.g leffe then I, the Logarithme muft be leffe then o. and therefore nored with \rightarrow a defective ligne.

PROP. 3.

To find the fquate root of a number.

Halferthe Logarithme of the number giuen is the full Loga* rithme of the fquare Root.

So the Logarithme of 144 being \quad 21s8. 36249 the halfe thereof is
1079.18124 the Logarithme of 12 : and fuch is the fquare Roo of 144 .

Then by converfion having extracted the fquare Root, we may foone finde the Logarithme.

As, the Logarithme of 10,0000 being roc0. 00000 the Logarithme of the fguare R. 316227 is 0500.00000 and for the Root of that 177827
0250.00000

PRDP:4.

Prop. 4.

Tofinac the cabique Roote of a number.

The third part of the logarithme of the number giuen is full Logarithme of the Cubigne Rooto.

By the fane reaion we may finde the Biquidrate Roote, by diuiding the Logarithme of the number giuen by 4 : the fohid Reote, by dividing by 5 : and fo forward.

And by converfion, hauing extraQted the Roote, we may foone filde the logarithme.

Asthe Logarithme of 10.000 .8 C , is 1000.00000
The Logar. of the Czb.R. 21 544.
0333.33333
$\begin{array}{lll}\text { The Logarithme of } & 100.000, \text { \&t } c_{i} & 200000000 \\ \text { the Logarithme of the Cubigue R. } 464 \mathrm{~F}_{i} & 0666.66666\end{array}$
Then multiplying thefe fquare and Cubigre Rootes one by another, we may produce infinite ocher numbers, and have all their Logarithmes.
\therefore :

> PROP SO

Tbree wumbersbeing given, to finde a fowth Propertionall:

This Gelden Rule the moft vefull of fall pethers, may bee wrought feverall wayes as it appeares by this example:

As 12 vinto 24 fo 4 to a fourch number.

The generall ofe of the Cawon

r. The ordinary way in Arithmetique is by multiplication Tasus 2. \& 3. and divifion. For firt they multiply the fecond into the third; divifus per 8 . andthen diuide the product by the firt number giuem As here multiplying 24 by 4 , the Product is 96 , then diuiding 96 by 12 the Quotient will be 8 the fourth number here reguired.

According to this way we adde the Iogarithmes of the fecond and third, and fubtract the Logarithmes of the firft, fo, that which remaineth, fhall be the Logarithme of the foarth number required.

Thus the Logarith. of the fi!t numb. 12 is 1 979.181.25 $\begin{array}{lcc}\text { the Logarithme of the fecond } & 24 & 1380.21124 \\ \text { the Logarithme of the third } & 4 & 0602.05999 \\ \text { the fumme of the fecond and third Logar. } & 1982.27123\end{array}$
fubtract the firft and there remaineth 0903.08998 And thus is the Logarithmes of 8. the fourth Proportionall.

A fecond way in Arithmetique is by divifion and multi-

2
Quotiens 2. per 8. diulif multiplicatus in tertium, plication. For where the fecond number is greater than the firt, they may diuide the fecond by the firft, and then multiply the third by the quotient. As here dividing 24 by 12 the quotient is $2 .:$ then multiplying 4 by 2 , the Product will be 8.

According to this way we take the Logarithme of the firft out of the Logarithme of the fecond, and then adde the difference to the Logarithme of the third. So the lamme of this addition Shall be the Logarithme of the fourth required.

Logarithme of the fecond	
difference betweene the increafi	300.02999
d to Logathme of	

A third way in Arithmetique is by divifion and divifion, for where the fecond number is leffe then the firft, they may
dinide
diuide the firt by the fecond, and then againe divide the third by the quotient: As here duiding is by 48 the quotient is 3 : then diaiding 24 by 3 . the quorient is 8 .

According to this way we take the Logarithme of the fecond, out of the Logarithme of the firft, and then cake the difference out of the Logarithme of the third: So, that which remaineth flall be the Logarithme of the fourth number reguired.

Thus the Logar. of the firf numb, 12 is 1079.18i25
the Logarithme of the fecond $4: \because 0602.05999$
The difference decreafing, $\quad 477.1212 \overline{6}$
fubitracted from the Logarithme of $24 \quad 1380.21124$ gives the Logarithme of : $\quad 8 \quad 0903: 08999$

Thefe two latter wayes by differepce of Logarithmes; may be confidered as the fame. Though theee be fome difference betweene them, yet that may eafily be reconciled, if we have regard to the nature of the queftion. For three numbers being giuen in direct proportion, if the fecond be greater then the firft, the 4 . muft be greater then thethird: If the fecond beleffe then the firt, the 4 muft bee leffe then the thitd, and their Logarithme accordingly. But in reciprocall proportion, confidering the firt and fecoud numbers to be of one denomination, we are to oblerae the contraty.

- If we defire to tarne fubtraction 1 noo addition wee may take the Logarithme which is to bee fubrtacted out of the Radios, and adde the complement. So the fumme of this addition, the Riadius being fubtracted fhall give the reguired logarithme as before.

Thas in the laft example : where fubtracting the difference 477. 12126 . out of 1380.21124 . the Logarithme of 24 we found the remainder to be 0903.08998, the Logarithme of 8 .

The Redius being	
the Logarithmęto be fubtracted	10000.00000
the complement to the Radica is	0477.12126
9522.87874	
	This

From this, if we foberat the Radim, (chat is, if we cancell the firft figure to the left hand) theyeft is

C903.008998
the Logarithine of 8. the fourth Primportionall, as before.
By helpe of this fourth Proportional we may come tomewhat neere to finde a 1 ogarithme for a number of 6 places.
As ik it were required to findea logarithme for this num ber 868624. the table will affoord vs Logarithmes for a leffer aild a grcater number ; and then the intermediate may be found by the part proportionall in this maner.

Here we have the Logarithme of 868 2938.51973
and the Log.of the next following 869
and the tabular differencéberweene them
50005
If the Index be fitted to the number of places
the Logarithme of 868000 ,hall be $£ 938.51973$
and the Logarith. of 869000 5939.01978 the diffurnce being $1000 \quad 50005$
Then taking 868000 , oat of 868624 , (hhe number given) the third difference will be 624. And hauing thefe three differences the proportion will hold,
 portionall to be added to the leffer Logarithone 5938.51973 fo thall we haue 5938.8387 .6 . for the logarithme reguired.

In like arager hauing a logarithme given, we may finde the value ot it in a number of fixe places.

As if che Logai itbme glven were
3938.83282 and it were required to find the number to which it belongeth: This Logarithmeis not to be found in the Table; but changing the Index and making it
2938.83180

Abstract

shenext effer logarithme of 868 is 2938.51973 and the tabulardifference followingand che proper difference

So the proper difference 31209 vnto 62411 The part proportionall to be ioyned to the end of the former number 868: fo thall we baue 8686241 I . for the value of This Logarithme. But the Index of the Logarithme being 3. the number required muft confift of 4 places: viz 8686 and the scit a fraction of $\frac{2 \cdot}{i} \frac{2}{0}$.

This I fay is fomewhat neere the truth. For this number here propofed 868624 is the Iquare of 932 ,

The true Loga, of the Root 932 is $\quad 2969.4159 \mathrm{x}$
The true Loga. of the Square $86863^{\circ}{ }^{\circ} \quad 5938.83182$

Prop. VI.

Thbree numbers being ginen to finde a fourth in a doplicated Propofition.

In queftions that hold in a duplicated proportion between Lines and Superficies, the Logarithmés for lines giaen may be doabled, the Logarithmes for lines required may bee halted, and then the worke will be the fame as in the firf part of the former Propofition.

Suppofe, the Diameter being ${ }^{3} 4$, the tontent of the circle was 154; the Diameter being 28, whac may ehe content bee?

Here the queftion concerning both lines and fuperficies, I double the Logarithmes of the 2 lines giuen, andihen worke as before in this maner.

And fueh is the cantentof the circle here required.
:
Suppofe the content of a Circle being 154, the Diameter of it was 14 ; the content being 6i6, what may the diameter be:

Here being one line giuen, and one line required, I double the Logarithme of the line giuch, and then working as before,the halfe of the remainder fhall be the Logatichme of the line reguircd.

russhe loga. of: 154 is	2187.51072
the logarithme of 616	2789.58072
the logarithme of 14	1146.12803
the fame againe	1146.12803.
the fumme of the're laft	5081.83678
fub ract the logarithme of the firlt.	2187.52072
e remainder will be	289431606
the halfe thereof is	1447-15803:

The logarithme of 28. the Diameter required.
Oraccording to the fecond maner of operation, the difEerence betweene the logarithmes of lines giuen mey be doubled 3 the difference betweene the logiaimitmes of the contept given may be halfed, and then the worke will bo the fameas -inithelafterpazt of the former propoofitiont.

So, in the firft queftion, where the Dimpeters were given and the content required.

Thelogarithme of :- T_{4} thic logarithrase of $=: 28$	is $\begin{array}{r}1146.12803 \\ \mathbf{4 4 7 . 1 5 8 0 3}\end{array}$
the difference increafing	307.0330000
the double of this difference	602.06000
udded to the logar. of 154	
gives the logarith. of 616	2789.58072

${ }^{\circ} \therefore$ Th the ficond queftion, where the content of both the cir-- deswas knownc, andithe Diamerer of the ene required.

The

Prop. 7.

Thrce numbers being ginen to finde a fourd inno triplicated propertion.

In queftigns concerning proportion betweene lines and Solids the logarithmes for lines given may bee tripled; the logarithmes for lines required may be diuided into 3 . partsì and then the worke will be the fame, as in the firft way for the rule of Three.

Suppofe the Diameter of an Iron bullet, being 4 inches; the waightof it was 9 pound, the Ditumeter being 8 , Inches, what may the waight be?

The logaritbme of 4 is a- 060.05999
i che logarithme of $: \mathbf{8}^{4}, \frac{0993.08999}{2709.26997}$ the Triple of it : $\quad \because \quad 270926927$
the togarithme of
the fumme of thefe laft $\frac{0954.24251}{3663-51247}$
fubtract the triple of the firflogar. 1806,17997
there remaines the logar. ot $72 \cdots, 1857,33251$ and fach is the waight required.

Suppofe the waight of an Iron bullet being 9 pound, the Diameter was foure inches; the waight being 72 pounds What may the Diameter be?

> Bbbb

The

The Logarithme of 9 is	0954.24251
the Logarithme of 72	8857.33250
theLogarithme of 4	0602. 0599
the double of this againe	1204. 11998
the liumme of thele laft	1663. 51247
the firt Log, lubitracted.chere remaines.	27.09, 26996
the third part shereof is	0903.08992
the Logarithme of 8. and fuch is the diat	ter required

Or according to the fecond manner ofoperation in the rule of thrte, the difference betweene the Lagarithmes of lines giuen may bee tripled; the difference betweene the Logarithmes of the folidity or weight giuen may be diuided into 3 parts.
So in the firf queftion, where the diameters were knowne, and the weighe required.

The Ligarichme of 4 is the Lo arithme of 8 .		0602.05999 0903.08999
the difference encreaking,		301.030ce
iple of this di		903.09000
ded to the Logarithme of.		095.4.24251
ues the Iogarithme of:	72	1857:33251

In the fecond queftion, where the weight was knowne, and the diameter required.

The Logarithme of 9 is	0954.24251 the Logarithme of 72
the difference increaling the third part of this differepce	1857.33250 added to the Logarithme of giues the Logarithme of

PROp. 8.

Casing two numbers given to find a third in cominuall pros? portion, a fousth, a fifib, afixt and fo formard.

According to the firft way in therule of three, we may fub: tract the Logarithme of the firlt number, out of double the Logarithme of the fecond, the remainder hall be the Iogarithme of the third, then fubtracting the Logarithme of the firtt number againe out of the Logarithmes of the fecond and third, that is, out of triple the Logaritime of the fecond, the remainder thall be the Logarithme of the fourth, and fo forward.

As, when we fay : As i vinto 2, fo 2 vnte 4 : and 4 vnto 8; and 8 vnto $16 \& c$. becaufe the firt namber is 1 , there is no need of diuifion, but onely to multiply 2 the fecond number into it felfe, the product gines the third pioportionall number ea be 4 : then multiplying 2 into 4 , the fourth proportionall is $8:$ and multiplying 2 into 8 the fifth proportionall is 16 ; and fo forward. So here the Logarithme of the firft number being x. there is no need of fubtraction.

- But, finding the Logarithme of 2 to be., 0301.02999.
the double giues the Logarithme of 4 : 0602:05999 the triple giues the Logarithme of 8 . 0903.08999
the quadruple giues the Log. of $16 \quad 1204111998$ and foforward in infininitum.

In all other numbers that begin not with 1 , wee may eithe fuberat the Logarithme of the firftumber, ozadde the complement vnto the Radims.

As when the numbers giuen are 100 and 108 .
The Logarithme of the firlt N. 1c0. is 2c00. 0000 D the Logarithme of the fecond, 108 203.3.42376 the double of thisfecond Logarithme. 4066.8475t fubtract the filft Log. there remaines 2066,84752 the Logarithme of 1664 the third proportionall. anfwering rnto 125 git shefourth pumber in continuall proportron.

According te the fecond manner of operation we may take the difference between the Logarithmes of the two numbers giusn; fo a this diff rence applied to the Logarithme of the fecond number fhalligue the Lagarithme of the third Proportionall the fame dffrenee appliedtotbe Logarithine of the third Proportionall, Shall guegthe Logarithone of the fourth Pioportionall. Or the cioublegithis difference applyed to the Logarithme of the firf number hill giue the Logaxithme of the thurd Proporrig:ay ; the trephe ot this differ nce applyed to the togarithme of the fint number hall giue the Logarithmie of the fourth proportionall: and fo forward.

As in the former esample, where the two nurnbers given were roo and 198: fuppofe zoo inctenfing to 108 , mad fo yearly in continulily proportion after the:rate of8 in 300 , and that it were rcquired tofind, what this would grow vhto by the end of 20 yeeres :

The Logarithme of the filt nambu 100 is 2000.00000 the Logarithmep the fecond eros: 2033142376 the yearely difirence inceafing : $\quad 33^{4} 42376$ add et to the Loga. of the lecond giues, 2066.82752 the Logarithme of 11664 for the thitd proportionall; And -fuch is the encreafe at the end of the'fecond yeare. ath Againe the 1ame percly difference added to the Logarithme of the third Proportionalf giures - 2100.25128 the Logarithime of $125 \frac{175}{}$ tor the fourth Proportionalf and the encrealeakche end of the chird jeare; and fo the reft. 0 , But becanfe the queftion is onely of the 20 yeare without senardingethe reft; we may mififiply the former yecrely diffe3. x^{8} itince

- and Tabbe of Legarithmes.

added, to the Log, of the firt num. $100 . \mathrm{vz} .2000 .00000$
 that is 466.1 . 1 . s.1 I. d.fere., the fumme that 100 would grow, vinto by the end of 20 yeares at the rate propoled.

In like manner if the two firlt numbers giuen were r 08 and 100:Suppofe 108 decreafing to the 100 and fo yeere'y in contnuall proportion and that it were required to find what 100 . would decreafe vito by the end of 20 :yeares s: Or . (which is all one) fuppofe 100 to be due 20 yeare hence, and that it were required to find the worth thereof in ready: money according to the former rate. The Log. of the frid N. 198 is 2033.42376 the Logarithme of the fecond $100,2000.00000$ the differedec forthe ycare decreafing : 33. $4^{2} 376$ taken from the Logarithme:ok 7 Q9. L\&aueg 1966. 57624 the Logarithme of 92.59 for the third proportionall and fuch is the prifentworth of iool. due at the yepres end.

The fame difference fubtracted once more leaues 1933. 15248 the Logirichuar of $8 x$ 3nat for the fourth prapotionall and the pr fent worth of ioo l. dueat the end of two yeares.

The fame diff rence multiplyed by 20 makes 668.47520
and fubiracted from the Log. of ico legués: : 33 3. 52480 the Logarithme of 214512 that is 2 I .9 s. Id. and fuch is the prefent wofth of root. due ate the end of iro yearet: Sothat
 debr there remaines $781,101 \mathrm{rd}$. for the prefent worth of the continued gaine that may be made either of the leate of rool. ör of 8 d cannuity after 20 yeares according to the former rate. $\therefore \therefore$ iffer 1eafe of 100 l . by the yeare oc fuch ot hes yecredy peppProbiwere fo continue for zoryearess and that jif wererequifed to find the worth thereof in ready monay. This might bee foumd vponthe fane ground if continuall proportions and that fuctallwayet.

I It appearech before; that rooduche at the yeares end is is woith butge sse in seady moheys 1 fir beduc at the end of 2 yeares, the prefent worth is 851 . 333 : then adding thefe two together, wee haue $\mathbf{1 7 8 1 . 3 2 6 \text { for the prefent worth of }}$ 10.4
800. pound Annuity for 2. yeeres and fo forward.

2 It appeareth before that the prefent worth of 8 pound annuity for 20 yeeres is 78 pound 5452 : and then it followes by proportion.

As an Annuity of is to the worth thereof	$\begin{aligned} & 8.1 .0000 \\ & 78.545^{2} \end{aligned}$	$\begin{aligned} & 0903.08999 \\ & \mathbf{1 8 9 5 . 1 1 9 5 3} \\ & \hline \end{aligned}$
		992.02954
So an Annuity of vnto the worth of it	10000000	$\begin{aligned} & 2000.00000 \\ & 2992.02954 \end{aligned}$

3 As the yecrely loane of 100 pound includes an Annuity of 8 . pound, So there is a famme equivalent to 100 pound Arnuity.

This fumme equivalent may be diminifhed according to -the number of yeeres as before: to the complement of the famme diminithed to the fummeequivalenc fhall be the pre: fent worth of the Annuity.

As the yecrely gaime of	8	0903.08999
co the loane of	100	2000.00000
So an Annity of	100	2000.00000
to the furn equimalent	1250	\therefore
		3096.91001

Then for dimiaifhing of this fum equivalent wee may multiply the former yeerely difference 33.42376 by 20 ifo the difference for 20 yeeres. 668.47520 taken from the logarithme of 1250 3096.91001 there remaines the logar of i268, 1853 2428.434^{81}
 3.d.ob. and fuch is the prefent worth of loo. pound Annuity for 20. yeeres, at the rate of 8 ; in 100 per amnuma
The like rcalonholdeth for any other rate and time propored.

- Paor.

PRop. 9.

Hawing troo extreme numbers given, to finde a meane Propertionall betweeme them.

Adde the logarithmes of the two extrene numbers the; one halfe of the fumme fhall be the logarithme of the meane Proportionall.
As if the two extreme numbers giuen were 8. and 32 : The logarithme of

The logarithme of
is
0903.08999

The fumme of both logarithmes
The halfe of this fumme is

$$
1505.14998
$$

The halfe of his fumar is
2408.23997
1204. 11998 the logarithmes of 16 : and fuch is, the meane proportionall here required.

$$
\text { PROP: } 10
$$

Hauing two extrente numbers ginen to find two meaneit

 Proportionalls boeweene shew.:In the ordinaty way of Arithmetique we commonty multiply the greater extreme by the fquare of the leffer; fo the Cubique root of the Product hall be the leffer meane : then multiplying the leffer meane into the greater extreme, the Gquare root of the Product ihall be the greater Menne Proportionall. Or hauing found the leffer meane, wee may finde the other meane by continuall propórtion.

Accordingly we may adde the logarithme? of the gretter extreme to double the logarithme of the leffer, to the third part of the famme lhall be the logarithme of the leffer meane. Then adding this logarithme of the leffer meane, to the logarithme of the greater extreme, the one halfe of the fumme Ccce
fhall

As if the two extreme'numbers given were 8. and 27. Adde to the logarithme of 8 viz. 0903.08999.
 and che logarithope of : $27 \quad \because \quad$ T431. 36376

The fumme of thef will be $\quad 3$| b |
| :--- |

the third part of this fumme is
1979.18125 the logarithme of it the lef jer miane Proporionallf

Adde to this logar of the leffer meane mapo 1812; the logar, of the greater extreme $\quad 1431.36376$

and the halfe of thi. furan e is
1255:27250 the togatithme of 18. the greater of the two megne Rroportionails here required.

Or according to the fecond manner of operation in the Rule of Three, (which is the worke that I alwaies follow in the line of numbers) we may take the difference betweene the logarithmes of the two extreme numbers, and diuide this difference into three equall parts, fo the fumme of the logarichmes of thelefier extromeand's patt. That be the logain hme of tha Heifin Meanst the furme of this logatithme of the leffer meane and the fame $\frac{1}{3}$ part fhall bee the logarithme of the Greater meane Proportionall.

So the Legarithme of: 8 being 9993.08999 the Logatithme, of 27 . . $\frac{1311.36376}{572.2737}$ she difference betweene them $\quad 578.27377$
The third part of this difference
176.09126

And by the famereafon, if it were required to find rhree Meane Proportionals, we might divide the former difference into 4 e equall parts, and fo for ward.

As if it were requited to fhide the firt of deven Meane Propertionals betweene 100 and ro8. Or (which is all one) fuppofe 100 pound increafing in continuall proportion, fo as that By the enta'of tz? 'monct ha it eame' to 'ios pount and that it were requited to find what this roopound did grow vito by the cife of the fir mone th.

The Eogarithme of the firt extreme 100 is 2030000006 the Eo garithnce of the fecond ro8 203.42376 the yearely difference betweene them $\quad 33.42378$ The 12 part or monerhly difference $\quad 2 . \quad 2.7853 \mathrm{I}$ added to the Iogarithme of 100 giues $2002,7853$. the Logarithme of roo, 64340301 I the firt of cleven meate Proportionals; and the growth required.
Then having there two, 100 and roo. 6434030 I 1 . together with 108 , the laft of the twelue, the othier intermediate may be found by concinuall proportion as before.

This Explication of my ten former Propopitions may ferve for the frugall vfe of the Table of Logarichmes. Thore which reguire more may haue recourle to that Treatife which is meacioned before in the front of the Table,

Ccce 2

CHAP.

CHAP. 1 I.

COncerning the vfe of the Limes of Sirees and Takgents 1 hhewed in generall, pag. 21. how the migbt terue for the refolution of all Spharicall trinagles. More particularly in the vfe of my Sector (pag. 74) I reduced that which is commonly required in a Ppharicall triangle vnto 28 cales. And for thefe they may be all refolued by myTables of Artificiall Sines and Fangent's without the help óf Secants or verfed Sines.

- This manner of the worke will be alwaies fuch as in the ordinary rule of Three. For, here we haue three numbers giuen whereby to find a fourth Proportionall., And therefore
either we may adde the Logatithmes of the fecoud and third, and fubtract the Logarithme of the firf:

Or we may take the difference between the Logarithmes of the firft and fecond, and apply that difference to the Logarithme of the third.
The firft of thefe waies is beft for the refolation of fight angled Triangles where the Radius, viz. 1000 ; 0000 is one of the three numbers gituen: But the fecond way, by differences is more conuenient for the ref.

The like manner of worke may be oblerved when we are to confider the Sines or Tangenrs of Degrees, Minutes, and Seconds. For the Seconds, not expreffed in the Canon, will be found by the part proportionall: as I will how in the examples following.

I If it were required to finde the Sine of $\mathrm{s} \cdot \mathrm{gr} \cdot \mathbf{3 2 ^ { \prime \prime } .} 1 \mathrm{~s}^{\prime \prime \prime}$. I hould fipde.

The sine of 51 deg. 32 mi . is
the Sine of 51 deg. 33 m. 9893.8455 the Tabular diff-rence betweene them Then the difference betweene 32 m , and 33 m . being $60 \mathrm{Se}_{-}$ conds, the Proportion will hold,

As 60 Seconds vnto 1003
So 15. vato 251 the part Propor: tionall to be added vato the Sine j. 1 deg. 32 w.

So fhall we have 9893. 7703. for the fine of 51 deg. $32 . \mathrm{m} .15$ feconds:

2 If it were required to finde the Degrees, Minutes and Seconds belonging to this Tangent I Thould finde by the Ganon that this is fomewhat more then the Tangent of sI deg. 32 mi : leffe thenthe Tangent of 51 deg. $33 . \mathrm{mis}$. . 10099. 9134

The Tabular difference betweene thefe is,
and the proper difference is betweene the leffer of thefe Tangents, and the Tangent giaen therefore.
$\begin{array}{lll}\text { As } 2594 \text { vnto } 60 \text { Seconds, } \\ \text { So } 648 & \text { vnto } 15 \text { And fó, I finde this }\end{array}$ to be the Tangent of $51 \mathrm{drg} 3^{2}$ mio. 15 feconds.

3 If it were required to finde the Sine belonging to this Tangent 10099. 9782 , Ithould finde the arke to be fomewhat more then $51 \mathrm{gr}, 32 \mathrm{~m}_{\cdot}$ and the fine correfpondent fomewhar more then 9893.745^{2}. then taking out the dif:ferences as before, I firde that

As the Tabular difference of Tange. $2594 \quad 3413.9700$ is to the properdifference
$\begin{array}{llll}\text { So the Tabular difference of Sines } & 1003 & 3001.3009 \\ \text { to the part Proportionall } & 251 & 2398.9059\end{array}$ This part proport. added vnto the former Sinc. 2893.7452. Ccec 3
giues 98937703 for the figne required
Thefé premiffes confidered I conne to thé 28 Cares before arentioned wherein I Fee do Wine'a Cution and di Fxample for each cate, and thefefor the molt part the fame which I vied betore.
Thofe which haue no further vfe, bar ofdegrees and minures may teke that frie or Tafigent, which they find to be next in the Cantorn; aid nedlect the fecorids.

$I N A R E C I A N G L E T R I A N G L E$

1 To finde a fide by knosing the Bafe and the Angle oppofite to tbe inquired Jide.
$A \dot{s}$ in the Rectangle triangle ACB wherein A fands for the áquinoctiall point; A B,anarke of the Ecliptique reprefenting the Langitude of the sunne in the beginning of $8, B C$ anafte. of the Declination from the Sun to the xquator; and \mathbf{A} Canarke. of the Eiguator teprefenting the right afcenfion of the funne it B : Krowing the Bale A to be 30 gro and the Angle B AC $23 \mathrm{gr}^{r} 3^{1} \mathrm{mb} 3^{\prime \prime}$. if it were required to find the fide

As the Radius the line of, is to the fine of the Bate D MS Tothe fine of the Bate 130.030 .040 9698. 9700
So the fine of the oppofite angle, 23. 31, 30. 9601. 1352 \therefore to the fine of the fide required I1. 30. 43. 19300. 1052
(Arid fo writing thê fite $960 \mathrm{r}, 3 z^{4}$ in, 3 pqper hy it felfe and xolding ft to the fine of the Bateinthe Canon 1 -g*of $3,3,4$ sond fo forpard, it would be polong worke to write the fumme

Comenecinia columne byit felfe, and fo find the: Declingtion For each degree and Minute of the Ecliprique.
 the ather fide.

As in the Ketangle ACB hauing A 80 gr and BC II $\mathrm{gr} .30 \mathrm{~m} .43^{\prime \prime} \mathrm{S}$, to finde atre-fida AC .

As the cofine of the fide given II 30, 43. 99.91. 1740 is to the Radius." . 90. 0. 0\% . 1000000000
So the cofine of the Bate $\quad 30$ O. OAO 9937.5306 to the cofine of the fide required. $27.53 .43,9946.3566$.
3. To finde (ide by knowing the tion oblique Angles.

As in the Rectange $A C B$, hauing $C A B$ for the firt Angle $23 . \mathrm{g}^{1} .3^{1 \mathrm{~m} .30} \mathrm{~S}^{2}$ and A B C for the feond 69 gr .20 imb 352 St to find the fider $A C$.

As the fine of the next angle $23.3 \mathrm{I} .30-2^{601.1352}$

 to the cofine of the fide requirest $\tau^{2}, 7,53 \cdot 43 \cdot 9946.3566$
4. To finde the: ROB by kunob. inty lbotb the yathes:
As in the Recongie ACB, hauing ArCog iss m: 43:

 of T

As if in the former triangle $A C B$ we draw $B D$ an Arke of the Horizon for the Latitude of $51 \mathrm{gr}, 30 \mathrm{~mm}$. reputing the amplitude of the'Sunnes rifing from the Eiaft, we hall haue two Triangles more, one rectingle B CD, the other obliquadrangled. A B D. And fo, in the Rectangle DCB, hauing B C 1 Ir gr. $30 \mathrm{~m}, 43 \mathrm{~s}$. and B D C $3^{8} \mathrm{gr} .30 \mathrm{~mm}$. if it were required, to find the Bafe D :

6 To finde an Angle by knowing the otber oblique angle, and the fide oppoofite to the angle required.

As in the Rectangle A $\subset \bar{B}$, hauing' $B A C .23$ gr. 3 rim. 30 s . and AC 27 . As the Radins
to the firte of the angle given $\begin{array}{lll} & 90 & 0 \\ & 31 & 10000,0000 \\ 9601.1352\end{array}$ So the cofine of the fide $\quad 15543, \cdots \begin{aligned} & 9601.1352 \\ & 9946.3566\end{aligned}$

$$
\text { to the coline of the angle required } 692035 \frac{19547 \cdot 4918}{70}
$$

[7 To finde an angle by knowing the other. oblique angle, and the fide oppofite to the angle giuen.

As in the Rectangle A C B hauing B AC $23 \mathrm{gr} \mathrm{gr}^{3 \mathrm{~m}} \mathrm{~m}$ $30 S_{\text {and }} B C_{11}$ do 30 m .43 . to finde the angle $A B C$.

As the cofine of the fide II 3043 9991. 1740
to the cofine of the angle giuen $233^{31} 30 \quad 9962.3753$ So is the Redius 90 ○ $0 \quad 10000.0000$
tothe fine of the angle required $692035 \quad 9971.1413$

8 To find an angle by knowing the Bafe, and the fide oppofite to the

 angle required.
As in the Rectangle B CD hauing B D 18 gr .4 Im .56 f .

 and BC II gro 30 m .43 f. to find the angle BD C.As the fine of the Bafe
is to the Radins
So the fine of the oppofite fide
to the fine of the angle .

18	41.56	$9505 \cdot 0000$
90	0.0	0
10000.0000		
11	3043	9300.1052
38	30	0

Thefe eight Propofitions haue beene wrought by fines a; lone ; the eight following require ioint help of Tangents.

Dddd

9 To find a fide, by knowing the otber fide; and the angle oppafite to tbe fide required,

As in the Rectangle ACB, hauing AC 27 gr .33 m .43 f . and $B A C 23 \mathrm{gr} .31 \mathrm{~m} .30$ f. to find the fide $B C$.

As the Radius
to the fine of the fide giuen
275343967.1112

So the Tangent of the oppofite angle $23 \quad 3130 \quad 9638.8199$. to the Tangent of the fide required. $113043 \quad 19308.93$ IT

10 To find a fide by knowing tbe other fide and the angle next the fiule required.

As in the rectangle BCD hauing BC in gr. 30 mo 43 f. and BDC 38 gra 30 m . to finde DC.

So the Radins to the fine of the fide required | 200 | 0 | 10000.0000 |
| :--- | :--- | :--- |
| 9408.3259 | | |

i 1 To finde a fide by knowing the Bafe and the Angle next the fide required.

As in the rectangle $A C B$, hauing $A B 30 g r: 0$ m. and $B A C$ $23 \mathrm{gr}$.$31 \mathrm{~m} .30 / . to finde the fide A$ C.
and Table of Legarithmes:
Asthe Radius

2000	10000,0000	
233130	9962,3153	
3000	0	9761,4393
275343	19723,7546	

12 Io find the Bafe by knoming both the oblique Angles.
 and A B C 69 gr .20 m .35 fo to find the Bafe A B.
As the Tangent of the one angle to the cotangent of the other So the Radius to the cofine of the bafe

$$
\begin{array}{ccc}
233130 & 9638,8199 \\
6920,35 & 9576,3505 \\
9000 & 1000,35000 \\
3000 & 9937,5306
\end{array}
$$

13. To find the Bafe, by knowing one of the fides and the Anglenext that fide.

As in the rectangle $A C B$, having $A C 27 \mathrm{gm}_{\mathrm{m}} 53 \mathrm{~m}, 43 \%$ and $B 1 A C, 23 \mathrm{gr} .3 \mathrm{~m} .30 \mathrm{f}$, to find the Bafe $\mathrm{A} B$.

As the cofine of the angle	2331.30	9962,3153
is to the Radius	9000	10000,000
So the Tangent of the fide	27.53 .43	9723,7547
to the tangent of the bale	30	0,0

14 To finde an Angle by knowing botb the fides.

As in the rectangle A C B, hauing AC 27 gr .53 m .43 fo and BC Ix gr. ${ }^{\circ} \mathrm{mom} .43 \rho$. to finde the angle $A B C$. Dddd 2

28
The generall we of the Casson

15: To find an angle by knowing the Bafe, and the fide-next the angle required.

As in the redangle $B C D$, having $B D 18$ gr. 41 m. 56 . 0 and BC II $\mathrm{gr}^{2} 30 \mathrm{~m} .43$ f. to finde the angle B DC.

As the tangent of the Bafe	184^{156}	9529, 5063:
so the tangent of the fide	113043	9308,9311
So, is the Riadius	900	100000000
\checkmark to the cofine of theangle	53 - 46	9779, 4248

16 To finde an angle by knowing the Bafe and the other oblique angle.

As in the rectangle $A C B$, hauing the Bafe $A \cdot B 30 \mathrm{gr}$: and $B A C 23 \mathrm{gr} .3^{\mathrm{I} ~ m . ~} 30 \%$ to find the angle $\mathrm{B} A \cdot \mathrm{C}$. .
As the cofine of the Bare

$$
30 \% \text { or } 9937,0000
$$ is to the Radius

200010000,0000
So the cotangent of the angle giaen $\quad 23 \quad 3 \mathrm{r} 30 \cdot 1036,1891$ to the tangent of the angle required 692035 ro423,0425:
Thefer 6 cafes areall that can fall out ina Rectangle triangle thore which follow doe hold.

In any Sphæricall Triangle what 0 oeuer.

17. To finde a fide oppofite to an angle giuen by knowing one fide and two angles, the one, oppofite to the fide giuen, the other, to the fide required.

As in the triangle A B D, hauing AB $30 \mathrm{gr} \cdot \mathrm{BDC}_{3} 8 \mathrm{gr}$. 30 m, and B A D 23 gr .31 m : 30 f . to find the fide BD , which here reprefenteth the amplitude.

As the fine of the next angle to the fine of his oppofite fide

So the fine of the oppofite angle to the fine of the fide required

$$
\begin{array}{r}
383009794,1495 \\
30009699,9700 \\
253130 \div 9601,1395 \\
1841569505,9557
\end{array}
$$

Or changing the fite of the two middle termes.

Asthe fine of the next Angle to the fine of the oppofite Angle

Sathe finc of the fidegiuen to. the fine of the fide required

$$
\begin{aligned}
& -383009794.1495 \\
& 2331309601,1352 \\
& 1930043 \\
& \text { 3010 0 9698,9700 } \\
& 184156 \quad 9505,9557
\end{aligned}
$$

And fo writing this difference 193, 0143 in a paper by it felfe and holding it to the fire of the fide in the Canon. 1, $g r$. $2,3,4,5$ and $f 0$ forward, it would bee no long worke to fubtract and write the femainder in a collamié by it felfe, and fo find the amplitude for each degree $\&$ minite of the Ecliptigue.

Dddd 3

Or, in fteed of fubtracting this difference, we might firt take the fame out of the Radius, and then adde the complement as I fhewed before, in the generall explication of the Rule of Three.
18. To finde an Angle oppofite to a fide giuen by knowing one angle and two fides, the one oppofite to the angle ginen, the other to the angle reguired.

As in the triangle Z P S repre: fencing the Zenith, Pole, and Sun: where $Z \mathrm{P}$ is the complement of the Latitude, P S, the complement of the declination, Z S the complement of the Sunnes altitude, P Z S, the Azimuth; ZPS: the houre of the day from the Meridian and P S Z the
 angle of the Sans Pofition in regard of the Pole and Zenith; hauing P ZS, 130 gr .3 ns. II $\int 0$ PS 70 gr . and ZS 40 gr . to finde the angle. Z PS.
As the fine of the next fide
7000 9972,9858 is to the fine of his oppofite angle $\mathrm{I}_{3} \mathrm{O}_{3}$ II 9883,9153

So the fine of the oppofite fide to the fige of the angle required.

889,0705
4000
$313426 \quad 9718,0675$

> ig To find an Angle by knowing the tbree Jiddes.

As, in the triangle $Z P S$, hauing $Z P 38$ gro $30 \mathrm{~m} . P S 70$ gr. and Z. 40 gr. to finde the angle $Z P S$, labtendiag the Bale ZS,

As the ReAangle contained vnder the fines of the fides roultymify is torthe fquare of the Radius :
So the Rectangle contained vnder the fines of the halfefumme of the three fides, and the difference beiweene this halfe-fumme and the Bafe,
to the Square of the cofine of halfe the angle requirsd.
The Bare fubtended is
The two fides including the Angle
The fumme of the 3 fides The halfe-famme of thefe 3. The diff.between this\& the Bare 34

Here for the Square of the Radive we take 20000.0000 to this we adde 9983.3^{805} the fine of $74 \mathrm{gr}_{0} 15 \mathrm{~mm}$ and 9750. 3579. the fine of $34 \mathrm{gr}^{\mathrm{s}} 15 \mathrm{~m}$, which make 39733° 7384.

Then for the Rectangle of the fides we adde 9794: 1495 the fine of 38 gr .30 m . and 9972.9858 , the fine of 70 gr . which make 19767.1353 . This we take out of 39733.7384 and there remaines for the Logarithme of the fquare 19966. 603 I , the balfe thereof 9983 . 3015 we finde to be the cofine of 15.47^{\prime}. $13^{\prime \prime}$. And fo, the whole-Angie required is 3^{1}. $34^{\prime} .26^{\prime \prime}$.

Or for fuch numbersas are to be fubtracted, we may take them ous of the Radius, and write downe their Complements, and then adde them together with the reft, the manwer of the worke ineither way will be fuch as followeth.

-			
38.30	9794. 1495		205.8505
70. 0	9972.9858		27.0142
148. 30	19767.1393		
74. 15	9983.3805		9983.3805
34.' 15	9750.3579 20000		9750.3579
	20000.0000		
.	39733.7384		
	19966.603 I		19966.603 ${ }^{\text {x }}$
	9983.3015	$\begin{aligned} & 19.47^{\prime} \cdot 13^{\prime \prime \prime} . \\ & 31.34 \cdot 26 . \end{aligned}$	09983. 3015

In the like manner we may finde the angle $P Z S$ to be 130 gr .3 min. II /econds, and the angle ZS P 30 gr .28 min. II feconds.

20 To finde a SIDE by knowing

- the three Angles.

If for either of the Angles next the fide required, we take the complement to 80 gr . thele angles will be turned into fides, and the fides into angles. Then may the worke bee the fame, as in the former Propofition.
'As in the triangle $Z P S$, knowing the angle $Z P S$ to be 3 I. $34^{\prime} \cdot 26^{\prime \prime} . P Z S_{130} 3^{\prime}, 11^{\prime \prime}$, and $Z S^{\circ} P$ 30. 28'. $11^{\prime \prime \prime}$. it it were required to finde the fide $Z S$ oppofite to the angle $Z P S$, I would take $1303^{\prime} 11^{\prime \prime}$ out of 180 gr . the remainder will be

Then, as if I had a triangle of 3 knowne fides, one of 3 I $34^{\prime} 26^{\prime \prime}$, another of , $3028^{\prime} 11^{\prime \prime}$ and the third of $4956^{\prime} 49^{\prime \prime}$, I would feeke the angle oppofite to the firft of thete fides, by the laft Propofition.

So the angle which is thus found would be the fide which is here rtquired.

This here the Angle oppo. is $3^{1} 34^{\prime} 26^{\prime \prime}$
the leffer of the next Angles 3,028 II 9705.0790
the complement of the other $49 ; 649 \quad 9883.9153$
the fumme of thefe three 1115926
the halfe fumme $\quad 5559^{743} \quad 9918,54 \%$
the differ, from the oppiang'e $242517 \quad 9616.4170$
the fumaine of double the Radius and $\quad 30000.0000$
the fines of halfe fumme and difference is $\quad 39534.9660$
Take hence the fines of the next angles $\quad 19588.9943$
there remaines for the fquare 19945.978

The halfe whereof is the cofine of $20 \mathrm{gr} .0^{\prime}$ and to the fide required, $40 \mathrm{gr}, 0 \mathrm{~m} 972.985^{8}$

The other fides may be found in the fame fort; but when we know either three fides and one angle, or three angles and one fide, the reft may be found more readily by the 17 or 18 Propofition.

> 21 To findea SID E by bauing the other two fides and the Angle comprebended.

This and the Proportion following are beft refolved by reducing the oblique:angle triangles given into two Rectangles.

Ecec

As in the Triangle $Z \boldsymbol{P} S$, hauing $Z P$ $38 \mathrm{gr} \cdot 30^{\circ}$. PS 70.0^{\prime} and Z P S 31.34° $26^{\prime \prime \prime}$ to finde the fide $Z S$.

In that we have $Z P$ and $Z P S$, we thay fuppofe a Perpendicular Z R to be let downefrom the angle at Z vpon the greater fide PS \& So if ZPS the angle given be leffe then 90 gr . it will fall within the triangle; if more then 90 gr : it will fall without the triangle, vpon the fide produced, and diuide the criangle giuen into two Rect-angles Z RS and ZRP. Wherein
1 We may finde the quantity of this Perpendicular by the firt Propofition of Spharricall Friangles.

3 Wee may findethe fide PR either by the fecond or tensh, or rather by the eleventh Propofition: which fide PR will give the fide R S.

3 Hauing $Z R$ and RS, wee may.
 find the bafe, $Z \mathbf{S}$ by the fourth Propofition, as I hew in the vfe of the Sector, page 86.

But here for variety, I will fhew how the fame may bee done of two opperations, both in this and the refe of the: cafes following, without knowing the quantity of the Perpendicular:
> i As the Radius or fine of Z R P $90.0^{\prime \prime} 0^{\prime \prime \prime} \quad 10000.0000$ to the cofine of the ang. Z P R $31.3426 \quad 9930.4223$ $\begin{array}{llll}\text { So the Tangent of the fide } Z P & 38.30 & 0 & 9900,6052\end{array}$ to the tangent of the arke $\mathrm{P} R \quad 34.730 . \overline{19831.0275}$

[^6]and Table of Logarithones.'.
to the cofine of ZP
So the cofine of RS
38.300

35.5230
40.0

9884.2539

22 Io finde a S IDE by knowing the other. two fides and one angle next the fide required.
As in the triangle $Z P S$ hauing $Z P, 38.30^{\circ}$ and $Z S 40^{\circ}$ gr. 0^{\prime} and Z P S, 3 I . $34^{\prime} 26^{\prime \prime}$ to find the fide P S.
7. Find the arke P R by the ir Propofition as before.

As the cofine of PZ to the cofine of $\mathrm{P} R$	$\begin{aligned} & 38 \cdot 30^{\prime} 0^{\prime \prime} \\ & 34 \cdot 7.30 \end{aligned}$	$\begin{aligned} & 9893.5443 \\ & 9917.9342 \end{aligned}$
		24.3899
So the cofine of Z S to the cofine of $S R$	$\begin{aligned} & 40.00 \\ & 35.5^{2} 30 \end{aligned}$	$\begin{array}{r} 9884.2539 \\ 9908.6438 \end{array}$

23 To finde a $S I D E$ by knowing bine fide and the two Angles next the Side required.
As in the triangle $Z P S$ having $Z P \quad 38 \quad 30 \mathrm{~m}, Z P S, 31$ 34 mm .26 fe and $Z P S \quad 30.28 \mathrm{~mm}$. 11 fe. to finde the fide $P S$.
z Finde the arke $P R$ as before.
2 As the tangent of $Z S P$ to the tangent of $Z R S$
30. 28 II
9769. 6236
$31.34{ }^{26}$
So the fine of $P R$
34. 730
$\frac{9788,5746}{18.9510}$

- 9748.9617 to the fine of $S R$
9767.9127
$-24 T 0$

24 Tofinde a Side by knowing two angles, and the Side inclofed by them.

As in the triangle Z.PS having ZP $3830 \mathrm{~m}, Z \mathrm{PS} 3 \mathrm{I}$ $34 \mathrm{~m} .26 f$. and $\mathrm{P} Z S 1303 \mathrm{~m} .11 \mathrm{fec}$. to find the file $\mathrm{Z} S$

25 To find an angle by knowing the other twa.
Angles and the side inclofed by them.
As in the triangle ZPS having $\mathrm{ZP} \mathbf{3}^{8} \quad 30 \mathrm{~mm}$. ZPS 3134 mm .26 fe . and $P \mathrm{ZSI} 1303$ m. Ir fe. to find the angre $Z \subset$.
1 Finde the angle $\mathrm{P} Z \mathrm{R}$ by the 16 Proposition at before.

26 To finde an anale by knowing the other tviva: Angles and one fide next the angle required.

As in the triangle ZPS, hauing ZP $38.30 \mathrm{~m} . Z \mathrm{ZS}$, 31 gr .34 m .26 fe . and ZS $P 30.28 \mathrm{~m}$. 1 II fe. to finde the angle PZ .
I Finde the angle $P Z \mathrm{R}$ as before.

27 To finde an Angle by knowing tvoofides and the angle contained by them.

As in the triangle $Z P S$, hauing $Z P 38.30 \mathrm{~ms} . P S 70 \mathrm{gr}$. and ZP S, 3 I. $34 \mathrm{~mm}, 26 \mathrm{fe}$. to finde the angle ZSP .
I Finde the arke $\boldsymbol{P} \boldsymbol{R}$ as before.

Asthe fine of to the fine of	SR	35. 53	. 9767.9127
	$\underline{P R}$	34. 730	9748.9617
			18.9510
So the tangent of to the tangent	ZPS	$\begin{aligned} & 31.3426 \\ & 30.3811 \end{aligned}$	9788.574
	\boldsymbol{P}		9769.623

28 To finde an angle by knovving the tubo next fides, andone of the other angles.

As in the triangle $Z P S$ hauing $Z P{ }_{3} 8.30 \mathrm{mi} . \mathrm{ZS} 40 \mathrm{gr}$. and ZPS 31.34 m .26 f . to finde the angle PZ S .
I Finde the angle PZ R, as before.

etangent of	$\begin{array}{ll} \mathrm{ZS} \\ \mathrm{ZP} \end{array}$	$\begin{aligned} & 4000 \\ & 38.30 \text { a } \end{aligned}$	
			23.208
			636
to the cofne of	SZ	S	9613.7228

Thefe 28 Cales are thofe which I fet downe in the vfe of the $\mathrm{S}_{e} \mathrm{Ct}$ or, and all that are commonly required in a fpharicall triangle. I will here adde two more, to thew how that which is found before, by the 22.23.26 and 28. Propofiti-, ons may fometimes be found more eafily. viz.

29 To finde a Side by knovving the other tvio Sides and their oppofite angles.

As in the triangle Z P S, hauing PS 70 gr. and P ZS 130 $3 \mathrm{~m} . \mathrm{II} / \mathrm{e}$. together with $Z S 40$ gr. and $Z P S$ 3i. $34 \mathrm{~m} .26 / \mathrm{f}$ to finde the third fide Z P.

> As the fine of halfe the difference of the angles giuen, to the fine of halfe the fumne of thofe angles:
> So the tangent of halfe the difference of the fides ginen, to the tangent of halfe the fide required.

30 To finde an angle by knowing the other two angles' and their opposite fides.

As in the triangle ZPS, hawing the former parts $P S, P Z S_{2}^{\prime}$ $Z S$ and $Z \mathrm{PS}$, to finds the third angle $Z S \mathrm{P}$.

As the fine of hale the difference of the fides given, to the fine of halle the fame of thole fides;
So the tangent of halle the difference of the angles given, to the cotangent of hale the angle required.

CH AP. III.

COncerning the ioynt wee of the Lines of Numbers; Sines and tangents, I hewed how they might ferne for the refolution of right lined Triangles, whereof I Set downe five propofitions, page 24. And thee alfo may be applyed to the Table and Canon of Logarithmes.

The fides of there triangles are meafured by absolute nam: Gers, and fo reprefented by Logarithmes.

The angles are meafured by degrees and minutes, and fo to be found by fines and tangents in the Canon.

PROP

PROP. I.

Hauine three Angles, and one fide to finde the other two SIDES.

If it be a rectangle triangle, wherein one fide about the right angle being knowne, it were required onely to finde the other, this might bee readily done by Sines and Tangents. As in the rectangle AI B, knowing the angle B A I to be 43.20. and the file AI to be 244, if it were required to finder the other fide A I.

But where both the other fides are required, it is belt done by Logarithmes and Sines. As in the fame rectangle AI B, having the 3 angles and the five $A \mathrm{I}$, to find both B I and $A B$.

As the fine of the opposite angle A BI 46. $40 \quad 9861,7575^{\circ}$ is to the Gide given

AI $244,000 \cdot 2387.3898$
7474.3671

So the fine of the fecond angle BA I 43. 20.19836 .4770
to his oppofiteride \quad BI 230. 2 202 $_{2362.1093}$
As the fine of the third angle AI B 90. $\quad 120000.0000$ $\begin{array}{llll}\text { to his opposite fides } & \text { AB } & 335.439 & 2525.6323\end{array}$

The like holdeth alfo in obliqu-angled triangles: As in the Triangle ABD (which I propofed page 13: as an example for the finding of diftances) where knowing the diftance between A and D, to be $t 00$ paces; the angle $B A C$ to be 43. 20 mo the angle BD A 122, or the outward angle B D C, 58 gr . and confequently the angle A BD oppofite to $A D$ the fide giuen to be 14.40 m . it was required to find the diftances A B and D B.

So the fine of the fecond angle ÁD B \quad	58.	7403.4554
928.4204		to his oppofite fide A B $334 \cdot \frac{137}{}$ $\begin{array}{lrrr}\text { And the fine of the third angle D A B } & 43.20^{\prime} & \frac{2524.9620}{9836.4770} \\ \text { to his oppofite fide } & \text { D B } \quad 871.32 & 2433.0216 \\ & \text { Ffff } & & \end{array}$

PROP. II.

Fauing tiwo fides and one angle oppofite to eitber of thofe fides to find the other two angles. and the third fide.
'As in the triangle A. B D, hauing the two fides A B 335: paces and AD 100 paces, and knowing the angle ADB which oppofite to the fide A B, to be 122 gr . or the outward angle B D C to be 58 gr . if it were required to find the other two angles at A and B, and the third fide $B D$. I may firft find an angle A B D oppofite ta the other knowne fide AD.

As the oppofite fide $\quad A B \quad 335 \stackrel{000}{2525,0448}$
so the fine of the angle ginen ADB. $58.0^{\prime} 9928,4204$
7,405, 3756
So is the next fide
AD $100=\frac{000}{2000,0000}$
to the fine of his opprangle A.BD $\mathbf{1 4 . 5 9 \%}_{6}^{5}$ 9403, 37.56
Then knowing thefe two angles at D and B, I take the inward angle ABD.I4 $59^{\prime} 50^{\prime \prime}$ S. out of the outward angle BDC 580^{\prime} and fo find the thrid angle B AD, to bee $4320^{\prime \prime}$ 10 \int. So hauing three angles, and 2 fides 1 may well find the chird. fide B D by the former Proportions

As the fine of the firft angle A D B $58 \mathrm{gr} .0 \mathrm{~ms} \quad 9928 ; 4204$: is to his oppolite fide. A B 335°
$\begin{array}{ccc}\text { So the fine of the laff angle D A B 43. } 20 \% & \frac{7403,37 ; 6}{98} 36,5033 \\ \text { to his oppofite fide. } & \text { D B } 27 \text { I: } 3 & 2433,1277\end{array}$

: P R OP.

PROP. III.

Hating two fides and the angle betweene them to finde the other two angles and the third fide.

If the angle conteined betweene the two fides girenbee right angle, the other two angles will be found readily by tangents and Logarithmes. As in the réclangle AIB haping the fride. A I 244 and the fide IB to find the angles at. A and β^{\prime}.

As thie greater fide
is to the lefler fide
AI
IB So the Radias the tangent of
to the tangent of the leffer angle

244	${ }^{2} 387,3898$
230	2361, 7278
$45.8{ }^{\text {gr. }}$	10000,9,000
43	974,3380

But if it be an oblique angle that is conteined betweene the two fides giuen, the triangle may be reduced into two rectangle triangles, and then refolued as before.

As, in the triangle AD B, hauing the fides AB 335 AD, 100 and the angle B AD 43 . ρ°, to finde the angles at. B and D, and the third fide B D. Firft, I would fappofe a perpendicular DH to bee let downe from D , the end of the leffer fide, vpon the greater fide \mathbf{A} : fo thall 1 have two rectangle triangles D H A and D H B. And in the rectangle AHD, the angle at A being 4320° the other angle $A D H$ will be 46. 40° by complement and with thele angles and the fide $A \mathcal{D}, 1$ may find both $A H$ and $D H$ by the firf proportion. Then taking $A H$ out of $A B$, there remaines $H \mathscr{B}$ for the fide of the Reftangle $D H_{B}$, and therefore with this fide $H \mathcal{B}$ and the other fide $\mathcal{D} H, I$ may finde the angle at B, by the former part of this proportion. And with this angle and the perpendicilar DH, I may fonde the third fide $D B$, by the firft propofition.

Or hauing two fides and the angle betweene them, wee Ffff 2 x
may finde the other two angles without letting downe any perpendicular, in this manner.

As the fumme of the two fides giuen

- is to the difference of thefe fides

So the angent of halfe che fuym of the two oppofitelangles to the tangent of halfe the difference betweene thofe angles.
So here hauing the fide. and the other fide

335
100

> the fumme of thefe fides is
> and the difference of thefef fides
> The angle conteined $B A D$ is

the fumme of the two oppofite angles
the halfe fumme of thefe angles $68: 20 \cdot 10400,9092$
and by proportion and halfe difference's $340^{\frac{1}{5}} \mathrm{IOI} 33 ; 4^{8} 7^{8}$ This halfe fum \& halled differéce mak $1220{ }^{\circ}$ the greater angle. and the differeace betweene them $1419 \frac{4}{6}$ the leffer angle.

PROP. IV.

Hauingitbree fodes, to finde the tbree angles:

Let one of the three fides giuen be the Baie, (but rather the greater fide) that the perpendicular may fall within the trianigle. Then gather the fumme and the difference of the two fides, and the proportion will hold.

As the Bafe of the Triangle
to the fumme of the fides.
So the difference of the fides
Bafe being taken forth of the true bafe, if wee let downe a
Bafe being taken forth of the true bafe, if wee let downe a perpendicular from the oppofite angle, it fhall tall vponthe middle of the remainder. As in the triangle $A D D_{i}^{\prime}$

Thelefferfide is
The other fide
The Bafe of the triangle The fumme of the fides

Or, if we would find the coatent withoutknowing the pee: pendicular, we may put twoor more operations intoone, as einfhe preportionfollowing

PROP.VI.

"Fauing two fides of a right lined Triangle, and the angle abipeene them, to find the sontent.:

Adde the fine of the Angle, and the Lógarithmes of both the fides, from the fumme of thefé fubtract-- $10301,03.00$ 1o the Remainder haill be the Logarithme of the content. $A s$, in the triangle $A D$ D, hauing thic fides $A B 335, A$ ' 1 190, and the augle B AD $43 \mathrm{gr} .2 \rho \mathrm{~m}$.
The fine of the ingle 10 .a 43 gh romis. 983654770 the Logarithme of the fide A B $335 \quad 2525,0448$
 The fumme of thefe make 14361,5218 from which fubtrat the folemne Logarithpe Io301,9300 the'Remainder will be the Logarithase of st 494 the contentecquired.

PRO,P. VII.

Hauing three Angles, and one fide of a right-lined Triangle, to finde the costent.

Adde the double of the Logarithme of the fide giaen, and the fires of the two next angles; from the fumme of thele fabtrut the fänme of $10 \$ 01,0300$, and the fine of the 'oppotite angl, Wothe Remainder fhall beethe Logurithmeofthecons, tent.

and Tradory boimmpuit

As in the Triangle $A D B$ fuppofing the angles $B A C$ to $b e$
 and the fide 4 D to be 100 parts.
 the rame againe : 2600,0000
 The fine of the angle B D A $\quad 58 \quad \circ \quad 9928,4204$
 Againe if we adde the folemne Logarithme rozit, 036 to the fine of theoppofiteangle $149 r_{0} \frac{9003,4554}{19704,4854}$
he fumme of both will make
 the Logarithme of 1 i 492 the conteng rgquired.

PROP. VHLC

Hauing the third fades of a right ined triangle, to 'finde the cointent.

Firfer downe the three fidesc, the cummeforifem and the halfe fumme. Then from this halfe-fumpeffibract each fide feuerally, and note the differences. That done, adde the Logarithmes of the:halfe-fummo; and thefe:differencosithe dalfe therceof hatt bo the Legaritharie of the comenis.

the frmme of thefe fidesis: the halfe fumme the difference from $A B$ the differencefrom $D B^{i}$ the difference from $A D$ The fumme of their Logarithmes and the hatfe thereof is

PROM.IX

'Fiaking the thrce fides of a right lined triangle? to finde the Perpendicular.

As, in theo former triangle $A D B_{\text {a tofinde }}$ the perpendicular $\mathrm{D} \mathbf{H}$, Firft, find the, eontent of the Triangle by the former proportion, then may the perpendicular bee found by the conuerfe of the V. Propofitiont
As the Bafe of the trixingife 033512525,0448 to the faperifill coditent: $\quad \frac{4059,9907}{1534,9459}$
So alwayes the number of to the perpendigular

$$
P R_{0} \mathbf{P}, \mathbf{X}
$$

Hauing the Semidiameter of a Circle to finde the

 Cobd for any Arke propofed.As if in procrating the former triangle ADB it were regaired to find length of a Chord of 43 gr .20 m. agrecing to the Semidianneter A E, which wee fuppofe to be 3 inches. This might be done by thefitt proportidn for, if the chord were drawne from E to F we fhould haue a triangle $E A F$ of three angles and two fides knowne. Bat, more generally comparing the fine of 30 gr . with the fine of halfe, the arke propofed, the proportion will hold.
As the fine of the Semiradius: to the Semidiameter

So tha fine of halfe the arke $218 \mathrm{r} 40 \mathrm{~m} \quad \frac{922,8480}{9567,2689}$
 $0345,4{ }^{201}$ So

So that hauing drawne the line A , and defcribed ah occule arke of a Circle vpon the center \boldsymbol{A}, and femidiameter A Eat the diftance of three inches, -if we take out two inches, and 215 parts of roco, and infribe them into that arke from E to F, the line A F hall make the angle FAE to be 4320 m . as was required.

Thus hauing applyed that to the Canon and table of Logarithmes which 1 had fet downe before for the generall vfe of the lires of numbers, fines, and tangent, it may appeare fuficiently, that, if we obferuc the rales of proportion fet forth by others, and worke by thefe Tables; we may vefe addition infteed of their multiplication, and fubtragion infteed of theis diuifion, and fo apply thefe generall rules to infinite particuhrs.

C H'A P. IV.

Containing fome rofe of right-lined triangles; in the practife of Fortification.

IN the late manner of Fortification the ordinary care is. I That the angle of the Buiwarke may be either a right angle, or neere vnto it.
2 That this angle may be defended from the flanque and cortin on either fide.

3 That the lines of defenfe may not exceed the reach of a musket, which is faid to bee xij. fcore yards and thofe make 720 foot.
2 That the depth of the flanques and bredth of the rampart be fuificient to refift a battery;and that may beabout 100 footat the ground.

Ggg

- Vpon

Vpon thefe confiderations depend the reft' of 'lines and angles: whereof I will fet downe fome Propofirions, beginsing with that which mayrefolue the works of others:

PROP. I.

Haxing the fide of a Regular Fort, with the length of the Gorge, the Flanque and the Face of the Bulwarke, to find the reft of the lines and angles.

A regular Fort is that; which is made withequall fides and angles, each Bulwarke like vinto other.

Suppofe that, by obfervation or otherwife we haue found; that in a fquare fort, the fide was 700 foot, the Gorge 140, the Flanque 100, and the Face 335: In a Pentagonall, hexa-: gonall, heptagonall, as in this table.

The jide The gorge	A^{*}	Quadr	Pentag	Hexag	Heptag Oftag.	
		700	800	900	950	1000
	AD	140	180	190	200	230
The flanque	DE	100	120	140	150	140
The fase	$E F$	335	352	370	360	420

And that it were reguired to find the reft of the lines, and the quantity of the angles belonging to each Fort; beginning with the quadrate.

Firlt we may protract this Fort, by making a fquare whofe fide A B Chall bee 700 foot by the fcale : then take bat 140 for the gorge, and fet them of from A vito D, and from A vnto H . At D and H raife 2 , flanques perpendicular to the fides of the fort and there pricke downe 100 from D ynto R, ant and from H ynto G. That done, take 335 out of the fame fcale, and fetting one foot of the compafes in the point E, make an occult arke of a circle. Aga!ne, fetting one foote of the compaffes in the point G, make another occult arke, croffing the former in the point F; So the lines, E F, $F G$ thall reprefent the face of the Bulwarke.

Inlike manner, for the Bulwarke at B, wee may fet of the gorge from B vnto $\mathrm{N}, \& \mathrm{c}$. So haue wee diuerfe triangles, which may be refolued by the firt 3. Propolitions of nighlined triangles. And the manner of it thall be to fet downe, as that the Precept may be eatily ditinguifhed from the example, and applied to any other, not onely by this canon and table of Logarithmes, but by the old Canon off, fines and tanGggg 2
gents, and by the lines of fines and tangents both vpouithe Sector and the croffe-ftaffe.

I In the Rectangle A DE, hauing the fides AD, AE, we may find the angles at A and E, and the third fide $A E$, by the former part of the third Proportion of Right-lined triangles.

Asthe gorge	${ }^{\boldsymbol{A}}$	140	2146.1280
to the Flanque -	$\mathcal{D} \boldsymbol{\varepsilon}$	100	2000.0000
So the Radins		$90.0^{\prime} .011$	10000.0000
so the the tangent of	DAE	$35.32 \cdot \frac{1}{4}$	9853.8720

Take the angle $D A E$ out of 90 gr .the complement will giue. the angle $D E A$: and then, hauing two fides and three angles,we may well find the chird fide $A E$ by the firlt Propofition of right-lined triangles

As the fine of	$\mathcal{D} A E$	$35.32 \frac{2}{4}$	9764.3542
to the fide	$D E$	100.	2000.0000
So the fine of	$A D E$	$90.0^{\prime}, 0^{\prime \prime}$	10000.0000
to the fide	$A E$	$172 \div 4$	2235.645°

2 Becaufe the fort is fuppofed to bee fquare, the angle HAD, muft be 98 gr and the halfe angle $C=1 D_{45} \mathrm{gr}$. if wee adde this angle $C A D$ vnto the angle $\mathcal{D} A E$ and take the fumme out of 180 gr . the remainder $99.2{ }_{74}^{3}$ (hall be the angle $E \mathscr{A} F$. Then in the triang'e $E A F$, hauing the angle at A, and the two fides $F E, A E$, wee may finde the other angles at E and F; by the III. Propofition of right-lined triangles.

As the face to the fine of	$\underset{\text { 焉AF }}{ }$	$\begin{aligned} & 335 \\ & 99.27 \frac{3}{4} \end{aligned}$	$\begin{array}{r} 2525.0448 \\ 9994.0502 \\ \hline \end{array}$
		, 1	7469.0054
So the line	AE	1720 ${ }^{047}$	2235.6459
to the fing of	AFE	.30. $26 \frac{1}{5}$	$9704 \cdot 6513$

Adde this angle A FE to the angle E A F, and take the fumme out of 180 gr . the Remainder $50.6 .4^{\prime \prime}$, ihall be the antgle $A E F$. And then we have two fides apd thre angles, to finde the head-line $A \mathrm{~F}$.

As the fine of to the face	$\underset{\text { EF }}{\text { EAF }}$	$\begin{aligned} & \text { 99. } 27 \frac{3}{4} \\ & 335 . \end{aligned}$	$\begin{array}{r} 9964.0502 \\ 2525.0448 \end{array}$
			7469.0034
So the fine of to the headline	$\begin{aligned} & \text { AEF } \\ & \text { AF } \end{aligned}$	$\begin{aligned} & 50.6 . \frac{1}{13} \\ & 260 \frac{55}{} \end{aligned}$	$\begin{aligned} & 9884.8958 \\ & 2415.8904 \end{aligned}$

3 If we prodace the face FE vntill it meet the cortin in O; we hall haue the triangle A F O: wherein, knowing the fide A F, and the three angles (for, knowing two angles, the third is alwayes knowne by complement vnto 180 gr .) wee may finde the other two fides F O, A O.

fine of he head-line	AF	015	
So the fine of to the line	$\begin{aligned} & \text { FAO } \\ & \text { FO } \end{aligned}$		
		45.0	
and the fine of to the line.	$\begin{aligned} & A F O \\ & \text { AO } \end{aligned}$		6
		$524 \text { 年2: }$	$2720 .$

Take the gorge N B. 140, out of the fide A B yoo. there remaines 560 for the line A N. Take this line A Oout of A N, and there remaines $35 \frac{088}{}$ for ON that part of the cortin from whence the face of the Bulwarke may be defended.

4 In the triangle A F N hauing two fides A F, AN, and the angle betweene them F A N, we may finde the other t Wo angles at F and N, by the later part of the third Propofi-
tion of right-lined triangles.

$$
\text { Ggge } 3
$$

As the fumme of the fides $A \mathrm{~F}, \mathcal{A} \mathrm{~N}, 820: 5$ is to the difference of thofe fides 29945 So the tangent of the halfe fumme of the oppofite angles at F and N . 22.30° to the tangent of halfe the diffirence 8. $36 \frac{1}{5} \quad 9179.8348$ between thofe angles.
This halfe difference added to the halfe fum, giues the grea-
and fubtracted, the leffer AFN ANF: 13.534° As the fine of $A \mathrm{NF}$ $13.53 .48^{\prime}$ 9380.5157 to the headine $A \mathrm{~F}$
2914.1050 2476.3245 437.7805 2617.6153

ter angle:

$A F N$
$\therefore \quad A N$
$13.53 .48^{\prime}$
260550

5 In the triangle $A B C$ w haue the fide $A B$, and the 3 . angles, to finde the fide C A or C, from the center to the angles of the Fort.
\boldsymbol{A} s the fine of
$\begin{array}{llll}\text { to the fide } & A B & 700 . & 2845.0980 \\ \text { the fine of } & A B C & 45.0 .0 & 9849.4850 \\ \text { to the line } & A C & 494975 & 2694.5830\end{array}$
This line $A \mathrm{C}$ added to the headline $A \mathrm{~F}$, giues the whole CF, from the center of the Fort to the vttermolt point of the Bulwark to be $7.55 \frac{525}{5}$

6 . In the triangle C F L (the fide F L being parallel to A. B the fide of the Fort) we haue the three angles and the Gide CF; by which we may finde F L'the diftance between the points of the two next Bulwarks.

Asthefine of	C LF	450	0	9849.4850
to the line	CF	755	$\frac{525}{2878.2498}$	
So the fine of	FCL	90,	0	10000.0000
to the fine	FL	1068,	464	3028.7648

Thus

Thus by refoluing of fix triangles we have fuund

$\stackrel{T}{\mathrm{~T}}$	D	35. $32^{\prime} 15^{\prime \prime}$,
	GFE	
	FED	104.33
e angle	ANF	13.53

Foote
The length of the line the Headline
the Line on the Cortin
the Line of defence
the femidiamerer

	Fote
AE	172.047
AF	260.550
ON	35.088
FN	767.113
CA	494.975

the line tro the center to the Bulw, C F 755. 525
the diftance betweene the Bulw. FL. 1068. 464 the principall Lines and Angles belonging to the Bulwark at A.

The reft of the lines are either parallell ynto thefe, or elfe they may be found in the fame manner.

And all thefe may be vnderftood to be the fame in the reft of the Bulwarkes belonging to this Fort.

Againe, what is faid of a fguare Fort, the fame may be applyed to all regular Forts.

And fo, refoluing the workes of other men, it may appeare how neere they haue come to the former grounds.

But that wee may not altogether infift vpon examples, I will fer downe fome profitabde fuppoficions. and from them proceed to finde the reft of the lines and angles belonging to auy Regular Fort.

1 The angle at the center ACB, betweene the lines CA, CB, drawne from the Center to each Bulwarke, is found by dividing ' 360 gr : by the number of the fides. So in a fquare Fort, this angle will be 90 gr . In a Pentagonall Fort, where there are fiue fides, it will be 72 gr .8 cc .

2 Take this angle at the center, out of 180 gr . there remaines the angle of the Fort HAD.

3 The angle $A \mathrm{DE}$ between the Flanque and the Cortin: may be always 90 gr .

4 The vttermoft angle of the Bulwark E F Gp must be life then the angle of the Fort, yet not leffe then 60 gr . nor doth it need to be much more then 90 gr . If we allow it to be $\frac{2}{3}$. of the angle of the Fort, it may be defended from the Flanque and Cortin on cither fide.

5 The angle at the Gorge D AE, which formes the Flan que D.E, may be allowed betweene 35 and 40 gr . For in fall regular Forts, it may be 40 gr . but where the angle of the Fort is great, it may be lefle.

There 5 . angles being first fettled, the molt of the other angles will depend upon them, as in the Table following.

Or howfoeuer there may bee other angles found to bee more convenient, yet there are fuificient to explane the vie of triangles.

In a Regular Fort.

Angle at the lester Angle of the Fort Angle of the Flanque Angle of the Bulwark Angle of the Gorge

$A C B \mid 00 \quad 0.720600051254500$ HAD 90 01c8 012001283413501800 | $A D \varepsilon 90$ | 0,90 | 090 | 0,90 | 0 |
| :--- | :--- | :--- | :--- | :--- |

 Complement of $C A D$ is $\mathcal{D} A \mathrm{~F}^{135}$ O|126 O| 220 $A F E$ out of $C A D$ leaves $A O F{ }^{15}$

Complement of $D A E$ is $A E D$ so $A E D$ out of $D E F$ leans $A E F 55$ $A E F$ and $A \mathrm{~F} \varepsilon$ give $\mathrm{F} A \varepsilon 95$

0,51	$0 / 52$	$0 / 53$
0,57	0,58	0,58
$0 \mid 87$	$0 / 82$	0.78

PROP.II.

Hauing tbe ordinary angles, with the Flangue and line of Defenfe, to finde the reflof the lines and-angles', in a rregular Fort.

SVppofe the angles to be fach, a - in the former table, the depth of the fan ue DE .oo. foot, atd the line of detente F N 720. toote; and that it were requirid, to find the reft of the lines and angles belonging to a Pautagonall fort.
: In the triangle $A D E$ hauing the three a gles and the flar:que $D E$, we may find the length of the gorge $A D$, and the line $A E$. The aagle ADE is alwy go $g r$. but, the fors bet ing Pentagonall, mad with fure Bulwar hes at he fiuc apglise the cablé giues the angle DJAE to bie 39 gr. and the angle. AED 5T gr, wheretora

tothe flangue		$\begin{aligned} & 39.0^{\circ} . \\ & \text { 1000 } \end{aligned}$	
			7788.8718
So the fine of	$\begin{aligned} & A E D \\ & A D \end{aligned}$		
nd the whole fine to the line	$\begin{gathered} A D \varepsilon \\ \mathscr{A} E^{2} \end{gathered}$	$x 583$	2201.1282

2 In the triangle A FE, hauing the three angles and the fide AE, we may End ine fice of the Bulwarke FE, and the Beadrline A E

As the fine of to the line	$\begin{aligned} & \text { AFE } \\ & \text { AE } \end{aligned}$	$\begin{aligned} & 36.0 .0 . \\ & 158 \xlongequal{150} . \end{aligned}$	$\begin{aligned} & 9769.2186 \\ & 2291.1282 \end{aligned}$
			7.568.09
So the fine of to the face	$\begin{aligned} & \text { FAE } \\ & \mathbf{F A}_{\mathbf{E}} \end{aligned}$	$\begin{aligned} & 87 \cdot \\ & 269 \stackrel{0.7}{0} . \end{aligned}$	$\begin{aligned} & 9999.4044 \\ & 243 \mathrm{I} .3 \mathrm{I} 40 \end{aligned}$
And the fine o		5.7. O. 0.	9923.5914
so the head-Jine	AF	226	2.355 .50

3 In the triangle $A F O$, hauing the three angles and the fide AF, we may find the other two fides FO and AO .			
As the fine of to the headine	$\begin{aligned} & A O F \\ & A F \end{aligned}$		$\begin{array}{r} 9489.9823 . \\ 2355.5010 \end{array}$
			713404853
So the fine of so the line	$\begin{aligned} & \text { FAO } \\ & \text { PO } \end{aligned}$	$\begin{aligned} & \text { ri6. } \\ & 593=7 \end{aligned}$	$\begin{aligned} & 9907.4576 \\ & 2773.4763 \end{aligned}$
And the fine of $s a$ the line	$\begin{aligned} & A F O \\ & A O \end{aligned}$	$\begin{aligned} & 36.0 .0 \\ & 431 \end{aligned}$	$\begin{aligned} & 9769.2186 \\ & 2634.7373 \end{aligned}$

4 In the triangle AFN, haning the headline A \mathbf{F} the tine of defenfe \mathcal{F}, and the angle $\mathcal{A} \mathbf{N}$, wee may find the. other two angles at \mathbf{N} and \mathbf{F}, and the third frde \mathbf{A} N. As che line of defenfe FN 720. , 2857.3325 to the fine of

So thic headine to thefine of

AF 276\% 2389.9010 ANF. 14.45.33. 9406. 1261

This angle $\mathrm{A} N \mathrm{~F}$ added to the angle $\mathrm{FA} \mathbf{A}$, and the fumme of both taken out of 180 gr . will giuethe third angle A. F N. As the fine of \therefore FAN 126 gr. $0.0 . \quad 9907.9576$ to the line of defenfer \mathbf{E}. 720 .

Hauing thisline $A N$ if we adde the gorge N Bf or AD, the fumme of both thall be the fide of the fort A B.
If wee take the gorge $A D$, out of this line $A N$, the remainder thall be the cortin D N.
Againe if we take the line $A O$, out of this line $A N$, the remainder fhall be ON , that part of the cortin from whence the face of the Bulwarke may be defended. And fo here

The length ofthis line thegorge	$\begin{aligned} & \text { A } 2<\text { being } \\ & \text { AD } \end{aligned}$	$\begin{array}{r} 562.98 \\ 123.49 \\ \hline \end{array}$
the fide of the fort the cortin	A B fhall be D2	$\begin{aligned} & 686.47 \\ & 439.49 \end{aligned}$
Againe taking the line from AN,there remaines	$\begin{aligned} & \mathrm{AO} \\ & \mathrm{SONC} \end{aligned}$	$\begin{aligned} & 431.26 \\ & 131.72 \end{aligned}$

5 In the triangle A I C, hauing the three angles, and the fide A, the one halfe of $A B$ the fide of the fort, wee may find both OI, the femidiameter of the circle infcribed, and CA, the femidiameter of the circle circumfcribedabout the fort.

As the fine of oo the line	$A C I$		$\begin{aligned} & 9769.21866 \\ & 2535.5915 \end{aligned}$
			7233.6271
So the fine of to the line	$\mathbf{C A I}_{\mathbf{C A I}}$	472.4225.	$\begin{aligned} & 9907.9976 \\ & 2674.3305 \end{aligned}$
And the whole fine to the line	$\mathrm{ClA}_{\mathrm{CA}}$	$\begin{aligned} & 90.0 .0 . \\ & 583.94660 \end{aligned}$	10000.0000 2766.3729

This line CA added to the head-line A F, giuces the diftance CF betweene the center of the fort, and the vetermoit point of the Bulwarke.
6 If this fort thall be incompaffed with a dith, whofe vtcermoft fides fhall bee parallell to the fice of the Balwarke's fuppofing this ditch to be of a known bredth(and that maybe about 100 foot) we hane the triangle F I X; whercin,knowing the three angles, \& the fide F 8 , we may find the line FX. Hhbh 2

As the fine of to the bredth-line	F_{2}	36	9
, wh	F2X		
the line	FX	$170{ }^{\text {i, }}$	

This line $F X$ add d to the line. CF, giues the dintance $C X$, betweene the center of the fort, and the vttermoft corner of the ditch. And fo tere,

The length of the head-line the femidameter		583.95
-Both thefe make the line	CF	810.67
Adde vuto this the line	FX	170.13.
So, C A, A F, F X make	CX	

7 In the triangle CY X. hauing the three angles and the Gide $C X$, we may finde the wo other fides $C \mathbf{Y}$ and $X Y$.

Asthe fine of to the line	$\mathrm{CYX}^{\mathrm{C}}$	$\begin{aligned} & 108.0^{\circ} 0^{\prime \prime} . \\ & 980^{\circ} 0^{\circ} \end{aligned}$	$\begin{gathered} 9978.2063 \\ 2991.5815 \end{gathered}$
So the fine of			6986.6248
to the line	${ }_{C} \mathbf{C}$	36.0 .0. 6066.6	86,
And the fine	$\mathrm{X}_{\mathrm{X}}^{\mathbf{y}} \mathbf{C Y}$	36.0.0.	9769. 2186
		606	2782.5938

Take theline CI, from tbis line C \mathbf{Y}, there remaines $\mathbf{I} \mathbf{Y}_{\text {, }}$ the brodih of the ditch from the middle of the cortin.

8 Then, for che.lines FL, X Z , and fuch other parallels to the fide of the fort $A B$,

As the femidiameter to the fide of the fort	$\begin{aligned} & \text { CA } \\ & \mathrm{AB} \end{aligned}$	$\begin{aligned} & 583.95 \\ & 686.47 \end{aligned}$	$\begin{aligned} & 2766.3729 \\ & 2836.6215 \\ & \hline \end{aligned}$
			7074.2486
Sothe lent th of to the diftance	CF	810.67	2908.8444
And the length of.	${ }_{\text {CX }}$	953.00 980.85	2979.0930 2990
to the difance	$\mathbf{X 2}$		991.4815 061. 8201
			9 The

9 The Perpendiculars C $3, C_{4}$, and fuch others, let downe from the center vpon the former parallels may bee tound in the fame fort ;

As the femidiameter	A	583. 95	9
to the Perpendicular	CI	$47^{2} \cdot 42$	2674.3305
			92.0424
So the length of	CF	.810.67	2908.8444
to the Perpedicular	C_{3}	695.84	2816.8020
And the length of	CX	980.80	2991.5815
to the Perpendicnlar	C_{4}	793.48	2899.5391

To If wee take I R the bredth of the Rampart, our of the Perpendicular CI, fuppoling the bredih of the Rampart to be 100. foote, there remaines $\mathbf{3 7 2 . 4 2}$ for the Perpendicular CR.

If wee takeout IT, the bredth of the Rampart and ftreet adioining (he ftreet being fuppofed 30 . foot broad) there remanes 342,42 for the Perpendicitar CT.

A, the Perpendicular to the fide of the fort	$\begin{aligned} & \mathbf{C l}_{1} \\ & \mathrm{AB} \end{aligned}$	$\begin{aligned} & 472: 42 \\ & 686.47 \end{aligned}$	$\begin{aligned} & 2674.3305 \\ & 2836.6215 \end{aligned}$
So the Perpendicular \quad ER to the lide of the Rampart QS			O
		372.42	2971.0358
		\$41.16	2733.3268
And the Perpendica'ar to the inncr fide of the	CT	342.42	$\begin{aligned} & 2534.5622 \\ & 26.96 .8532 \end{aligned}$
As the Perpendicular $\quad-\mathrm{CI}$ to the femidiameter $\quad \mathrm{CA}$			
			3305
So the Perpendicular to the lifie			
	$\begin{aligned} & C R \\ & C Q \end{aligned}$	372.42 460.34	$\begin{aligned} & 2571,0378 \\ & 3663: 0802 \end{aligned}$
And the Perpendicular to the line	$\mathbf{C T}$	342.42	2
		423.25	6

PROP. III.

Hauing the ordinary angles with the line of defenfe and face of the Bulwarke, to finde the reft of the lines and angles.

Q Vppole a long cortin to be fortified with Bulwarkes, the angle of each Bulwarke to bee $90 . \mathrm{gr}$. the angle at the gorge torming the flanque 35 gro the reft, as in the former tas bile, the line of defenfe, 720 toote, and the face of the Bulwarke 300 foote.

I In the triangle $A E F$, hauing the three angles and the face FE. wee may finde the headline A.F, and the line ME.

As
and Table of Logarithines.

As the finc of to the face	$\begin{aligned} & \mathbf{F A E} \\ & \mathbf{F E} \end{aligned}$	$\begin{array}{ll} 55.0 . \\ 300 \end{array}$	$\begin{aligned} & 9913.3645 \\ & 2477.1212 \end{aligned}$
			7436.2433
So the fine of	$A E \mathrm{~B}$	80, 0.0.	9993.3514
to the head-line	$A \mathrm{~F}$	360. 668	2557.1081
And the ftre of	AF ε	49.0. 0.	9849.4850
to the line	$4 E$	258.965	2413.2417

.2: In the triangle $A D E$ haining the three angles and the line $\mathcal{A} E$, we may find both the flanque $\mathcal{D} E$, and the gorge AD:

As the fine of so the line	$A D E$	$\begin{aligned} & 90.0 .0 \\ & 2.58 .96 . \end{aligned}$	$\begin{array}{r} 241.3 .2417 \\ 7586.7583 \end{array}$
	DA		9758. 5913
to the flanque	DE:	$\text { 148. } 53$	2171.8330
And the fine of totho gorge	$\begin{aligned} & A E D \\ & A D \end{aligned}$	$\begin{aligned} & 55.00 \\ & 212.132 \end{aligned}$	$\begin{aligned} & 9913 \cdot 3645 \\ & 3326.6062 \end{aligned}$

3 . In the trisedte FA O , hating tho throe angles, and thetwo equall fides A F, A; we may finde the lengih of of $\mathbf{F O}$, the face produced vnio thẹ continh

Asthe fine of AOF	45.0.010	9849.4890
to the headline. AF	360.66	2557. 1081
So the whole fine of FAO	9.0 .0 .0	10000.0000
to the face produced 50	sro,	2707.623I

4 Intletriangle FAN, hauing the headline A. F, the line of defenle $\mathbf{F} \mathbf{N}$, and the right angle $\mathbf{F A N}$, wee may finde the other twoangles at F and N, and the third fide. AN

68

Asche line of defence F N			
So the headine	A F	360.66	2557 108x
to the fine of.	ANF	30. $3 \cdot \frac{2}{3}$	9699.2756
Asthe fine of FAN 90.0.0 10000			
to thetire' ${ }^{\text {a }}$	FN	720.	72857.3325
So the fine of	AFN	$59.56{ }^{\text {\% }}$	9437.2735
to theline	AN	623.1697	2794.6060

Hauing the line $\mathbf{A} \mathbf{N}$, if we adde the Gorge N B, or A \mathbf{D}, the fumme of both ghall be the line $A B$ or $F L$, the diftance betweene both Ralwarksn
If we cake the Gorge $A D$ out of this line $A N$, the remainder Chall be the Cortin D N.

Agine, if we take the line $A O_{2}$ out of this line $A N_{2}$ the Pinainder thall be ONO that part ifthe cortintrom whence the face ófthe Bulwark nlay be defended.

Thus the length of AN abing 623 169 the Gorge N B, or A D 212.132
 7. The Corin \quad DN $\therefore \therefore 12037$

Againe taking the line AO $\quad \frac{4}{360.668}$
from A N_{3} there remaine ON
\square

PROP. IIII.

Fhauing the Angles of an irregular Fort, with the

 fide betweene tbem, and the face of the Bulwark, to find the ref of the Lines and Angles.Suppole the angles of an old walled Tewne wers to bee Fortified with new Bulwarks. The angles of the Bulvarke to be either ${ }_{j}$. of the angle at the wall, or (if ${ }_{j}$. of the angle be more then 90 gr .) it may faffice, that they be 99 gr . The Flaniques perpendicular to the Cortin, to be formed by an angle betweene 35 and 40 gr . as chall be foupd more conuenient. And the face of each Bulwarke to be 300 foot. 4 Let the angle at A be 826 grothen may EFG, the angle of the Bulwark be 84 gr . and the angle D A E may be allowed to be 38 gr . Let the angleat B be 140 gr . then becaufe 3 . of this angle are aboue 93 fr . the angle of this Bulwarke may well be 90 gr .and the atigle atthe Corge N B Mi 36 gr . And let A B, the diftance berweene thefe angles be 750 foot.
In regular Forts the Bulwarkes may be made one like the other, to the head-lines being produced will all meet in the Gmecemter. In irregular (fiuch as this) there will beefome difference, yet the woske though fomewhat longer will bee Gill the fame.

- At the Bulwarke A in the triangle $A F E$, becauft the ngle of the Fort $H A D$ is $126 \mathrm{~g}^{\circ}$. the halfe angle $Q A D$ 63 gr : and the angle at the Gorge D A E fuppoied to bc' $38^{8} g^{r}$. the angle 是 Λ F will bee 79 gro Argane the angle AEE (the halfe ef GFE the angie of the Bidwake) being 42 gro the angle $A E F$ will be sigro by copple-

In the rectangle A DE the angle, at the Gorge D AE being 88 pr. the other angle DEA mint bee 52 gr . by complement.

As the whole fire of A.D E $90,0_{i} 0_{2}$ robio.0bob to the line

AE. 204"406

DEE
DE $125 ; 900$ $\frac{2319.6836}{7689.3444}$
So the finsot AED 52. $0,0^{\circ}$ 2100.0275
98965341

And the fit of to the Gorge
$A D^{-16 x i 4} 5$.2207 .2157
In like manner as the Bulynarks \$ in che triangle ELM because the angle of the fort is 140 gr the tale thereof SEN 70 gr and the angle at the Gouge NB M fuppoled to be 36 gr. the angle M BL will be 74 gro And then the angre, BI M G he gale of the angle of the Bulwarks) being 45 gr . the third ogle $\mathrm{B} M L_{\mathrm{S}}$ mut be σ II g. by couples. mint.

Acth fineof $A K B L_{1} \quad \therefore \quad 7400^{\prime} .0^{\prime \prime} \because 9982.8416$, ito the fame di ta
by b. a

$-A_{B} d^{2}$ the find of $B E M$ to the line BM
45.10. 0.
| 22.20 .68 x .

And in the rectangle triangle BNM, allowing N B M, the angle at the Gorge to be 36 gr . the other angle BMN pupt be 54 gr . by complement.

As the whole fine	B NM	90, \%.	,
to thie line	B M	- 220. 681	2343.7646
			7656.2354
So the fine of to the flanque	$\begin{aligned} & \text { NBM } \\ & \mathbf{N M} \end{aligned}$	36. 0.0	9769,2286
d the fiac of	BM		2112,9832
tothe Garge	BN	878. 534	$9907,9576$

$\therefore 3$. In the etriangle A FO, taking the angle AFO42 ${ }^{2}$ entofthe angle: QAO 63 gr : there remaines 2 II gr. for the angle A OF.

As the fine of ; to the headline	$\begin{gathered} \mathrm{AOP} \\ \mathbf{A F} \end{gathered}$	$\begin{aligned} & \text { 21. } 0^{\circ} .0^{\prime \prime \prime} \\ & 261.963 \end{aligned}$	$\begin{aligned} & 9554,3292 \\ & 2418,2403 \\ & \hline \end{aligned}$
:			7136,0888
Sothe fine of	AFO	42.0	9825,5109
\% to the line	40	489. 127	2689,4227
And the fine of to the fice produ	FAO uced FO	6300	$9949,8808$

And fo in the like triangle $B L P$, taking the angle $B L P$, 45 gr . out of the angle $S \mathrm{~B} P \neq \mathrm{gr}$. there remaines 25 gr . for the third angle BPL.

As the fine of BP L $\quad{ }^{25}$. $0.0 \quad$ O625,9482 to the headline
 to the face produced L P
$\frac{2436,0988}{7189,} \frac{8494}{48}$
9849,4850
2659,6356
9972,9858
$2783: 1264$
Thus

Thus the length of the fide the length of the Gorge the length of the line Take from this the line shere remaines for the line Agaise taking the Gorge out of the fide \mathcal{A} there remaines $\mathcal{B} \mathcal{D}$ Take from this the line BP shers remaines for the line $D P$ Take $A D$ out of A Nethe cortin D N
being i7500 ${ }^{\circ 6}$
28 being i750.
3 2 178,534
42
40
02
1D

571,466 489. 127
$\frac{82,339}{161,} \frac{345}{}$ 588,855 456,704
132,158
is 410,321
, 4 In the triangle e $F 2 \mathbb{2}$, hating two fides $A F, A N_{3}$ and F A K the angle betweene them; we may finde the or ther two angles at N and F, and the line of defence $F N$.

As the fumme of the fides A F,A N; $\quad 833.429 .2930 .8684$ Wis to the difference of thofe fides $1309.503 \quad 2490.6536$ Sothe tangent of balfe the fumme of the two oppofite angles at F and N
31.30.0 9787.3193 to the tangentof $\quad 12.49 \div 9397.1: 245$ the halfe difference betweene thole anglese it This halfe difference added to the halfe fummegines
the greater angle AFN. 44. $19 \frac{1}{0}^{\circ}$ and fubtracted the leffer AN F 18.40 .3.

As the fine of to the headline	$\begin{gathered} \text { ANF } \\ \text { AF } \end{gathered}$	$\begin{aligned} & 18,40^{\circ} \frac{3}{4} \\ & 261,963 \end{aligned}$	2418.2403
			7087.2822
So the fine of to the line of defence	$F \boldsymbol{A} \mathbf{N}$ $\mathbf{F N}$	$63.9 .0$	$\begin{aligned} & 9949.8808 \\ & 2862.5986 \end{aligned}$
And the fine of to the line	$\begin{aligned} & \text { AFN } \\ & \text { AN } \end{aligned}$		

And in the like rriangle $\mathcal{B} \cdot \mathcal{L}$, haning two fides B, L, $B D_{3}$ and the angle betweene them $L B D$; we may finde the other two angles at D and I_{y} and the line of difence $L . D$.

As the fumme of BL and BD : 86r. 815, 2935.413^{8} to the difference of theie fides 31 side95: $2499.542 x^{\prime}$ So the tangert of halfe the fumme of the two 435.8717 oppofite angles at L and, $D, \quad 350.00 . \quad 9845.2267$ to the tangent of $14.23 \cdot \frac{1}{3} \quad 2409.3550$
This halfedifferencendded to tho halfe foritmergiutes: ?

 to the line of tefence LD: $728: 838,2862.63 \mathrm{~m}$ And the fine of \because B LD 49.232 .9880 .3627

$$
{ }^{2}, \boldsymbol{R} O \mathbf{O} \mathbf{V}
$$

Heninge the Limes amd Angles of a regular Fort, to find the content in fect and ecres.

The content of a Fort may be raken femerall wajes : cithes from withiathe Rapapert, or fronaiwithin the outfide of the ditch, or elfe we may take in thd Ouxi-workes : And thofe mpy be:offemerall forts fuch as arc bere' reprefehted; or the like.
1-If we confider the content within the Rampart, we have the triangle $Q C S$, whereiaknowing the Peipendiculat C R and the Bale QS, we may finde the content of the sriangle. And this content multiplyed by the comber of the like triangles belonging to the Fort, liall bee the whole conteat requrred

Thus, in the Pentagonalk Fort before defcribed, where the liii 3

Per:
\because Acthe folemnenumber 0301,0300 is to the Bafe
So the:Peppendicalar CR1. $\quad 3 \neq \frac{-2432.2968}{-251.0358}$
toebe contentioftegetriander $500773.25 \quad 5003.3326$ Adde (for sociiangles) the logatithsie of 5 fr: 0698.9700 The cointent in feet comes to - is $503866, \quad 5702.3026$

Then to reduce this content into acres, we may either divide the number of fert by 4365 g , f the numbired feer contained in an acre) op working by Logarikkines; we mayy fubtract this folemne Logarithme $\$^{6} 39.08787$:

Thus, from'rbe Logarithme of 503866.250 .570233026 f fubtrat the folemne Logari. of 43560. 4639.0878
there remaines the Logatith, of it if. $6.1063 .2 \mathrm{I4} 8$ the content in acres contained withirthe Rampert.

Ifitbe required to fivdorque goptegriof this Proungonaft Fort within the outward Gde of the Ditch. we haue io luch triangles as $X C$, whetein knowing the two Yides $C X$, $C Y$, and the angle betweene them $X \subset \Upsilon$, we may let down a Perpendiculer from the angleat \boldsymbol{T}, upon the Bate $\boldsymbol{C} \boldsymbol{X}$; and then with the Perpendiculareand sherBafe, we may finde the coptent of the rianple as before.

Thus the fide C X being 980.80 , the fide CT 606.17 , and the angle betweene them $X C Y, \quad 36.0^{\circ}, 0^{\prime \prime}$

> to the leffer fide cr $607,17 \quad 2782,5938$
> So the fine of ir C
> $\frac{9769,2186}{255 \mathrm{k}, 8 \mathrm{~B} 26}$

2 As the folemne number
to the Bafe -
980, 80

2
0301,0300
2991,581s
2690,5515
So the Perpendicular
to the content of the triangle 174728,60 Adde (for ten triangles) the Logari, of 10
the content in feet comes to 1747286
Againe fubtract the Logarithme of 43560
the content in acres comes to 40,11 Adde (for ten triangles) the Logari, of 10
the content in feet comes to 1747286
Againe fubtract the Logarithme of 43560
the content in acres comes to 40,11 2551,8124 5242,3639

By the fame reafon refolaing all into triangles, wee may take in the Counterfcarp; and the reft of the Out-workes, Aid fo finde the content, not onely of a Regular Fort, but of any other piece of ground.

FINIS.

CANON

TRMANGVLORVM
Ing
Or Tables of in
 $\because=19$ as radius of ropoog, oopo rpares, and IV each minute of the Quadrant.

By Edm. Guntra Profeffor of afonomicio Grefbam Colledge.
umotersine

LONDON:

Printed by Wialliam Iomes, for lamer 20 ontern and arce to be fold at the CMarigold in Pawl/ Cburch-yard

$$
16360
$$

HONORATISSIMO
 DOMINO Dn: \mathcal{O} HANNI COMITI de BRDDGEWATER, VICECOMTTIAE'BRACKLEY,

BARONI de ELLESMERE

 $\therefore \%$
Hunc-furm Canonem
Triangulorum

The defcription of the Canon:

T His Camon hath gix columnes. The firft is of degrees and minuttes, from the begianingiof the Quadrant ynto 45 gro, the Fixt ot degrees and painatco firoio 45 gre pato whe end ot the quadraity the other fe ure conteine the Sives and T angents belong ing ra each of thefedegrees and minques, after the manner of octren Cavons. The difierence is in theniumbers. For thefe Simer are aot fuchas halfathe cherds of the double arke, nor thefe? anm,
 bers fublfituced in their place for apquining she fame end; by a mote ceafie wry, fuach as the Lagaritbmes of the Lord of Macch.: feer, and thereuponil call them Artificiall Simes and Tangeuts. So the fc cond and fpurth columpes containe the Simes and Z ingents of the degites and minutes jo fothe firf columne : the thitid and fift containe the Sines and Z ang cuts of the fixt colamine.: A_{s} if it wererequired to finde the artifciall Sine belonging to our Latitude, which bere at London is $5 \mathbf{5} g^{3}: 32 \mathrm{~m}$. you may find Sine $5 x$ in the lower partof the page, and 12.32 in the fixt coJumbe, the cominhor ande will gituo 989f; 5452 tor heveste reor quired. And inthe fàme line you haur' 97 ys 383 ip far the Sthe off the complement of this latitade, whitch in one word mayy be catted the cofime. Iń like imancer tife Tingent of 58 gra 38 emp will be

 As che double of rie Redise being icere0pe, 9000

 vinto the double of the pruco of halife the arke, and lubrragting the Radium. As the halfe of 51 gr .32 m. being $2 \mathrm{~s} / \mathrm{gr} .46 \mathrm{~m}$, Adde ta the-Sime of $25 \mathrm{~g}^{\mathrm{r} .46 \mathrm{~mm}} \quad 9638,1968$ Thefameagains and che former the verfed fine of 51 gr .32 m . will bC . $\quad 9577,4236$

$\left(\frac{\mathbf{M}}{30}\right)$	$79.40,84 \times 8$	999,9,9834	77940,8584	12059,1416	30
32		9999,9823	7		
		-			
	79.9	9999,9787	7995,2192	1 1004,780S	26
35	8007,7866	9999,91.74	8007,8091	11992,1908	5
36	8a30,0206	989		1	
	8031,9194	99999,9748	$8031,9+46$	11968 ,	23
38	8043,	9999,9.734	8043,5274	-11956,4726	22
	8054	9999,97.20	8054,8193	11945,1806	21
40	8065	9999,9706	8065, 8957	11934,1942	
		9999,9691		1	
	8086,964	9999,9575	8086,997.	1 1913,0029	19
	8097, 1.83	9999,9660	$8097 ; 2172$	1 1202,7827	17
44	8107,1669	9999,9644	8107,2025	11892397.5	
	$8116,926.2$	9999,9628	8116,9634	11883,0365	
		999929611			
	8135,	2999,9'594	8135,8510	11864,1489	3
	81	9999,9.576	$8 \pm 44,9955$	$1.1855,0044$	
	8153,9	9299,9558	8153,9516	11846,0483	
	8162,6808	999936540	8162,7367	11837,2632	
51	8171,	92903	81783281		
	8179,7129	9999,9,503	8179,7626	1:1820,2.374	8
	8187,984	9999,9484	8188,0363	$1881 r, 9636$	
	8196, 1920	9999,9464	8196, 8555	11803,844	
	8204,0702	9999,9444	8204,1258	11795,8741	5
56	82.1158	999989423	8215,9525	1.780,0474	
57	8219.581	2999,94031	8219,6407	11780,3592	3
58	8227,13	9989,9.382	8227,1953		2
59		9999,9360	8234,6207		2
60	824128553	299\% 9338	8241,9214	11758,0785	0
		Sin. 89.			

	$\frac{\sin .10}{824 \mathrm{I}, 8553}$	9999,9338	Tan. ${ }^{\text {8241, }}$	11758,0785
	8249,0331	9999,9316	8249	i 1750,8984
	8256,0942	9999,9293	82,56,1649	11
	8263,0423	9999,9270	826	
	8269,8819	9999,9247	8269.9562	11730
	8279046	9999,9223	8276,6912	11723
6	8283,2433	9999, ${ }^{\text {919 }}$	8283,	17
	8289,7734	999\%,9175		117
8	8296	9999,9150	8296,2916	
	8302,5460	9999,912	8302,6335	1169
10	8308,7941	9999,9599	8308,8842	11692
1r	8314,9535	9999,9073	8315.0462	116
12	8321,0268	9999,9047	8321,1221	
13	8327,0163		8327,	1167
${ }_{4}$	8332,924 8338	9999,8993	83, ${ }^{8,3,0}$	11666
15	8338,7529		8338,85	$\frac{1166101}{16,5}$
	${ }_{8}^{8344,5043}$	d999,8958	8344,6	11655,38
\%	8350,180 83558	9999,8910	8390,28	1164
	8355.7834	9999, 88882	8355,8952	11644,10
1,	8	9999,8853	8361,4296	17638,5
		9999,8823	8366,8945	
32	8377	9999,8764	837\%,6223	$11{ }^{1} 22$
23	8382,7620	9999,8734	8382,8886	1161
	8387,9621	9999,8703	8388,0918	$\mathrm{FrOHT}^{\text {a }}$
25	8393,100\%	9999,8	8393,2335	ATreb
26	8398,1	9999,	8398,3151	$1{ }^{1601}$
	8403	9999,8609	8403.3381	1159
	8408,161	2999,8576	8408, 3036	${ }_{11591,69}$
$3{ }^{\circ}$	84300676	9999	8418.2	11356,78
30	8417,9190		$8{ }^{818,0678}$	T19817 321

$\begin{aligned} & \infty \\ & =0 \\ & =0 \\ & \infty \\ & \infty \end{aligned}$	

$\left.\frac{\mathrm{M}}{30} \right\rvert\,$	$\frac{\sin .3 \cdot}{8785,6752}$	$9999,1892$	Tan. $3 \cdot 1$	11213,5139 $\frac{11}{30}$
31	8787,7358	9999, $\overline{1814}$	8788,5544	11211,4455
32	8789,7866	9999,1736	8790,6130	11209,3869
	8791,8278	9999,1658	8792,6619	11207,3380
34	8793,8593	9999,1580	8794,7013	11205,2986
35	8795,8814	9999,150I	8796,7313	11203,2686
36	8797,8940	9999,1421	1798,7519	II201
	8799,8974	9999,1342	8800,7632	11199,2368
	8801,8915	9999,1262	8802,7653	11197,2347
	8803,8764	9999,1181	8804,7582	11195248178
40	8805,8523	9999,1100	8806,7422	11193,2577 ${ }^{20}$
41	8807,8192	9999,1019	8808,7172	11191,2827 19
	8809;7772	9999,0938	8819,6834	11189,3166
43	8811,7263	9999,0856	8812,6407	11187,359247
	881, 66667	9999,8774	8814,5893	11185341061.6
45	8815,5985	9999,0691	8816,5293	418834706
46	8817,5216	9999,0608	8818,4608	-1481,5391
	$88819,436_{3}$	9999,0525	8820,3838	15179,616I 3
48	8821,3425	9999,044	8822,2984	11177,7016
149	. 8823,2403	9999,0357	8824, 2046	1117518953
5	8825,1299	9999,0272	88.66026	11173,8973
	8827,0112	9999,0188	8827.9924	111
	8828,8843	9999;0102	88\%29,87.41	11170,1258
53	8830,7494	9999,0017	8831,7477	11168,2522
54	88323065	9998,9931	8833,6134	1116638656
55	8834,4557	9998,9844	8835,4712	11164,5287
5	8836,2969	$9998,9758$	8837.3211	11162,6788
5	8888.1304	9998.987	8839,1632	i1160,8367
58	8839,9560	9998,9583	8840,9977	11159,002\%
59	$884^{1}, 7741$	$99.98,9496$	$8842,834=$	11157,1754
60	$8843,5845$	9998,9407	8844,6437	14155.3502
		Sin.36.		Tan.86,

M $\operatorname{Sin}^{3} 4^{\circ}$	
30	8894:6433
3 S	8896,2455
32	8897; ${ }^{\text {4 }} 17$
33	8899,4322
34	8901,0167
35	8902,5955
36	8904,168
	8905
38	8907,2974
	8908,8534
	8910,4038
4	8911,9487
	891 3,4880
	8915,0219
4	8916,5503
	8918,0733
	8919,5910
	8921,1034
	8922,6104
50	8924
	8925,6089
	892
5	8928,5866
	8930,0678
	8931,5439
	8933,0150
56	8934,4810
7	8935,9421
	8937,3983
59	893
	8940,2960

999 99 99 99 99 99

 9997,5340 9997,5204 9997, 5069 9997.4933 9997,4797 9997,4660 9997,4523 9997,4386 9997,4248 9997:4110 9997,3971 9997,3832 9997,3693 9997,3553 9997,3413 9997,3273 9997,3132 9997,2991 9997,2849 9997,2707 9997,2565 9997,2423 9997,2279 9997,2136 $\frac{99979}{\operatorname{Stn} .} \frac{992}{83 .}$$|$| Tan, 6. |
| :--- |
| 9021,6202 |
| 9022,8338 |
| 9024,0440 |
| 9025,2510 |
| 9026,4548 |
| 9027,6552 |
| 9028,8524 |
| 9030,0464 |
| 9031,2372 |
| 9032,4249 |
| 9033,6094 |
| 9034,7906 |
| 9035,9688 |
| 9037,1439 |
| 9038,3158 |
| 9039,4848 |
| 9040,6506 |
| 9041,8134 |
| 9042,9731 |
| 9044,1298 |
| 9045,2836 |
| 9046,4343 |
| 9047,5821 |
| 9048,7270 |
| 9049,8689 |
| 9051,0078 |
| 9052,1439 |
| 9053,2771 |
| 9054,4075 |
| 9055,5349 |
| $90,56,6595$ |

10978,3797
10977,1662
1097,9559
10974,7489
10973,5452
10972,3447
10971,1475
10969,9535
10968,7627
10967,5751
10966,3906
10965,2093
10964,0311
10962,8561
10961,6841 10960,5152 10959,3493 10958,1866 10957,0268 10955,8701 $10954,716_{4}$

10953,5656
10952,4278
10951,2730
10950,1311
10948,9921
10947,8560
$109,46,7228$
10945,5925
10944,4651
10943,3405
$T a n i, 830$

$\frac{\mathrm{M}}{0}$	9	$9994,6199$		10800,2874	60
	9195.91293				
2		9994757.98		10798	58
	9196,7189				5
	9197	9994:5396			
5	9198			10796, 2175	55
6					
7	9!99				5
8	9200,				
	9201	999424383			
	9202	9994,4179		10	
	9	924,3975			
	9203	9994,3771	920		
	92040	9994;3566	042		47
	- 220	9994,336I	92 r		4^{6}
	9206,	9994,3155	921	1	45
	9				44
					43
	.9208.	9994, 2 ¢ ${ }^{\text {3 }}$			42
		9994,2329	$924.4,9894$.		$4{ }^{T}$
		- 29942 2125	9215, 27795	10784,2204	
			9216,56		39
	9211,52620	99			38
			9218		37
	9213	9994,1288	92I8,9263	197.81, 0736	3
25	9213,	9994	219,		5
	9.214	22			34
	9215	9994206.59			33
	926,0969	9994,0449	922	10	
	9216,8;36	9994,0238			
	92776098		923, 6965	2776, 3934	30
		'Sin. 80.		Tan. 80	M

$\frac{10}{30}$	9117,6092	9994,0027	92:23,6065	107	
31	9218,363	9993;981-5	9224,3819		29
	9219,1163	9993,960:	9225,1560	10774,8439	28
	9219,8679	9993,939I	2225,9288	10774,0911	27
	9220,6i 82	9993,9178	9226,7003	10773,2996	26
35	9221,	9993:8965	9223,4705	10772,5294	25
36	9222,	9993,8751	9228,2395	10771,7605	$\frac{2}{24}$
37	9222,8609	9993,8537	9229,0071	10770,9928	23
38	9223,6058	9993,8323	19329,7735	10770,2265	22
39	9224,3494	9993,8109	9230,5386	10769,4614	1
40	9225,0918	9993,7893	2231,3024	10768,6975	20
4 I	9225,	9993,7678	9232,0649	10767,9350	19
42	9226,5725	9993,7462	9232,826.	10767;1737	18
43	9227,3109	9993,7246	9233,5862	10766,4137	17
	922S,0480	9993,7030	9234,3450	10765,6549	16
45	$\underline{9228,7839}$	9993,6813	9235;1026	10764,8974	5
46	9229,5184	9993,6596	9235,8588		14
47	9230,2517	9993,6378	92.36,6.139	$10763,3860$	13
48	9230,9838	9993.6160	2237;3677	$10762 ; 6322$	12
49	9231,7145	9993,5942	9238,1203		
50	9232,4440	9993,5723	9238;8717	10761,1283	
51	9				9
52	9233,8992	9993;5284	9240,3707	$1 d 759,6292$	
53	9234,6249	9993,5064	9241,1184	-10758,8815	7
54	9235,3494	9993,4844	9241,8649	107	
55	9236,0725	9993,4633	9242,6102		5
56	9236,7946	9993,4402			
57		9993,4181	9244;0972	10755,9027	3
58		9993,3959	9244,8389		2
59	9238,9531	9993,3737	9245,5794		
60	9239,6702	9993,3514	19246,3187	10753,6812	\bigcirc
		Sin. 80.			$\overline{\mathbf{M}}$

(M) $\frac{\text { Sin. } 110}{2480.5088}$	99919965	$\left\|\frac{\text { Tan. } 11}{2288,6522}\right\|$	$10711,347760$
7 9 9481; 74^{82}	9999102	9289,3262	10710,6737
-2 $=1588128906$	9991 2078.	928.0,9992,	10710,0007
- $=3$-9182i5440	-6990, 87.27	9290,6713	10709, 3286
$\cdots 4.1928 .79904$	9991,8480	9291.3424	10708,6575 56
\% ${ }^{\text {a }} 9883.8359$	9991.8	9292iot25	10707,9874
26. $92844480{ }^{\text {a }}$	999.1. 728.5	92929.484	1070, 31825
7 c (928 9 j1137	9993-7837	92935 5492	10706,6500
8 892857661	9991,74409	1920.45077	2070,5,9827
929286,4075	9991.7*40	9294568.85	1070533164
190: 92287,0480	9991, 9892	929533489	1270469510
	920],674	92969013	10703398
$12 \times$:9288\%3200	999 5564901	9296.6 .768	to
13 9288;963.5	1,9991,624 ${ }^{1}$	9297,3394.	1070
54.8289 .6001	2991,5990	9298,00 10	1070x 59
[15: 329095357	9925 5739	229836647	ㄷozor ${ }^{13}$
	-299795487	249935405	10
7 F 92985340	(02985 5836	9m993x ${ }^{\text {a }}$	10709,
8. 929813167	99914988.3	$9300 ; 638$	10699
r9 $9292 ; 764$	99991,473it	9301,2953	10
	999444478		10
81939730198	2993cexat	2902,4066	106
29.92946580	199971397:	9393;2609	10696,7390
$3.9295,2859$	999, 377^{16}	9393:3142	10696,0857
24 9295,9119	999143462	93045667	10595,4332 ${ }^{2} 6$
25: 29595615390	999243807	$43059{ }^{2} 14^{2}$	1069478535
26.929871744	999817295.	29395,8689,	$10694 x^{131034}$
27-929757883	19995.3496	P306,5	10693×4833
$28.9298,4056$ 209	9991,3440	9307, 6675	10692×34432
29 30.929990339 r.9299,9853	[9901.2183	9307,8155	10692, 184435
30.592993953	59991, 993	2398,4626	$\frac{10691.537}{\text { Tamg. } 78 .} 4$

$\frac{1 \cdot 0}{9991 ; \text { r927 }}$
999, 1,76009
92915, 1472
9991,0895
2991,063.7
$9891 ; 9378$
9990, 9858
9992,9598
2990, 933.7
2990,999769990,8459
\$ 20.12028
\$990, 27.60
\$popicayp
999Pista
999094847
9990,4580
$\begin{gathered} 9900,43 \geq 2 \\ 9000.4044 \end{gathered}$

	106
88	
2309.75	
123 ± 9	
9311	
9311.68	
9312,320	
	coab
93	
93	106
93005 512	596
93 tas	1068
9316, 79	106
-9318420	${ }^{2} \mathrm{Cos} 8 \mathrm{~L}$,
93+2699\%	
9\%5409 ${ }^{2}$	10063
9zab,	
9320,591	
'9327; 23	Hoby
932538	108
, ${ }^{\text {aterin }}$	186
93235	106
93233732	1869
9334433589	${ }^{1}$
9304,9832	
9329,6072	106\%
9436,2305	$10673 ; 9$
9326,8	106

M Sin. 13°

9988,7239
9988,6947
9988,6655
9988,6362
9988,6069
9988,5776 $9988 ; 54,82$ 9988; 51.8β 9988;4893 9988,4598 9988,4303
9988;4007 9988.374 9988,34:15 9988,3:18 9988;2920 9988,25:23 $9988,2: 25$ 9988,1926 9788,1627 9988, 13982 9988,0729 9988, 4428 9988,0128 $9287,98: 6$ 19987,9525 9987,9223 9987,8921 19987,8618 $\frac{9987.83 .5}{\operatorname{Sin} .76}$
$\left|\begin{array}{l}\text { LaB, } 13 . \\ \frac{9363,3641}{9363,9401} \\ 9364,5154\end{array}\right|$ 9365,c904 9365,6640 9366,2373 9366,8099 9367,3819. 9367,9532 19368,5237 0369.0937 $9.369,6629$ 1370,2315 9370,7994 4371;3666 $\frac{93713933:}{93224920}$ 9373,9644 937,3,6290 937451930 937427563
9375,3780
9375,8809
9376,4423
9377,0030
9377,5631
9378,1225 9378,6812 9379,2394 9379,7969
9380,3537

$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	$518.14 \cdot$$9383,67 j 1$9384,1815938408739385,19249385,69699386,2008	$\begin{aligned} & \frac{1}{9986,90+1} \\ & 9986,8716 \\ & 9986,8410 \\ & 9986,8094 \\ & 9986,7778 \\ & 9986 ; 7451 \end{aligned}$	$\left\{\begin{array}{l} \text { Tan. } 4 \cdot \\ 9396,7710 \\ 9397,3089 \\ 9397,8462 \\ 9398,3829 \\ 9398,9192 \\ 9399,4546 \end{array}\right.$	1060,2289 60 10602,6910 51 10602,1537 58 10601,6170 57 10608,0808 56 10600,5453 58 1060,0103	
			9399,98.96		
7	9387				
8	9387	9986,6508			52
8	9388,	9986,6190			
	9388,7108		9402;1237		
	9389	9906,5552			
	238				
	9390,2095		9403;7182		47
	9390,70791	9986,4593	9404,2486		,
15	9391,2056	9986;427			
	9591,7027	99			44
	9392,1993	-986,	.940		
		9986,		10593,6356	$4{ }^{2}$
	93932	9986,	9406,8919	1059	48
		9986,	9407,4889	10598	
	9394	9986,2340		10598	
		9986,2017	9408,4711	10591	38
	9395,1658	9986,1693	9408,9964	10591,0035	37
		9986,1369	9409,5212		36
		9986,1044	9410,0454		35
	9	9986,0719			4
	9397,1315	9986,0394	19415,0	10588,9078	33
		9'986,0068	24N, 6146		32
	9398, 108				1
30	9398,5996			-059	

	Sin. 9.		Ta		
	9427,				
	9427, 80				
	9428,2631		94		
	9428,7168				
35	9429,1703	9983,7348	944	10	
36	9429,6228	9983,699	944		
37	9430				
	9430,	9983,6289		1055	
39	9430 ,				
40	9431	998	944	1.05	
	9431,878	998		IPSS	
	9432,328	998			
43	9432,7	9983			
	9433,22	9983	9449,		
45	9433,67		2450,		
	9434	9983,3449			
	9434	998			
48	9435				
	9435,	9983 ,237	945	1054	
	9435,9	9983,2019	9452		
	9436,3	99	945		
	9436,797		9453		
	9437,		9454		
	9438		9455,	1054	
	9438	9982,9852	945	1054	
	9439201				
			94		
	9440,33	$2992,84$	9458	$10542,503$	

E 2

	Sin.16.	9.982, 8416	$\frac{T a n .16 . \mid}{9457,4964}$	$10542,5035$	60
1	9440,7784	9982,8053		10542,0269	8
2	9441,2182	9982,7691	9458,4491	10541,5508	58
3	9441,6576	9982,7327	9458,9248	1054r,0751	57
3	9442,0964	9982,6964	9459,4000	10540,5999	56
5	9442;5348	9982,6600	9459,8748	10540,1251	55
	9442,9728	9982,6235	9460,3492	10539,6507	54
	9443,4102	9982,5870	9460,8231	10539,1768	3
8	9443,8472	9982,5 505	9461,2966	10538,7033	
-	9444,2837	9902,5140	49461,7697	10538,2302	5
10	- 9444,7197	9982,4774	94 ${ }^{62}, 2423$	10537,7576	50
1	9445,1552	9982,4407	9462,7145	10537,2854	,
12	9445,5903	9982,4040	9463,1862	$10536,8 \mathrm{i} 37$	8
13	9446,0249	9082,3673.	9463,6576.	10536, 3423	47
	9446,4590	9982,3305	9464, ${ }^{1} 285$	105:35,8715	46
15	94	9982,2937	9464,5989	-10535,4010	45
	9447;3259	9982,2569	9465,0690	10534,9	44
1	9447,7586	9982,2200	9465,5386	10534,4614	
18	9448,1909	9982,1831	9466,0077	10533,9922	2
19.	9448,6226	9982,1461	9466,4765	10533,5234	4 L
20	9449;0540	9982;1098.	9466,9448	10533,0551	
2 I	9449,4848	9982,0721	9467,4127	10532,5872	39
22	9449,9152	9982,0350	9467,8802	10532,1198	38
	9450,3451	9981,9979	19468,3472	10531,6527	37
23	9450,7746	9981,9607	9468,8138	10531,1861	36
25	9451,2036	9981,9235	9469;280ı	10530,7199	5
26	9451,6322	9981, 886_{3}	9469,7459	10530,2541	34
	9452,0603	9981,8493	9470,3112	105 29,7887	33
28	245-2,4879	9981,81 17	9470,6762	40529,3238	32
$\begin{aligned} & 29 \\ & 30 \end{aligned}$	9452,9152	9981,7743	94715140	10528,8592	1
	9453, 3418	9381,7369	9471.604	105 28,3951	30
33		Sin. 73		Tan. 73.	

	$\frac{\sin .16}{9453,3418}$	9981;7369	$\left\|\frac{T 48.16 .}{9471}, 6048\right\|$	10528,3951	
	9453,7680	2981,6995	$\overline{9472}, \overline{0683}$	10527	
	9454,1938	9981;6620	9472,5318	10527,4681	28
33	9454,6192	9981,6245	9472,9947	$10527, \cos 3$	
34	9455,044	9981,5869	2473,4571	10526,5428	26
35	9455,4685	9981,5493	9473,9192	10526,0807	5
36	945.5,8925	998r,5117		10525,6191	
	9456,3161	9981,4740	9474,8420	10525,1579	23
	9456,7392	998I,4363	9475,3029	10524,6971	2.2
39	9457,1618	9981,3985	9475,7633	10524,2367	21
-	9457,5840	9981,3607	9476,2233	10523,7767	
	9458,	9981,3229	9476,6828	10523,3171	
	9458	998r,2850	9477, 1420	10522,8579	18
43	9458,8479	998r,2471	9477,6008	10,22,3991	17
	9459,2683	9981,2091	9478,0592	10521,9407	16
	9459,6883	9981, 1711	9478,5172	$10.52 r, 4827$	
46	9460,1078	9981.1331	9478,9747	10521,0252	
	9460,5269	9981,0950	9479.4319	10520,5680	13
	9460,9456	9981,0569		10520,1112	12
	9461,3638	9981,0187		10519,6549	
	9461,7816	9980,9805	9480,801c	10519,1989	
	9462,1989	9980,9423	9481,2566	10518,7433	
	9462,6158	9980,9040	9481,7118	10518, 8881	
	9463,0323	9980,8657	9482,1666		
	9463,4483	9980,827.3	9482,6209	10517,3790	
	9463,8638	99,80,7	9483,07,49	10516,9250	
	9464.6937	9980,7120	9483,9817	10516,0182	
	9465,1080	9980,6734	9484,4345	10515,5654	2
	9465,5219	9980;6349	19484,8870	10515.1130	
60	9465,9353	9980,5963	9485.339 C	IOS	
		Sin. 73.		48.73	

	Sin.190	9975,6700		$10463,0281$	$\frac{60}{55}$
1.	9513,00	9975,6265 9975,5820	9537,	$\begin{aligned} & 10462,6179 \\ & 10462,2079 \end{aligned}$	5
2.	.9513,3750	9975,5829 9975,5393	9537,7920 9538,2016	$\begin{aligned} & 10462,2079 \\ & 10461,7983 \end{aligned}$	
3	9513,7410 9514,1067	9975,5393 9975,4957	9538,2016 $95.38,6109$	$\begin{aligned} & 10461,7983 \\ & 10461,3890 \end{aligned}$	37 6
4.	9514,1007 $9514,47.3$	9975,4957 9975,4520 9854	95, 28,6109 9539,0200	10460,9800	55
6	95.14	9975,4083	9539.34287		54
	9515,3017	9975,3645	9539,8371	4,60,1628	53
8	9515,5660	2975,3207	95-40,24 ${ }^{2}$	10459	52
8	9515,9299	9975,2769	9540,6930		51
10	9516,2936	9275.2330	19541,0606	94	0
1 I	9516,6569	-9975\% 890	9547,4678	10458,5321	49
12	9517.0198	9975,145!	9541,8747	10458,1252	8
13	2517,38:4	9975,1010	9542,2813	104	47
	2517	9975,0	9.542,6876		46
15	9518,	99750129	9543,0936	10457,9063	S
16	9918,4\%82	997499 ${ }^{\text {2 } 888}$	954	104	44
	9518,8294	9974,9246	9543,9048		
	9519,1903	9974, $8^{88} 0_{4}$	9544,3099	10455,6900	4^{2}
	9519,5509	,9974,8361	95,44.7148		4
20	9519,9112	9974,72 8	9545,1193	104	-
21	9520,277	9954,7.475	9545,5236	10	39
	9520,6306	2974,703:	2545,9275	10454,724	3
	9520,9899	9.974,6587	9546,3312	10453,6687	37
	9521,3.488	2974.6142	9546,7346	19453,2694	36
	9531,7073	9974,5692	9547, 3376	10452,26	35
	2522,0656	9974,5251	2547,5404	10452,459	34
	9522,42:35	.997404805	9547,9429	10452, 0570	33
	9522,7815	9974,4359	0548,3451	ro4s.	32
	9573,1383	9974,3212	2548,7470	10451,2.529	31
80	9523,4982		9549, ${ }^{487}$	10450,2513	30

	9523.4952	9974,3465	$\begin{array}{\|c\|} \hline \text { Tan. } 19 \\ \hline 9549,14^{8} 7 \\ \hline \end{array}$	10450,8513	30
	9523,8518	9974,3018	2549,5500	10450,4499	
	'9524,2080	9974,2570	9549,9511	10450,0489	28
	${ }^{1} 9524,5640$	9974,2121	9550,3518	10449,6481	
34	9524,9196.	9974,1672	9550,7523	10449,2476	26
35	${ }^{4} 952592748$	9974,1223	9551,1525	14448,8474	5
36	9 [iy; 6298	9744,0774	9551,5524	104	
	5 95159884	9974,0324	9557,9520	10448,0479	23
38	'95 2633387	9973,9873	9552,3514	10447,6486	
39	9516,6927	9973,9422	9552,7504	18447,2495	2 t
40	$-2527,0463$	9973,8971	9553,1492	10446,8507	
$4{ }^{41}$	9527,3996	9973,8519	9553.5477	10.446,4522	19
$4{ }^{2}$	9 ja 277926	9973,8067	9553,9459	10446,0540	
	9728,1053	9973,7614	9554,3438	10445,6561	17
	'9528,4576	9973,7161	9554,7414	10445,2585	16
45	9528,8096	9973,6708	9555,1388	10444,8611	15
$4{ }^{5}$	9529,16i3	9973,6254	9555,5359	10444,4641	${ }^{1} 4$
47	- 9529.5127	9973,5800	9555:9327	10444,0673	13
48	t95 59, 6638	9973,5346	9556,3292	10443,6707	
42	6530,2145	2973,4890	9550,7254	10443,2745	
50	9530,5649	9973,4435	9557,1214	10442;8785	
51	9530, 9150	9973,3979	9557,5171	104,42,4828	9
52	cisjr, ${ }^{56 \%}$	9973,3523	9557,9725	10442,0874	
	9531,6143	9973,3066	2558,3076	10441,6923	
54	9531,9634	9973;2609	9558,7025	10441,2974	
55	$25.32{ }^{2}+23$	9973,2152	9559,0971	10440,9029	5
56	9532,6608	2973; 694	9559,491	10440,508	
57	9533,0090	9973,1235	95 59,8854	10440,1145	
58	9533,3568	9973;0777	9560,2791	10439,7208	
59	9533,7044	2973,0317	9560,6720	10439,3273	
60	9534, 0	2972,9858	9561;0658	16438,9341	0
					M

0	9534, 515	9972,995
1	9534,3986	9972,9398
,	95347452	9972,8937
3.	9535.0915	9972;8476
4	2535,4375	9972,8015
5	9535,7832	9972,7554
6	9536,1286	9972,7091
7	2536,4736	9972,6629
8	9536,8184	9972,6166
9	9537,1628	9972,5703
10	9537,5069	9972,5239
11	2537,8508	997.24775
12	9538,1943	9,972,4310
13	9538,5375	9972,3545
14	9538,8804.	9972,3380
15	9539,2239.	9972,2014
16	9539,5553	$9972,24.48$
17	953-9,9072	9972,1981
18	9540,2489	9972,1514
19:	9540,5903	9972,1046
20	9540,9313	9972,0578
21	9541,2721	$99.72,0110$
2.2	2541,6125	9971,9641
23	9541,9527	9971,9172
24	95.422^{2925}	9971,8702.
25	9542,6321	9971,8232
26	2542,9713	9771,7762
27	9543,3102	9971,7291
28	9543,6489	$9971,6820$
49	9543,9872	9971,2348
30	9544,3283	2971,5876
		Sin.69.

	' Sin. 210	$\frac{2970 ; 1517}{}$	$\left\lvert\, \frac{\text { Tan. } 21 .}{} 958\right.$	i0415,8225	6
	9354, 6.68912	2970i1032	9584,5549	10415,	
	9954,98	9970:05 ${ }^{6}$	9584,9327	184 15 , 0678	
	95sj, Srye	$9970{ }^{2} 00$ 万3	9585,3091	róai 4	57
	9355,	99895957	2585,08;8 9586,0623	10414,3 ${ }^{1} 4^{1}$ 10413,9378	56
	9555.97t	996999087	9586,0623	$\frac{10413.937^{8}}{10413,5613}$	4
	9596,49 8966,61	$\begin{gathered} \$ 969,8000 \\ 9060,80 \pi+20 \end{gathered}$		10413 í̛4 13	4
	- 5956		$\left\lvert\, \begin{aligned} & 9588 ; 81 \\ & 9587 ; 19 \end{aligned}\right.$		3
-	9557	9,969,7135	9587,5659	1045	
10	9557.	9969,6647	9587,9412	10	
1	9537,9320	9969,6157	9588,3163	10.412	
	9558.2579	9969	9588,6	to411	
13	9558,5835	9969;5자	9589,0	104	
	9558,9087	9969,4686	958	10410	
15	9559,2337	9969,4255.	95889,81	$1{ }^{1041}$	
16	9559.5585:	996933704	9590, 18	$\underline{40}$	
	9559,8820	9950;32724	6590 ;	notós	
	9560,2071	9969,2720	9590,93	ro409,	
	9560,5309 9560,8546	9969,2227.	$\left\|\begin{array}{c} 9591,3082 \\ 9591,68 m i \end{array}\right\|$	10408,6	
2 C	9561,1779:	9969, 924020	\$592,05i8	1040\%940	39
22	9561,5099:	9969,0)4 ${ }^{6}$	9592,426	10407;5736	
23	9561,8137	9969,025	9592,7985		
	9562,1462	9968,9757	9593, 1705	10406	
	9562,4684	9968,9260	9593, 5	10406	
$2{ }^{2}$	9562,	9968, 87	9593,9	10400 ,	
	9563,1120	9968,8270	959		
	9563,4334	9968,777	9594,65	120405	
	9563,7569:	9968,7270	9595,0269		
30	9564,0754:	29988,6719	9595, 3975	70404,	

$\frac{\operatorname{Min} .210}{30} \sin _{4,0754}$	9968,6779	$\frac{\tan 2 \mathrm{I} .}{9595.3975}$	$1.404,0024$
956463960	9068,6281	195950648	12
$32.956427{ }^{164}$	996845783	9596×4380	10403,8619
3:3 9565,0363	296815284	9596,5079	10403,4920
3.4 9 9 ¢55,3560	9968,478,5	\|9596,8776	
-35 9565,6755	. 9968 , 4285	9597,2470	
3,6 - 2565,9947	9968,3785	959716×42	re
377.9566,3137	29048,3285	9597,98.52	3p4osatal
38 9566,6324	-9968,2784	9598,3539	- 50401,6460
$39.9 .566,9508$	9968,2283	259887224	10401,2775
40) 9567,2689	99689378	95e9,9902	104009992
41 , 2567,5867	9968, 12 TV	9592, 4588	104
$42 \quad 9.567,9043$	9968,0776	9599;8267	10
43 9568,221.7	9968,0274	9600,1943	10399,8057
44.9568	9267,9770	9600, 5617	10392,4?83
$455.9568,8555$	9967,9x66	1609,928	1939939731
46.956	:9967,8762	9609,2978	303988,794
95.69 .4883	9967,8257	19601,6625	$110398,337.4$
9569,8042	9967.7752	19602,0290	103979970
2570	9967,7247	1960\%	10397, 604
O $9 \$ 70$	92, $97.674{ }^{\text {a }}$	Houe	1039723
51.947	9967,6235	10603,3272	193
$5^{2} 957$	9967,5	,9603	10
53.95	2967,5:221	960,3,85,81	103
54. 2771,6946	9967,4713	$196043,23.2$ 2	10395,776
55: 9577,0087	9407:4029	$\text { Pxp } 4.588 \mathrm{x}$	10398540
6 \% $0 \cdot 7723225$	69697,3697	960	10395,0471
$7{ }^{2} 9572,6362$	996733188	9605,3174	10394,6826
	9967,2678	-0605,6816	10394,3183
991957.3,2636	9967,2168	10606,0459	1032339544^{2}
917.3,5854	990731658		1030305004.

$\left\|\frac{\mathbf{M}}{0}\right\|$	$\frac{\operatorname{Sin} .22}{9573,5754}$	9967,16581	T4n.22. ${ }^{9606,4095}$	3,5904
	9553,8879	2967, 1047	9606;7731	10393,2268
2	95742002	9967,0636	96ia, 1365	103928634
3	9574,5 1×2	9967,0125	9607,4997	10392,5002
3	9574,8240	9966,9613	9607,8627	10392,1372
5	957521355	9966,910:	9608,2254	10391.77
6	95575,4468	9966,8598	9608,5879	10
	9575,7578	99066,8075	-9608;9502	10
8	9576,0685	9966,7561	9609,91	10390,687652 10590,325751
\%	9576,3789 9576,6892	9956,7047	9609,6742	$\begin{aligned} & 10390,3 \\ & 10389.9 \end{aligned}$
$\frac{10}{11}$		9966	9510,3973	10389,60
112	9577,3088	9966,5502	9610,7585	1038924
13	9577,6182	9966,4987	9611,1195	10
14	9577,927	9966,4470	9611,4803	10
15	9578,2363	9966,3954	9611,8409	$\underline{10}$
6	9578,5456		96612,2013	10
17	9578,8534	9966,2919	96152, 5614	10
18	9579,1616	9966,2401	9612,9214	10
19	9579,4695	9966, 1883	9613,2811	10386,7 $10386 ;$
20	9579,9771	9960, ${ }^{664}$	486336407	1 10386
	9580,0849	9966,0845	06140000	10.386
22	9580,3916	9965,0325	9614;359T	$10385,6409,38$
23	9580,6985	9965,9805	061477179	$10385 ; 282037$
24	9581,00;	9965,9285	96x5, 0766	10384,9233
25	9581, 3715	99685,8784.	96553435	$\underline{10384 ;} 6$
26	958 5 ,6176	9965,824	961597933	10384;2066
27	9581,9235	9965,772	9616, 1514	10383,848533
28	9582,2291	9965,7199	9616,5092	10383,4907 32
29	9582; 5343	996,667 6	9616,8669	10383, 1331
30	9581,8396	9965.615 .3	9647, ${ }^{2}$	19382,775
		Sin. 67		Tang. 67 M ${ }^{\text {M }}$

9064,0260	$\left\|\frac{T a k \cdot 23 .}{}\right\|$
9963,9774	-628,2030
2965,9r87	9618,5 540
9963,863,	9628,9047
9963, 81×12	9629,2953
9963,7574	96.29, 0.57
9963,703:	9629,9558
9963,6496	9630,3052
9963. 5997	9630,655s
9963,5477	96315005 ${ }^{2}$
996304876	9693F3548
29634335	-9031;7037
9966\},3794	95 32,0427
9863,3253	9032,4015
2963, 8120	9632,75 ${ }^{\text {a }}$
2061, 2108	2033 300988
2063,9538	${ }^{963444426}$
9962,9993	9663444903
9962,4449	2034.8.37\%
\$968, 990	W6ys, 1830
9962,855 8	ObSj 515322
0963, 7812	9643, 5,7740
9963,7263	9436, 0^{1956}
999 6 ; $; 6 \times 18$	9530,372
	0630,gersen
9982,5\%23	19373.2046
9962,4079	6037,4005
9963,4527	
9962, 6977	2038 , yons
$\sin .66$	

10365,6981
$1036 i+, 0075$
10360,68525
10360,3177
1035999750
10359,6286 103992843 10358,9402 ${ }^{203988,5064}$
 10357,5658 10357, 2226 100356,8797 P9956.5369 103501993 1035s,8519 10355,5096 1035 $54.46 \% 6$ $183 y 48859$ 70354.4840 10354,1425 10333,8011
 $\frac{1083,190}{10352,7782}$ $\frac{1}{2}$ xos 52,7782
10353,4376 10352,0972 (10.35 5,7569 rog $31,4 \times 68$ Tath.66.

[^7]| $\frac{\sin .24}{9609,34}$ | |
| :---: | :---: |
| + | |
| -9609, 880 | |
| 96.10 | |
| 9610,4465 | |
| 9610,7292 | 99604483 |
| | |
| 2611 | 9260, 3353 |
| 961 | |
| 9611.8580 | 9960,422 |
| $\underline{9652} \mathbf{4}$ T 396 | 9958565 |
| : 966 | 2980,4947 |
| 961 | 2960,0i20 |
| .9612 | |
| 961 3,2641 | |
| 96830,5496 | 2939, |
| 9613,8249 | 92 |
| $9614{ }^{10}$ | 2959.7676 |
| 9614,3850 | 9959.7105 |
| 9634,66.46 | |
| T 9614,9441 | 92 |
| 061 | |
| 9615,5024 | 99 |
| 2615,7852 | |
| c 96x 6,9598 | 2959,3675 |
| 2616.3382 | 9989\% 3 102 |
| 9-16, 6164 | 9959,3:88 |
| 96:6,8943 | 9959,4954 |
| 9617, ${ }^{\text {a }} 721$ | 9959, 372 |
| 061734986 | 9959 Sox |
| $09617{ }^{2} 69$ | |
| | |

	$2671,6293$	$99 \pm 5,9349$	$\frac{\operatorname{Tan.29}}{9725,6743}$	56	
	${ }^{5} 771,8468$	9945,8677	9725,9790		
	8672,0841	9945,8005	2726,2836	10273.7163	58
	9672,321.3	9945,7332	97.26, 5881	102	57
	9572,558,	9945,6658	9726.8924	10273,1075	56
	9672,7952	9945,5934	9727,1967	10272,8032	55
	9573,0318	9945,53.10	2727,5008	10272,4991	54
	967302683	9945,4635	9727,8048	10271,1951	53
	9673,5047	99.45:3960	9728,1087	10271,8913	52
	9673,7402	9945,3284	9728,4124	10271,5875	
10	9673,9769	9943,2608	9728,7160	10271,2839	
II	9674, 2128	9948,1932	9729,0196		
12	9674,	9945:1254	9729,5230	10270,	48
r_{3}	9674, 6840	9945,0577	972	10	47
14	9674,9193	9944,9899	9729,9294	10	
15	2675,1545	9944,9220	9730,2325	${ }^{2026}$	
16	9675,3895.	2944,8541			
	967.5;6	9944,7862	9730, 838.3	10269, 1	143
18	9675,8591	9944,7182	9731,1400	10268,85	42
19	9676,0937	9944,6501	9731,4435	1026	
29	9676,3289	9944,58	9731,74	102	0
21	9676,5	9944, 5139	9732,0483.	1026	39
22	8676,7963	9944,4457	9732,3506		
23	9677,0302	9244,3774	$9732,65.27$	10267,34	37
24	9677,2639	9944,3092	9732,9547	10267,0452	
25	9678,4975	9944,2408	973.3,25;66	10266,7433	35
26	9 678,7300	9944, $17^{2} 4$	973	10266,44r's	34
-	9677,964N	2944;1040	973.3.8	10866,1399	33
28	9678,1972.	9244,9356	9734,1616	40265,838	32
29.	\$678,4301	9943,9570.	19734,4630	10265,5369	32
	9678,6629		9734,76481	$\underline{10265,2356}$	$\frac{30}{M}$

	$\frac{\text { Sin.28. }}{9678,6629}$	9943,8985	$\frac{\operatorname{Tan} .28 .}{9734.7644}$	10265,2356 30
	19678,8955	9945,8298	97350650	10264,9343 $\frac{29}{}$
32	9679,1279	9943.7612	97353368	10264, 5333
33	9579,3601	9943,6925	9735,6676	10264, 332327
34	9679,5923	- 9943,6237	9735,9685	10264,031426
35	9679.81242	9943,5549	9736,2693	10263,7306
36	968d,0560	9943; 486r	9736;5699	10263,4300
	9680,2876	9943,4172	973688704	10263,1295
38	9680, 5191	9943,3482	9737, 1709	10262,8291
3	9680,7904	9943,2792	9737,4712	10262,5288
40	9680, 9816	9943,210z	973727714	12262, 2286
$\overline{41}$	9681,2125	2943,14if	9738 \%0¢14	10261.928519
42	968r, 4434	9943,0719	9738,374	1028 r,628s is
4	9681,6740	9943,0027	9738,6713	10161,328717
	9681,9045	$994^{2}, 9335$	9738,9710	10261,0289 16
45	9682,1349	99.42842	9739; ${ }^{\text {\% }} 08$	10260,7243
	9682,3651	9942,7949	9739,5702	10260,429814
47	9682,5951	9942,7255	9739,8698	10260, 3041
48	9682,8250	9942,6561	19740,1689	1025938310
49	$9683,0.547$	9942, 5866	974, 9681	10259,5318
50	9683,2843	9942, 5171	9740,76\%	
51	9683,5137	9942, 4475	974i, 066 r	20258,9358
52	9683,7429	9942,3779	974, 365	10258,6349
53	9683,9720	9942,3082	9741,663\%	10258,3362
54	- 9684,2009	9942,2385	19741,9624	1005Stij75
55	9684.4297	9942, 4688	9742, 2609	10257,4390
56	9684,6583	9942,0989	97425593	10257,4406
57	9684, 8888	9942,0291	9742,8576	TO2 57, 423
58	9685,1151	9941,9592	9743,1559	102\% 6,8441
59	9685,3432	994a, 8392	9743,4540	\{rō2 56,5400
60	9685,5itiz	99418982	27437520	402565480
				Tan.28. ${ }^{\text {M }}$

	$\frac{\operatorname{Sin}}{9685.299^{\circ}}$	994	$\left\|\frac{\text { Tan. } 29 \cdot}{9743.7519}\right\|$	10256,2480
			9744,0	
2	9686,0267	9941,6791	9744,3476	10255,6523
3	9686,2542	9941,6089		1025533547
4	9686,4816			10255,0571
5	9686,7088		9745,2403	
6	9686,			
7	9687	9941,3279	9745,8348	
8		9941,257.5		10
9		9941,1870		
	9687,	9941,1165		102
	9688,0687	991		
	96			
				$10252,08744^{6}$
-	968	9940,7634		10251
	0689,1978			$\overline{I C}$
	96		$9.748,8013$	$1025 \mathrm{I}_{1} 1986 \int_{43}$
	968		97	542
	968			$10250,6066$
	96		9749,6892	10250,3107 40
	9690;3230			102.
	9690,5476	9940,2670		1024
23	9690,7720	9940,1959		$\text { 10249,4238 } 37$
	9690,9963	9940,7247		10249, 28436
25	9691, 2204	9940,0535	9751, 669	
		9939,9822		
	9691,6682			$10248,2427 \mid 33$
	$9691,8919$	$9939,8396$	9752,0523	$\text { 10247,9476) } 32$
29	$9692, \text { II } 54$	$9939,7682$	$P 752,3472$	$10247,6527,31$
0	9692,3388	,9939,6967	9752,6420	930
				$\overline{\mathbf{M}}$

(M) $\frac{\text { Sin. } 31 .}{}$	9933,0696
$1)$	9932,9896
2. 9712,5595	9932.9136
9712:4694	'2932,8376
9712,6792	9932.7615
9712,8888	$9932: 6854$
-6. 9783,0983	$9932: 6092$
789813.3677	9932,5330
. 8 :9753.5169	993.24567
$9.9713,7260$	9952,3804
- 971399349	9932,3040
$119714 ; 1437$	9932,2375
9714:3524	9992.1511
13 9714,5609	99:32,0745
$14.9714,7693$	2931,9979
15 9714,9775	99319213
16 : 9715,1857	993, 84.46
179715.3936	99117679
:8.9715.0015	9931.6972
19.9715 .8092	9931.6143
20.9716 .0168	9931.5.374
21 9716.2242	9.931.4604
22.9716 .4315	9931,3835
	9931. 3064
$24 \quad 97168457$	9931.2293
$25.9717,0526$	9930.7522
26, 9717,2594	993 1:0750
27.9717 .4060	2930.9978
9717.6725	9930,9205
20. 9717,8788	9930,843
30, 9718;0851	2930.7688
	Tan. 58.

Tang. 31.	
8.7737	10
7790598	
$977934 \% 8$	Ta'
97796.318	10eto,36
97779.9176	$1{ }^{1} 220,0$
9780	10219,79
9780,4891	10
9780.74	
9781.06	1020
9781,3456	102
97815;6309	10
9781,9161	10218,
$97822_{2} 2013$	
9782,4863	
9782.7713	102172
9783:0568	10216.9
783	
978.3,6257,	106
2788, $9,9.103$	102
9784,	
9784,4794	10215
978.4,76,37	ab
9785.0489	1021
978.5.3.322	10.124 .6
9985,6163	10214,3836
9785.9004	102
97864843	7021.3,8is
9786,4682	1021:3,5317
9786.7520	1031.3.2479
978700357	$10_{212}^{12}, 96$
988742193	rana 2,6
	Sin.

9928, 4^{204}	279537090
9908,342	
2938,2629	
2928, 8854	
2929 204	9796,2130
2928, orsa	9
296\%,	
2977.38873	97
290777079	
2927, 6229	
27	979
903774695	929
2947; 3899	979934370
9927, 3103	978989170
99275300	9780
9997\% ricois	98000
	98
9006,9900.	
9926,9N3 ${ }^{\text {a }}$	980
9026.9.994	9801
9036.75940	96
9986,4713	280 t
9906,5913.	9809
99365411	9800
$92 \times 4 \times 3096$	92025
9926;3sez	
9926,2	
9926,120	,
994619	1980
992aporga	
Si	

$\frac{T a 7.320}{2795.7000}$	10804, 21076
9766,0709	2080gig297
9726, 5153	1ramesi648y
9796,6392	cose 5;3678
$9786_{2}=30$	102esf, 0 Ue9
-781, 1999	$\underline{1020258062}$ SS
9997,4749	- 10木t5255
979747590	- 10×1244913
-7798,0356	10861964
979,3760	Mazis;0839
	Eatirs 495
9798,8766	reser, 1233
2799,5568	Eazacy 843
979934370	10200,562
9799, 9170	10200, 2829
9780, 99	10
98008 2700 Cl	101983
98009504	10x99, 44
9800,9564	
9800, 10.14	rough, $883{ }^{\circ}$
9301;3097	1p19 ${ }^{2} 6042$
9801507320	$4{ }^{4}$
2809, 9545	1009850453
9800.23409	1029897659,37
98003yfuize	1p+g\% 4867
92025790.t	1019\%\%00\%
98035093961	10095482843
980353506	10996,64403131
9809,6496	10a\% 63703132
9803400898	
9104, 18399	$\frac{4095 ; 8220}{\operatorname{Tang} .75}\left[\frac{30}{M}\right.$

	$\frac{\operatorname{Sin} .330}{9736,1087}$	9933,5914	$\left\|\frac{T a n \cdot 33 \cdot}{982,5173}\right\|$
8	9736,3032	9923,5093	9812,7939
2	9736,4975	9923,4272	98.1
3	9736,6918	9923,3450	9113,3467
4	9736,88.59	9.923,2628	9813,6231
5	9737,0798	9923,1805	981 3 ,8993
6	9737,2737	9923;0982	9814,175
8	9737,4674	9923,0158	9814 4,4516
8	9737,6610	9922,9334	9814.7276
9	9737,8545	9922,8509	9815,0036
Io	9738,0479	9922, 7683	9815,2795
Ir	9738,241	9922,6858	981595553
12	973, 434^{2}	9922,6031	9815,83 11
13	9738,6272	9922,5204	9816,1068
14	9738,82al.	9922,4377	9816,3824
15	9739,0128	9922,3549	9816,6579
16	9739,2055	9922,27.30	9816,9334
17	9739,3980	2922,1891	9817,2088
18	9739,5904	9922,1062	981744842
19	9739,7826.	9922,0231	9817,7594
20	9739,0748	9921,9401	98,18,0346
21	9740,1668	9921,8570	9818, 3098
22	9740,3587	9921,7738	98r8,5848
23	9740,5504	9921,6906	9818,9598
${ }_{2}$	9740,742	9921,6073	9819, 347
	- $974^{0}, 9336$	9921,5240.	9819,4096
	9741, 1250	9921,4406	9819,6844
	9741,3163	9921,3572	9819,9591
	9741,5075	9921; 2737	9820,2338
29	9741,6985	992I, ${ }^{\text {gigar }}$	
30	974x, ${ }^{88} 9$	99221, 2066	

10187,4826	60
10r87;20	
6,9296	5
186:6532	
10186,3769	
10186,1006	
1018, 824	
10185.5	
85,27	
10184,9963	
10184,7204	
184	
10.184, 1683	
ror83,893.	
10183,6175	4
10183,3420	
roi83;0665	4
10182,7914	43
10482,5158	4^{2}
10182,240s	$4^{\text {T }}$
10181;965	
T0181,6902	39
tox81,4152	38
10181,1401	
10180,865	
IO: 80,590	
10180,31	34
10189,0408	33
10179,76	
10179,4916	
Iori9,2171	

	Sin.i3 3.	9921,1066.	(Tain. 33.	10179,2171	30
3.1	9742,0803	9921,0229	9821,057	10178,9426	29
	9742,2710	-9920,9393		$10178,668.2$	28
33	9742,4615	2920,8555	9821,6060	10178,3939	27
34	9742,6520	9920,7717	$9821,880.3$	10178,1197	
35	9742,8423	9920,6878	9822,1544	101	
36	9743,0325	9.920,6039			
	9743,2226	9920 ¢199	6822,7026		23
	9743,4125	9720,4359	9822,9766	10177,0233	
39	9743,6024	9910,3519	9823,2505	10176,7494	
40	9743,792x	9920,2677	9823,5243	10.176,4756	
4	9743,9817	9920,1836	9823,798I	10176,2018	9
42	9744,1712	9920,0993	9824,0718	10175,9281	18
43	9744,3606 $9.744,5498$	99.20,0151	9824,3455	10175,6545	17
44	9.144,549	9919,9307	9824,6190	10175,3809	
45	9744,7389	9919,8465	9824,8925	10175.1074	15
	9744,9279	9919,7619	9825	10174,8339	14
	9745,	9919,6774	9825,43.94	10174,5605	13
	9745,3056	9919,5929	9825,71.27	101	
	9745,4942	9919,5083	9825,9859	10174,0140	
	$\underline{9745,5828}$	9919,4236	$9^{9826,2591}$	10173	
	9745,8712	9919,3389	9826,5322	10173,4677	9
	9746,0595	991.9,2542	19826,8053	10173,194	
	9746,2477	9919,1693	9827,0783	10172,921	
54	9746,4357	9919,0845	9827,3512	$101.72,648$	
	9746,6237	9918,9996	9827,6241	$1017.3,3758$	
	9746,815	9918,9146	9827,8969	10172,7030	
	974	9918,8296	9828,1696	10171,8303	
	974741868	9918,7445	9328,4423	10171,557	
	9747,374\%	9918,6594	9828,7149	10171,2850	
	9747.5616	9918,5742	9828,9874	178	

	$\frac{\sin \cdot 34 \cdot}{9 \sin 75616}$	$9218,5744$	$\begin{gathered} T a n \cdot 34 \cdot \\ 9828,9894 \end{gathered}$	10871,0r35	60
1	974707489	9918,4884	9839,2599	10170,7400	59
2	9747.9.360	9918,4036	10829,5323	201 7044676	
3	9748, 1330	9918,3183	19829,8046	10170, 1295	54
4	9748,3099	9918,2329	5830,076\%	10r69,9230	56
+	9748,4966	9918,1474	P830,349i	10169,6508	5
6	9748, 6833	9918,0619	9830,6205	10869,3786	
7	9748,8698	9917,9764	9830,8934	10169,1065	
8	9749,0562	9917,8908		cor68,8345	52
's	9749,3425	9917,8051	9831,4374	20168,5696	\%
10	9749,4287	9917.7194	9631,7093	10568,2906	50
11	9749,6148	9917,6336	983x,9811	10168,0188	4
12	9749,8007	9917:5478	19832,2529	10167,74	
13	9749,9865	9917,4619	9832,5246	10167,4753	47
14	9750, 1723	9917,3760	9832,7963	10167,2037	46
15	9750,3579	9017,2900	9833,0678	10166,9321	4
16	9790,5493	9917,203:9	98833,3394	10166,6605	44
17	-9750,7287	9917,4788	9833,6108	1016669891	43
	9750,9140	9917,0317	9833,8828	10166,1177	$4{ }^{2}$
19	9751,0991	9916,9455	9834,1536	10165,8463	1
20	9751,2841	9916, 8 5,592	983434349	10165,5751	40
21	9751,4690	10916,7729	19834.6962	10165,5039.	39
22	9751,6538	9916,6865	19834,9672	20165,0327	8
23	9751,8385	19916,600x	9835,2383	10164,5616	37
	9752,0230	9916,5137	9835,5094	10164,4906	3
	9752,2075	9916,4278	9835,7803	10164, 2196	35
	975233918	9916,3405	9836,0513	10763,9487	34
27	975255960	9916,2539	9836,3221	10163,6778	3
88	9752,7609	9916,1678	9836,5929	101654070	32
2	975 \%ayta	9916,0805,	9836,8636	10163,1363	31
30	97533土28	9915,9937	9837, 3	- rov 6 ios6j 6	3 c
		Stm.		Tan.s.8.	M

$\frac{\mathrm{M}}{30}$	$\frac{\operatorname{Sin} .34^{\circ}}{9753,1280}$	99	Tas8. 34.	65 6	
		9915,9068			
		9915,8199	9837,675	10162,3245	
	9753,	9915,7330	9837,9459		
	'9753,86	2915,6460		10161, 7836	
	9754,0456	9915,5589	9838,4867	10161,5133	
	9754,				
	9754,4119	9915,3846	9839,0273		
38	9754,5948	9915,2973	9339		
39	9754,7777	9915,2101	9839		
40	9754,9604	991531227	9839,8377		
					19
	97		9840,3776	O159,6223	
	9755	991	9840,6475	Iot59,3524	17
	9755,0902	9914	9840,9173	10159,0826	16
	9755,8723	9914,68	984i, 1,871	10158,8128	15
	975				
	9756,23	9914,5098	9841,	-	13
	9756,4182	9914,4220	9841,9901	Io 58,0038	
	9756,5999	9914,3342	9842,2656	10157,7343	
	9756,7815	9914, ${ }^{2463}$	9842,5351	10:57 4648	
	9756,9630	9914,1584	98		
	9757,1443				
	9757,	9913	98		
		991 3,8942		10156,3875	
	9757	9913,8061	9843,	10156,1183	
	9757,8687	9913,7179	9844, 5508		
	9758,0495	9913,6296	9844,419	10155,5801	
	9758,2302	991 3,541 3		tol	
	9758,4'08	9913,4529.	1844,9579	10155,0421	
	9758,5913	9913,36451	9845,2267	32	
		S		2ancs	

	$\overline{S n}$	
	9758,5913	9913.3645
	9758,7716	9913,2760
2	9758,9519	9913,1875
	9759,1320;	9913,0989
	9759,3120	9913,0102
5	9759,49	9912,9215
6	9759,6718	9912, 3327
	9759,8515	9912,7439
8	9760.0310	9912,6551
9	9760,2105	9912
	9700,3899	9912,477:2
	9760,5691	9912,3881
	9760,7.483	9912,2990
	9760,9273	99
14	9761.1062	991
15	9761. 2850	991
16	9761,4637	9911,9421
17	9761,642	9911,8528
$: 8$	9761,8208	9911,7633
19	9761,9992'	9911,6739
20	9762,1774	9911,5843
	9762,35561	9911,4948
	9762,5336	9911,4051
	9762,-116	9911,3154
	9762.8894	9911,225.4
25	9763.0671	9911, 1359
	9763,2447	9911,0460
	9763.42-22	9910,9561
	9753,5095:	9910,8661
	9763.7768	9910.7761
30	9763,9540	9910,6860

$\begin{aligned} & x \\ & 5 \\ & 0 \\ & + \\ & + \end{aligned}$	
	为

$\left.\frac{\text { Sin. } 36 .}{9774,3876} \right\rvert\,$
1
9
9
9 9774,8.993 3 9775,0696 9775,2.399 9775,4101 9775,5801 9775,7501 9775,9199 9776,0896 9776,2593 9776,4288 9776,5983 9776,7676 2776,9368 9777,1059 9777,2750 9777,4439 9777,6127 9777,7814 9777,9500

$990,1787$	$\left\lvert\, \frac{\text { Tan. } 36 .}{9869,2088}\right.$
9905,0852	9869,4730
9904,9916	19869,7372
9904,8980	9870,0013
9904,8043	9870,265.3
9904,7106	9870,5293
9904,6168	9870,7932
9904,5229	9871,0572
9904,4290	9871,3210
9904,3351	9871,5848
9904,2410	9871,8486
$9904,1{ }^{1} 470$	9872,1123
9904,0528	9872,3759
9903,9586	9872, 6396
9903,8644	9872,9032
9903,7701	9873,1667
9933,6757	9873,4302
9903,5813	9873,6937
9903,4868	2873,9571
9903,3923	2874.22
9903,2977	9874,4837
9903,2030	9874,7470
9903,1083	208750xaz
9903,0135	9875,2734
9902,9187	9875,5365
9902, 8238	9875,7990
990207289	9876,062
9902,6339	2876,3256
9903,5389	9876,5880
9902.4437	9876,8515
9902, 3486	9877,1

$990,1787$	$\left\lvert\, \frac{\text { Tan. } 36 .}{9869,2088}\right.$
9905,0852	9869,4730
9904,9916	19869,7372
9904,8980	9870,0013
9904,8043	9870,265.3
9904,7106	9870,5293
9904,6168	9870,7932
9904,5229	9871,0572
9904,4290	9871,3210
9904,3351	9871,5848
9904,2410	9871,8486
$9904,1{ }^{1} 470$	9872,1123
9904,0528	9872,3759
9903,9586	9872, 6396
9903,8644	9872,9032
9903,7701	9873,1667
9933,6757	9873,4302
9903,5813	9873,6937
9903,4868	2873,9571
9903,3923	2874.22
9903,2977	9874,4837
9903,2030	9874,7470
9903,1083	208750xaz
9903,0135	9875,2734
9902,9187	9875,5365
9902, 8238	9875,7990
990207289	9876,062
9902,6339	2876,3256
9903,5389	9876,5880
9902.4437	9876,8515
9 $9 \times 2 \times 2486$	9877,1

$\left|\frac{\text { Tan. } 3 \text { 6. }}{9869,2088}\right|$ 9869,7372 9870,0013 9870,265:3 9870,5293 9871.3210 9871,5848 9871,8486 9872,1123 9872;3759 987.,63.96 9872,9032 | 9873,1667 |
| :--- |
| 9873,4302 | 9873,6937 2873,957 $\times 874,2204$ $9874 ; 4837$ 9874,7470 989750xat 9875,2734 9875,5365 9875.7996 9876,0626 -2876,3256 |9876,8515 9877,1144

$\left\|\begin{array}{l} T a n \cdot 37- \\ 9884,9804 \end{array}\right\|$	[0115,0195 30
9885,2420	10114,7579 29
98853503.5	10114,4964 2.8
9885,7650	toir 4,2349 27
9886,026.	10113,973526
9886, 2878	IOII 3,712125
9886,5492	$10113 ; 4508$
	IOI3,1894 23
9887,0717	JOII2,9282 22
9887,3330	IOII2,6669, 21
9887,5942	10112,4057
9887,8553	10152,1446 I2
9888,11644	10111,883518
-9888,3775	10111,62417
9888,63.85	10111,3614 16
9888,8995	10111,1004 15
9889,1605	$10110,83.94$
9889,4214	10100578513
98896823	IOT 10,3176
9889,9431	10110,0568
2890,2939	10109,7960
9890,4647.	10109.535^{2} ?
19890,7254	10r09,2745 8
'9890,9861	10109,0138
9891,2467.	10108,7532
19891,5073	10108,4926
9891,7679	10108,2320
9892,0284	10107,9715 3
19892,288?	$10107,7110{ }^{2}$
9892,5494	10107,4505
9892, 80.98	10107,1901
. $\because:$	TAN.S2. M

	9789,3	9896,5321	989		
		9896;334			58
3	9789;826	9896,2357			57
4	9789,988	9896,1368			56
5					5
6					
7		9895,8398	98		
8	9790	9895,7406			
9	9790	9895,6414	9895,1519		
	978		9895,4119		5
	97	989		10	48
13		9895,2440			47
	9791,5962	9895,1445	9896		
15	9791	.9895,0449	9896	101	4
		989			42
19	9792				41
20	9792	9894,5462	9898,	1010	40
21					
		9894,3463	9898,529	1010	38
23			9898		37
24	97	9894,1462	9899		36
25	979	9894,0460	9899,3082	101	35
26					34
	978	9893	9899,82	10100	33
	9793,8317	9893	9900,0865		32
29	9793,990	9893	9900,3458		31
30	9794,				$3{ }^{\circ}$
		sin. I I.		Tam.	

o	$9789,8718$	98903026	$\left\lvert\, \frac{\text { Tan. } 39}{9908,3692}\right.$	10091,630760
2	9799,0277	9890.4002	9908,6275	10091,3724
	9799,1836	9890.2978	9908,8857	10091,1142 10090,860
3	9799,3 394	9890, 1984	9909.1440 9009,4022	10090;5978
5	9799,4950 9799,6506	9890,0929 9889,9903	99990,4022 $9909,660.3$	10090,5978 10090,3396
6	9799,6506	$\frac{9889,9903}{9889,8817}$	9909,9184	10990,08i5
	9799,8061	9889,78.50	9910,1765	10089
8	97900, 1168	9889,6822	9910,4346	10089,5653
9	9800,2721	9889,5794	9910,6927	10089.3073
10	9800,4272	9889,4765	9910,9507	10089,0493
11	9800, 5822	9889,3.736	99911,2086	10
12	9800,7372	9889,2706	\|9911,4666	10
13	9800,8920	9889.1675	9911.7245	
	9801,9468	9889,0644	9911,9824	100
15	9801,2015	9888,9612	9912, ${ }^{292}$	10087,759745
16	9801,3560	9888,8979	9912,4981	
$\begin{array}{\|c\|} 17 \\ 18 \end{array}$	9801,5105	9888,7546	9912,7558	x0087,244143 10086,986
	9801,6649	9888,6513	9913,0136 9013,2714	$10086,9863] 42$ $10086,7286 / 41$
19	9801,8192	9888,5478.	9913,2714 9913,5291	$\begin{aligned} & 10086,7286 \mid 41 \\ & 10086,47094 \end{aligned}$
	9801, 9734	$\underline{9888,4443}$	9913,5291	$1008 \sigma, 2132 \sqrt{39}$
21	9802,1275 9802.2816	$\begin{aligned} & 9888,3408 \\ & 9888,2372 \end{aligned}$	$\left[\left.\begin{array}{l} 9913,7867 \\ 9914,0444 \end{array} \right\rvert\,\right.$	$\begin{aligned} & 10086,2 \\ & 10085,9 \end{aligned}$
23	9802:2816	$9888,2372$ $9888,1335$	$\begin{aligned} & 9914,0444 \\ & 9914 ; 3020 \end{aligned}$	$10085,6980{ }^{1}$
	9802.4355		$\begin{aligned} & 914,5020 \\ & 9914,5596 \end{aligned}$	10085,440436
24	9802.5893	9888,0297 9887,9259	$\begin{aligned} & 99 \times 4,5590 \\ & 99 \mathrm{k}, 8171 \end{aligned}$	10085
	9802.743	$\frac{987,9259}{9887,82 \mathrm{I}}$	9915,0746	1
27	9803,0503	9887,7182	9915,332	10084,6678 /3.3
	9803,2038	9887, ${ }^{1} \mathbf{4}^{2}$	9915,5896	10084,4103 32
29.	9803,3572	9887,510	9915,8470	10084, 152931
	9803,5105	9887,4060	9916,1044	10083,8955
		Sin. 4.	Tang.so	

	$\frac{\operatorname{Sin} .40}{9808,0675}$	9884,2539	Ta8,40.	10076,18
	9808,2180		9924,0700	
	9808,3684	9884,0418	9224,3266	
	9808,518	. 9883.9356	9924,583	
4	9808,6690	9883,3294	9924,8395	
5	9808,8191	9883,7231	9.925.0960	10
6	9808,9	9883,6168	992	
7	9809.1192	9883,5104	9925.6088	
8	9809,2691	9883,4039	9925,8691	
	9809,4189	9883,2973	9926.1285	
10	9809,5686	9883,1907	9986.3778	10
1	9809	988	9926,6341	
	9809	988	9926,8903	10073,1096
	9810,0172	9882,3706	9927,1466	10
	9810,1665	9882,7637	9927,4028	10012,5971
15	9810,	9882,6568	9927.6590	100
16	981	9882,5498	9927,9152	
	9810.6141	9882,4428	9928,1743	
18	2810	9882.3357	9928	
19	9810,	9882,2285	9928,683	
	9811,06a0	9882,1213	9928	10071,0604
21			992	
	981	98	9929,4586	10070,5483
23	9811.5	9881,7992	9929,7076	10970, 2923
	981	2881,6917	9929.9636	
	981	9881,542	9930,2195	4006
	9811.9	.9881,4766		100
	9812,1002	9881.3689		10069,368
		9881.2611	9930,987	10069,0127
	9812.	9881,1533	9931,2	10068,7569
	9812,	$8881,0455$	$993!$	$\frac{10068,5011}{\text { Tang:49 }}$

\div	$\frac{\sin .41 \cdot}{9816,9929}$	987717	9939,163	10060,8369	60
1	9817,088		99		
2.	9817,233	9877,560:	9939,673		
3.	9817,378	9877.4501	9939,928	10060,	
4	9817,5235	9877,3400	9940,1834	10059,8165	
4	9817,6684	9877,2299	9940,4385	10059,5614	
6	9817,8133	9877,1198			
7	9817,9581	9877,0095			
8	9818,1028	9876,8992	9941,2035	10058,7964	
9	9818	9876,7888	9941,4585		
ro	9818,3919	9876,6784	9941,7134	100	
11	9818,5363	9876,5679.	,9942,968	10058,0	
12	9818,6807	9876,4574:	9942, 2233	10057,7766	
13	9818,8249	9876,3467	99,42,4782	10	
14	9818,9691	9876,2360	9942,7331	10057	
15	9819,1132	9876,1253	9942,9879	10057	45
16	8819	9876,0145		10056,7572	4
	9819	9875,9036	9943,4976	10056,5024	43
18	9819	9875,7926	9943,7523		4^{2}
19	9819,6888.	9875,6816	2944,0071		1
20	9819,83244	9875,5705	9944.2619	1005	
$2 \overline{21}$	9819		9945.5168		
22	9820,	9875,3481	9,44,7713	1005	8
	9830	9875,2369	9945,0260	100:54, 7739	37
	9820	9875,1255	9945,2807		3 6
	$\underline{9830,5495}$	9875,0141.	99945,5354	$\underline{1005}$	5
	98	98	9945	100	34
	9	9874,791:	9946,0446	10053,9553	
	9820,9788	9874,6795	9946,2992	10053,7007	32
	9821,1217	9874,5678	9246×5538	r0053,446i	3 B
30	9821,2645		99.46,80	\%	

$\frac{M}{0}$	$\frac{\operatorname{Sin} \cdot 42}{9825,5100}$	9871,0734
	9825,6511	
1	. 9825.37913	
3	9825:9.314	9870,7319
4	9826,0714	
	9836, 2114	9870,5038
6	9326,	
7	9826,4910	9870, 755
8	9826,63	9870,1613
9	9826,77	9870,0470
0	9826,9098	9869,9325
11	9827	9869,8181
12	9827,1886	9869,7036
13	9827,3279	9869,5890
14	9827,4671	9869,4744
15	9827,6068	9869,3597
16	9827,7483	
	9827,8842	9869,1300
18	9828,0231	9869,0152
19	9828,1619	9868,9001
20	9828,3006	9868,785
21	9828,4392	
2.2	9828,5778	9868,5548
23	9828,7163	9868,4395
	9828,8547	
25	9828,9930	9868,2088
26	9829,1312	986
	9829,2693	9867,9778
	.8829,4074	9867,8622
	9829,5454	9867,7466
30	9829,6833	986

9954,4374	
9954,6914	
9954,9455	
9,955,1995	10044;8004
9955	
9955	
9955,9	
9956	
9956,4693	10043; 530
9956,7233	
9956,9772	
9957,2313	
99	
95	
9957,992	
9958,2465	
99,58,5003	
9958,754	
9959,007	
9959,2617	
9959,5155	100
9959,	
9960,0230	
9960,2767	
9960,5304	10039,4695
9960,7841	10039,2158
9961,0378	
9961,2915	
19961,5451	
19961,7988	10038,201
9962,0524	

	$\frac{\sin , 43}{9833,7833}$	9864,1274		
	9833.9187			100
	${ }^{988} 8.0$	9863;897	S9\%o	100
	${ }_{9834,3246}$	9863,6556		
	9834,45971	9863,5375	997	${ }^{10029,0,778}$
	9834;5947	8883,4tita	9737	${ }^{100288,8246}$; 54
8		, 8863,38		
	9834,9	9863,064	97\%	
$1{ }^{2}$	9835,134	9882,9459	2972, 888	100
	9835,568	98858, 8	-3y\%	Troati, 588
		\% 888,5	997\%	
	9835,672	9862,47	2973,2008	10026
	2833,8065	2862,3526	2973,453	10026
	${ }^{983} 3$ ¢ 9^{4908}			
${ }_{18} 8$	9836,200	${ }_{986} 8$		
	9836,34	9865	9974	
	9836,477	988, 95	9974i, 72	10025,2804
	9836,670,		974	
	${ }_{9836,8}$			
	9837	9864,	9975	
	9837, $\mathrm{r}_{4} 46$	986T, 6	9975,984	10044.0151
	${ }_{8}^{88}$	9867,0	9976,	10023
	9837,41			
			9976	
130	9837.8822	9860,5022	9977, 2500	10022,7500
		S		Tan.46.1

Lectori praCtice Matbefeos furdiofo,

 SCANOX nofter wfum habet, in Triangulorum Tphericorumfolutione, cundem quem tabula Sinsium rectorum: \& Tangent inm ahatijs edita, fed praxin paulo fociliorem. Nam corum nusifichicationem per additióvem,\&rdivifionem per fubtractionem, \& extractionetn radicis quadraix per bipartitionem evitamus.

Vt fi datis tribus lateribus queratur, angulus, erit-

- Vt rectangulum fub Sinibw cruirun, ad quadratum Radi:
Ita reetangalum fub Sinibus femifummo trium laterum, \& differentix inter hanc femifamman of bafin, ad quadratum Coisinue femiangudi quazfiti.

Et in triangulo primx paginx $\boldsymbol{P} \mathcal{Z} S_{\text {s }}$ (referente Polum, Zenith, \& Solem) datis lateribus, $P S$ Gr. $70, \& Z P$ Gr. 38
 eft P S.fumma laterum erit Gr. 148 M. 30 , fumifanana Gr. 74 M. I 5, differentia inter femifummam \& bafin Gr. 4. M. i 5 .

Hic nos proquadrato Radj ponimus 20000,0000 Radj duplum, cui addimus 9983,3805 Sinsm $G r .74$. M. i 5 , 88698679 Sinum Gr.4, CM. 1 5, fient 38853,2484 . Deinde prorectangulo divifore addentes 9794,1495 Simum G r. 38 M. $30 . \& 9808,0675$ Sinuns Gr: 40 , tacimus 19602, 2170 , \& auferinaus e 38853 , 2484, ita reftant 192 sr 0314 . Horum femiffis eft 9625,5157 Sinus femianguli externi Gr. $24, M, 58$ $S_{1}{ }_{2} 4 t \&$ Co-jinne fimianguli interni $G r: 65, M, 1, S, 36,82$ - protinde totus angalus quafitus eft $G r . I 30, M_{0}, 3, S, 12$.

Quod

Quod fi guis pro Sinibus auferendis addat eorum complenenta ad Radium, non alia indigebit fubtractione, Vc paterepoteft ex collatione vtriufque praxeos.

Eadem ratione, fed maiari compendio, folvuntur catera qux quari folent in triangulis fphericis, fine ope Secantimm aut Sinusmm verforwm, vt plaribus non fit opus aut praceptis aut exemplis.

Idem fr defideres in triangulis rectilineis, adiunge noftris, Amici \& Collegre Howrici Briggy Logarithmos. Nam eo nitimur fundamento, eodem ytimur operandi modo.

Vale, \& fi hrec cibi gratia fuerint, plura à nobis in hoc genere expecta.

FINIS.

The firft thoufand Logarithmes

 now againe fet forth by the Autbour Henrie Briggs. profefforet Geometric in the:Vniverfitie of Oxford, whoundertooke this workeat the entreatie, and with the approbation of the firf In. venter of Logarichmes, worthy of all honor, Lobw Xepeir Baron of Merchifton.THe Reader hath here a flort view of thole 30000. Logarithmes, whichare now come forth in Latin, and hereafte r in Englifh, which will affoord us,
the Quinreffence of the Golden rule.
The valuation of Annaitires, a nd the folution of all ordinary dificult quettions of that kind.

The quantitie of any plaine Triangle, whofe fides are given, together with the altitude thereof :the Diameters of the Circles infribed and circumfcribed; and the quantitie of any of the Angles.

The Diameter being givé, the circumference $\&$ Area of a Circle,and the Superficies and Soliditic of a Globe.

The quantitie of any round Caske.
And fo neareas may be, the fquaring of a Circle; the cubing of a Globe, thedoubling or tribling of a Cube
And in generall, The enlarging or diminiffring of any plaine or folid figure, keeping the fame forme; or the transforming it in any proportion affigned.

The alteration of the fides of any given plaine Triangle, keeping the fame Area, and the fame Petineter.

The defrription of a Peripherie, every point whereof fhall frô the three angles of any give Triangle, keep the diftances according to any poffible proportiós affigned.

Having two fides of a right angled Triangle given, to find the third: and generally all that may bece found in all right lined Triangles whatfoever. In tennij ced wou tenvis fructufve laborve.

NTM.	Logakisibm.	Dififer		Log	
1201	2004, 32737	427	$\left\lvert\, \begin{aligned} & 134 \\ & 134 \\ & \\ & \end{aligned}\right.$	2127 , 20	322897
(102	2008,600				
-	${ }_{2}^{2017,7}$	415596			
			${ }^{138}$		
	2025,30887		139	${ }^{2143,0}$	
108	2029,			2146, 128	
(108	${ }_{2033}^{203,}$				
109	2037,42950		4		
III	2045,32298	${ }_{389504}$			
	2049,2882	382		2164	
	2056			2167	
12	206	376015	$1{ }^{148}$		
$\left.\begin{array}{\|c\|} 126 \\ 1 i t \end{array} \right\rvert\,$	2064,45799 3068,18586	377889	249		
	2071,88200	${ }^{366495}$	151	2178,97	
119	2075, 2074969	363429	[52		
121	2082,78537	- 360412	5	2187 ,	
	2086,3	3545	5	2190 ,	
(123	2099,90	351658	${ }^{136}$	2193	
${ }_{225}$	2096,2i90		${ }^{58}$	21988,	
12	2100,370	${ }^{34}$	159	2201,3	2722
	${ }_{\text {2107, }}^{21007209}$	3406		22042	
	(210, 2	3394	${ }^{168}$	5226	
23	2113,94335	335364	163	2212	
23	2117,27430	${ }^{330263}$	${ }^{184}$		264009
-	2120 212	${ }^{32777}$	16	$\frac{2278}{227}$	
434	2127, 04880	-323369	189		

L
2
2
2
2
2
2
2
2
2
2
2

Logaxitbm.
3480,00694 2481,44263 2482,87358 2484,29984 2485,72 143 2487,13838 2488,55072 2489,95848 2491,36169 2492,76039 2494,15459 2495,54434 2496,92965 2498,31055 249.9,68708 2591,05926 2502,42712 2503,79068 2505,14998 2506,50503 2507,85587 2509,20252 2519,54501 2514,88336
2513,21760
2514,54775 2515,87384 2517,19590 2518,51.994 2519,82799 2521,13808 2522,44423 2523,74647

:Lo
25
25
25
25
25
25
25

$$
2534,02611
$$

$$
2535,29412
$$

$$
2536,55844
$$

$$
2537,81910
$$

$$
2539,07610
$$

$$
\begin{aligned}
& 25 \\
& 25 \\
& 25
\end{aligned}
$$

$$
2540,32947
$$

$$
2541,57924
$$

$$
2542,82543
$$

$$
2544,06804
$$

35
352
353

$$
2545,30712
$$

353
354

$\frac{355}{356}$
3
3

36
36
36
36
36
36
336
36 129834

1
12
12
12
12
12
12
12
12
12 $\star 29834$ 129447 129062 128680 128300 127922
127546
127173
126801
126432
126066
125700
125337
124977
124619
124261
123908
123554
$\$ 23205$
122855
$\$ 22509$
222165
121822
121481
121142
120805
720470
-120137
119806
-119475
119148
11882
118497
11817^{6}

	L_{0}		N芴,	$\underline{L o g}$	
	2564,666		40	2603	
	8. 2565,84788	117895			
	${ }_{\text {2568,20172 }}$	117535	404	260	
	259		405		
	2570,54294		406	2608,5	
			49		
	2572,87160				
376		115557	410	$\xrightarrow{26112,723} \begin{aligned} & \text { 212,7838 }\end{aligned}$	
377	2575,3	${ }_{115045}$	4ris	$26^{213,84182}$	
	${ }^{25778,639}$	1147	412		
380	25579,78360		14		
381	2580,92498 258	118838	15		
	2288,06	11354			
- ${ }^{383}$		${ }_{112}^{12}$	${ }_{1} 48$	${ }_{262} 2$	
$8{ }^{8}$	2589346073	1	419		
386	2586,587	11236	420	$\frac{2523,249}{2632}$	
387	2587,71	1220	${ }^{422}$	2624,2822	
-380	25889,94960 203	111887 11150 105	退 42		
	2591,06463		${ }^{224}$		103397
391	2592,176		4	$\frac{2628}{262}$	
	2594,3	${ }^{1} 110368$	42		
394	2593,49	110088	420		
	2596,59710	109809	${ }^{422}$		
	2597,6951				
	${ }^{2598}$		432		${ }^{\text {roob48 }}$
			43	636	
	2602,0599	108438	(434)	2637,48973	99953

	Logarichm. 2699,8	Differ.	$\underline{N u}$	$\frac{\text { Logarishns }}{2727,54126}$	Differ
	2700,70372		535	2728,35378	
	:2701,56799	86255	536	2729,16	
504	2702×43054	86084	5	2729,974	
505	2703,29138	859	538	2730,78228	
	2704,15052	85744	539	2731,58877	80499
	2705,00796	85575	540	2732,39376	
	2705,86371	85407	$54{ }^{1}$	2733,19727	802
509	2706,71778	85240	540	2733,99929	80054
	2707.57018	85072	543	2734,79983	79907
515	2708;4209	84906	544	2735,49890	79760
	2709,26996	8474 i	545	2736,3969	79614
3	2710,15737	84575	546	2737,19264	79469
514	2710,96312	$\therefore 844^{1 t^{\text {t }}}$	548	2737,98733	79323
515	2711,80723	84247		2738,7805	7917
516	2712,64970	84084	549	2739,57234	79035
	2713,49	83922	$5{ }^{56}$	2740, 36269	7889 t
518	2714.32976	-83766	551	2741,15160	78748
519	2715,16736	83598	¢ 52	2741:93908	78605
520	2716,00334		55	2742,72513	
521	2716.8377^{2}	83278	554	2743,50976	78.322
	2717,67090	83119	5	2744,2929	78181
523	2718,50169	82960	556	2745,07479	7804
524	2719,33129	828	557	2745,85520	77900
525	2720,15930	826	558	2746,63420	77761
,	2920,98.57	"82.488'	598	2747,41187	776
525	2721,3106	:82,330	$9{ }^{9}$		774^{83}
528	2722,63392	-8275	\}61	2748;95286	77346
529	2723,45567	82020	56	2749,73632	77
530	27,24,7587	81865		750.508	77.07
531	272 5,09452	8471		2730484	$7{ }^{\text {aga }}$
532	2725,91163	84558	56	-2753,04848	
533	2726,72721	81405	566	2752,81643	
53	2727.54126	81252	567	2753,58306	76528

NT		$\begin{aligned} & \text { Differi } \\ & 76528 \end{aligned}$	$\left\lvert\, \frac{2205}{601}\right.$	$\frac{\text { Logarithmi }}{2778,8747}$	Differ
G	2754, 4.344	76393	602	2779;59640	72082
569	2755,11227	76259	603	2780,31731	71963
$\underline{i 70}$	2755,87436	76125	604	2781303694	71843
57.	2756,63611	75992	. 60	2788,75537	71725
$!572$	2757,39603	75859	, 60.	2782,47262	71607
57.3	2758.15462	75727	607	2783,18869,	71480
574	2758,91189	75595	608	2783,90358	71371
575	2759,66784	754.34	609	- 2784 [61729	71255
576	2760, 4^{2248}	. 75333	610	$2785.3298+$	71137
577	2761,17.781	75203	611	2786,04121	71021
57.8	2761,92784	75072	$6{ }^{6} 2$	2786,75142	70905
579	2762,67856	. 74943	613	2787,46047	:70790
580	2763,42799	.74814	61.	:2788, 6837	70675:
81	2764,17613	74685	615	2788,87512	70559
	2764,92298	74557	616	2789,58,74	70445
	2765,66855	74430	617	2790,28516	70332
584	2766,4r285	74302	618	2790,98548	70217
58	2767,15.587	74175	619	2791,69065	70104
586	2767,897,62	74348	620	2792, 39169	69991
58	2768,63810	73923	621	2793,09160	69878
	-2769,37733	73796	62	2793,79038	69767
589	2770,11529	73672	62	2794,48805	69654
590	2770,85201	73547		2795,18459	69543
591	2771,587.48	73423		2795,88022	69431
59	2772,34171	73298	, 6.36	2725,57433	693.21
593	2773,05469	73175	627	2791,2675	69210
159	2773,78644	73053	, 628	2797 29.596	69101
59	2774,51697	7292	629	2798,65065	689.90
59	2775,24626	72807	630	2797,34055	68881
597	2775,97433	72685	631	2800,02936	68772
598	2776,70118	72564	632	2800, 71708	68663
1590	2777,42682	72443	633	2801,40371	68555
600	2778,15125	7232	634	2802,089261	68447

220	.	Differ	$N \sim$	Logari	-
634	-2802,08926	68447	$\overline{667}$	2824,12583	65063
635	2802,77373	68339	668	2824,77646	64966
636	2803,45712	68231	669	2825,42612	64868
637	2804,13943	68125	670	2826,07480	64772
638	2804,82068	68018	67 x	2825,72252	64675
639	2809,50086	67918	672	2827,36927	
640	2806;17997	67806	673	2828,01506	
641	2806,85803	67700	674	2828,659,0	64387
642	2807,53503	67594	675	2829,30377	64294
	2808,21097	67490	676	12829,94670	64197
644	2808,88;87	${ }^{6} 6784$	677	2830,58867	64 raz
	2809,55971	6728 r	678	2831,22969	64008
646	2810,23252	67176	679	2831,86977	63914
647 648	2810,90428		680	2832,50891	63820
649	2811,57501	66	681	2833,14711	63726
650	2812,9133	66860	682	2833,78437	$6_{3} 633$
651	2813,58099	66661	684	2034,42070 2835,05610	63540 63447
652.	281 $4,2,4760$	66598	68 ;	2835,69057	
653	2814,91318	66457	686	2836,32412	63352
654	2815,57775	66355	687	2836,95674	63170
$\frac{655}{656}$	2816, 24130	66254	688	2837,58844	63078 .
696	2816,90384	66153	689,	1838, 21922	62987
657	2817,56337	66051	690	2838,84909	62896
658 699	2818,22589 $2818,8854 \mathrm{~T}$	65952	695	28839,47805	$6_{680}{ }^{4}$
659 660	2818,8854 2819,54394	65853	692	2840,10609	62714
661		65752	693	2840,73323	${ }^{6} 2624$
662	2820,20146 2820,85799	65653 65551	694	2841,35947	62533
663	282 F , 1353	65554 65455	69	2341,98480	62444
664	2822,16808	65357	69	2842,60	62354 62654
665	2822,82165	65258	698	284	
666	2823,47423	65160	669	2844,47718	62086
667	2824,125831	65063	700	2845,90804	61998

N	$\begin{gathered} \text { Logarithmy } \\ 2845,71802 \end{gathered}$	$\frac{\text { Differ. }}{\text { 6igo9 }}$	$\left\|\frac{N \tilde{x}}{734}\right\|$	$\frac{\text { Log arithms }}{2865,69606}$	$\begin{aligned} & \text { Differ: } \\ & 59 \$ 28 \end{aligned}$
	2846,33711	61822	735	2866,28734	
703	2846,95533	61733	736	2866,87781	58968
704	2847,57266	616.46	737	2867,46749-	58887
705	-2848,18912		738	2858,05636	58808
	2848,80470	61471	739	2868,64447	58728
	$2849,4^{19} 94^{4}$	613.85	77_{4}	2869,23172	
708	2850,03320	6129.8,	74.	2869,81821	58570
70	2850,64624	61211	742	2870.40391	¢8490
710	2851,25835	61125	743	2870,9888r	58413
71	285.4,86,60	61039	744	2871.577194	58333
712	2852,47999	609.54.	74	2872;15627	58255
$7{ }^{13}$	2853,08953	60868	74	2872,73883	58177
	2853,69821	60783	747	2871,32060	581
715	2854,30604	70698	748	2873,90160	
	2854,91302	60614.	749	2874,4818:2	57944
717	2855rsigi6	60528	750		57808
718	285612446	60445	7.51	2875,63994	57790
719	2856,7 2889	60361	75	2876,21784	57714
720	2857,33250	60276	753	2876,79498	5763.7
721	2857,93526	60194	754	2877.37135	57560
722	2858.53720	60110	755.	2877,94695	57485
723	2859,13830	60027	756	2878,52180	57408
$7_{72}{ }^{2}$	2859,73857	59944.	757	2879:09588	57333
725	2860,33.801	59861:	75	- 3879.6692 .1	57257
26	2860,93662	59719	759	${ }^{889} 9.424178$	57181
27	2861,5344I	59697	76	2880, 81.359	57107
728	2862,13138	59615	764	2881,38466	57031
729	2862,72753	59533.	762	2881,95497	56957
$73{ }^{\circ}$	2863,32286	59453.	763	- 2882 2, s24454	56882
73	2863,91738	59370	764	$2883,093,36$ 2883,66144	56808
733	2864,51498	59289	765	2883,66144	
733	2869,10397	5.9209	766	2884,22877	
734	1. 9865.99606	5912.8.	767	2884,79536	5658

				Diffirl
767	$2884,7953656586$.		2903,63252	
768	888,36122 G6tiz!		200473	
769	288599634 \% 5439.			
770	2886,49073 , 66365		2	5983
1	2387,05438 56292	805	290	
772	7887,61730 प6619	8106		
	288817949,056147			\%
	$2886,54096: 56074$	80	2902	6
775	$2889,30170 \cdot 56002$	809	290794.85	50.
6	2889,86172	810	29	
777	2890,42102. 55358		12	\%
77.8	-2890,97960 55786	81	2906,5 60	*
779	2891,53746 55714	813	2910,09055	53388
789	$2892,09460 \quad 55643$		2910,62440	53321
781	2892,65103, 55572	815	291	53255
	-2893,20675, 55501	81	2914,69016	53190
783	$2893,76176055430$.	817	2912,22206	53124
784	299433160655360	818	2912,75330	53060
785	$2894,86966 \cdot 55 \overline{289}$	819	2913,2839	52995
786	289542255	820.	29138128	-5293i
	2895997473.55149	S.27	29	52866
	$2896,52622 \times 55078$		2914,87182	52802
78	289797700 55009		2915,39934	
7.90	2897,6270954939		291592721	
	2898, 17648 8 54870		29	
	2898,76518, 54801		2916,98005	$54,546$
3	2899,27319.54731		2977,50551	52483
	2890,82050 54663		2918,03034	- $524!9$
795	2900, 36713, 54594		2918,55453	$=52386$
	2900,91307, 54525		2919,07809	- 5483
79	2901,45832 54487		2919,60102	: 52231
798	2902,00289 543891	8	2980, 12333	52167
799	$2902,54678,54321$		2920,64500,	52105
18001	2903,089991.542531	83	292136605	52043

FLNIS

Digitized by GOOg le
i
Digitized by GOOgle

$$
\begin{aligned}
& Q A 3: \\
& 68 \\
& 1636
\end{aligned}
$$

(

[^0]: LLetBDbean anke of the horizon reprefenting

[^1]: Dd
 CHAP.

[^2]: ant

[^3]: meciaitins. For

[^4]: Bbb 2
 tor,

[^5]: cidian, the Sunne wilt hame no altitude ;at $80{ }^{\circ} \mathrm{g}_{0}$. she wleituch

[^6]: 2 As the cofine of PR
 340730 9937,934

[^7]:

