Digitized by the Internet Archive in 2012 with funding from Gordon Bell

THE
 CONSTRUCTION
 AND
 PRINCIPAL USES
 OF

 Mathematical Inftruments.

 Mathematical Inftruments.}

Tranflated from the French of
M. B I O N,

Chief Inftrument-Maker to the French King.
To which are Added,
The Conferuction and Ufes of fuch Instruments as are omitted by $M . B I O N$; particularly of thofe invented or improved by the English.

By EDMUND STONE.

The whole Illuftrated with Twenty-fix Folio Copper-Plates, containing the Figures, σ_{c}. of the feveral Instruments.

[^0]

To his GRACE,于 0 H N Duke of Argyll and Greenmich, \&re. Lord Steward of his Majenty's Houfhold. My Lord,
 HE Subject of the following Treatife feems of Importance enough to claim Your Grace's Patronage ; and of Ufe enough to deferve it. It made its firft Appearance under that of his Highnefs the Duke of Orleans: and, to tender its fecond equally Magnificent, craves now to be introduced under that of Your Grace. Indeed, as the firtt Defign of its appearing in Englifh was laid in Your Grace's Family; and as it was carried on and finifhed in the fame, it feems to have fome Title to Your Grace's Countenance: It naturally feeks Protection where it found its Birth, and lays claim to the Privileges of a Native of your Family, as well as thofe of a Domeftick. What I have faid of my Book, holds almoft equally good of my felf. I have been, the greateft part of my Life, an humble Retainer to Your Grace. In Your Family it was, I firf caught an Affection for Mathematicks; and it was under Your Countenance, that I took occafion to Cultivate them. Your Grace therefore has a kind of Property in all I do of this kind, and it would be an Injuftice to lay it at any other Feet.

ANOTHER Perfon wou'd have here taken Occafion to expatiate on Your Grace's Character: Dedicators, Your Grace very well knows, are great Dealers in that Way; and look on it as one of the Privileges of their Place, to praife their Patrons withous Offence.

Offence. Accordingly, Your Grace's Lineage woud have been traced up to the earlieft Times, and the Virtues of Your Noble Anceftors drawn out to View. Your Grace's perfonal Meri, thining and confpicuous as it is, wou'd have been fet of in its full Light, and Your Heroick and Virtuous Atchievements painted in all their Colours. Flanders, Bavaria, Spain, and Scotiand, word have been call'd in, as Witneffes of Your Glory; of Your Ptudence, as a General; and Your Bravery, as a Soldier: Nor won'd Your lntegrity, as a Minifter ; Your Magnificence, as a Nobleman ; or Your Love of Liberty and Your Country, as a Patriot, have been omitted. For my felf, My Lord, 'tis my Bufinefs rather to admire than applaud You: Panegyrick is a thing out of my Province; and Your Grace wou'd be a fufferer by the beft Things I could fay. Were I allow'd to touch on any Thing, it fhou'd be Your Private rather than Your Popular Character, rather as you're a Gentleman, than as a General, or a Hero. If You have every thing Great and Heroick in the latter; You have all that is Beautiful and Amiable in the former. To enumerate every thing of this Kind vifible in your Grace, wou'd be to give a detail of a whole Syitem of Virtues; and to draw your Picture at full, wou'd be little lefs than to collect into one Piece what is Great and Good in a thoufand: A Work fitter for a Volume than a Dedication.

M Y Zeal for Your Grace had like to have driven me beyond either my Duty or Defign. It was my Refolution not to fay any thing that might look like Praife; but I find one cannot do common Juftice to Your Grace, withour running into the Appearance of it. I am fenfible there is no Topick lefs inoffenfive to You, than that of Your own Merit : but the Misfortune is, there's none fo engaging or fo copious. 'Tis pity You hould value Praife fo little; when You deferve it fo much: For hence, a Perfon, who woud not be Ungrateful, is under a Neceffity of becoming Troublefome. I have reafon to fear your Grace's Refentments, for having faid thus much; and yet apprehend thofe of the Publick for having faid no more. If I am Delinquent on either Side, your Grace will do me the Juftice, to believe it entirely owing to that Excefs of Devotion wherewiti I am,

My LORD,
Your Grace's mof Humble, and mof Obedient Seradazt,

Edmund Stone.

THE

TRANSLATOR's PREFACE.

A T HEMATICKS are ucw become a popular Study, and make a part of the Education of alnoof cvery Gentloman. Indeed, they are fo ureful, fo entertaining and cxtenfive a Branch of Knowledge, that'tis no wonder they flowid gain Ground; and that uncommon Counstenance they nowe find, muft be oftecnsed as an Inftance of the Felicity of the Age, and the Good Scnefo of the Peoplo. Matbomaticks bavo whercwitb to gratify all Tuftes, and to employ all Talents. Hore the greateft Gcnius bas room to excrt bis utmof Faculties, and the meaneft will not fail to find fometbing on a Level with bis. Their Theory, affords a noble Ficld for the Speculative part of Mankind; and, their Practice, an ample Province for the Men of Action and Bufinefs.

THE Mafters in Matbematicks bave not been wanting in their ReSpeet to the reft of Mankind: They bave frankly comnunicated their Knoweledge to the IVorld; and bave publighed Treatifes on every Branch of their Art: infonuch, that a Man wobo bas a Dijpofition to this Study, will find binuelf abundantly fupplied with Helps, to what Part foever be applies binfelf. There feems, then, but little wanting to Matbematicks, confidered as a Science: If there be any Defeet, 'tis when confidered as an Art. I mean, Mathematicks appears more accelible, as well as more extenfive, on the Side of their Theory than on that of their Practice. Not that the latter bas been lefs laboured by Autbors than the former, but becaufe a fufficiont Regard does not Seem to bave been bad to the Inftruments, whereone it. wholly depends.

Mathematical Instruments are the Means by wobich thofe Sciences are rendered ufeful in the Affairs of Lifc. Dy their Alfitance it is,
thet Subsile and abffract Speculation is reduced into AEt. They comnect, as it were, the Theory to the PraEtice, and turn what was bare Contemplation, to the moft fubftantial Ufes. The Knoweledge of there is the Knowledge of Practical Matherinaticks: So that the Defcriptions and UJes of Mathematical Inftruments, make, perbaps, one of the moft forciceable Branches of Learning in the World. The Way then to render the Knoreledse of Mathematicks gonoral and diffufice, is by moking that of Mathematioal Inftruments fo: With a View of wibich kind, our Autbor fcems to bave cngaged in the following Treatife; at leaft, 'twas from a View of this kind, that I undertook to tranlate it.
$\mathcal{T} H E D$ Dejign of the TVork, bowewer ueful, yet fecms to be New anong zus. Particular Autbors bave indeed toucb'd on particular Parts: One, for Inftance, baving deforibed the Globe ; anotber the Sector; and a third the Quadrant: but for a gencral Courfe, or Collection of Mathematical Inftruments, I know of none tliat bas attempted it. 'Tis true, in Harris's Lexicon, we bave the Names of moft of them; and in Moxon's Dictionary the Figures of many: But the Accounts given of them in both are fo fbort, lane and deficient, that there's but little to be learn'd from either of them.

I chofe M. B:o n's 'Book for the Ground-Work of mine, as judging it better to make ufe of a good Jafe Model prosided to my Hauds, than run the Rifque of procecding upon my own Bottom. The Freach Inftrunents deforibed by bim, are, in the inain, the fame with thofo ufed among us. Such Englifla Fitrumonts as be bas omitted, Ibave heen careful to fupply: And througbout, bawe taken the Liberty not only to make up bis Deficiencies, but amend bis Errors.,

T'HOSE who defire an Inventory of the Work, base it as follows:
$I T$ is divided into Eight Books, and each of the fo fubdivided into Cloapters. To the whole are prefix'd Preliminary Definitions neceffary for the Underftanding of what follows.

I N the Firgt Book are laid down the ConftruEtion and Principal Ufes of the moft fimple and common Inftruments, as Compaffes, Ruler, DrawingPen, Porte-Craion, Square, Protractor. And to thele I bavo added five otber Articles, of the Carpenter's Joint-Rule, the Futr-foot Gauging-Rod, Everard's Sliding-Rule, Coggefhall's Sliding-Rule, the Plotting-Scale, an Invprov'd Protractor, the Plain-Scale, and Gunter's Scale.

T'HE Second Book contains the Conftruction and Principal Ufes of the French Sector, (or Compafs of Proportion) thofe of various Gauging-Rods. To this Book I bave added the Conftruetion and principal Ujes of the Engliih Sector.
$\mathcal{T} H E$ Subjoct of the TBird Book is cory mung dizerfified. Under this are found the Conjtruction and Ufes of Ioweral curious and diverting as well as ufefub Inffruments; particularly Compafles of various kinds, Parallel-Rules, the Parakelogram or Pentagraph, Gc. Under this Head are alfo laid dozen feveral Things not eafley to be met with alfewhere: As, the Manner of armings, Load-ftones, the Compafition of divers Microfcopes, with feveral othar czrious Amulemonts. To the firf Cloaptor of this Rook I bave added the Deforiptions and Ufes of the Tum-up Compaffes and Proportional Compaffes, with the Sector-Lines upone them, as allo the Mamer of projeoting the m.

I N the Fourth Book you bave the Conftruction and UJes of the principal Inftuments ufed in taking Plots, meafuring or laying out Lands, taking Heigbts, Diftances, acceffible or innacceffible; Staffs, for inztanca, Hathoms [or Toifes] Chains, Surveying-Grofles, Recipient-Angles, Theodolites, Semicircles,

The Tranflator's PREFACE.

circles, the Compafs, with their Ufes in Fortificaition. To this Book I bave added three Articles of the Englifh Theodolite, Plain-Table, Circumferentor, and Surveying-Wheel. What I bave there added of the Ufos of thofe Invftruments, tha' but hort, yet I flatter my felf will be found more Inffructice than much larger Accounts of then in the common Books of Sureeying.

T'HE Fifth Book contains the Conftruction of Several different kinds of Water-Levels; with the Manner of reetifying and ufing them, for the Conveyance of Water from one Place to another. In this Book are alfo found the Confruction and Ufes of Inftruments for Gunnery: And to thefe Ibave added the Conffruction and Ufe of the Englifh Callipers.

I N the Sixtb Book are contained the Conftruction and Ufes of Aftronomical Inftruments; as the Aftronomical Quadrant, and Micrometer, with an Inftrument of Mr. de la Hire's for Sheroing the Eclipfes of the Sun and Monn, and Mr. Huyghens's Second Pendulum-Clock for Aftronomical Obferoations. In this is allo Sherwn the Manner of making Celeftial Obfervations according to Mr. de la Hire and Caffini. To this Book I bave added four Clbapters, containing the Tofeription and general Ufes of the Globes, with the manner of making them: The Defcription and Ufes of the Ptolemaick and a Copernican Sphere, the Orrery, and a Micrometer, better than that deforibed by the Autbor, aild of Gunter's Quadrant.

THE Serenth Book contains the Confiruetion and Ufes of the Sea-Compafs, the Azimuth-Compafs, Sea-Quadrant, Fore-Staff, quid ot for taking Altitudes at Sea; as likewife the Conffruetion and Ujes of the Sinical Quadrant, and Mercator's Charts.

IN the Eigbth Book are found the Conftructions and Ufes of all kinds. of Sun-Dials, webether fixed or portable; with the Inftruments ufed in drazeing thenz; as alfo a Moon-Dial, Nocturnal, bc. To this is fubjoined a Short Defoription of the principal Tools ufed in making Mathematical Inftruments: And, laftly, I bave added, by way of Appendix, the Conftruction of the great Ecliple of the Sun, that will bappen May the IIth, 1724, by the Sector.

ERRATA.

ER R A T A

1. Age 4. againt Fig. 53. fhould have been inferted this, via. on Otiabedron is contained under eiglt equal ana -qui'ateral Triargles. Page 8. 1. 20. for relp of Diorfen, r. Kelp of Addition. The Way laid down in P. ro. for examining the Method of inferibing a regular Polygon, not being our Author's, but mine, fhould have been printed in Itcl:ck. P. 15.1. i4. for Converts, r. Converfo. P. 60. for Setier, r. Septier. P.150. 1.60. for Taule, r. Bourd. P. 207. 1. 4j. for Crofs Latitudes, ro increafing Latitudes.

THE

CONSTRUCTION

A N D
Principal Ufes
O F

MATHEMATICAL INSTRUMENTS.

W000000000000300000000000000000000000300300enotis

Deffinitions neceffary for Underftanding this Treatife.

POINT is that which hath no Parts, and confequently is indivifible. Flate i. I.
A Line is Length without Breadth, whofe Original is from a Fig. 2. Point.
There are three kinds of Lines; viz. Right Lines, Curve Lines, and Mix'd Lines.

A Right Line is the fhorteft of all thicfe that can be drawn from Fig. 2. one Point to another.

A Curve Line is that which doth not go directly from one of its Fig. 3. Extremes to the other, but winds about.

A Mix'd Line is that which hath one Part frrait, and the other Fig. 4. crooked.
Lines compared, as to their Pofitions or Situations, are either parallel, perpendicular, or oblique.
Parallel Lines are fuch that always keep the fame Diftance to each other, and which, if Fig. so both ways infinitely produced, will never meet, whether they be Right Lines, or Curves.

Perpendicular Lines are thofe that meeting, incline no more to one fide than to the other ; Fig. 60 and therefore they make two equal Angles, which confequently will be Right Angles.

Oblique Lines are thofe, which meeting one another, form oblique and unequal Angles, Fig. \%o that is, acute and obtufe Angles.
Moreover, Lines have other Denominations ; which are as follow :
An upright, plumb, or vertical Line, is that which, if produced, would pafs thro the Fig. 8. Center of the Earth, as the String of a fufpended Plummet.

A horizontal Line, or Line of apparent Level, is a right Line that touches the Surface of Fig. 9, the Earth in one Point, or which is parallel to a Tangent in that Point.

A Line of true Level is that, whofe Points are all equally diftant from the Center of the Earth, as the Circumference of the fame.
A finite Line is that whofe Length is determined.

Fig. 17.
Fig. 18.

Fig. 15.

There are aifo occult Lines, drawn with the Points of Compaffes, or more properly with a Pencil, becaufe then they may be eafier rubb'd out: Thefe Lines muft not be feen when the Work is finifh'd, unlefs they are left to fhow how the Operation is performed; and then they are dotted, which is done with a Dotting-Wheel.

The Lines that muft remain, and which are call'd apparent Lines, are drawn with Ink, put into a drawing Pen, as plain and fmall as poffible, by means of the Screw belonging to it.

A Tangent is a Line touching a Figure, and not cutting of it; as the Line AB.
A Subtenfe, or chord Line, is that which joins the Extremes of an Arc; as the Line CD. An Arc is a Part of a Circumference; as the Arc DFE.
The different kinds of Curve Lines are infinite ; but the fimpleft, moft regular, and eafieft to draw, is a Circle.

A circular Line, or the Circumference of a Circle, is a Curve ; all the Parts of which are equally diftant from one Point in the middle of it, which is call'd the Center of the Circle.

Right Lines, drawn from the Center of a Circle to the Circumference, are call'd Radii, or Semidiameters; as NO.

Thofe Chords that pafs thro' the Center of a Circle, are call'd Diameters; as MP.
-The Circumference of every Circle is fuppofed to be divided into 360 equal Parts, call'd Degrees.

The Number 360 was chofen by Geometricians for the Divifion of a Circle, becaufe it may be more exactly fubdivided into many equal Parts, without any Remainder, than any other*: as for example; half of 360 is $180, \frac{1}{3}$ is $120, \frac{1}{4}$ is $90, \frac{3}{5}$ is $72, \frac{1}{6}$ is 60 , and fo of other of its aliquot Parts.

Every Degree is divided into 60 equal Parts, call'd Minutes, every Minute into 60 Seconds, and every Second into 60 Thirds, $E G^{3} c$. which are thus diftinguifh'd $40^{d} 35^{\prime} 49^{\prime \prime} 57^{\mathrm{III}}$ fignify forty Degrees, thirty five Minutes, forty nine Seconds, and fifty feven 'Thirds. 'The áforefaid Divifion ferves for meafuring of Angles; but the Sub-Divifions into Seconds and Thirds are not ufed, unlefs in great Circumferences.

The Opening of two difierent Lines cutting one another, or meeting in the fame Point, is call'd an Argle.

When two Lines cut, or meet each other in one Point on a Plan, the Angle they make with each other, is call'd a plane Angle.
When the Lines that make a plain Angle, are ftrait Lines, the Angle is call'd a Ri htlined Angle.

If the two Lines forming an Angle, are Curves, the Angle is call'd a Curve-lired Angle.
If one of the Lines is a Curve, and the other a ftrait Line, the Ange is call'wa Mix'dlined Angle.
'The two Lines that make an Angle, are call'd its Sides; the Point wherein they cut or meet each other, being the Vertex.

When an Angle is expreffed by three Letters, that in the middle reprefents the Angle, and the other two the Sides.

In producing or leffening the Sides of an Angle, the Quantity of the faid Angle is not at all altered thereby; for the Magnitude of an Angle is not meafured by the Magnitude of its Sides.
The Meafure of a Right-lined Angle is the Portion of a Circle comprehended between its Sides, whofe Vertex is the Center of the Circle: It matters not how big the Radius of the Circle be; becaufe whether the circular Arcs, comprehended between the Sides AB, A C, of the Angle be bigger or leffer, they fill have the fame Number of Degrees.

If, for example, the Arc of a mall Circle be 60 Degrees, which is the fixth part of the whole Circumference, the Arc of a greater Circle will likewife be 60 Degrees, or the fixth part of the Circumference of the greater Circle, and the Angle BAC will be 60 Degrees.

Every Angle is either a right, acute, or obtufe Angle.
The Meafure of a right Angle is an Arc of 90 Degrees, which is $\frac{1}{4}$ of the Circumference of a Circle.

An acute Angle is leffer than 90 Degrees.
An obrufe Angle is more than 90 Degrees.
There can be no Angle of 180 Degrees, which is the Semi-Circumference of a Circle ; for two right Lines fo pofited, cannot cut, but will meet each other directly, and confequently will make but one right Line, which will be the Diameter of a Circle.

The Sine of an Angle or Arc, is half the Chord of double the fame Arc: as for example, to have the Sine of the Angle DAE, or of the Arc DE (which is the Meafure of it) by doubling the Arc ED, you will have the Arc EDF, whofe Chord is EF, whereof EH, its half, is the right Sine of the Angle DAE: the Line DG is the Tangent of the fame Angle, and the Line $\AA \mathrm{G}$ is its Secant.
'Two Arcs together making a whole Circle, have the fame Chord; for it is manifeft, that the Line EF is as well the Chord of the greater Arc EBCF, as of the leffer one E DF.

[^1]For the fame reafon two Arcs, which together make a Semicircle, have but one right Sine; as the Line E H is as well the Sine of the obtufe Angle E A I, or of the Arc E B I, which is its Meafure, as of the acute Angle E A D, or of the Arc E D.

The fame may be faid of Tangents and Secants.
The Sine of 90 Degrees, which is the Radius or Semidiameter, as D A, is called the Sinus Totus.

A Surface, or Superficies, is that which hath only Length and Breadth.
There are two kinds of Surfaces, viz. Plane and Curve.
A Plane Surface is that to which a right Line may be apply'd all manner of ways; as the Fig. ig. Top of a very fmooth Table.

A Curve Surface is that to which a right Line cannot be apply'd all manner of ways; Fig. 20. they are either Convex, or Concave; as the Outfide of a Shell is Convex, and the Infide Concave.

Term, or Bound, is that which limits any thing ; as Points are the Bounds of Lines, Lines the Bounds of Surfaces, and Surfaces the Bounds of Solids.

A Figure is that which is bounded every way.
Figures that be terminated under only one Bound, are Circles, and Ellipfes, or Ovals, which are bounded by only one Curve Line.

Figures terminated by feveral Bounds, or Lines, are the Triangle or Trigon, which hath Fig. 2I. three Sides, and three Angles.

The Square, or Tetragon, which hath four. Fig. 22.
The Pentagon, five.
Fig. 25.
The Hexagon, fix.
Fig. 24.
'The Heptagon, feven.
The Octagon, eight.
The Nonagon, nine.
The Decagon, ten.
The Undecagon, eleven.
And the Dodecagon, twelve.
All the aforefaid Figures, and thofe having a greater Number of Sides, are called by the
general Name of Polygon, which fignifies Figures having many Angles; and for diftinguifh-
ing them, there is added the Number of Sides: as a Decagon may be called a Polygon of ten
Sides; likewife a Dodecagon is called a Polygon of twelve Sides, and fo of others.
Figures, whofe Sides and Angles are equal (as thofe before-named) are called regular Polygons.

Thofe Figures, whofe Sides and Angles are unequal, are called Irregular Polygons.
Triangles are diftinguifhed by their Sides or their Angles.
As to their Sides; that Triangle which hath its three Sides equal, is called an Equilateral Fig. 25. Triangle, and is alfo equiangular.

That Triangle which hath only two equal Sides, is called an Ifofceles Triangle.
Fig. 26.
And that which hath three unequal Sides, is called a Scalenous Triangle. As to their An- Fig. 27. gles ; a Triangle, which hath one right Angle, is called right-angled; and the Side op- Fig. 28. pofite to the right Angle, is called the Hypothenufe.

That which hath one Angle ubtufe, is called an obtufe angled Triangle.
Fig. 29.
That which hath all the Angles acute, is called an acute angled Triangle.
Quadrilateral Figures, or Figures having four Sides, have differeitt Appellations. Fig. 30.
If the oppofite Sides are parallel, the quadrilateral Figure is called by the general name
of Parallelogram.
If a Parallelogram hath four equal Sides, and the four Angles right ones, it is called a Fig. j^{1}. Square.

If all the Sides are not equal, but the four Angles right ones, it is called an oblong, right Fig. 32. angled Parallelogram, or fimply a Rectangle.

A right Line drawn in a Parallelogram, from one of the Angles to the oppofite one, is called a Diagonal ; as the Line A B.

If the four Sides be equal, and alfo the oppofite Angles, but not right ones, it is called a Fig. 33° Rhombus, or Lozangé.

If two oppofite of the four Sides are equal, and the oppofite Angles aifo equal, but not right ones, the quadrilateral Figure is called a Rhomboides.

Fig. 34.
Alfo a Square is equiangular and equilateral ; an Oblong is equiangular, but not equilateral ; a Rhombus is equilateral, but not equiangular :

- And a Rhomboides is neither equilateral nor equiangular.

Every quadrilateral Figure, that hath neither its Oppofite Sides, Parallel, or Equal, is Fig. 35° called a Trapezium.

A Circle is a plane Figure, comprehended under one Line, which is called its Circumfe- Fig. 36. rence, which is equally diftant from a Point in the middle, called the Center.

A Semicircle is a Figure terminated by the Diameter and the Semicircumference.
Fig. 370
A Portion, or Segment of a Circle, is a Figure copmprehended by a part of the Circumfe-
rence, and a Chord leffer than the Diameter; there is a greater and leffer Segment.

Fig. $3^{8 .}$

Fig. 39.

Fig. 40.
Fig. 41 .
Fig. 42.

Fig. s .
Fig. 52.
Fig. 53 .
Fig. 54 .
Fig. 53 .

Definitions necefary, \&cc.

A Sector of a Circle is a Figure made by a part of a Circle, terminated by two Radii, or Semidiameters, which do not make a right Line ; there is a great and fmall Sector.

An Ellipfis is a Figure longer than it is broad, comprehended but by one Curve Line, in which the * two greatelt Lines that can be drawn at right Angles to one another, are called the Axes of the Elliphis; the greateft of which is called the great Axis, and the leffer the leaft Axis.

The Center of an Ellipfis is that Point wherein the two Axes cut each other.
Thofe Figures that have the fame Center, are called Concentrick Figures.
Excentrick Figures are thofe that have not the fame Center.
Simbar Figures are thofe which have their Angles equal each to each ; that is, which have each Angle of one Figure equal to the correfpondent Angle in the other Figure, and have the Sides about the equal Angles proportional. As fuppofe the Side $a b$ is one half, or one third of the Side AB; then all the other Sides of the leffer Figure $a b c d$, will be likewife one halt, or one third of the Sides of the greater Figure A B CD.

The correfpondent Sides in this Figure are called homologous Sides; as the Side A B of the greater Figure, and the Side $a b$ of the leffer Figure, are called homologous Sides.

Equal Figures are thofe that equally contain an equal Number of equal Quantities.
'There are Figures that are fimilar and equal.
Others are equal, and not fimilar ;
And, finally, others are fimilar, but not equal.
Ifoperimetrical Figures are thofe whofe Circuits are equal : As, for Example, the Triangle A B C, and the Square A B C D, are Ifoperimetrical Figures; becaufe each Side of the Triangle being 8, its Circuit is 24, and every Side of the Square being 6, its Circuit is alfo 24 of thofe equal Parts that make the Circuit of the Triangle.

Body, or a Solid, is that which hath Length, Breadth, and Thicknefs.
A Sphere, Globe, or Ball, is made by the entire Revolution of a Semicircle about its Diameter, which is at reft, and which is called the Sphere's Axis.
A Spiseroid is a Sol.d, made by the entire Revolution of a Semi-Ellipfis about its Axis remaining at rett.

A Pyramid is a Solid contained under feveral Triangular Planes meeting in one Point, and having a Polygon for its Bafe.

A Cone is a Species of a Pyramid, having a circular Bafe: 'This Solid is made by the entire Revolution of a right-angled Triangle about one of the Sides, forming the right Angle, which Side is called the Axis of the Cone.
A. Cylinder is a Solid, whofe Bafes are two equal Circles. 'This Solid is generated by the entire Revolution of a right-angled Parallelogram about one of its Sides, which is called the Cylinder's Axis.

A Prifm is a Solid, whofe two Bafes are two fimilar, equal, and parallel Planes; and when the parallel Planes are Triangles, the Prifm is called a Triangular Prifm.

When the two Bafes of a Prifni are Parallelograms, it is called a Parallelopipedon.
If the Sides of the aforefaid Bodies are perpendicular to the Bafe, they are called right, or Ifofceles Solids.

If they are inclined, they are called Oblique, or Scalenous Solids.
A regular Body is that which is contained under regular and equal Figures, all the folid Angles of which are likewife equal.

A folid Angle is the meeting of feveral Planes in one Point ; as the Point of a Diamond.
There are required more than two Planes to contitute a folid Angle.
There are five regular Bodies reprefented in the fame Plate, together with the Unfoldings of their Planes, viz.

The 'Tetrahedron, contained under four equal and equilateral Triangles.
'The Hexahedron, or Cube, contained under fix equal Squares.
The Dodecahedron, contained under twelve equilateral and equal Pentagons.
The Icofahedron, contained under twenty equal and equilateral Triangles.
The Unfolding nigh to each of the aforenamed regular Bodies, fhew how to draw them on Brafs or Pafteboard, in order to cut them out ; which when done, if they are duly folded up, there will be formed the regular Bodies.

All other Solids are called by the general Name of Polyhedron, which fignifies a Body terminated by many Superficies.

If in the following Work, Terms be ufed that are not here defined, they fhall be defined and explained in their proper Places.

[^2]

B O O K I.

Of the Conftruction and UJe of Mathematical Inftruments ; containins the common Inftruments, as the Compars, the Ruler, the Drawing-Pen, the Porte-Craion, the Square, and the Protractor.

C H A. P. I.

Of the Conftruction and Use of the Compaffes, the Ruler, the Drawing-Pen, and the Porte-Craion.

HERE are feveral Sorts of Compaffes, of which we fhall fpeak more fully hereafter ; but that whofe Ufes we intend to lay down in this Chapter, is the Common Compafs. Of thefe Compaffes there are two kinds, viz. Simple Ones, which have their Points fixed, and others whofe Points may be taken off; both kinds being of different Bigneffes, but they are commonly in Length from three to fix Inches. To tuefe Compafles, that fhift their Points, there belongs a Drawing-Pen-Point, a Pencil-Point, and fometimes a Dotting-Wheel, to make dotted Lines.
The Goodnefs of Compaffes confifts chiefly in this, That the Motion of their Head be very equable, that fo they may not leap in opening and fhutting; that the Joints are well Fig.A. fitted; that they are well filed and polifhed; and, lafly, that the Steel-Points are well joined and equal. The Figure A fheweth thefe kinds of Compaffes, whofe Conftruction we fhall give in the third Book.
Rulers, which are of Brafs, or Wood, ought to be very ftrait every way; they are made Fig. B. ftrait with Files and a Planner, whofe Bottom is Steel ; as alfo by rubbing them and another very ftrait Ruler together: one Side of thefe Rulers is floped, to keep the Ink from blotting the Paper.
When Lines are drawn with Ink, they ought to be very fine.
To know whether a Ruler be very ftrait or not, draw a right Line upon a Plane ; then turn the Ruler about, and apply the fame Edge to the Line; and if the Edge of the Ruler exactly agrees with the right Line, it is a Sign the Ruler is very ftrait.

The Drawing-Pen is made of two Steel Blades joined together, and faftened to a little Pillar, at the other End of which is a Porte-Craion ; there is a Cavity between the aforefaid Fig. Co Blades, in which Ink is put with a Pen: alfo the Blades mult join each other in Points that be very equal. There is likewife a fmall Screw, ferving more or lefs to open the Blades, that fo Lines may be drawn fine or coarfe, according to neceffity.

The Porte-Craion ought to be of equal Bignefs every where, and very fraitly flit down the middle with a fine Saw ; alfo the Porte-Craion is bent towards the end, in order to faften a Pencil in it, by means of a little Ring.

U S E I. To divide a right Line into two tqual Parts.

Plate 2.
Fig. 1.

Fig. S.

Let the given Line be A B, which is to be divided into two equal Parts: About the Point A, as a Center, or one of the Ends of the Line, defcribe the circular Arc C D, with your Compaffes opened to any Diftance, but neverthelefs greater than one half of $A B$. Likewife about the other end B, as a Center, defcribe, with the fame Opening of your Compaffes, the circular Arc E F, cutting the former Arc in the Points G H ; then place a Ruler upon thefe two Interfections, and draw the Line GH, which will divide the Line A B into two equal Parts.

Note, The two Arcs will not interfect each other, if the Opening of the Compaffes be not greater than half of the given Line.

U S E II. Upon a right Line, and from a Point given in it, to raife a Perpendicular.
Let the given right Line be A B, and the Point given in it C, upon which it is required to raife a Perpendicular.

From the given Point C, mark both ways with your Compaffes, on the given Line, the equal Diftances CA, CB; then about the Points A B, as Centers, and with any opening of your Compaffes (greater than half the given Litie) delcribe the Arcs D E, FG, interfecting each other in the Point H, and draw the Line HC , which will be perpendicular to A B.
If the given Point C be at the End of the Line, defcribe about the Point C, as a Centre, any Arc of a Circle; on which take twice the fame opening of your Compafes, viz. from B to D, and from D to E : then about the Points D, E, delcribe two Arcs, interfecting one another in the Point F; lay a Ruler upon the Points F and C, and draw the Line F C, which will be a Perpendicular upon the-End of the Line C B.

If there is not room to take the Length of $D E$, divide the Arc $B D$ into two equal-Parts in the Point G_{2} and make $\mathrm{D}_{1} \mathrm{H}$ equal to DG ; then the Line H C, will be a Perpendicular.

Or otherwife, having drawn the indefinite Line $B \mathrm{DF}$, thro the Points D, F, and made D F equal to B D ; F C will be a Perpendicular.

Or again in this Manner: having taken the Point P at pleafure above the given Line, about the faid Point, as a Center; and with the Interval P C, defcribe the Arc BCD, then draw the Line B P', and produce it till it cuts the aforefaid Arc in the Point D, and from the Point D to the Point C, draw the Perpendicular D C.

U S E III. From a Point given without a I.ine, to let fall a Perpendicular to the faid Line.
Let the given Point be C, from which, to the given Line A B, it is required to: draw a Perpendicular.

About the Point C, as a Center, defcribe an'Arc of a Circle cutting the Line A B in the two Points D E; then from the Points D E, make the Interfedion F; lay a Ruler upon the Points C and F, and draw the Perpendicular C G.

Note, The Interfection F may be made above or below the given Line; but it is beft to have it below it ; becaufe when the Points C F are at a good Diflance, the Perpendicular may be drawn truer than when they are nigh.

When the Portion of the Circle defcribed about the Point C, does not cut the Line A. B in two Points, the Line muft be continued if it can; if it cannot, Recourfe muft be had to the Method of Fig. 5. for raifing a Perpendicular on the End of a Line: as fuppofe a Perpendicular is to be let fall from the Point D , on the Line CD , draw, at pleafure, the Line D B, which bifect in the Point P; then about this Point, as a Centre, and with the Diftance PD, defcribe the Arc DCB, cutting the Line AB in the Point C. Lafty, lay a Ruler upon the Points C and D, and draw the Line $C D$, which will be the Perpendicular required.

Otherwife, let A B be the given Line, and C the Point without it; take two Points I and 2 at pleafure, on the faid Line A B ; then about the Points I and 2, and with the Diftances I C, 2 C, defcribe Arcs of Circles, interfecting each other in two Points, as in C and D ; then lay a Ruler on the two Interfections, and draw a Line, which will be the Perpendicular required.

U S E IV. To cut a right-lined Angle into two equal Paits.

Let A C B be the Angle to be cut into two equal Parts.
About the Point C, as a Center, defcribe the Arc D E at pleafure; then about the Points D and E, defcribe two other Arcs, cutting each other in the Point F, and draw the Line FC thro the Points F, C, which will cut the given Angle into two equal Parts.

If it be required to divide the Angle $A C B$ into three equal Parts, the Arc D E muft tentatively be divided by your Compalles into three equal Parts; becaufe the "Trifection of an Angle by right Lines, hath not yet been geometrically found.

U S E V. To raife a right Line on a given Line, that may incline no more on "ore Side than the other.

Make the fame Operation as before, and produce the Line F C G.
Fig. 8.

U S E VI. Upon a given right Line, and from a Point given in it, to ${ }^{2}$ miake an Aiggle equal to a given Angle.

Let $\mathrm{A} B$ be the given Line, and A the given Point upon which it is required to make an Angle equal to the given Angle E F G.

About the Point F, as a Center, defcribe the Portion of a Circle; and with the fame Figo g. opening of your Compaffes, defcribe about the Point A another Portion; then take the Bignefs of the Arc E G between your Compaffes, which Diftance lay off on the Arc BC: now thro the Points A, C, draw the Line A C, and the Angle B A C will be equal to the Angle E F G.

USE VII. To draw a Line from a given "Point, parallel to a given Line.

Let $A B$ be the given Line, and C the Point thro which it is required to draw a Line parallel to A.B.

About the Point C, as a Center, and with any opening of your Compaffes, taken at pleafure, defcribe the Arc D B cutting the given Line in the Point B : alfo about the fame Fig. 10 , Point B , as a Center, and with the fame opening of your Compalles, defcribe the Arc C A; then take the Diftance of the Points C, A, and lay it off from B to D, and thro the Points C and D, draw the Line C D, which will be parallel to $A B$.

Otherwife, about the Point C, as a Center, defcribe an Arc touching the given Line; and about another Point, taken at pleafure in the Line A B, defcribe, with the fame opening Fig. in. of your Compaffes, the Arc D : then thro the Point C, draw a Line touching the Arc D, and the Line C D will be parallel to A B.

But as it is difficult to find whereabouts the Point of Contact will be, there is ainother way which is better, and is thus:

About the Point C, as a Center, and with any Diftance, defcribe an Arc cutting the Line Fig. 12. AB in A .

And about another Point in the fame Line, as B, defcribe another Arc, with the fame opening of your Compaffes; then open the Compafles to the Diftance A B, and about the Point C, as a Center, defcribe an Arc cutting the former one in the Point D; and thro the Points C and D draw a Line, which will be parallel to $\mathrm{A} B$.

U S E VIII. To divide a given Line inio any number of equal parts.
Let the Line given be $A B$, which is required to be divided into eight equal Parts: firft, Fig. 13. draw the Line BC, at pleafure, making any Angle with the Line A B. Likewife draiv the Line A D parallel to B C ; then divide BC into eight equal Parts, taken at pleafure, and make the fame Parts on the Line A D, and thro the Divifions of them, draw Lines, which will divide the Line A B into eight equal Parts.
Or otherwife, draw the Line $a b$ parallel to A B , which is propofed to be divided ; then Fig. 140 take 8 equal Parts on the Line $a b$. Now thro the Ends of the two Parallels draw two Lines, which form Triangles with the Parallels, and interfect each other in the Point C; then from the Point C, draw Lines to the Divifions made on the Line $a b$, which will cut the Line $A B$ in the Number of equal Parts required
This Divifion of Lines ferves to make Diagonal Scales; as fuppofe the Line A B is to make a Scale of eighty Parts, or eighty Fathom; each Part of this Line, divided into eight, Fig. I5. contains ten Fathom : but fince it is difficult to divide each of the aforefaid Parts into ten others, you muft raife from the Ends of the Line A B , the Perpendiculars A D and B C, on which take ten Parts at pleafure; from every of which, you muft draw Parallels to the Line A B ; then the fame Divifons muft be made on the Line D C, as on A B ; and the tranfverfal Lines AE, $10 \mathrm{~F}, 20 \mathrm{G}$, ©c. muft be drawn.

Now it is eafy to take of any Number of Fathoms from this Scale: as, for Example, to take off 23 Fathoms; Take the Concourfe of the Tranfverfal 20 G , with the Parallel 3, that is at the Point Z, and Z_{3} will be ${ }_{23}$ Fathom. Moreover, if 58 Fathom is required, take the Concourfe of the Tranfverfal so H, with the Parallel 8, which is Y, and Y 8 will reprefent 98 Fathom, and fo of others. Feet might be put upon this Scale, by making a grearet Diftance between the Parallels; and by fub-dividing them into 12 equal Parts, there would be obtained Inches.

But now to divide a very fhort Line into a great Number of equal Parts, as into 100 or 1000: For Example; Suppofe the Line A D is to be divided into Ioэo equal Parts; firft, from the Ends A D, raife the-Perpendiculars A B, DC, and divide each of thefe Perpendiculars into io equal Parts, and draw thro the D vifions the like Number of Parallels to A D; then divide each of the Lines A D, B C, into io equal Parts, which join by the like Ntim-
ber of Perpendiculars. Again, fubdivide the firt Space A E, and its Parallel, into 10 more Parts, which join by tranfverfal or oblique Lines, as the Line E I, c.

By this Means the firf Interval A E, will be divided into 100 equal Parts; for which Reafon, the Numbers 200, 300, 400, $500, \dot{\mathscr{O}} \mathbf{c}$. to 1000 , are placed on this Scale, as may be feen in Fig. 16.

The Manner of taking off any Number of equal Parts from the aforefaid Scale, is the fame as that which hath been already fhewn in the precedent Figure. We fhall again mention this Scale in the Chapter of the Sector. There are alfo Sines, Tangents, and Secants, projected upon Scales, in the following Manner: If from each Degree of the Quadrant I F, beginning from the Point I, Perpendiculars are let fall to the Radius A I, thefe will be the Sines of each Degree, the greateft of which is the Radius of the Circle, or Sinus Totus A F; and the Lengths of all thefe Sines may be projected upon the Radius, in order to make a Scale, beginning from the Point A; as the Sine D K is lay'd off from A towards G, E'c.

And if the Tangent I E, be indefinitely produced towards E, and from the Center A, Fig. 17. Lines, as A E, be drawn thro each Degree of the Quadrant, to the 'Tangent I E produced, thefe will be the Secants of each Degree of the Quadrant. Whence it is manifeft, that any one of the Secants is greater than the Radius A I. It is likewife plain, that every Tangent I E, is terminated by its Secant A E, in the Line IE, which will be a Scale of Tangents : and it is in this mamer, that the fimple Scales of Sines, Tangents, and Secants, are made in raking between your Compaffes each of thofe Diftances, and laying them off upon a Ruler. The Tables of Sines, Tangents, and Secants, are likewife made on this Principle: for the Radius of a Circle, or Sine of a right Angle, is fuppofed to be divided into 10000, and then there is found how many of thefe Parts elery right Sine contains; as alfo the Tangents and Secants from one Minute to 90 Degrees; which, when put in order, are called the Tables of Sines, Tangents, and Secants.

Logarithms are Numbers in an Arithmetical Progreffion, to which anfwer other Numbers in a Geometrical Progreffion, as the two fullowing Progreffions.

Prog. Geom. Numb. 1, 2, 4, 8, 16, 32, 64, 128, 256 , Úc.
Prog. Arith. Log. $0,1,2,3,4,5,6,7,8, \delta_{c .}$ Logarithms were invented to perform Multiplication by only the help of Divifion, and Divifion by Subftraction; by which Operations are infinitely fhortened, and fo they are of excellent Ufe in Aftronomical Calcelations.

Note, The Ufe of thefe Tables is explained in Books of the Tables of Sines, Tangents, and Secants.

U S E IX. To cut off from a given Line any Part affigned.

Let the Line A B be the given Line from which it is required to cut off the fourth Part.
Fig. 18.
Draw the indefinite Line A C, making any Angle with the Line A B, which divide into four equal Parts at pleafure; then from the laft Divifion, draw the Line B 4, and afterwards the Line D I, parallel to B 4, which will be a fourth Part of A B.

USE X. To draw a right Line thro a given Point, that fall iouch a Circle.

If the given Point be in the Circumference, draw the Radius A B, and on the Point B raife the Perpendicular BC, which will be a Tangent in the Point B. But if the given
Fig. 19 \& 20 . Point B be without the Circle, draw a right Line from the Center A, to the Point B, which bifect in the Point D : then about the faid D , as a Center, and with the Diftance $\mathrm{B} D$, defcribe a Semi-Circle cutting the Circle in the Point E, and draw $\mathrm{B} E$, which will be a Tangent.

If a Circle be given with its Tangent, and the Point of Contaft be required, let fall the Perpendicular A B from the Center of the Circle, and the Interfection of the Tangent with the faid Perpendicular, will be in the Point of Contratt.

USE XI. Upon a given Line to defcribe a Spiral, making any Number of Revolutions.
Let the given Line be AB, upon which it is required to defcribe a Spiral of 3 Revolutions. Firft, bifect that Line in the Point C, about which Point, as a Center, defcribe a SemiCircle, whofe Diameter may be equal to the given Line A B ; then trifect the Semi-Diame-
Fig. 21. ter in the Points D E, and about the fame Center defcribe, on the fame Side the Line A B, two other Semi-Circles paffing thro the Points D E: again, fubdivide the Space C E, into two equal Parts in the Point F; about which, as a Center, defcribe on the other Side of the given Line, three other Semi-Circles, and a Spiral of three Revolutions will be had. If the Spiral is required to make four Revolutions, you muft divide the Semi-Diameter A C into 4 equal Parts.

U S E XII. Upon a given right Line, to defcribe an equilateral Triangle.

Let A B be the given Line on which it is required to defcribe an equilateral Triangle.
Fig. 22. About the Point A, and with the Diftance A B, defcribe an Arc of a Circle; and about the Point B, as a Center, with the Diftance B A, defcribe another Arc cutting the precedent one in the Point C; then draw the Lines C A, C B; and the 'Triangle ABC, will be an equilateral Triangle.

USE

Chap.I. of the Compaffes, the Ruler, \&c.
U S E XIII. Upon a given right Line, to make a Triangle equal and fimilar to a given one.
Let the given Triangle be A B C, to which it is required to make another fimilar, as Fig. 24.
DEF.
Make the Line D E equal to AB; then about the Point D, as a Center, and with the Radius A C defcribe an Arc ; alfo about the Point E, as a Center, and with the Radius B C defcribe another Arc, cutting the former one in the Point F; then draw the Lines DF, E F, and there will be a Triangle made equal and fimilar to the given one.

U S E XIV. Upon a given right Line to make a Triangle fimilar to a given one.
Let the given Line be H I, upon which it is required to make a Triangle fimilar (but Fig, ${ }^{2} 6$. not equal) to the Triangle A B C.

Make the Angle H equal to the Angle A, and the Angle I equal to the Angle B ; then draw the Lines HG, IG, till they meet each other, and the Triangle HIG will be that required.

U S E XV. To make a Triangle of three right Lines given; but any two of them muft be longer than the third.

Let the three given Lines be A, B, C ; firf make the Line DE equal to the Line A, and Figo 28. about the Point E as a Center, with an Interval, equal to the Line B, defcribe the Portion of a Circle ; alfo about D, as a Center, with an Interval equal to C, defcribe another Portion of a Circle, cutting the former one in the Point F ; then draw the right Lines $\mathrm{F} \mathbf{D}, \mathrm{FE}$, and the Triangle D F E will be that required.

U S E XVI. Upon a given right Line to make a Square.
Let the given Line be A B, on which it is required to defcribe a Square, whofe Side Fig. 29. may be equal to the given Line, firf about the Point A, as a Center; and with the Diftance A B, defrribe the Arc B D, and about the Point B the Arc A E, interfecting it in the Point C, and divide the $\operatorname{Arc} C A$, or $C B$, into two equal Parts in the Point F : now make the Intervals $C E$, and $C D$, equal to $C F$, and draw the Lines $A D, B E, D E$, and the Square will be made.

Or, otherwife, upon the End of the Line AB, raife the Perpendicular A D equal to AB, and about the Point D, as a Center, with the Diftance $A D$, defcribe an Arc; likewife, with the fame opening of your Compaffes about the Point B, defcribe another Arc, and $3 \mathrm{~F}_{10}$ cutting the firt in the Point E, and draw the Lines A D, DE, E B, and the Square will be made.

I fhall fhew, in the Ufes of the Protractor and Sector, how to make any regular Polygon upon a given Line ; but, by the way, I fhall give one general Method for conftructing them, by means only of a Ruler and Compaffes.

U S E XVII. To infcribe any regular Polygon in a Circle.

Suppofe, for Example, a Pentagon is to be made : Now if the Circle be given, divide its Diameter into five equal Parts (by $U J_{e}$ VIII.) but if it be not given, draw with your Pencil an indefinite Line for a Diameter; which being divided into five equal Parts, open your Compaffes the whole Extent of the Diameter, and fetting one Foot of them upon the Ends of the Diameter, defcribe two Arcs interfecting each other in the Point C, that thereby an equilateral Triangle may be formed ; then having drawn a Circle about the Diameter, lay a Ruler upon the faid Point C, and upon the fecond Divifion of the Diameter, and draw a Line, cutting the concave Part of the Circumference in the Point D; then the Arc A D will be nighly a fifth part of the Circumference : therefore the Extent A D will divide the Circle into five equal Parts, and drawing five Lines, the propofed Polygon will be made.

This is a general Method to make all regular Polygons: As, to make a Heptagon, there is no more to do but divide the Diameter A B into feven equal Parts (that is, into as many Parts as the Figure hath Sides) and always drawing a Line from the Point C, thro' the fecond Divifion of the Diameter.

The Conftruction of a Hexagon is fimpler ; becaufe, without any Preparation, the Radius, or Semidiameter of the Circle will divide the Circumference into fix equal Parts.

And the Dodecagon is made in only bifecting each Arc of the Hexagon ; therefore to make a Decagon, every Arc of the Pentagon mult be bifected.

This Problem is almoft the fame as that defcribed in cap. 17. lib. i. of the Chevalier de Ville's Fortification, except, that for dividing the Circle, he draws a Line from the exterior Angle of the equilateral 'Triangle, thro' the firt Point of Divifion of the Diameter, and afterwards he doubles the Arc of the Circle ; but his Method is far from being exact: for, in the Defcription of a Pentagon, the Angle at the Center is too great by forty four Minutes; in the Heptagon it is too great one Degree and five Minutes ; and fo the Error will be augmented in Polygons of a greater number of Sides. But by making the Line pafs thro' the fecond Point of Divifion of the Diameter, the Angle at the Center of the Pentagon will be but which are much lefs Errors, and almoft infenfible in the Defcription of the Polygons.

- The 'Truth of the aforefaid Method of infcribing any regular Polygon in a Circle, which is mentioned in Sturmy's Matbefis Juvenili, may, by the help of Trigonometry, be eafily examined. For, fuppofe A C G to be a Circle, D the Center, A C the Diameter, A B C an equilateral Triangle, E the fecond Point of Divifion of the Diameter divided into any Num'ber of equal Parts, B F drawn thro' the Points B, E, D B, perpendicular to A C, and the - Points D, F, joined : Now becaufe the Semidiameter DC, and the whole Diameter B C are ' given, the Perpendicular D B (per Prop. 47. lib. r. Eucl.) will be had.
- Again, becaufe the Number of equal Parts the Diameter is divided into, is given, the ' Line CE, which is two of thofe equal Parts, will be given, and confequently the Part D E; 'then in the right-angled 'Triangle B D E, the Sides B D, D E being given, the Angle DBE ' may be found, by faying, as D B is to DE, fo is Radius to the Tangent of the Angle - D B E.
- Moreover, becaufe in the Triangle B D F , the Sides D B , and DF (equal to DC) are 'given, and the Angle F B D (which is now found), the Angle B F D may be found, by faying, as DF is to D B, fo is the Sine of the Angle D B F, to the Sine of the Angle D F B : ' which being found, add it to the Angle D B F, and fubftract the Sum from 180 Degrees; ' then the Remainder will be the Angle B D F, from which take the right Angle B D C, - and the Remainder will be the Angle F D C of the Center of the Polygon.

I have calculated, according to the aforefaid Directions, the Quantity of the Angle F DC ' for a Pentagon, which I find to want about 14 Minutes of 72 Degrees, the Angle of the 'Center for a Pentagon, (tho' our Author fays it wants but fix) likewife the Hexagon wants ' 12 Minutes of 60 Degrees, the Angle at the Center ; that of the Octagon is one Degree tco 'great, and that of the Dodecagon 29 Minutes too great : therefore this Method is very erroneous, and not to be ufed ; it being only true for infcribing a Square.'

U S E XVIII. To draw a Circle thro' three given Points, provided they le not in a right Line.

Let the given Points be A B C : firt draw a Line from the Point A to the Point B, and another from the Point B to the Point C ; both of which divide into two equal Parts by the Lines DE, F G, drawn at right Angles to them, and meeting each other in the Point H, which will be the Center of the Circle: Now about the Point H as a Center, and with the Diftance $\mathrm{HA}, \mathrm{H} \mathrm{B}$, or HC , defcribe a Circle, and what was required will be done.

By this means the Circumference of a Circle begun, may be finifhed, in taking three Points in it, and proceeding as before.

U S E XIX. To find the Center of a Circle.

Let $A B D$ be the given Circle, whofe Center is required to be found; draw the Line A B, which bifect by the Line C D at right Angles: likewife bifect the Line C D by the Line E F, cutting the Line C D in the Point G, which will be the Center of the Circle.

U SE XX. Todranv a rigbt Line equal to the Circumference of a Circle; and, contrarizvife, to make the Circumference of a Circle equal to a given Line.
Let the given Circle ABCD be that whofe Circumference it is required to make a right Line equal to: Firft draw a right Line, and lay off upon it three times and $\frac{3}{7}$ of the Diameter, as from G to H ; then this right Line GH will be almoft equal to the Circumference of the Circle: I fay almoft; for if it could be exactly had equal to the Circumference, the Quadrature of the Circle would alfo be had, which hath not yet been Geometrically found.

U S E XXI. To defcribe an Oval upon a given right Line.
Let A B be the given Line, upon which it is required to defcribe an Oval ; trifeat it in the Points C and D; then upon the Part C D defcribe two equilateral Triangles, whofe Sides produce ; and about the Points C, D, with the Diftance C A, or D B, defcribe Portions of a Circle to the Sides of the Triangles, produced to the Points E, F, G, H; then about the Points I, K, as Centers, and with the Radius I E, or I G, defcribe the Arc E G on one Side, and the Arc F H on the other, and the Oval will be made.

U S E XXII. To defcribe an Ellipfis, having the two Axes given.
Let the great Axis be $A B$, and the fmall one $C D$, interfecting each other at right Angles in the Point G.

Firlt take with your Compaffes, or a String, half the Length of the great Axis, that is, A G, or GB ; and with this Length fetting one foot of your Compaffes in the Point C, defcribe a Circle cutting the great Axis in the Points E, F, which will be the Foci of the Ellipfis. This being done, place Pins in thefe Foci; or if the Ellipfis to be defcribed be required large, and to be on the Ground, as in a Garden, drive Pegs into them: Then take a Thread, or String, equal in Length to the great Axis A. B, and after having doubled it, put it about the two Pins or Pegs placed in the Foci E, F; fo that the two Ends which you hold in your Hand may be in the End C of the fmall Axis: then holding a Pencil, or fome-

Chap.1. of the Compaffes, the Ruler, \&xc.

thing elfe proper to make a Mark; in your Hand at C, move it round, keeping the String always tight, till it, together with the Ends of the Thread or String, come again to the Point C, and the Ellipfis A D B C will be defrribed by the Pencil.

Note, This Method of defrribing an Ellipfis is the bef of any; as alfo if the Thread, or String, be in Length augmented or diminifhed, without changing the Diftance of the Foci, there will be had Ellipfes of another kind. Moreover, if without changing the Length of the Thread, or String, the Diftance of the Foci be diminifhed, there will ftill be had another Species of Ellipfes; and when the Foci's Diftance is infinitely diminifhed, a Circle will be defrribed: But if the Length of the great Axis be augmented or diminifhed, together with the String (which is equal to it) in the fame Proportion as the Diftance of the Foci, all the Ellipfes will be of the fame kind, but of different Magnitudes.

To draw an Elliffs another way.

The two Foci E, F, being found (as in the precedent Figure) any Number of Points, thro' which the Ellipplis muit pafs, may in this manner be found. Open your Compaffes at pleafure to any Diftance greater than AF, as to the Diftance AI; then fet one of their Points in the Focus F, and with the other defcribe the Arc OR ; afterwards open the Com- Fig. 3. paffes the Diftance IB, which is the remaining part of the great Axis, and ferting one of its Points in the other Focus E, with the Diftance I B defcribe the Arc S T, and the Point P of Interfection will be in the Periphery of the Ellipfis. In like manner, the Diftances A L, L B, defcribed about the Foci, will interfect each other in the Point H: and, finally, by opening your Compaffes to different Diffances, any Number of Points may be found ; which being joined, an Ellipfis wiil be had.
Note, Every Opening of your Compaffes ferves to find four Points equally diftant from the Axes; as alfo if, from any Point taken at pleafure in the Periphery of an Ellipfis, two right Lines, as P F, PE, aredrawn to the Foci ; thefe will be both together equal to the great Axis

U S E XXIII. To make one Figure equal and fimilar to another Figure.

Ler the propofed Figure be A B C DE, to which another is to be made fimilar and equal.
Firf divide it into Triangles by the Lines AC, A D; then draw the Line $a b$ equal to AB ; and about the Point b, with the Diftance B C, defcribe an Arc: alfo about the Point a, Fig. 40. and with the Diftance A C, defrribe another Arc, cutting the former one in the Point c, and draw the Line $b c$: In like manner proceed for the other Sides, and the Figure $a b c d e$ will \mathcal{E}_{c}. be fimilar to the propofed Figure A BCDE.

U SE XXIV. To reduce great Figures to lefer ones, and contrarizuife.

Becaufe the Reduaion of Figures is ufeful, there is here three ways given to reduce them.
Firt, a Figure may be reduced in taking a Point within it, and drawing of Lines to all Fig.4r. the Angles: for Example, let the Figure A B C DE be propofed to be reduced to a leffer.
Take the Point F, about the middle of the Figure, and draw Lines to all the Angles ABCDE; then draw the Line $a b$ parallel to the Line A B, the Line $b c$ parallel to BC, and the Figure $a b c d e$ will be-fimilar to the Figure A B C D E.

If a greater Figure be required, there is no more to do but produce the Lines drawn from the Center of the Figure, and then drawing Parallels to its Sides.

To reduce a Figure by the Scale.

Meafure all the Sides of the propofed Figure A B CD E, with the Scale G H; then take another leffer Scale K L, containing as many equal Parts as the greater. Now make the Side Fig. 42. $a b$ as many Parts of the leffer Scale, as the Side A B contains of the greater one's Parts; alfo make $b c$ as many Parts as B C, and $a c$ as many as AC, \mho_{c}, by which means the Figure will be reduced to a lefier one.

To reduce a leffer Figure to a greater one, a greater Scale muft be had, and proceed as before.

To reduce Figures by the Angle of Proportion.

Let the propofed Figure A B C D E be that which is to be diminifhed in the proportion of the Line A B, to the Line $a b$.

Firft draw the indefinite Line G H, and take the Length $A B$, and lay off from G to H ; Fig. 43. then about the Point G, defcribe the Arc HI. Again, take the Length of the given Side $a b$, as a Chord of the Arc H I, draw the Line G I, and the Angle IG H will give all the Sides of the Figure to be reduced.
As to have the Point c, take the Interval BC, and about the Point G defcribe the Arc K L; alfo about the Point b; with the Diftance LK, defcribe a fmall Arc. Now take the Diftance AC, and about the Point G defcribe the $\operatorname{Arc} \mathrm{M}$ N ; likewife about the Point a, with the Difance M N, defcribe an Arc, cutting the precedent one in the Point c, which will be that which muft be had to draw the Side $b c$: in like manner proceed for all the other Sides and Angles of the Figure.

If by this means a fmall Figure is to be reduced to a greater, the fame manner of proceeding will do it; but the Side of the Figure to be augmented muft be leffer than double
of that anfwering to it. As for Example ; to reduce the Figure $a b c d e$ to a greater, the Side A B of the greater one, muft be leffer than double the Side $a b$ of the fmaller one: for if it was double, the two Lines forming the Angle I G H, would directly meet each other, and make but one right Line.

To reduce Figures by means of Squares.

This way particularly ferves to copy, augment, or diminifh a Map.
Let, for Example, the Map A B CD be propofed to be reduced to a leffer one. Firf, divide it into Squares, then make a lefler fimilar Figure $a b c d$, which likewife divide into the fame Number of Squares as you did A B CD. This being done, draw in every Square of the leffer Figure, what is contained in the correfpondent Square of the greater Figure, and there will be a leffer Map. Note, 'The greater the Number of Squares are, the jufter will the Figure be.

C H A P. II. Of the Conftruction and USe of the Square.

ASquare is an Inftrument ferving to raife Perpendiculars, and to know whether one Line be perpendicular to another. It is made of two Rulers of Brafs, or other Metal, joined
Fig. D. in fuch manner as to make a right Angle with each other. There are fome Squares, whofe two Rulers, or Branches, are firmly fixed; and others that open and fhut by help of a Joint, that ought to be well fitted to hinder the Square from fhaking; and that it may preferve its right Angle. To do which, there is adjufted in a fmall Gutter made at the Angle (which is 45 Degrees) of one of the Branches of the Square, three Knuckles proportionable in Length and Breadth, to the Length and Breadth of the Square. Thefe Knuckles ought to be fo far diftant from each other, that they may exafly receive between them two other Knuckles, which are adjufted to the other Branch of the Square. The Knuckles being thus placed, are foldered to the Branches, and afterwards are united to one another by means of a Pin, which mult exactly fill the Cavity of the Knuckles, that thereby the Motion of the Branches may be fteady.
Note, 'There are fome Squares to which a Thread and Plummet is hung, which ferves for levelling; that is, to make horizontal Plans : alfo upon one of the Sides of the Square are fometimes fundry Lines and Scales placed ; and upon the other, half a Foot divided into 6 Inches, every one of which is fubdivided into 12 Lines: moreover, there are fometimes added to it other Country Meafures compared with the Paris Foot.

U S E I. To let fall from a given Point, a Perpendicular upon a given Line.

Let the Line given be A B, and C the given Point either in or without the Line.
Fig.45. Apply one of the Sides of the Square to the given Line, in fuch manner that the other Side touch the given Point ; then draw the Line C D, which will be a Perpendicular. Note, If the Square be turned about, and that Side which before was apply'd to the Line, is made to paif thro the Point C, and, as before, another Line be drawn, as C D : by this means you may know whether the Square be true. For when it is true, the two Lines drawn thro' the Point C, will make but one Line.

> U S E II. To know if one Line be perpendicular to another; that is, whether they make right Angles with each other.

Apply one of the Sides of the Square to one of the Lines, and fee if the other Side exactly agrees with the other Line. All this is fo extreme eafy, there needs but a few words to explain it.

C H A P. III.

Of the Confruction and USes of the Protractor.

Fig. E.

THE Protractor is a Semi-Circle divided into 180 Degrees, or half of 360 , which every whole Circle is fuppofed to be divided into, as was faid in the Definitions. One Side of this Inftrument is filed flat, for better applying it on the Paper; and the other Side is floped; that is, made thin towards the Edge whereon the Divifions are : and for better difcovering the Points wherein Angles terminate, there is a fmall femicircular Notch made in the Center of the Inftrument.

How to divide the Limb of the ProtraiZor.

Upon the Line A B, and about the Center O, defribe a Semicircle ; then carry the Radius A O round the Circumference, which will divide the Semicircle into three equal Parts, in the Points C, D, each of which is 60 Degrees. Again, divide the Arc B C into two equal Parts, in the Point E, and the Arc BE, will be 30 Degrees: then turning this Opening of your Compafies round the Semicircle, it will divide it into fix equal Parts. Moreover, divide them again into three equal Parts, and each will be ro Degrees; and dividing every one of thefe 10 Degrees into two equal Parts more, Arcs of 5 Degrees will be had. And laftly, in fubdividing each of thefe Arcs of 5 Degrees, into five equal Parts, Arcs of one Degree will be had.
In the fame manner may a whoie Circle be divided into 360 Degrees, which we fhall fpeak of hereatter.
Note, Protractors are fometimes made of Horn, which, becaufe they are tranfparent, are commodious enough; but they ought to be kept in a Book when they are not ufing, becaufe the Horn is apt to wrinkle.

U SE I. To make an Angle of any Number of Degrees.

For Example ; to make at the Point A, an Angle of 50 Degrees on the Line C A B, lay the Center of the Protractor, marked by a femicircular Cavity, upon the Point A, fo that the Diameter of the Semicircle be upon the Line A B ; then make a Dot over againgt the 50 th Fig. 46. Degree of the Limb of the Protractur, and thro it draw a Line to the Point A, which will make an Angle of 50 Degrees with the Line A B.

U SE II. The Angle B A D being given, to find how many Degrees it contains.
Lay the Center of the Protractor upon the Point A, and its Diameter upon the Line BC; then fee what Degree the Line AB cuts the Limb of the Protractor in, which will be the Fig. 46. Angle B A D of so Degrees.

U S E III. To inforibe any regular Polygoin in a Circle.

To do this, you muft firt know how many Degrees the Angle of the Center of each of the regular Polygons contains; which may be found in dividing 360 Degrees, by the Number of Sides of a propofed Polygon: as, for Example, dividing 360 by 5, the Quotient 72, fheweth that the Angle of the Center of a Pentagon is 72 Degrees: again, in dividing 360 by 8, the Quotient 45 , gives the Quantity of the Angle of the Center of an Octagon, and fo for others.

In knowing the Angle of the Center, the Angle formed by the Sides of the Polygon may likewife be known, in fubfraating the Angle of the Center of the Polygon from 180 Degrees; as taking 72 Degrees, the Angle of the Center of a Pentagon from 180 Degrees, there remains ro8, the Angle of the Polygon. Moreover, taking from 180 Degrees, the Angle of the Center of an Octagon, which is 45 Degrees, there remains 135 Degrees, the Angle of the Octagon.
Therefore to infcribe a Pentagon in a Circle, lay the Center of the Protractor upon the Fig. 470 Center of the Circle, and apply the Dianeter of the Protractor, to the Diameter of the Circle ; then make a Dot againft the $72 d$ Degree of the Limb of the Protractor; and thro this Dot, and the Center of the Circle, draw a Line cutting the Circumference of the Circle in the Point C. Now take between your Compaffes the Diftance of the Points B and C, which will divide the Circumference of the Circle into 5 equal Parts, and drawing 5 right Lines, the Polygoin will be made.

If a Heptagon is to be infcribed, divide 360 Degrees by 7, and the Quotient 51^{3}, fheweth, that the Angle of the Center is almoft $5 \frac{1}{2} \frac{2}{2}$; therelore having placed the Protractor; as before, Note, 5 1 $\frac{1}{2}$ Degrees on the Limb of the ProtraAtor, tirro which draw a Line from the Center of the Circle, and you will have the Side of the Heptagon.

Note, Upon fome Protrators are placed the Numbers, denoting regular Polygons, to avoid the troubie of Divifion, in finding the Angles at the Center: as the Number 5, for a Pentagon, is fet againft 72 Degrees on the Limb of the Protractor; the Number 6 for a Hexagon, is fet over-againft 60 Degrees, the Number 7 againft $5 \frac{1}{2} d, \mathcal{V}^{\prime} c$.

U SE IV. To defrribe any regular Polygon upon a given Line.

Let the given Line be C D, upon which it is required to defcribe a regular Pentagon.
We have fhewn in the precedent Ufe, how to find the Angles of any regular Polygon ; and Fig. 43. fince the Angle made by the two Sides of the Polygon is 108 Degrees, 54 Degrees its half will be the Semi-Angle of the Polygon ; by means of which, you may defcribe it in the following manner:

Apply the Diameter of the Protractor to the Line CD, and its Center to the End D; then make a Dot againf the 54 th Degree of the Limb, and draw the Line D F, making an Angle of 54^{d} with the Line C D. Moreover, remove the Center of the Protractor to the
other End C, and there likewife make an Angle of 54 Degrees, in drawing the Line C F; then about the Point of Concourfe F, defcribe a Circle with the Diftance C F. Laftly, take the Length of the given Line C D , and carry it round the Circumference of the Circle, and drawing fix right Lines, the Pentagon will be made.

If an Octagon is to be defcribed upon a given right Line, take half the Angle of the Polygon, which is $67 \frac{1}{2}$ Degrees, and make an Angle of the like Number of Degrees upon each End of the given Line, by which an Ifofceles 'Triangle will be formed, whofe Vertex will be the Center of a Circle, which will be divided into eight equal Parts, by carrying the Compaffes round it with the Extent of the given Line.

There may be made many more Operations with the Inftruments already fpoken of ; but we fhall content ourfelves with thofe already mentioned, as being the mof common, and ufefulleft.

ADDITIONS of Englifh Inftruments.

Of the Conftruction and UJes of the Carpenter's Joint-Rule, the Four-foot Gauging-Rod, Everard"s Sliding-Rule, Coggefhall's Sliding-Rule, the Plotting-Scale, an Improved Protractor, the Plain-Scale, and Gunter's Scale.

C H A P. I.

Of the Conftruction and Ufes of the Carpenter's Joint-Rule, together with the Line of Numbers commonly placed thereon,
$\underset{\text { Fig. }}{\substack{\text { plate } \\ \text { Fig }}}$
plate 3.
Fig. r.

IHIS Rule is ufually made of Box, 24 Inches long, an Inch and a half, or an Inch and a quarter broad, and of a Thicknefs at pleafure ; one Side of it is divided into 24 crual Inches, according to the Standard at Guildhall, Londn, and every one of thefe 24 Inches are divided into 8 equal Parts; that is, into halfs, quarters, and half-quarters: The half-inches are difinguifhed from the quarters, and the quarters from the halfquarters, by Strokes of difierent Lengths, and at every whole Inch are fet Figures, proceeding from I to 24 .

On the fame Side of this Rule, is commonly placed Gunter's Line of Numbers, of which muia hereafter.

The other Side of the Rule hath upon it the Lines of Timber and Board-Meafure, the Conftruction of which is as follows:

The Line of Timber-Meafure begins at 8 and a half; that is, when the Figures of the Timber-Line fand upright to you, it begins at the left End at 8 and a half, and procceds to 36, within an Inch, and ${ }^{\frac{3}{8}}$ of an Inch of the other End. It is made from a Confideration, that 1728 Inches make a folid Foot: for any Divifion; fuppofe 9, which fignifies the Side of a Square is fo placed againt fome one of the Divifions of Inches or Parts on the other Side, beginning from the right Hand, that its Square, which is 8 I Inches, multiplied by that Number of Inches and Parts, muft make 1728 Inches, or a folid Foot; which in dividing 1728 by 81 , mult be placed againft $21 \frac{1}{3}$ Inches from the right Hand. In like manner the Divifon for the Number 10 , on the Line of Timber-Meafure, mult be placed againft $17-\frac{2}{9} \frac{5}{\circ}$ Inches on the other Side ; becaufe 1728, divided by the Square of 10 , which is 100 , gives $17 \frac{28}{\circ}$, and in like manner for all the other Divifions. But becaufe a Square, whofe Side is either 1, 2, \&́c. to 8 Inches, requires more than 24 Inches in Length to multiply it by, in order to make a folid Foot, or 1728 Inches; and fince 24 Inches is the whole Length of the Rule, therefore there is a Table put upon the left end of the Rule, fupplying a greater Length.

The upper Row of Figures, numbered $1,2,3,4,5,6,7,8$, are Inches, or the Lengths of the Sides of Squares; and the fecond and third Rows are the correfpondent Feet and Inches to make up a folid Foot. It is made by dividing 144 Inches by the Squares of 1, 2, 3, $4,5,6,7,8$; as thie Square of I Inch is I, by which dividing 144, the Quotient will be 144 Feet for the firft Number of the fecond Row of Figures, and in like maner for the reft.

Chap.I. of the Carpenter's Yoint-Rule, \&c.

On or next the other Edge of the Rule, you have the Line of Board-Meafure; and when the Figures ftand upright, you fee it numbered $7,8,9, \xi^{3} c$. to 36 . which is juft 4 Inches from the right Hand. It is thus divided ; fuppofe the Divifion 7 is to be marked, divide 144, which is the Number of Inches in a fquare Foot, by 7, and the Quotient will be $20 \frac{4}{7}$ Inches; whence the Divifion 7 muft be againf $20 \frac{4}{7}$ Inches on the other Side of the Rule. Again, to mark the Divifion 8, divide 144 by 8, and the Quotient, which is i8 Inches, muft be placed on the Line of Board-Meafure againt 18 Inches on the other Side: proceed thus for the other Divifions of the faid Line. But becaufe the Side of a long Square, that is either $\mathrm{I}, 2,3,4,5$ Inches, requires the other Side to be more than 24 Inches, which is the whole Length of the Rule ; therefore there is a Table placed at the other end of the Rule, made in dividing I 44 Inches by each of the Numbers in the upper Row, and then each of the Quotients by I_{2}, to bring them into Feet.

U S E of the Carpenter's Joint-Rule.

The Inches on this Rule are to meafure the Length or Breadth of any given Superficies or Solid, and the manner of doing it is fuperfuous to mention, it being not only eafy, but even natural to any Man; for holding the Rule in the left Hand, and applying it to the Board, or any thing to be meafured, you have your Defire. But now for the Ufe of the other Side, I fhall fhew in two or three Examples in each Meafure, that is, Superficial and Solid.

Exampic I. The Breadth of any Superficies; as Boaid, Glafs, or the like, being given: to find bow much in Length makes a Square Foot.

To do which, lock for the Number of Inches your Superficies is broad, in the Line of Board Meafure, and keep your Finger there ; and right againft it, on the Inches Side, you have the Number of Inches that makes up a Foot of Board, Glafs, or any other Superficies. Suppole you have a Piece 8 Inches broad, how many Inches make a Foot? Look for 8 on the Board Meafure, and juft againft your Finger (being fet to 8) on the Inch-Side, you will find 18 , and fo many Inches long, at that Breadth, goes to make a fuperficial Foot.

Again, fuppofe a Superficies is i8 Inches broad, then you will find that 8 Inches in Length will make a fuperficial Foot ; and if a Superficies is 36 Inches broad, then 4 Inches in Length makes a Foot.

Or you may do it more eafy thus: Take your Rule, holding it in your left Hand, and apply it to the Breadth of the Board or Glafs, makind the End, which is next 36, even with one Edge of the Board or Glafs, and the other Edge of the Board will fhew how many Inches, or Quarters of an Inch, go to make a fquare Foot of Board or Glafs. This is but the Conyerts of the former, and needs no Example ; for laying the Rule to it, and looking on the Board-Meafure, you have your Defire.

Or elfe you may do it thus, in all narrow Pieces under 6 Inches broad: As fuppofe $3 \frac{x}{4}$ Inches, double $3 \frac{7}{4}$, it makes $\sigma \frac{1}{2}$; then twice the Length from $\sigma \frac{1}{2}$ to the End of the Rule, will make a fuperficial Foor, or fo much in Length makes a Foot.

Example II. A Superficies of any Length or Breadth being given, to find the Content.

Having found the Breadth, and how much makes one Font, turn that over as many times as you can upon the Length of the Superficies, for fo many Feet are in that Superficies: But if it is a great Breadth, you may turn it over two or three times, and then take that together: and fo fay $2,4,6,8,10$, © 6 . or $3,6,9,12,15,18,21$, till you come to the End of the Supericies.

The USE of the Table at the End of the Board-Menfure.

If a Superficies is Inch broad, how many Inches in Length muft there go to make a fuperficial Foot? Look in the upper Row of Figures for I Inch, and under it, in the fecond Row, you will find i2 Fect ; which fhews that I2 Feet in Length, and I Inch in Breadth, will make a fuperficial Focr.

Again, a Superficies 5 Inches broad, will be found, in the faid Table, to have 2 Feet and about s Inches in Length to make a fuperficial Foot; and a Piece 8 Inches broad, will have a Length of a Foot 6 Inches to make a fuperficial Foot.

U S E of the Line of Timber-Menfure.

The Ufe of this Line is much like the former : for firft you muft learn how much your Piece is fquare, and then look for the fame Number on the Line of Timber-Meafure, and the Space from thence to the End of the Rule, is the true Length at that Squarenefs to make a Foot of Timber.

Excmple. There is a Piece that is 9 Inches fquare, look for 9 on the Line of TimberMeafure, and then the Space from 9, to the End of the Rule, is the true Length to make a folid Foot of Timber, and it is $2 \mathrm{I} \frac{2}{3}$ Inches.

Again, fuppofe a Piece of Timber is 24 Inches fquare, then 3 Inches in Length will make a Foot, for you will find three Inches nit the other Side againft 24: But if it is fmall Timber, as under 9 Inches fquare, you muft feek the Square in the upper Rank in the Table,
and right under you have the Feet and Inches that go to make a folid Foot, as was in the Table of Board Meafure : As fuppofe a Piece of limber is 7 Inches fquare, look in the Table for 7, in the upper Row of Numbers, and you will find direetly under 2 Feet, in Inches, which is the Length of the Picce of T'mber that goes to make a folid Foot: But if a Piece be not exactly fouare, viz is broader at one Side than the other, then the ufual way is to add them both together, and take haif the Sum for the Side of the Square; but if they differ much, this way is very erroneous: for that half is always too great, which from hence will eafly be manitent.

Let $\mathrm{A} C$ be the longelt Side, $\mathrm{C} D$ the fhorteft, and $\mathrm{B} D$, or A B, half their Sum, which is taken for the Side of the Square, that is, for the Side of a Square whofe Area is equal to the Product of the two Sides AC, and CD, into one another, or the Rectangle under them: Now with the Difance B D, and on the Center B , defcribe a Semicircle; draw the $\mathrm{D}_{\text {ia- }}$ meter E B, at right Angles, to A D, and from the Point C raife the Perpendicular F C; then it is manifef, per Prop. 13. lib. 6. Eucl. that F C is a mean Proportional between the Sides A C, C D; that is, F C is the true Side of the Square, which, per Prop. 15. lib. 3. Eucl. is much lefs than E B, or its Equal A B, or BD.

The ufual way likewife for round Timber, is to take a String, and girt it about, and the fourth part of it is commonly allowed for the Side of the Square, that is, for the Side of a Square equal to the circular Bafe, and then you deal with it as if it was juft Square. But this way is alfo erroneous; for by this Mcthod you lofeabove $\frac{5}{5}$ of the true Solidity. But for maintaning this ill Cuftom, they plead, The Overplus Meafure may well be allowed, becaufe the Caips cut of are of little Value, and will not near countervail the Lavour of bringing the Timber to a Square, to which Form it muft be brought before it be fit to ufe.

The Defcription of Gunter's Line, or the Line of Numbers.

The Line of Numbers is only the Logarithms transferred on a Ruler from the Tables, by means of a Scale divided into a great Number of equal Parts; and whereas in the Logarithms, by adding or fubftracting them from one another, the Quafita is produced; fo here, by turning a Pair of Compafles forwards or backwards, according to due Order on this Line, the Quafita will in like manner be produced. The Conftruction of this Line I fhall give in fpeaking of Gunier's Scale.

As to the Length of the Line of Numbers, the longer it is, the better it is; whence it hath been contrived feveral ways: As firt upon a Rule of two Foot, and a Rule of three Foot long, by Guinter, which (as I fuppofe) is the Reafon why it is called Gunter's Line; then that Line was doubled, or laid fotogether, that you might work either right on, or crofs from one to another, by Mr. Windgate ; afterwards projected in a Circle, by Mr. Oughtred, and alfo to flide one by another, by the fame Author; and laft of all projected into a kind of Spiral, of 5, 10, or 20 Turns, more or lefs, by Mr. Brown, the Ules being in all of them in a manner the fame, only fome with Compaffes, as Mr. Gunter's and Mr. Windgate's; and fome with flat Compafles, or an npening Index, as Mr.Oughtred's and Mr. Brown's; and fome without either, as the Sliding-Rules.

The Order of the Divifions on this Line of Numbers, and commonly on moft others, is thus; it begins with 1 , and fo proceeds with $2,3,4,5,6,7,8,9$; and then $1,2,3,4,5$, $6,7,8,9$, ro, whofe Order of Numcration is thus: 'The firft I lignifies one 'Tenth of any whole Number or Integer, and confequently the next 2 is two Tenths; 3, three Tenths; and all the fmall intermediate Divifions are ioo Parts of an Integer, or a Tenth of one of the former Tenths; fo that 1 in the middle is one whole Integer ; the next 2 , two Integers; and 10 at the end, ro Integers: 'Thus the Line is in its moft proper Acceptation, or natural Divifion.

But if you are to deal with a Number greater than $I 0$, then I at the beginning muft fignify 1 Integer, and I in the middle 10 Integers, and 10 at the end 100 Integers. But if you would have it to a Figure more, then the firft is 10 , the fecond 100 , and the laft 10 a 1000 . If you proceed further, then the firft I is 100 , the middle 1 a 1000 , and the 10 at the end 10000, which is as great a Number as can well be difcovered, on this or moft ordinary Lines of Numbers ; and fo far, with convenient Care, you may refolve a Queltion tolerably exact.

> Numeration on the Line of Numbers.
> Any whole Number being given under four Figures, to find the Point on the Line of Numbers that reprefents the fame.

Firft look for the firft Figure of your Number amongtt the long Divifions that are figured, and that leads you to the firft Figure of your Number; then for the fecond Figure, count fo many Tenths from that long Divifion forwards, as that fecond Figure amounts to ; then for the third Figure, count from the laft Tenth fo many Centefmes as the third Figure contains; and fo for the fourth Figure, count, from the laft Centefme, fo many Millions as that fourth Figure has Units, or is in Value, and that will be the Point where the Number propounded is on the Line of Numbers. 'Two or three Examples will make this manifeft.

Firf, to find the Point upon the Line of Numbers reprefenting the Number 12. Now becaufe the firf Figure of this Number is I, you mult take the I in the middle for the firt

Figure

Chap.I. of the Carpenter's Foint-Rule, \&cc.

Figure ; then the next Figure being 2, count two 'Tenths from that i, and there will be the oint reprefenting 12 .

Secondly, To find the Point reprefenting 144. Firft, as before, take for i the firft Figure of the Number 144 , the middle Figure 1 ; then for the fecond (viz. 4.) count four Tenths forwards; laftly, for the other 4, count four Centefms further, and that is the Point for 144°

Thirdly, To find the Point reprefenting 1723 . Firft, as before, for 1000 take the middle I on the Line. Secondly, for 7 reckon feven Tenthsforwards, and that is 700. Thirdlys for 2, reckon two Centefms, from that 7 th 'Tenth, for 20 . And, Laftly, for 8 you mult reafonably eftimate that following Centefm to be divided into ro Parts (if it be not exprefled, which in Lines of ordinary Length cannot be done) and 8 of that fuppofed io Parts is the precife Point for 1728 , the Number propounded to be found; and the like of any other Number.

But if you was to find a Fraction, you muft confider, that properly, or abfolutely, the Line only expreffes Decimal Fractions; as thus, $\frac{1}{5} \sigma$, or $\frac{1}{\%}$, or $\frac{1}{\square}$, and more near the Rule in common Acceptation cannot exprefs; as one Inch, one Tenth, one Hundredth, or one Thoufandth Part of an Inch, it being capable to be applied to any thing in a decimal way: (But if you would ufe other Fractions, as Quarters, Half-Quarters, \& c_{c}. you muft reafonably read them, or elfe reduce them into Decimals.)

The fundamental Ufes of the Line of Numbers.

U S E I. I'wo Numbers being giveiz, to find a third Geometrically proportional to them, and to three a fourth, and to four a fifth, \&c.

Extend your Compaffes upon the Line of Numbers, from one Number to another ; which done, if that Extent is applied (upwards or downwards, as you would either increafe or diminifh the Number) from either of the Numbers, the moveable Point will fall upon the third proportional Number required. Alfo the fame Extent, applied the fame way from the third, will give you a fourth, and from the fourth a fifth, $\dot{\mathcal{G}} c$. For Example, let the Numbers 2 and 4 be propofed, to find a third Proportional, ©rc. to them: Extend the Compaffes upon the firft Part of the Line of Numbers, from 2 to 4 ; which done, if the fame Extent is applied upwards from 4, the moveable Point will fall upon 8, the third Proportional required; and then from 8 it will reach to 16 , the fourth Proportional ; and from 16 to 32 the fifth, \& c c. Contrariwife, if you would diminifh, as from 4 to 2 , the moveable Point will fall on I , and from I to $\frac{5}{50}$, or .5 , and from. 5 to .25 , © O_{c}, as is manifeft from the Na ture of the Logarithms, and Prop. 20. lib. 7. Eucl.

But generally in this, and moft other Work, make ufe of the fmall Divifions in the middle of the Line, that you may the bettr eftimate the Fractions of the Numbers you make ufe of; for how much you mifs in fetting the Compaffes to the firft and fecond Term, fo much the more you will err in the fourth; therefore the middle Part will be moft ufeful: As for Example, as 8 to II , fo is 12 to 16.50 , if you imagine one Integer to be divided but into 10 Parts, as they are on the Line on a two-foot Rule.
U S E II. One Number being given to be multiplied by another given Number, to find the Produtt.
Extend your Compaffes from 1 to the Multiplicator, and the fame Extent, applied the fame way from the Multiplicand, will caufe the moveable Point to fall upon the Product ; as is manifeft from the Nature of the Logarithms, and Defin. 15. lib. 7. Eucl.

Example. Let 6 be given to be multiplied by 5 ; extend your Compaffes from I to 5, and the fame Extent will reach from 6 to 30 , the Product fought. Again, fuppofe 125 is to be multiplied by 144 ; extend your Compaffes from I to 125 , and the moveable Point will fall from 144 on 18000 the Product.

U S E III. One Number being given to be divided by another, to find the Quotient.

Extend your Compaffes from the Divifor to 1, and the fame Extent will reach from the Dividend to the Quotient ; or, extend the Compaffes from the Divifor to the Dividend, the fame Extent will reach the fame way from I to the Quotient, as is manifelt from the Nature of the Logarithms, and this Property, that as the Divifor is to Unity, fo is the Dividend to the Quotient.

Example. Let 750 be a Number given, to be divided by 25, (the Divifor) extend your Compaffes downwards from 25 to I ; then applying that Extent the fame way from 750, and the other Point of the Compaffes will fall upon 30 , the Quotient fought. Again, let 1728 be given to be divided by 12 ; extend your Compaffes from 12 to 1 , and the fame Extent will reach the fame way from 1728 to 144 .

If the Number is a Decimal Fraction, then you muft work as if it was an abfolute whole Number; but if it is a whole Number joined to a decimal Fraction, it is worked here as properly as a whole Number: As fuppofe III.4 is to be divided by 1.728, extend your Compafles from 1.728 to 1 , the fame Extent, applied from III4, will reach to 64.5 . So again, 56.4 being to be divided by 8.75 , and the Quotient will be found to be 6.45 .

Now to know of how many Figures any Quotient ought to confift, it is neceffary to write down the Dividend, and the Divifor under it, and fee how often it may be written under
it ; for fo many Figures muft there be in the Quotient: As in dividing this Number 1223 I by 27, according to the Rules of Divifion, 27 may be written 3 times under the Dividend; therefore there mult be 3 Figures in the Quotient: for if you extend the Compaffes from 27 to I, it will reach from 12231 to 453 , the Quotient fought.
Note, That in this Ufe, or any other, it is beft to order it $f 0$, that your Compaffes may be at the clofeft Extent; for you may take a clofe Extent more eafy and exact than a large Extent, as by Experience you will find.

USE IV. Three Numbers being 太iven, to find a fourth in a direet Proportion.
Extend your Compaffes from the firft Number to the fecond ; that done, the fame Extent apply'd the fame way from the third, will reach to the fourth Proportional fought, as is manifeft from the Nature of the Logarithms, and Prop. 19. lib. 7. Eucl. from whence it may be gathered, that the third Number multiply'd by the fecond, divided by the firft, will give the fourth fought.

Example. If 7 give 22, what will 14 give? Extend your Compaffes upwards from 7 to 14, and that Extent apply'd the fame way, will reach from 22 to 44, the fourth Proportional required. Again, if 38 gives 76 , what will 96 give? Extend your Compaffes from 38 to 96, and the fame Extent will reach from 76 to 192, the fourth Proportional fought.

USE V. Three Numbers being given, to find a fourth in an Inverfe Proportion.
Extend your Compaffes from the firft of the given Numbers to the fecond of the fame Denomination : if that Diftance be apply'd from the third Number backwards, it will reach to the fourth Number fought.

Example. If 60 give 5, what will 30 give? Extend your Compaffes from 60 to 30 , and that Extent apply'd the contrary way from 5, will give 2.5 the Anfwer. Again, If 60 give 48, what will 40 give? Extend your Compaffes from 60 to 40 ; that Extent apply'd the contrary way from 4^{8}, will reach to 32 , the fourth Number fought.

U SE VI. Three Numbers being given, to find a fourth in a duplicate Proportion.
This Ufe concerns Queftions of Proportions between Lines and Superficies; now if the Denominations of the firft and fecond Terms are Lines, then extend your Compafies from the firf Term to the fecond (of the fame kind of Denomination :) this done, that Extent apply'd twice the fame way from the third Term, and the moveable Point will fall upon the fourth Term required, which is manifeft from the nature of the Logarithms, and from hence, viz. Becaufe the fourth Number to be found is only a fourth Proportional to the Square of the firft, the Square of the fecond, and the third, it is plain that the third, multipiy'd by the Square of the fecond, divided by the third, will be the fourth Number fought.

Example. If the Area of a Circle, Whofe Diameter is 14, be 154, what will the C Cntent of a Circle be, whofe Diameter is 28 ? Here 14 and 28 having the fame Denomination, viz. both Lines, extend the Compaffes from 14 to 28, then applying that Extent the fame way from 154 twice, the moveable Point will fall upon 616, the fourth Proportional or Area fought: Becaufe Circles are to each other as the Squares of their Diameters, Per Prop. 2. lib. 12. Eucl.

USE VII. Three Numbers being given, to find a fourth in a triplicate Proportion.

This Ufe is to find the Proportion between the Powers of Lines and Solids; that is, two Lines being given and a Solid, to find a fourth Solid, that has the fame Proportion to the given Solid, as the given Lines have to one another. 'Therefore extend the Compaffes from the firft Line to the fecond, and that Extent, apply'd three times from the given Solid or third Number, will give the fourth fought: Becaule the third multiply'd by the Cube of the fecond, divided by the Cube of the firft, will give the fourth.
Example. If an Iron Bullet, whofe Diameter is 4 Inches, weighs 9 Pounds, what will another Iron Buflet weigh, whofe Diameter is 8 Inches? Extend your Compaffes from 4 to 8 , that Extent apply'd the fame way three times from 9, will give 72, the Weight of the Buller fought. Becaufe the Weight of homogeneal Bodies are as their Magnitudes, and Spheres are to one another as the Cubes of their Diameters, per Prop. 16. lib. I2. Eucl.

U SE VIII. To find a mean Proportional between two given Numbers.

Bifect the Diftance between the given Numbers, which Point of Bifection will fall on the mean Proportional fought : Becaufe the fquare Root of the Quotient of the two Extremes divided by one another, multiply'd by the leffer, is equal to the Mean.
Example. The Extremes being 8 and 32, the middle Point between them will be fownd to be 16 .

USE IX. To find two mean Proportionals between two given Lines.
Trifect the Space between the two given Extremes, and the two Points of Trifection will give the two Means., Bicaufe the Cube Root of the Quotient of the Extremes divided by one another, multiply'd by the leffer Extreme, will give the firft of the Mean Proportionals fought, and that fritt Mean mantiply'd by the aforefaid Cube Root, will give the fecond.

Example.

Chap.2. of the Four-Foot Gauging-Rod.

Example. Let 8 and 27 be the two given Extremes, the two Means will be found to be 12 and 18 , which are the two Means fought.

U SE X. To find the Square Root of any Number uinder 100000 .
The Square Root of any Number is always a mean Proportional between I, and the Number whofe Root you would find; but yet with this general Caution, viz. If the Figures of the Number are even, that is, $2,4,6,8,10$, ©c. then you muft look for the Unit at the Beginning of the Line, and the Number in the fecond Part or Radius, and the Root in the firlt Part ; or rather reckon 10 at the end to be Unity, and then both Root and Square will fall backwards towards the middle in the fecond Length or Part of the Line: But it they be odd, then the middle I will be moft convenient to be counted Unity, and both Root and Square will be found from thence forwards towards 10 ; fo that according to this Rule, the Square Root of 9 will be found to be 3, the Square Root of 64 will be found to be 8 , the Square Root of 144 to be 12, $心 c$.

USE XI. To find the Cube Root of any Number under 1000005000.

The Cube Root is always the firft of two mean Proportionals between I and the Number given, and therefore to be found by trifecting the Space between them; whence the Cube Root of 1728 will be found 12, the Root of 17280 is near 26 , the Root of 172800 is almoft 56. Although the Point on the Line reprefenting all the fquare Numbers is in one place, yet by altering the Unit, it produceth various Points and Numbers for their refpective proper Roots. The Rule to find this, is in this manner: You muft fet Dots (or fuppofe them to be fet) over the firf Figure to the Left-hand, the fourth Figure, the feventh, and the tenth; now if by this means the lalt Dot to the Left-hand falls on the laft Figure, as it doth in 1728 , then the Unit muft be placed at I in the middle of the Line, and the Root, the Square, and Cube, will all fall forwards, towards the end of the Line.

But if it falls on the laft but 1 , as it doth in 17280 , then the Unit may be placed at 1 in the beginning of the Line, and the Cube in the fecond Length; or elfe the Unit may be placed at 10 in the end of the Line, and the Cube in the firt part of the Line. But if the laft Dot falls under the laft Figure but two, as in 172800 , the Unit mult always be placed at io in the end of the Line, and then the Root, the Square, and Cube, will all tall backwards, and be found in the fecond part, between the middle I, and the End of the Line. By thefe Rules it appears, that the Cube Root of 8 is 2, the Cube Root of 27 is 3, the Cube Root of 64 is 4 , of 125 is 5 , of 216 is 6 , of 345 is 7 , of 512 is 8 , of 729 is 9 , of 1000 is 10 , \&c.

C H A P. II.

Of the Conftruction and USe of the Four-Foot Gauging-Rod.

TH IS Rod, whofe Ufe is to find the Quantities of Liquors contained in any kinds of Veffels, is ufually made of Box-Wood, and confifts of four Rules, each a Foot long, and about $\frac{3}{8}$ of an Inch fquare, joined together by three Brafs Joints; by which means the Rod is rendred four Foot long, when the four Rules are quite opened, and but one Foor when they are folded together.

On the firft Face of this Rod are placed two Diagonal Lines, one for Beer, and the other Fig. 4. for Wine; by means of which the Content of any common Vefiel in Beer or Wine Gallons may be readily found, in putting the Rod in at the Bung-hole of the Veffel until it meets the Interfection of the Head of the Veffel with the oppolice Staves to the Bung-hole. For diftinction of this Line, there is writ thereon Beer and Wine Gallons.
On the fecond Face of this Rod, are, a Line of Inches, and the Gauge Line, which is a Fig. 50 Line expreffing the Area's of Circles, whofe Diameters are the correfpondent Incheśs in Ale Gallons. At the beginning of it is writ, Ale Area.
On the third Face are three Scales of Lines; the firt, at the end of which is writ Hog f- Fig. σ_{0} bead, is for finding how many Gallons there is in a Hoghthead, when it is not full, lying with its Axis parallel to the Horizon. The fecond Line, ar the end of which is writ B. L. fignifying a Butt lying, is for the fame Ufe as that for the Hogfhead. The third Line is to find how much Liquor is wanting to fill up a Butt when it is ftanding. Att the end of it is writ B. S. fignifying a Butt ftanding.

Half way the fourth Face of the Gauging-Rod are three Scales of Lines, to find the Fig. $\%$ Wants in a Firkin, Kilderkin, and Barrel, lying with their Axes parallel to the Horizon. They are diftinguifh'd by the Letters F. K. B. fignifying a Firkin, Kilderkin, and Barrel.

Conftruction of the twio Diagonal Lines.

Thefe two Diagonal Lines are put upon this Gauging-Rod, in the fame manner that our Author, in the laft Ufe of the Line of Solids in the fecond Book directs, for putting on the Diagonals on his Gauging-Rod, viz. by taking the Dagonal of fome Veffel that is fimilar, or nighly fimilar to the Veffels, whofe Contents in Beer, or Wine Gallons, are afterwards, by means of them, to be found ; and then knowing how many Gallons in Beer and Wine the aforefaid Veffel contains, which Gallons muft be fet againft the Inches, of Parts of Inches, of their Diagonals Length, on the Diagonal-Face of the Gauging-Rod. Now to find how many Inches, or Parts, the Diagonal of any other fimilar Veffel muft be, when its Content in Beer and Wine Gallons is given ; you muft fay, As the Content of the firt Veffel, which is known, is to the Cube of the Length of its Diagonal ; f_{0} is the Content of that other fimilar Veffel, in Beer or Wine-Gallons, to the Cube of the Length of its Diagonal: the Cube-Root of which extracted, will give the Length of the Diagonal fought. As for Example, fuppofe a little Veffel fimilar, or nighly fimilar to Englifs Veffels of a ufual Form, contains I Beer Gallon, or about I $\frac{1}{4}$ Wine Gallon, and the Dagonal is found to be 7.75 Inches; what will be the Diagonal of a fimilar Veffel, containing 2 Beer Gallons, or 2.8 Wine Gallons? Say, as I Gallon is to the Cube of 7.75 , which is 465.48437 , fo is 2 Gallons to the Cube of the Diagonal fought, 930.96875 , whofe Root will be 9.72 Inches, and fo much will be the Length of the Diagonal : therefore fet 2 Beer Gallons on the Diagonal Face of the Rod, againft 9.72 Inches. In this manner may the Diagonal Face of the Rod be divided from I Beer Gallon to 240, and from I Wine Gallon to 300 , and fubdivided in half Gallons, as on the Rod.

Confruction of the Gauge-Line on the Second Face of the Rod.

On this Line is fer the Gallons, and hundred Parts of Gallons, that any Cylinder, an Inch deep, and any Inches and Parts, from I to 46 in Diameter, contains of Ale. As for Example ; againft 1.9 Inches ftands or of a Gallon, denoted by a Dot ; againft. 2.63 Inches ttands .02 of a Gallon. The Tenths of the Gallons are denoted by the Figures $\mathrm{I}, 2,3,4$,
 18.95 Inches, as per Figure. The Conftruction of this Line is thus: Becaufe 282 folid Inches make an Ale Gallon, therefore the Diameter of a Cylinder, one Inch deep, whofe Content is an Ale Gallon, or 282 folid Inches, will be 18.95 Inches; whence against 18.95 Inches, on the fame Face of the Gauging-Rod, fer, on the Line drawn to contain the Divifions of the Gauge-Line, I Gallon. Now to find the Diameter of a Cylinder one Inch deep, that fhall contain the .oI Part of a Gallon, fay, As i Gallon is to the or Part of a Gallon, fo is is the Square of 18.95 Inches, which is 359 , to the Square of the Diameter of the Cylinder, containing the hundredth Part of a Gallon, which will be found by extraating the fquare Root of that Quantity I.9 Inch : therefore fet the firf Dot againft 1.9 of an Inch. Again, to find againft what Inches, or Parts, 02 of a Gallon muft be placed, fay, As I is to .02, fo is 359 to the Square of the Number of Inchres, or Parts, whofe Root extracted will give 2.63 Inches; againft which make a fecond Dot for 02 of a Gallon. In this manner proceed for all the other Divifions on the Gauge-Line, always making I and 359 the two firt Terms of the Proportion, and the Gallons or Parts the third; fo fhall the fourth be the Square of the Inches, or Parts, that the Gallons, or Parts exprefied in the third Term, are to be fet againft. The Reafon of the aforefaid Proportion is, that Cylinders, of equal Altitudes, are to each other as their Bafes, and Circles as the Squares of their Diameters.

Confruction of the Sales on the third and fourth Faces.

The firt Scale of Lines on the third Face, which ferres for finding the Gallons wanting in a Hogfhead pofited with its Axis parallel to the Horizon, or lying down, contains the Divifions from I Gallon to 54 Gallons, which is the Number of Ale-Gallons a Hogfhead contains when full.

The fecond Scale of Lines, on the fame Face, containing the Divifions from I Gallon to 108 Gallons, which are the Number of Ale-Gallons contained in a Butt, is for the fame Ufe as the firft Scale of Lines when the Butt is lying.
'The third Scale, likewife numbered from I Gallon to 108 , is for finding how many Gallons is wanting in a Butt flanding upright.
The three Scales of Lines, on part of the fourth Face, are, as I have already faid, for finding the Wants in a Firkin, Kilderkin, and Barrel Iying down, in Ale-Gallons. The readieft way to make the Divifions of either of thefe Scales of Lines for their correfpondent Veffels, when lying down, as for a Hogfhead, is to pour in firf one Gallon of Water, and then put the Rod downright into the Bung-hole to the oppofite Staves; then where the Surface of the Water cuts the third Face of the Rod (becaufe the Scale of Lines for the Hogflead is on that Face) make the Divifion for I Gallon; then pour in another Gallon, and where the Surface of the Water cuts the Rod, make the Divifion for 2 Gallons. Again, pour in another Gallon, and where the Surface of the Water cuts the Rod, make the Divifion for three Gallons. Proceed thus, by pouring in of one Gallon fucceffively after another, and mak-

Chap. 2

ing of Divifions at every Piace in the Face of the Rod, to which the Water arifes, until the Hogfhead be full, and then the Scale for a Hoghead, on the third Face, will be divided. Proceed, in the fame manner, in making the Divifions for the other Scales of Lines ufed in finding the Wants in the feveral Veffels aforementioned lying down. And taking off the Head of a Butt that is ftanding, and pouring of Water in the lame manner as in the Hogthead, putting the Rod downright into the Butt, and making Divifions on the Rod, as was done for the Hogmead, the Lime will be finithed, when figured.

Note, The Diyifions for Half-Gailons, marked by long Dots on the fourth Face, are made by pouring in of Half-Gatlons fucceffively, $\mathcal{E}^{3} c$.

U SE of the Diagonal Lines one the Gauging-Rod.
 ${ }^{6}$ 'To find the Content of a Veffel in Beer or Wine-Gallons.

Put the brafed End of the Gauging-Rod into the Bung-hole of the Cask, with the Diagonal Lines upwards, and thruft the brafed End to the meeting of the Head and Staves.

Then with Chalk make a Mark on the middle of the Bung-hole of the Veffel, and alfo on the Diagonal Lines of the Rod, right againft, or over one another, when the brafed End is thrut home to the Head and Staves.
'Then turn the Gauging-Rod to the other End of the Veffel, and thruft the brafed End home to the End as before.

And fee if the Mark made on the Gauging-Rod come even with the Mark made on the Bung-Hole, when the Rod was thruft to the otier End; which if it be, the Mark made on the Diagonal Lines, will, on the fame Lines, Thew the whole Content of the Cask in Beer or Wine-Gallons.

But if the Mark firft made on the Bung-hole be not right againft that made on the Rod, when put the other way; then right againft the Mark made on the Bung-hole, make another on the Diagonal Lines: then the Divifion on the Diagonal Line, between the two Chalks, will fhew the Veffel's whole Content in Beer or Wine-Gallons. As for Example ; if the Diagonal Line of a Veffel be 28 Inches 4 Tenths, its Content in Beer-Gallons will be near 5 I , and in Wine-Gallons 62.

But if a Veffel be open, as a Half-Barrel, Tun, or Copper, and the Meafure from the middle on one Side, to the Head and Staves, be 38 Inches, the Diagonal Line gives 122 Beer-Gallons; half of which, viz. 6I, is the Content of the open Half-Tub.

But if you have a large Veffel, as a Tun, or Copper, and the Diagonal Line, taken by a long Rule, prove 70 Inches; then the Content of that Veffel may be found thus:
Every Inch, at the Beginning-End of the Diagonal Line, call to Inches, then io Inches becomes 100 Inches.

And every Tenth of a Gallon call 1 oo Gallons; and every whole Gallon, with a Figure; call 1000 Gallons. Example, at 44.8 Inches, on the Diagonal Beer-Line, is 200 Gallons; fo alfo at 4 Inches 48 Parts, now called 44 Inches 8 Tenths, is juft two Tenths of a Gallon, now called 200 Gallons.

Alfo if the Diagonal Line be 76 Inches and 7 Tenths, a clofe Cask, of fo great a Diagonal, will hold 1000 Beer-Gallons: but an open Cask but half fo much, viz. 500 BeerGallons.

For reducing of Wine-Gallons to Beer-Gallons, or, vice verfa, by Infpection, this may be done.

Thus 30 Wine-Gallons, is $24 \div$ Beer-Gallons, EJc.

USE of the Gauge-Line.

USE I. To find the Content of any Cylindrical Veflel in Ale-Gallois.

Seek the Diameter of the Veffel in the Inches, and juft againft it, on the Gauge-Line, is the Quantity of Ale-Gallons contained in one Inch deep : then this multiplied by the Length of the Cylinder, will give its Content in Ale-Gallons. For Example; fuppofe the Length of the Veffel be 32.06, and the Diameter of its Bafe 25 Inches, what is the Content in AleGallons? Right againft 25 Inches, on the Gauge-Line, is I Gallon, and .745 of a Gallon; which multiplied by 32.06 , the Length, gives 55.9447 Gallons for the Content of the Veffel.

U S E II. The Bung-Diameter of a Hoghbead is 25 Inches, the Head-Diameter 22 Inches, and the Lengtl 32.06 Inches; to find the Quantity of Ale-Gallons contained in it.
Seek 25, the Bung-Diameter, on the Line of Inches, and right againft it, on the GaugeLine, you will find 1.745 ; take $\frac{1}{3}$ of it, which is.580, and fet it down twice. Seek 22 Inches, the Head-Diameter, and againft it you will find, on the Gauge-Line, 1.356 ; $\frac{1}{3}$ of which added to twice .580 , gives 1.6096 ; which multiplied by the Length 32.06 , the Product will be 5 r.603776, the Content in Ale-Gallons. This Operation fuppofes, that the aforefaid Hogfhead is in the Figure of the middle Fruftum of a Spheroid.

The Ufe of the Lines on the two other Faces of the Rod, is very eafy; for you need but put it downright into the Bung-hole (if the Veffel you defire to know the Quantity of AleGallons contained therein be lying) to the oppofite Staves; and then where the Surface of the Liquor cuts any one of the Lines appropriated for that Veffel, will be the Number of Gallons contained in that Veffel.

G
C H A P.

C H A P. III.

Of the Confruction and USe of Everard's Sliding-Rule for Gauting.

TH I S Inftrument is commonly made of Box, exactly a Foot long, one Inch broad, and about fix Tenths of an Inch thick. It confifts of three Parts, viz. A Rule, and two fmall Scales or Sliding-Pieces to flide in it ; one on one Side, and the other on the other : So that when both the Sliding-Pieces are drawn out to their full Extent, the whole will be three Foot long.

On the firf broad Face of this Inftrument are four Lines of Numbers; the firt Line of Numbers confifts of two Radius's, and is numbered $1,2,3,4,5,6,7,8,9,1$. and then 2 , $3,4,5$, छc. to 10. On this Line are placed four Brafs Center Pins, the firtt in the firf Radius, at 2150.42 , and the third likewife at the fame Number taken in the fecond Radius, having M B fct to them; fignifying, that the aforefaid Number reprefents the Cubic Inches in a Malt Bufhel: the fecond and fourth Center Pins are fet at the Numbers 282 on each Radius; they hare the Letter A fet to them, fignifying that the aforefaid Number 282 is the Cubic Inches in an Ale-Gallon. Nore, The little long black Duts, over the Center Pins, are put directly over the proper Numbers. This Line of Numbers hath A placed at the End thereof, and is called A for Diftinttion-fake.

The fecond and third Lines of Numbers which are on the Sliding-Piece (and which may be called but one Line) are exactly the fame with the firftine of Numbers: They are both, for Diftinction, called B. The little black Dot, that is hard by the Divifion 7, on the firft Radius, having $S i$ fet after it, is put directly nver .707 , which is the Side of a Square infcribed in a Circle, whofe Diameter is Unity. The black Dot hard by 9, after which is writ $S e$, is fer directly over. 886 , which is the Side of a Square equal to the A rea of a Circle, whofe Diameter is Unity. The black Dot that is nigh W, is fet directly over 23 I, which is the Number of Cubic Inches in a Wine-Gallon. Laftly, the black Dot by C, is fet directly over 3.14 . which is the Circumference of a Circle, whofe Diameter is Unity.
The fourth Line, on the firf Face, is a broken Line of Numbers of two Radius's, numbered $2,10,9,8,7,6,5,4,3,2,1,9,8,7,6,5,4,3$, the Number 1 is fet againf $M B$ on the firt Radius. This Line of Numbers hath M D fet to it, fignifying Malt Depth.

On the fecond broad Face of this Rule, are,
I. A Line of Numbers of but one Radius, which is numbered $1,2,3, \psi_{c}$. to 10 , and hath D fet at the End thereof for diftinguifhing it. There are upon it four Brafs Center Pins : the firt, to which is fet W G, is the Gauge-Point for a Wine-Gallon; that is, the Diameter of a Cylinder, whofe Height is an Inch, and Content 231 Cubic Inches, or a WineGallon, which is 17 .rs Inches. The fecond Center-Pin A G flands at the Gauge-Point for an Aie-Gallon, which is 18.95 Inches. The third Center-Pin M S ftands at 46.3 , which is the Side of a Square, whofe Content is equal to the Inches in a folid Bufhel. The fourth Center-Pin M R is the Gauge-Point for a Malt Bufhel, which is 52.32 Inches.
1I. Two Lines of Numbers on the Sliding-Piece, which are exactly the fame as on the Sliding-Piece on the other Side the Rule, they are called C. The firft black Dot fomething on this Side the Divifion of the Number 8 , to which is fet \odot_{i}, is fet to 709 , which is the Area of a Circle whofe Circumference is Unity ; and the fecond, to which is fet $\odot d$, ftands at .785 , the Area of a Circle, whofe Diameter is Unity.
III. Two Lines of Segments, each numbered $1,2,3$ to 100; the firt is for finding the Ulage of a Cask, taken as the middle Fruftum of a Spheroid, lying with its Axis parallel to the Horizon, and the other for finding the Ulage of a Cask flanding.
Again, on one of the narrow Faces of this Rule, is, (r.) A Line of Inches, numbered 1, 2, 3, 4, 心.c. to 12. each of which is fubdivided into ten equal Parts. (2.). A Line, by means of which, and the Line of Inches, is found a mean Diameter for a Cask in the Figure of the middle Fruftum of a Spheroid; it is figured 1, 2, 3, ©c. to 7. at the End thereof is writ Spheroid. (3.) A Line for finding the mean Diameter of a Cask in the Figure of the middle Fruftum of a parabolic Spindle, which by Gaugers is called, the fecond Variety of Casks; it is numbered $1,2,3,4,5,6$, and at its End is writ, 2 Varriety. (4) A Line, by means of which may be found the mean Diameter of a Cask of the third Variety ; that is, a Cask in the Figure of two parabolic Conoids abutting upon a common Bafe: it is numbered $1,2,3$, 4, 5, at the End thereof is writ 3 Varriety.
Fig. If.
And on the other narrow Face, is, (1.) A Font divided into 100 equal Parts, every ten of which are numbered ; F M fands at the beguniug of it, fignifying Foot-Meafure. (2.) A Line of Inches, like that before fpoken of, haviug I M fet to the beginning thereof, fignifying Inch-Meafure. (3.) A Line for finding the mean Diameter for the fourth Variety of Casks, which is the middle Fruftum of two Cones, abutting upon one common Bafe; it is numbered $1,2,3,4,5,6$. and at the beginning thereof is writ F C, fignifying Fruftum of a Cone.

Chap.3. of Everardis Sliding-Ruld.

Thele are all the Lines on the four Faces of the Rule; but on the Backfide of the tivo Sliding-Preces are a Line of Inches from 13 to 36, when the two Sliding-Pieces are put Endways together, and againft that the correfpondent Gallons, or hundred Parts, that any fmall Tub, or fuch like open Veffel (from 13 to 36 Inches Diameter) will contain at one Irich deep: its Conftruction is the fame as before delivered, in fpeaking of the Line of Ale Area on the Four-foot Gauging-Rod.

All the Lines of Numbers, before-defcribed, may be put upon the Faces of this SlidingRule, as directed in the Conftruction of the Line of Numbers on Gunter's Scale; only you muft obferve, that the firft Radius of the broken Line of Numbers M D, begins directly under M B, and ends directly under the other MB; and that when either of the Lines of Numbers A or B are made, the Line M D from them may alfo be made. Example, The Diftance from I to 2, on the Line A, laid off from I (towards the Left Hand) to 2, on the Line M D, wiil give the Divifion 2; the Diftance from 1 to 3 , on the Line A, will be equal to the Diftance from 1 to 3 ; the contrary way on the Line MD : underftand the fame of other Divifions and Subdivifions. The reafon of thus breaking this Line of Numbers, I fhall flrew in its Ufe.

The Line of Segments for the middle Fruftum of a Spheroid lying, may be put upon the Sliding-Rule in the following manner : Take fome Veffel lying, as a Butt, and fill it full of Water, then find its Content in Ale or Wine-Gallons (for it matters not which) take alfo its Bung-Diameter very exactly in Inches, or Tenths of Inches. Now to find againlt what Number, on the Line of Numbers of the Sliding-Piece, any Divifion of the Line of Segments muft fand ; fuppofe the Divifion i, fay, As Unity is to.or, fo is the Content of the aforefaid Veffel in Gallons to a fourth Number (which will be the Gallons, or Gallons and Parts that are contained in fuch a Segment of the Veffel, as .oI is of a fimilar Veffel, whofe Area is fuppofed Unity ;) then let out of the Veffel as many Gallons of Water as that fourth Proportional direats, and having taken the Dry Inches, fay, by the Rule of Three, As the Bung-Diameter is to thofe Dry Inches found, fo is Ioo to a fourth Number; which will be the Number on the Line C, againft which the Divifion I on the Segment-Line muft ftand.
Again, to find where the Divifion 2 muft fand on the Line of Segments, fay, As is to .02, fo is the Content of the aforefaid Veffel to the Gallons that muft be taken out of it; then fay, As the Bung-Diameter is to the Dry Inches, fo is 100 to the Number on the Line C, againft which the Divifion 2 muft fand. Proceed in this manner for finding the Divifions 3, $4,5,6,7,8,9$, and when you come to find where the Divifion 10 muft fand, you muft fay, As Unity is to the Veffel's Content, fo is .I to the Number of Gallons to be taken out of the Veffel, and go on as before. Moreover, to find where the Divifion 20 muft ftand, fay, As I is to the Content, fo is. 2 to the Number of Gallons to be taken out of the Veffel, ©rc. In this manner may the Divifions to 100 be found.

To find where the firft Subdivifion before I muft ftand, fay, As I is to the Veffel's Content, fo is .002 to the Number of Gallons to be let out of the Veffel, and proceed as at firft directed. And for the fecond Subdivifion, make .003 the third Term of the Rule of Three, and proceed as before.

For the Subdivifions between 1 and 2,2 and $3, \mathcal{F}_{\text {c. }}$. fuppofe 1 to be . 0100 , then the firft Divifion from I will be .OII, the fecond .OI2, the third .OI $3, \mathcal{E}_{c}$. which muft be made the third'Terms of the firf Rule of Three, for finding where any of thofe Subdivifions mult ftand. And for the Subdivifions between 10 and 20,20 and 30 , you muft fuppofe 10 to be .10 , and 20 to be .20 ; then the firft Subdivifion from 10 will be.II, the fecond.12, the third.13, \mathcal{E}_{c} c. which wilr be the third Terms in the firt Rule of Three, for finding whereabouts thefe Divifions muft fand.

The other Segment-Line, on the fame Face of the Rule, may be made in the fame manner as this, by fetting the aforefaid Veflel upright, and naking ufe of the Length inftead of the Bung-Diameter.

The Conftruction of the four Lines on the narrow Faces of this Rule, is from the Rules that Everard hath laid down for finding the Contents of the four Varieties of Casks. For, (r.) If there is a Cask in the form of the middle Fruftum of a Spheroid, half the Difference of the Squares of the Bung and Head-Diameter, added to the Sum and half Sum of the faid Squares, divided by 3, will be the Square of the mean Diameter for a fpheroidal Veffel ; the Root of which will be the mean Diameter. (2.) Three Tenths of the Differences of the Squares of the Bung and Head-Diameters, added to the Sum and half Sum of the faid Squares, and the whole divided by 3, will be the Square of the mean Diameter of a Cask of the fecond Variety. (3.) To the Sum and half Sum of the Squares of the Bung and HeadDiameters, add one Tenth of the Difference of the faid Squares, which Sum, divided by 3, gives the Square of the mean Diameter of a Cask of the third Variety. (4.) And Laftly, from the Sum and half Sum of the Squares of the Bung and Head-Diameters, fubftract half the Square of the Difference of Diameters, and the Remainder, divided by 3, will be the Square of the mean Diameter for the fourth Variety of Casks.

U S E of Everard's Sliding-Rule.

U SE I. One Number being givein to be multiplied by anotber, to find the Product.
Notation on the Lines of Numbers upon this Rule, is the fame as before was fhewn in the Ufe of the Carpenter's Rule ; therefore 1 fhall not here repeat it, but proceed to folve this Ufe by the following Examples: Suppofe 4 is to be multiplied by 6 : fet I upon the Line of Numbers B, to 4 upon the Line A, and then againft 6 upon B, is 24, the Product fought upon A. Again, to multiply 26 by 68 , fet I upon B to 26 upon A ; then againft 68 upon B , is 1768 on A .

Note, The Product of any two Numbers will have fo many Places as there are in both the Numbers given, except when the leffer of them does not exceed fo many of the firlt Figures of the Product, for then it will have one lefs.

US E II. One Number being given to be divided by another, to find the Quotient.

Suppofe 24 is to be divided by 4 , what is the Quotient: Set 4 upon B to I upon A; then againft 24 upon B , is 6 upon A , which will be the Quotient.
Again, let 952 be divided by 14: To find the Quotient, fet 14 upon A, to I upon B, and againft 952 upon A , you will have 68 the Quocient upon B.

Note, The Quotient will always confint of fo many Figures as the Dividend hath more than the Divifor, except when the Divifor does not exceed fo many of the firt Figures of the D_{i} vidend ; for then it will have one Place more.

U SE III. Three Numbers being given, to find a fourth in a direct Proportion.
If 8 gives 20 , what will 22 give ? Set 8 upon B to 20 upon A; and then againft 22 on B, ftands 55 upon A , which is the fourth Number fought.

U SE IV. To find a mean Proportional between two given Numbers.
Example. Let the two Numbers be 50 and 72 ; fet 50 upon C, to 72 upon D; and then againft 72 upon C, is 60 upon D, which is the Geometrical Mean between 50 and 72 .

U SE V. To find the Square Roct of any Number under 1000000.

The Extraction of the fquare Root, by help of this Inftrument, is eafier than any of the aforefaid Ufes: for if the Lines C and D be applied one to another, fo that 10 at the End of D, be even with io at the End of C ; then thofe two Lines, thus applied, are like a Table of fquare Roots, fhewing the fquare Root of any Number by Infpection only: for againft any Number upon C, you have the fquare Root thereof up:n \mathbf{D}.

Note, When the Number given confifts of $1,3,5$, or 7 Places of Integers, feek it in the firft Radius on the Line C, and againft it you have the Root required upon D. Example, Let the Number given be 144, I find this on the firt Radius of the Line C, and againft it is $\mathbf{1 2}$, the Root fought upon the Line D.

U S E V.I. The Diameter or Circumference of a Circle being given, to find either.

Set i on the Line A againt 3.141, (where is writ C) on the Line B, and againf any Diameter, on the Line A, you have the Circumference on the Line B, and contrariwife : As fuppofe the Diameter of a Circle be 20 Inches, the Circumference will be 62.83 I ; and if the Circumference be 94.247, the Diameter will be 30 .
L S E VII. The Diameter of any Circle being given; to find the Area, in Inches, or in Ale or Wine-Gallons.
Example. Let the Diameter be 20 Inches, what is the Area? Set I upon \mathbf{D} to 785 , (where is fet $\odot d$) and then againft 20 upon \mathbf{D}, is 314.159 , the Area required. Now to find that Circle's Area in Ale-Gallons, fet 18.95 (marked A G) upon D to I upon C; then againft the Diameter 20, upon D, is the Number of Ale-Gallons upon C, which is I.II Gallons. Undertand the fame for Wine-Gallons, by the proper Gauge-Point.
U SE VIII. The rraufverfe and conjuruate Diameters of an Eliipfss being given, to find the Area
Example. Let the tranfverfe Diameter be 72 Inches, and the Conjugate 50 : Set 359.05, the Square of the Gauge-Point, upon B, to one of the Diamerers (fuppofe 50 upon $A ;$;) then againft the other Diameter 72 upon B, you will have the Area upon A, which, in this Example, will be ro.02 Ale-Gallons, the Content of this Ellipfis at one Incl deep. The like may be done for Wine-Gallons, if inftead of 359.05 , you ufe $2+9.11$, the Square of the GaugePoint for Wine-Gallons.

U SE IX. To find the Area or Content of a Triangular Superfcies in Ale Galions.
Let the Bafe of the Triangle be 260 Inches, and the Perpendicular, let fall from the oppofite Angle, be 1 ro Inches; fet 282 (marked A) upon B, to 130 , half the Bafe upon A; then againft 110 upon B, is 50.7 Gallons upon A.

USE

Chap.3: of Everard's Stiding-Rule

USE X. To find the Content of an Ollong in Ale Gallons:
Suppofe one of the Sides is 130 Inches, and the other 180 ; fet 282 upon B, to 180 upon A ; then againft 130 upon B, is 82.97 Ale Gallons, the A rea required.

U S E XI. The Side of any regular Polygon being given, to find the Content thereof in Ale Gallons.
In any regular Polygon, the Perpendicular let fall from the Center to one of the Sides, being found and multiply'd by half the Sum of the Sides; gives the Area. Example, in a Pentagon fuppofe the Side is an Inch, then the Perpendicular let fall from the Center, will be found .837 , in faying, as the Sine of half the Angle at the Center, which in this Polygon is 36 Degrees, is to half the given Side. 5 ; fo is the Sine of 36 Degrees taken from 90, which is 54 Degrees, to the Perpendicular aforefaid: whence the A rea of a Pentagon Polygon, each of whofe Sides is Unity, will be 1.72 Inches; which, divided by 282 , gives .006 I the Ale Gallons in that Polygon. By the fame Method you may find the Area of any other Polygon whofe Side is Unity in Ale Gallons. Now fuppofe the Side of a Pentagon is 50 Inches, what is the Content thereof in Ale Gallons? fet I upon D, to .OO6I upon C; then againtt 50 upon D, you have the Area 15.252 Ale Gallons upon C.

U S E XII. To find the Conterit of a Cylinder in Ale Galloizs.

Suppofe the Diameter of the Bafe of a Cylinder is 120 Inches, and the perpendicular Height 36 Inches: Set the GaugexPoint (A G) to the Height 36 upon C; then againft 120 the Diameter, upon D, is $x 443.6$ the Content in Ale Gallons.

U SE XIII. The Bung and Head-Diameters, together with the Length of any Cask, being given, to find its Cointent in Ale or Wine Gallons.
Suppofe the Length of a Cask taken, as the middle Fruftum of a Spheroid be 40 Inches, its Head-Diameter 24 Inches, and Bung-Diameter 32 Inches. Subftract the Head-Diameter from the Bung-Diameter, and the difference is 8 : then look for 8 Inches on the Line of Inches, upon the firt narrow Face of the Rule; and againft it on the Line Spheroid fands 5.6 Inches, which added to the Head-Diameter 24, gives 29.6 Inches for that Cask's mean Diameter: then fet the Gauge-Point for Ale (marked A G) upon D, to 40 upon C; and againft 29.6 upon \mathbf{D}, is 97.45 the Content of that Cask in Ale-Gallons. If the Gauge-Point for Wine (marked WG) is ufed inftead of that for Ale, you will have the Veffel's Content in Wine-Gallons.

If a Cask, fuppofe of the fame Dimenfions as the former, be taken as the middle Fruftum of a parabolick Spindle, which is of the fecond Variety, you muft fee what Inches and Parts on the Line marked Second Variety, ftand againft the Difference of the Bung and Head-Diameters, which; in this Example, is 8; and you will find 5.1 Inches, which added to 24 the Head= Diameter, makes 29.I Inches the mean Diameter of the Cask; then fer the Rule as before; and againft 29.1 Inches, you will have 94.I2 Ale-Gallons for the Content of the Cask.

Again; if a Cask, fuppofe of the fame Dimenfions with either of the former ones, be taken as the middle Fruftum of 2 parabolick Conoids, which is one of the third Variety, you will find againft 8 Inches (the Difference of the Bung and Head-Diameters) on the Line of Inches, ftands 4.57 Inches, on the Line called 3d Variety, which added to 24, the Head-Diameter, gives 28.57 Inches for the Cask's mean Diameter : proceed as at firft, and you will find the Content of this Cask to be 90.8 Ale-Gallons.

Laftly, If a Cask, fuppofe of the fame Dimenfions as before, is taken as the Fruftums of 2 Cones, which is the fourth Variety, look on the other narrow Face of the Rule for 8 Inches, upon the Line of Inches; and againft it, on the Line F. C, you will find 4.1 Inches, which added to 24, gives 28.1 for the mean Diameter of this Cask: proceeding as at firft, and you will find the Content of this Cask, in Ale-Gallons, to be 87.93.

U SE XIV. There is a Cask pofited with its Axis parallel to the Horizon, or Lying, in part empty; Juppose its Content is 97.455 Ale-Gallons, the Bung-Diameter 32 Inches, and the dry Inches 8, to find the Quantity of Liquor in the Cask.
As the Bung-Diameter upon C, is to 100 upon the Line of Segments I, fo is the dry Inches on C, to a fourth Number on the Line of Segments: then as 100 upon B, is to the Cask's whole Content upon A, fo is that fourth Number to the Liquor wanting to fill up the Cask ; which, fubitracted from the Liquor that the Cask holds, gives the Liquor in the Cask. Example ; Set 32, the Bung-Diameter, on C, to 100 on the Segment Line L; then againft 8, the Dry-Inches on C, ftands 17.6 on the Segment Line. Now fet 100 upon B, to the Cask's whole Content upon A; and againft 17.6 upon B, you have 16.5 Gallons upon A; and fubitracting the faid Gallons from 97.45 , the Veffel's whole Content, the Liquor in the Cask will be 80.95 Gallons.

U SE XV. Suppofe the aforefaid Cask's Axis be perpendicular to the Horizon, or upright, and the Length of it be 40 lnches: to find bow much Liquor there will be in the Cask, whein ro of thofe Inclues are diry.
Set 40 Inches, the Length, on the Line C, to 100 on the Segment Line S; and againft 10, the Dry-Inches, on the Line C, ftands 24.2 on the Segment Line S. Now fet 100 upon B, to 97.455 , the Cask's whole Content, upon A; and againft 24.2 on B , you will have 23.5 Gallons, which are the Gallons wanting to fill up the Cask, and being fubftracted from the whole Content 97.455 , gives 73.955 Gallons for the Quantity of Liquor remaining in the Cask.

USE XVI. To find the Content of any right-angled Parallelopipedon (which may reprefent a Ciftern, or Uting-Fat) in Malt Bufbels.

Suppofe the Length of the Bafe is 80 Inches, the Breadth 50 , and the Depth 9 Inches. Set the Breadth 50 on B, to the Depth 9 on C ; then againft the Length 80 on A, ftands 16.8 Bufhels on the Line B, which are the Number of Bufhels of Malt contained in the aforefaid Ciftern.

The broken Line of Numbers M. D, is fo fet under the Lines A or B, that any Number on A or B multiply'd by the Number directly under it on the Line M D, will always be equal to 215042 , the Number of Inches in a Malt-Bufhel : from whence the Reafon of the aforefaid Operation for finding the Number of Malt-Bufhels, may be thus deduced. Let us call the Breadth a, the Length b, the Depth c, and the Number of Inches in a Malt-Buthel f; then the Malt-Bufhels in any Utenfil of the aforefaid Figure, will be exprefs ${ }^{\text {d }} \mathrm{d}$ by $\frac{a b c}{f}$. But by the Sliding-Rule the Operation is, to fet the Breadth a, to the Depth c; that is f (from the aforementioned Property of the broken Line of Numbers M D) to ${ }_{6}^{f}$-on the Line A; and then againft the Length b, on the Line A, will tne Number of Malt- ${ }^{6}$ Bufhels fland : therefore the Operation is but finding the fourth Term of this Analogy, by means of the Lines A and B, viz. $\frac{f}{c}: a:: b: \frac{a b c}{f}$

C H A. P. IV. Of the Conftruction and USe of Coggelhall's Sliding-Rule for Meafuring.

THIS Rule is framed three Ways; for fome have the two Rulers compofing them fliding by one another, like Glaziers Rules; and fometimes there is a Groove made in one Side of a Two-Foot Joint-Rule, in which a thin fliding Piece being put, the Lines put upon this Rule, are placed upon the faid Side. And laftly, one Part fliding in a Groove made along the Middle of the other, the Length of each of which is a Foot: the Form of this laft being reprefented by Fig. I2.
Fig. 12,
Upon the fliding Side of the Rule are four Lines of Numbers; three are double Lines, or Lines of Numbers to two Radius's, and one a fingle broken Line of Numbers, marked by the Letters A, B, C, and D.

The three double Lines of Numbers A, B, C, are figured $1,2,3,4,5,6,7,8,9$; and then $1,2,3,4,5,6,7,8,9,10$; they being the fame as the Line A, and the two Lines on the Sliding-Piece C, upon Everard's Sliding-Rule; and their Conftruction, Ufe, and Manner of ufing, are alfo the fame.

The fingle Line of Numbers D, whofe Radius is exactly equal to the two Radius's of either of the Lines of Numbers A, B, C, is broke, for eafier meafuring of Timber, and figured thus, $4,5,6,7,8,9,10,20,30,40$; this Line is called the Girt Line: from 4 to 5 it is divided into 10 Parts, and each Tenth into two Parts, and fo on from 5 to 10 ; then from 10 to 20 , it is divided into 10 Parts, and each Tenth into 4 Parts, and fo on from 20 to 40 , at the End, which is right againft 10 , at the End of either of the double Lines of Numbers.

The Lines on the Back-fide of this Rule, are thefe; a Line of Inch-Meafure from 1 to 12, each Inch being fubdivided into Halfs, Quarters, and Half-quarters: another Line of InchMeafure from 1 to I2, and each Inch fubdivided into 10 equal Parts: a Line of Foot-Meafure, being one Foot divided into 100 equal Parts, and figured 10, 20, 30, た̌c. to 100.

The Back-fide of the Sliding-Piece is divided into Inches, Halfs and Half-quarters, and figured from 12 to 24 ; fo that it may be flid out to 2 Foot, to meafure the Length of any thing.

The Lines of Numbers, A, B, or C, being either of them conftructed (which fee in the Chapter concerning Guinter's Scale) the Line D, from thence, may eafily be conftru\&ted.

For having fet 4 directly under 1 , for the beginning of the Line; to find where àny Divifion, fuppofe 5 , muft be placed, take twice the Diftance from 4 to 5, on either of the Radius's of either of the Lines of Numbers A, B, C, and lay off from 4 that Extent, which will give the Divifion 5. Proceed thus for all the otner Divifions and Subdivifions, by alt ways taking the double of them on the Lines A, B, or C.

Nute, For the manner of Notation, on this Rule, fee the Line of Numbers on the Carpenters.

The USe of this Rule in meafuring plain Superfcies.

SECTIONI.

USE I. To menfure a Geometrical Square.

Let there be a Square whofe Sides are each s Feet; fet I on the Line B, to 5 on the Line A; then againft 5 on the Line B, is 25 Feet the Content of the Square on the Line A.

USE II. To meafure a right angled Parallelogram, or Long-Square.

Let there be a Parallelogram, whofe longeft Side is 18 Feet, and fhorteft Io ; fet 1 on the Line B, to 10 on the Line A; then againt 18 Feet on the Line B, is 180 Feet the Content on the Line A.

U S E III. To meafure a Rbombus.
Let the Side of a Rhombus be 12 Feet, and the Length of a Perpendicular let fall from one of the obtufe Angles, to the oppofite Side, 9 Feet; fet I on the Line B, to 12 , the Length of the Side, on the Line A: then againf 9, the Length of the Perpendicular on the Line B, is 108 Feet the Content.

U S E IV. To meafure a Rbomboides.

Suppofe the Length of either of the longeft Sides of a Rhomboides to be 25 Feet, and the Length of the Perpendicular let fall from one of the obtufe Angles to the oppofite longeft Side, is 8 Feet ; fet 1 on the Line P, to 25 , the Length, on the Line A; then againft 8 Feet on the Line B, fands 200 Feet the Content.

USE Ve To meafure a Triangle.

Let the Bafe of a Triangle be 7 Feet, and the Length of the Perpendicular let fall from the oppofite Angle to the Bafe, 4 Feet. Set 1 on the Line B, to 7 on the Line A; then againft half the Perpendicular, which is 2 , on the Line B, is 14 on the Line A, for the Content of the Triangle.

USE VI. The Diameter of a Circle being given, to find it, Content.

Let the Diameter of a Circle be 3.5 Feet: fet ir on the Girt-Line D, to 95 on the Line C ; then againft 3.5 Feet on D , is 9.6 on the Line C , which is the Content in Feet of the faid Circle.

The Reafon of this Operation, is, that as the Square of 1 I , which is 12 I , is to 95 ; fo is the Square of the Diameter of any Circle, to its Content. Alfo, from the Nature of the Logarithms, it is manifeft, if any Number, taken on a fingle Line of Numbers, (whether whole or broken, in the manner that the Line D is) be fet to another Number, taken on a double Line of Numbers of the fame Length; that the Square of the Number taken on the fingle Line of Numbers, will be to the Number it is fet againft, on the double Line of Numbers, as the Square of any other Number, taken on the fingle Line of Numbers, to the Number againft it on the double Line of Numbers.

U SE VII. To find the Content of an Ovai or Ellipfis.
Let the Tranfverfe, or longeft Diameter, be 9 Feet, and the Conjugate, or Thortef Diameter, 4 Feet ; to find the Content of this Ellipfis.

Theorem. The Content of every Ellipfis, is a mean Proportional between a Circle, whofe Diameter is equal to the longeft Diameter of the Ellipfis, and a Circle whofe Diameter is equal to the fhortef Diameter of the fame Ellipfis; as is manifeft per Cor. 3. Prop. XI. Lib. I I. of Sturmy's Mathefis Enucleata.

Therefore a mean Proportional muft firt be found between 4 and 9, the longeft and fhortelt Diameters; to do which by the Sliding-Rule, fet the greater of the two Numbers 9 on the Girt-Line, to the fame Number on the Line C; then againft the leffer Number 4, on the fame Line C, is 6 the mean Proportional fought on the Girt-Line. Now we have only the Content of a Circle to find, whofe Diameter is 6 Feet; which, when found, will be the Content of the Elipfis fought: therefore (by the laft Problem) fet II on the Girt-Line D, to 95 on the Line C; then againft 6 Feet on the Girt-Line D, ftands on the Line C, 28.28 Feet for the Content of the aforefaid Ellipfis.

The Reafon of the Operation for finding a mean Proportional between two Numbers, as 4 and 9, is manifeft from what I faid in the laft Ufe of the Property of a double and fingle

Line of Numbers fliding by one another. And from this Theorem, viz. That if there are three Numbers continually proportional, (as 4,6 , and 9) the Square of the greateft (as 8 I) is to the greateft (9), as the Square of the middle one (6), or the Rectangle under the Extremes (which is equal to it, per Prop. 20. Lib. 7. Eucl.) is to the lefler Extreme (4).

This Ufe may be eafier folved at one Operation by the Lines A and B, thus; fet 1.27 on the Line B, to the tranfverfe Axis 9 Feet, on the Line A : then againft the Conjugate Axis 4, on the Line B, fands 28.28 Feet on the Line A, for the Content.
Note, The franding Number 1.27, is the Quotient of 14 divided by 11 ; alfo as 14 is to II, fo is the Rectangle under the tranfverfe and conjugate Axes of any Ellipfis to its Area; whence the Reafon of this Operation is eafily manifeft.

SECTION II。 Of meafurizg Timber.

 U SE I. To meafure Timber the common Way.'Take the Length in Feet, Half-feer, (and if defired) in Quarters ; then meafure half-way back again, where girt the Tree with a fmall Cord or Chalk-Line ; double this Line twice very even, and this fourth Part of the Girt, or Circumference, which is called the Girt, meafure in Inches, Halfs, and Quarters of Inches; but the Length muft be given in Feet, and the Girt in Inches. The Dimenfions being thus taken, the Tree is to be meafured as fquare Timber, the Girt, or $\frac{1}{4}$ of the Circumference being taken for the Side of the Square, in the following manner.

Always fet 12 on the Gitt-Line D, to the Length in Feet on the Line C; then againft the Side of the Square, on the Girt-Line D, taken in Inches, you will find on the Line \mathbf{C} the Content of the Tree in Feet.
Example I. Suppofe the Girt of a Tree in the middle be 60 Inches, and the Length 30 Feet, what is the Content? Set 12 on the Girt-Line D, to 30 Feet on the Line C; then againft 15 , the one fourth of 60 , on the Girt-Line D , is 46.8 Feet, the Content on the Eine C.

Example II. A Piece of Timber is $1 \boldsymbol{j}$ Feet long, and $\frac{7}{4}$ of the Girt 42 Inches: Set 12 on the Girt-Line D, to 15 on the fecond Radius of the Line C ; then againft 42 , at the beginning of the Girt-Line D, is, on the Line C, 184 Feet, the Content fought.
Example III.The Length of a Piece is 9 Inches, and a Quarter of the Girt 35 Inches, what is the Content? Now becaufe the Length is not a Foot, meafure it by your Line of Foot Meafure, and fee what Decimal part of a Foot it makes, which will be .75 ; then fet 12 on the Girt-Line, to 75 on the firt Radius of the Line C ; and againft 35 on the Girt-Line \mathbf{D}, is 6.4 Feet on the Line C, for the Content.
Example IV. A Rail is 18 Feet long, and the Quarter of the Girt 3 Inches: fet 12 on the Girt-Line D, to 18 on the firt Radius of the Line C; then againf 30 , which muft be taken for 3, on the Girt-Line D, is juft 1.13 Feet for the Content.

The Reafon of the Operations of this Ufe, is manifeft from what I faid about the Property of the Lines \mathbf{D} and \mathbf{G}, in Ufe VI. and this Theorem, viz that as 144, the fquare Inches in a Foot, is to the Content of the Square Bafe of a Parallelopipedon taken in Inches; that is, to the Square of $\frac{\pi}{4}$ of the Girt: fo is the Length of a Parallelopipedon taken in Feet, to the Solidity of the faid Parallelopipedon in Feet.
This Ufe may be be fooner done by taking all the Dimenfions in Foot Meafure thus, count $10,20,30,40, \mathcal{U}_{c}$. on the Girr-Line to be $1,2,3,4$, $\mathbb{U}_{\text {c. }}$. and then place 10 on the Girt-Liné D (now called I) to the Length of the Tree on the Line C, and againf the Girt, in Foot Meafure, on the Girt-Line D, ftands the Content on the Line C.
Example I. Let the Length of a Tree be, as in the firft Example foregoing, viz. 30 Feet, and the Girt 60 Inches, or 5 Feet, what is the Content? Set 10 (now called I) on the GirtLine D, to 30 Feet on the Line C; then againt 1.25 Feet, the one fourth of the Girt, on the Girt-Line D, ftands 46.8 Feet on the Line C, for the Content, as before.
Example II. A Piece of Timber is 15 Feet long, and one fourth of the Girt is 42 Inches, or 3.5 Feet, what is the Content.
Set 10 on the Girt-Line, to 15 on the firf Radius of the Line C; then againft 3.5 Feet on the Girt-Line, is 184 Feet on the Line C, the Content required.
Example III. A Length is 9.75 Feet, and $\frac{7}{4}$ of the Girt 39 Inches, or 3 Feet ${ }^{2} \div 5 \cdot$ fet 10 on the Girt-Line to 9.75 on the Line C ; and againft 3.25 Feet, on the Girr-Line D, is beyond 100 on the Line C: in this Cafe take half the Length, and then the Content found muft be doubled, as here:

Set 10 on the Girt-Cine, to (half of 9.75) 4.87; and then againlt 3.25 is 51.5 ; the double of which is 103 Feet, the Content required.
Note, If the Content of any Piece of Timber in Feet, be divided by 50 , you have the Content in Loads: but fome will have a Load to be but 40 folid Feet; therefore you may take which of the two is moft cuftomary with you.

USE II.

USE II. To meafure Round Timber the true way.

The manner of meafuring Round-Timber in the laft Ufe, being the common way, but not the true one, as I have already faid in Speaking of the Carpenter's Rule: I fhall now give you a Point on the Girt-Line D, which muft be ufed inftead of 12 , which is 10.635 , at which there ought to be placed a little Brafs Center-Pin : this 10.635 is the Side of a Square, equal to a Circle, whofe Diameter is 12 Inches.

Example. Let a Length be (as in the fecond Example of the laft Ufe) 15 Feet, and the $\frac{1}{4}$ of the Girt 42 Inches: fet the faid Point 10.635 , to 15 the Length; then againit 42, at the beginning of the Girt-Line, is 233 Feet for the Content fought : but by the common way, there arifes only 184 Feet.

Note, As the Area, or Content of a Circle (in Inches) whofe Diameter is 12 Inches, is to the Lenget of any Cylinder in Feet; Co is the Square of $\frac{1}{4}$ of the Circumference of the Bafe of the Cylinder, in Inches, to the folid Content of the Cylinder in Feet.

Alfo the common Meafure is to the true Meafure, as II is to I4; that is, as the Area, or Content of a Circle, to the Square of its Diameter; which, from hence, will be eafily manifeft : Call the Diameter of any Circle D, and the Circumference C; then the Content of the faid Circle will be equal to $\mathrm{D} \times \mathrm{C}$; therefore $\mathrm{D} \times \mathrm{C}$ is to $\mathrm{D} \times \mathrm{D}$, as II is to 14. But the common Meafure (becaufe the Length of the Piece is the fame) will be to the true Meafure, as $\mathrm{C} \times \mathrm{C}$, the Square of $\frac{1}{4}$ the Circumference, to $\mathrm{D} \times \mathrm{C}$ the Content of the faid Circle ; whence $\mathrm{D} \times \mathrm{C}$ muft be to D^{q}, as C^{q} is to $\mathrm{D} \times \mathrm{C}$; and by comparing the Rectangles under the Means and Extremes, they will be found equal ; therefore what I propofed is true.

If the Girt of a Piece of Timber be taken in Feet, the Point for true Meafure is 886 , or .89, which is the Side of a Square, equal to the Content of a Circle, whofe Diameter is Unity. And then, for the foregoing Example, the Length being is Feet, and $\frac{1}{4}$ of the Girt 42 Inches; fet the aforefaid Point 89 on the Girt-Line, to the Length 15 Feet on the Line C , (in the firt Radius) then againft 3.5 Feet (which is 35) on the Girt-Line D, is 233 Feet on the Line C, the true Content required.

U SE III. To meafure a Cube.

Let there be a Cube whofe Sides are 6 Feet ; to find the Content: fet 12 on the Girt-Line D , to 6 on the Line C; then againft 72 Inches (the Inches in 6 Feet) on the Girt-Line D , is 216 Feet on the Line C, which is the Content required.

U S E IV. To meafure unequal Squared Timber; that is, if the Breadth and Depth are not equal.

Meafure the Length of the Piece, and the Breadth and Depth (at the End) in Inches; then find a mean Proportional between the Breadth and Depth of the Piece; which mean Proportional is the Side of a Square equal to the End of the Piece: which being found, the Piece may be meafured as fquare Timber.

Example I. Let there be a Piece of Timber whofe Length is 13 Feet, the Breadth 23 Inches, and the Depth 13 Inches: fet 23 on the Girt-Line D, to 23 on the Line C; then againft 13 on the Line C, is 17.35 on the Girt-Line D for the mean Proportional. Now again ; fetting 12 on the Girt-Line \mathbf{D}, to 13 Feet, the Length, on the Line C; then againft 17.35 on the Girt-Line D, is 27 Feet the Content required.

Example II. Let there be a Piece of Stone 7.4 Feet in Length, 30 Inches in Breadth, and 23.5 Deep: fet 30 Inches on the Girt-Line D, to 30 on the Line C; then againft 23.5 , on the Line C, is 26.5 on the Girt-Line D; then fet 12 on the Girt-Line D, to 7.4 on the Line C; and againft 26.5 , on the Girt-Line, is 36 Feet the Content fought.

USE V. To find the Content of a Piece of Timber in Form of a triangular Prifm.

You muft firft find a mean Proportional between the Bafe, and half the Perpendicular of the triangular End, or between the Perpendicular and half the Bafe, both meafured in Inches, and that mean Proportional will be the Side of a Square equal to the Triangle.

Then to find the Content, fet 12 on the Girt-Line D, to the Length in Feet on the Line of Numbers C; and againft the mean Proportional on the Girt-Line D, is the Content on the Line of Numbers C.

But the Dimenfions being all taken in Foot Meafure, and the mean Proportional found in the fame ; then fet I on the Girt-Line, to the Length on the Line C; and againft the mean Proportional in the Girt-Line, is the Content in the Line C.

Example. There is a Piece of Timber 19 Feet 6 Inches in Length, the Bafe of the Triangle at each End 21 Inches, and the Perpendicular 16 Inches: to find the Content.

Set 2 I Inches on the Girt-Line D , to 21 on the Line C ; then againft 8 on the Line C , is 12.95 on the Line D , the mean Proportional; then fet I 2 on the Line D , to 19.5 Feet the Length, on the Line C; and againft 12.95 (the mean Proportional) on the Girt-Line D , is 22.8 Feet the Content on the Line C. Or thus, take all the Dimenfions in Foot-Meafure, and then the Length 19 Feet 6 Inches, is 19.5, the Bafe 21 Inches, is 1.75 , and the Perpendicular 16 Inches, is 1.33. Now fet 1 on the Girt-Line D, to the Length 19.5 on the dou-
ble Line C; and againft 1.08 on the Girt-Line D, is 22.8 Feet on the Line C, for the Content.

U S E VI. To meafure Taper Timber.

The Length being meafured in Feet, note one third of it, which may be found thus: fet 3 on the Line A, to the Length on the Line B ; then againft 1 on the Line A, is the third Part on the Line B: then if the Solid be round, meafure the Diameter at each End in Inches, and fubftract the leffer Diameter from the greater, and add half the Difference to the leffer Diameter, the Sum is the Diameter in the middle of the Piece; then fet 13.54 on the GirtLine D , to the Length on the Line C ; and againt the Diameter in the middle, on the GirtLine, is a fourth Number on the Line C. Again; fet 13.54 on the Girt-Line, to the third part of the Length on the Line C : then againft half the Difference on the Girt-Line, is another fourth Number on the Line C ; thefe two fourth Numbers added together, will give the Content.

Example. Let the Length be 27 Feet, (one third of which will be 9) the greater Diameter 22 Inches, and the lefler I8, the Sum of the greater and leffer Diameters will be 40 ; their Difference 4, half their Difference 2, which added to the leffer Diameter, gives 20 Inches for the Diameter in the middle of the Piece. Now fet 13.54 on the Girt-Line D, to 27 on the Line C ; and againft 20 on the Line D , is 58.9 Feet. Again, fet 13.54 of the Girt-Line, to 9 on the Line C; then againft 2 on the Girt-Line, (reprefented by 20) is. 196 Parts: therefore, by adding 58.9 Feet, to .196 Feet, the Sum is 59.096 Feet the Content. If all the Dimenfions are taken in Foot-Meafure, then you muft add the greater and leffer Diameters together, which in this Example make 3.33 Feet; half of which is the Diameter in the middle of the Piece, viz. 1.67 Feet, the difference of the Diameters is 0.33 Feet, half of which Difference is 0.17 Feet.

Then fet I.r 3 on the Girt-Line, to the Length 27 Feet on the Line C; and againft r. 67 on the Line D , is 58.9 Feet: then again, fet I .13 on the Line D , to 9 Feet on the Line C ; and then againft 0.17 on the Line D, is 196 Parts of a Foot, and both added together is the Content ; that is, 58.9 and . 196 added, makes 59.096 Feet as before.

If the Solid is fquare, aud has the fame Dimenfions; that is, the Length 27 Feet, the Side of the greater End 22 Inches, and the Side of the leffer End 18 Inches, to find the Content in Inch-Meafure: fet 12 on the Girt-Line, to 27 the Length of the Solid, on the Line C; and againft 20 Inches, the Side of the mean Square on the Girt-Line, is $75 \cdot 4$ Feet. Again; Set 12 on the Girt-Line, to 9 Feet, one third of the Length, on the Line C; and againft 2 Inches, half the difference of the Sides of the Squares of the Ends, on the Girt-Line, is 25 Parts of a Foot; both together is 75.65 Feet the Content of the Solid: or thus, When all the Dimenfions are taken in Foot-Meafure, fet I on the Girt-Litie, to the Length 27 Feet on the Line C; then againft 1.67 Feet, the Side of the middle Square on the Girt-Line, ftands 75.4 Feet ; and fetting I on the Girt-Line to 9 Feet, one third of the Length on the Line C, againtt 0.167 , half the D.fference of the Sides of the Squares of the Ends on the Girt-Line, is on the Line C, 25 Parts of a Foot; which added to the other, makes 75.65 Feet, as before, for the Content.

Note, The fixed Numbers 13.54 , and 1.13 are, the firt, the Diameter of a Circle whofe Area, or Content is 144 ; that is, the Number of fquare Inches in a fuperficial Foot; and the other, the Diameter of a Circle whofe Area is Unity.

US E VII. To find bow many Inches in Length will make a Foot-Solid, at any Girt, being the Side

 of a Square not exceeding 40 Inches.Let the Girt, or Side of the Square, taken upon the Girt-Line, be fet to I on the Line C: then againft 41.57 of the Girt-Line, is the Number of Inches on the Line C, that will make a Solid-Foot.

Example. Let the Side of a Square be 8 Inches: fet 8 on the Girt-Line D, to 1 on the Line C; then againft 41.57 on the Girt-Line D, is 27 Inches for the Length of one folid Foot. To do this in Foot Meafure; the Side of the Square 8 Inches, in Foot-Meafure, is . 66 Parts, which taken on the Girt-Line, and being fet to x on the Line C, againft I on the Girt-Line, is 2.25 Feet, for the Length to make one Foot of Timber.

Note, 41.57 is the Square-Root of 1728 , the Number of Cubic Inches in a folid Foot.
U S E VIII. The Diameter of a Circle, or round Piece of Timber, being given: to find the Side of a Square within the Circle; or to knuw how many Incles the Side of the Square will be, when the round Timber is Squared.
Rule. Set 8.5 on the Line A , to 6 on the Line B ; then againtt the Diameter on the Line A, is the Side of the Square on the Line B.

Example. Let the D ameter be 18 Inches: fet 8.5 on A , to 6 on B ; then againft I 8 on A , is $12 \frac{1}{4}$ on the Line B, for the Side of a Square within the Circle. The fame done in FootMeafure : the Dameter being 18 Inches, is in Foot-Meafure 1.5 ; then fet 1 on the Line A, to .707 on the Line B; and againft the Diameter 1.5 on the Line A, is 1.7 on the Line B; that is, 1.7 Foot is the Side of an infcribed Square in a Circle, whofe Diameter is 1.5 Foot.

Note,

Note, the given Numbers 8.5 and 6, or more exacter, I and .707 , are, the one the Diameter of a Circle, and the other the Side of a Square infcribed in that Circle.

USE IX. The Girt of a Tree, or round Piece of Timber being given; to find the Side of
a Square within.
Rule. Set 10 to 9 on the Lines A and B; then againft the Girt on the Line A, are the Inches for the Side of the Square on the Line B .

Let the Girt be I_{2} Inches; fet 10 on the Line A, to 9 on the Line B; then againt I_{2} on the Line A, is 10.8 on the Line B, for the Side of the Square. By Foot-Meafure it is thus; the Girt 12 Inches is one Foot ; then fet 10 on the Line A, to 9 on the Line B; and againft the Girt I Foot, on the Line A, is 89 Parts of a Foot for the Side of the Square within.

Note, The Numbers 10 and 9, or I and.9, fhew when the Square within the Circle is I, the fourth Part of the Circumference is .9. Parts of the fame. Alfo, by this and the laft Ufe, you may know, before a Piece of Timber be hewn, how many Boards or Planks of any Thicknefs it will make.

U SE X. The fourtl, Part of the Girt of a round Piece of Timber being given; to find the Side of a Square equal to it.
Rule. Set I on the Line A, to 1.128 , on the Line B; then againft the one fourth of the Girt, on the Line A, is on the Line B, the Side of the Square equal to it.

Example. Let the Girt, (that is, one fourth of the whole Girt) be 16 Inches; what is the Side of a Square equal to it? Set I to I.I3, on the Lines A and B; then againft 16 on the Line A, is 18 on the Line B; which fhews, that a Square, whofe Side is 18 Inches, is equal to a Circle, whofe Girt is 64 Inches, and $\frac{1}{4}$ of its Girt 16 Inches.

USEXI. To find the Solidity of a Cone.

Let the Diameter of the Bafe of a Cone be 12 Feet, and its Altitude or Height, 24 ; to find the Content.

This Ufe may be folved at one Operation, thus; fet 1.95 on the Girt Line, to the Height of the Cone 24, on the Line C ; then againft the Diameter of the Bafe of the Cone 12, on the Girt Line, ftands on the Line C, 904.8 Feet, for the Content.

Note, I.95 is the Square Root of the Quotient of 42 divided by II: and as the Quotient of 42 divided by II, is to the Height of any Cone; fo is the Square of the Diameter of its Bafe to the folid Content.

USE XII. To find the Solidity of a Square Pyramid.

Suppofe the Side of the Bafe is 8 Inches, and the Height 30 , fet 7 on the Girt Line, to $\frac{a_{3}}{3}$ of the Length, viz. Io, on the Line C ; then againft the Side of the Bafe 8, on the Girt Line, is 640 Inches, on the Line C, for the Solidity.

U S E XIII. To find the Solidity of a Sphere, by baving the Circumference given.
Let the Circumference of a Sphere be 22 Inches; to find the Content. As 2904 is to 49, fo is the Cube of the Circumference of a Sphere to its folid Content : therefore fet 53.8 (the Square Root of 2904) on the Girt Line, to 49 on the Line C; then againft the Circumference 22 Inches on the Girt Line, is a fourth Number, viz. 8.09. Again, fet I, on the Line B, to 22 on the Line A; then againft 8.09 , on the Line C, ftands 179.6 on the Line A, for the Content of the faid Sphere in folid Inches. If the Diameter had been given, you muft have ufed the fixed Numbers 4.57 and 1 I, inftead of 53.8 and 49 , and then have proceeded as before : becaufe as $2 I$ is to II, fo is the Cube of the Diameter of a Sphere to the folid Content thereof.

This Ufe may be otherwife folved at one Operation, thus: fet 7.69 on the Girt Line D, to the Circumference of the Sphere 22 Inches, on the Line C; then againft 22 Inches, on the Girt Line D, ftands, on the Line C, the folid Content 179.6 Inches. If the Diameter be given to find the Solidity at one Operation, you muft fet 1.38 , on the Girt Line to the Diameter on the Line C ; then againft the fame Diameter, on the Girt Line, ftands, on the Line C, the Content.

Note, 7.69, and 1. 38 are, the one, the Square Root of the Quotient of 2904 divided by 49 ; and the other, the Square Root of the Quntient of 21 , divided by II.

USE XIV. The Circumference of a Sphere being given, to find its Superficies.
Suppofe the Circumference of a Sphere be 20 Inches, what is the Area of its Superficies? Set 4.69 (the Square Root of 22) on the Girr Line \mathbf{D}, to 7 on the Line C; then againft 20 Inches on the Girt Line, ftands upon the Line C 136.5, the Area of the Superficies of the Sphere.

The reafon of this is, becaufe as 22 is to 7 ; fo is the Square of the Circumference of a Sphere to the fuperficial Area thereof.

USE XV. To find the Solidity of the Sigment of a Splere.

Say, as 21 is to the Sine; fo is II times the Square of the faid Sine, added to 33 times the Square of half the Chord, to the folid Content of the Seqment. As fuppofe the Sine be 10 Inches, and half the Chord 16 Inches; to find the Content: Say, as 21 is to 10 ; fo is 9548 , the Sum of 1 I times the Square of 10 , added to 33 times the Square of 16 , to the Content 4546.6 Inches.

U SE XVI. To find the Area of the Convex Superficies of the Segment of a Sphere.
Say, as 14 is to 44 times the Diameter of a Sphere; fo is the Length of the Sine of any Segment thereof, to the convex Superficies of the faid Segment. Suppofe the Sine be i2 Inches, and the Diameter 30 ; fay, as 14 is to 1320 ; fo is 12 to II3I. 4 Inches, the Content fought.

C H A P. V.

Of the Conftruction and USes of the Plotting-Scale, and an improvid Protractor.

THE Plotring-Scale is generally made of Box-Wood, and fometimes of Brafs, Ivory, or ${ }^{T}$ Silver, exactly a Foot, or half a Foot in Length, about an Inch and a half broad, and of a convenient Thicknefs: Thofe that are but half a Foot long, have that Lengch given them, that thereby they may be put into Cafes of Inftruments.

On one Side of this Scale is placed feven feveral Scales of Lines, five of which are divided into as many equal Parts as the Length of the Plotting-Scale will permit. The other two are likewife equal Parts, but have two Lines of Chords of different Lengths joined to them. The firf of the equal Divifions, on the firt Scale of Lines, is fubdivided into 10 equal Parts, at the beginning of which is fet the Number ro ; figniifying, that ten of thofe Subdivifions make an Inch: that is, in this Cafe, every of the Divifions on the firtt Scale, is exactly an Inch; at the End of the firf of which, is fet o; at the End of the fecond I; at the End of the third 2; and fo on to the End of the Scale. The firf of the equal Divifions, on the fecond Scale of Lines, which are lefler than the Divifions on the firt Scale, is likewife fubdivided into 10 equal Parts, and hath the Number 16 fet at the beginning of it, fignifying, that 16 of thofe Subdiviions make an Inch, or one of the Divifions $\frac{y}{T} \%$ of an Inch; at the End of the firt of which is placed 0; at the End of the fecond : at the End of the third 2: and fo on to the End of the Scale. The firt of the equal Divifions on the third Scale of Lines, which are leffer than the Divifions of the precedent Scale's, is alfo fubdivided into to equal Parts; at the beginning of which is fet the Number 20; fignifying, that 20 of thofe Subdivifions go to make an Inch, or that one of the Divifions is $\frac{1}{2} \frac{0}{\circ} \frac{1}{2}$ of an Inch, which Divifions are marked, $0,1,2,3$, and fo on to the End of the Scale. Underftand the fame for the other four Scales, at the beginnings of which are writ, $24,32,40,48$; only the Divifions of the two lalt Scales of Lines are not continued to the End of the Scale, becaufe of two Lines of Chords of different Lengrhs, the Beginnings of which are marked by the Letters C, C, fignifying Chords. The Conftruction of which fee in the next Chapter.

Note, Each of the aforefaid Scales of Lines are aptly diftinguifh'd from one another, by being call'd Scales of $10,16,20,24,32$, or 48 , in an Inch; as the firt Scale, is a Scale of 10 in an Inch; the fecond, 16 in an Inch; the third, 20 in an Inch; the fourth, 24 ; and fo on.
Fig. 2.
On the back Side of this Scale, is placed a Diagonal Scale ; the firf of whofe Divifions, which is half an Inch, if the Scale is a Foot long ; and one fourth, if the Scale is but half a Foot long, is diagonally fubdivided into 100 equal Parts. Alfo at the other End of the Scale is another Diagonal Subdivifion of an Inch into roo equal Parts, if the Scale is a Foot long; but if it is half a Foot, the Subdivifion is of half an Inch into 100 equal Parts. The Figure of this Diagonal Scale, and what our Author has already faid of it, in Ufe 8, is fufficient to fhew its Conftruction and Ufe.

There is alfo next to the Diagonal Scale, a Foot divided into too equal Parts, if the Scale is a Foot long, every 10 of which are numbered $10,20,30, w_{c}$. There is likewife next to that the Divifions of Inches, numbered $1,2,3$, 心i. each of which is fubdivided into ten equal Parts.

Ufe of the Plotting-Scale.
This Scale's principal Ufe is to lay down Chains and Links taken in furveying Land.

U S E I. Any Difance being meafured by your Cbain, to lay it down upon Paper.

Suppofe, that meafuring along a Hedge, or the Diftance between any two Marks, or Pla- सig. 3o ces, with your Chain, you find the Length thereof to contain 6 Chains, 50 Links. Now to take this D.flance from your Scale, and lay it down upon Paper, do thus :

Firft draw the Line A B, then place one Foot of your Compaffes upon your Scale at the Figgure 6, for the 6 Chains, and extend the other Foot to 5 of the Subdiyifions, (which reprefents the 50 Links) then fet this Diftance upon the Line drawn from A to B, and the Line A B will contain 6 Chains, 50 Links, if you take the Diftance from the Scale of 10 in an Inch.

But if you would have the Line fhorter, and yet to contain 6 Chains 50 Links, then take your D. ftance from a fmaller Scale, as of 16,20,24, © c. in an Inch, and then the 6 Chains, 50 Links, will end at C : if taken from the Scale of 16 in an Inch; or at if taken from the Scale of 20 in an Inch, Erc. either of which Lines will contain 6 Chains, 50 Links, and be proportional one to another, as the Scales from which they were taken. And in this manner any Number of Chains and Links may be taken from any of the Scales.

U SE II. A right Line being given, to find how many Chains and Links are therein contain'd, according to any affygned Scale.
Suppofe A B was a given Line, and it is required to find how many Chains and Links are Fig, 3 ? contained therein, according to the Scale of ro in an Inch: Take in your Compaffes the Length of the Line A B, and applying it to the Scale of 10 in an Inch, you will find that the Extent of your Compaffes will reach from 6 of the great Divifions, to 5 of the fmall ones; whence the Line A B, contains 6 Chains, 50 Links. The like muft be done for any Line, and alfo by any of the other Scales.

But note, that in laying down the Lengths of Lines by your Scales, whatfoever Scale you begin your Work with, with the fame Scale you muft continue it to the End, not laying down one Line by one Scale, and another by another; but if you would have a large Work in a little room, then ufe a fmall Scale, as of 32,40 , or 48 in an Inch. But contrariwife, if you would exprefs every fmall Particular, then it is beft to ufe the Scales of 10 , or 16 in an Inch:

The Ufe of the Lines of Chords on the Plotting-Scale, is to protract or lay down Angles, when a Protractor is wanting, which is much more convenient in laying oft Angles: vide Ufes of the Plain-Scale. 'To take off Parts from the Diagonal Scale, fee Ufe VIII. of our Author's。

Of the Conftruction and USe of an improwed ProtraEtor.

This Protractor is made of Brafs, as the others commonly are, and has likewife its Semi- Fig. कo circular Limb divided into 180 Degrees; there is an Index adjufted in the Center of this Protractor, by means of which, an Angle of any Number of Degrees and Minutes, may be protracted : there is a Circle cut out in the Piece, whofe Edge, next to the Limb, ferves for the Diameter of the Semicircle; the Center of this Circle is in the Center of the Limb, and it is cut floping, fo that it makes the Fruftum of a Cone, the greateft Bafe being underneath. In this Circle is adjufted a Ring, to which the Ring of the end of the Index is rivetted; by which means the Index will move freely about the Limb. There is a little Steel Point fixed to the Ring, adjufted in the aforefaid Circle, the End of which terminates in the Center of the Circle; the End of this Point muft be laid to the angular Point to be protracted.

The Index confifts of two Pieces, one End of that which comes out beyond the Limb of the Protractor is cut flopewife, fo as exactly to fit the Edge of the Limb of the Protractor, which is likewife floped underneath, and is faftened to the other Piece; by which means the Index is kept down clofe to the Limb.

The Divifions on both Edges of that Part of the Index beyond the Limb, are 60 equal Parts of the Portions of Circles (paffing thro the Center of the Protractor, and two Points affumed in the outward Edge of the Limb of that Piece of the Index nigheft the Center) intercepted by two other right Lines drawn from the Center; fo that they each make, with Lines drawn to the affumed Points from the Center, Angles of one Degree.

To lay off any Number of Degrees and Minutes by this Protractor, you muft move the Index, fo that one of the Lines drawn upon the Limb, from one of the aforementioned Points, may be upon the Number of Degrees fought; and then pricking off as many of the equal Parts on the proper Edge of the Index, as there are Minutes given, and drawing a Line from the Center, to that Point fo prick'd off, you will have an Angle, with the Diameter of the Protractor, of the propofed Number of Degrees or Minutes. The reafon of this Contriyance is from Prop. 27. Lib. 3. Eucl. where it is proved that Angles infiting upon the fame Arcs, in equal Circles, or in the fame Circle, (for it is the fame thing) are equal.

C H A P. VI.

The Projection of the Plain-Scale.

FIR ST, draw a Circle ABDC, which crofs at right Angles with the Diameters A D, $\mathrm{C} B$; then continue out $\mathrm{A} D$ to G, and upon the Point B , raife BF perpendicular to C B. Now draw the Chord AB, and divide the Quadrant A B into 9 equal Parts, fetting the Figures 10, 20, 30, \& c. to 90 to them ; each of which 9 Parts again fubdivide into Io more equal Parts, and then the Quadrant will be divided into 90 Degrees. Now fetting one Foot of your Compaffes in the Point A, transfer the faid Divifions to the Chord Line A B, and fet thereto the Figures io, 20, 30, \& cr. and the Line of Chords A B, will be divided, and then may be put upon your Scale, reprefented in Fig. 6. Now to project the Sines, divide the Arc BD into 90 Degrees, as before you did A B ; from every of which Degrees, ler fall Perpendiculars on the Semidiameter E B ; which Perpendiculars will divide EB into a Line of Sines, to which you muff fet $10,20,30$, \mathcal{V}^{c}. beginning from the Center, and then you may transfer the Line of Sines to your Scale.
Again, to projeit the Line of Tangents ; from the Center E, and thro every Divifion of the Arc B D, draw right Lines cutting BF, which will divide it into a Line of T'angents, fetting thereto the Numbers $10,20,30, \mathcal{N}^{c}$. which you muft transfer to your Scale.

To project the Line of Secants, transfer the Diftances $\mathrm{E}_{10}, \mathrm{E}_{20}, \mathrm{E}_{30}$, $\mathcal{F}_{\text {c. }}$ that is, the Diftance from E to $10,20,30, \mathcal{E}_{c}$. on the Tangent Line, upon the Line $E G$, and ferting thereto the Numbers $10,20,30, \mathcal{G}$. the Line E G will be divided into a Line of Secants, which muft be transfer'd on the Scale.
To project the Semi-tangents; draw Lines from the Point C, thro every Degree of the Quadrant A B, and they will divide the Diameter AE into a Line of Semi-tangents: but becaufe the Semitangents, or Plane-Scales of a Foot in Length, run to 160 Degrees, continue out the Line A E, and draw Lines from the Point C, thro the Degrees of the Quadrant C A, cutting the faid continued Portion of A E, and you will have a Line of Half-tangents to 160 Degrees, or further, if you pleafe.

Note, The Semitangent of any Arc, is but the Tangent of half that Arc, as will eafily appear from its manner of Projection, and Prop. 20. Lib. 3. Eucl. where it is proved, that an Angle at the Center, is double to one at the Circumference.
Moreover, to draw the Rhumb Line ; from every 8th part of the Quadrant A C, fetting one Foot of your Compaffes in A, defcribe Arcs cutting the Chord AC, which will divide AC into a Line of whole Rhumbs, and in the fame Manner may the Subdivifions of half and quarter Rhumbs be made.
Laftly, to project the Line of Longitude ; draw the Line H D, equal and parallel to the Radius C E, which divide into 60 equal Parts, (becaufe 60 Miles make a Degree of Longitude under the Equator) every io of which Number fet Figures to. Now from every of thofe Parts, let fall Perpendiculars to CE, cutting the Arc C D; and having drawn the Chord C D, with one Foot of your Compafies in D, transfer the Diftances from D , to each of the Points in the Arc C D, on the Chord C D, and fet thereto the Numbers $10,20, \mathcal{E}$ c. and the Line of Longitude will be divided.
The Reafon of this Conftruetion is, that as Radius is to the Sine Complement of any Latitude, fo is the Length of a Degree of Longitude under the Equator, which is 60 Miles, to the Length of a Degree of Longitude in that Latitude.
Thefe being all the Lines commonly put upon the Rulers, call'd Plain-Scales, excepting equal Parts; therefore I fhall proceed to fhew their manner of ufing in Trigonomerry, and Spherical Geomerry.

But by the way, note, That Plain-Scales are commonly of thefe two Lengths, viz. fome one foot long, and others, which are put into Cafes of Inftruments, but half a foot in Length; and on one Side is a Diagonal Scale : they are generally made of Box, and fometimes of Brafs or Ivory.

U S E I. To make an Angle in the Point A, at the End of the Line A B, of any Number of Degrees, fuppofe 40.

Fig. 90
Take in your Compaffes 60 Degrees from the Line of Chords, and fetting one Foot in the Point A, defrribe the Arc C B ; then take 40 Degrees, which is the Number propofed, from the fame Line of Chords, and lay them off on the Arc from B to E ; draw the Line AE, and the Angle BAE will be 40 Degrees, as is manifeft from the Confruction of the Line of Chords, and Prop. 15. Lib. 4. Eucl. Which fhews that the Semidiameter of any Circle, is equal to the Side of a Hexagon infcribed in the fame Circle; that is, to the Chord of 60
Degrees.

U SE II. The Angle EA B being given, to fund the Quartity of Degrees it contains.
Take in your Compaffes 60 Degrees from the Line of Chords, and defcribe the Arc BC : Fig. 70 then take the Extent from B to E in the Compafies; which Extent appiy on the Line of Chords, and the Quantity of the Angle will be fhewn. This Ufe, which is only the Reverfe of the former, may be likewife done by the Lines of Sines and Tangents, the Method of doing which is enough manifeft from Ufe I.
U SE III. The Aafe of a Triangle being given 40 Lengues, the Angle ABC 36 Degrices, and the Argle B A C 41 Degrees; to make the Triangle, find the Lengths of the Sides A C, C B, and alfo the other Aighle.
Draw the indefinite right Line A D, and take the Extent of 40 Leagues, from the Line Fig. S. of Leagues, between your Compaffes, which lay off upon the faid Line from A to B for the Bafe of the Triangle ; at the Points A and B make, by Ufe I. the Angles A DC, BCA; the firft 36 I2egrees, and the laft 41 Degrees, and the Triangle A CB will be formed; then take in your Compafles the Length of the Side A C, and apply it to the fame Scale of Leagues, and you will find its Length to be 24 Leagues. Do thins for the other Side B C, and you will find it 27 Leagues and a half; and, by Ufe II. the Angle A C B will be found 103 Degrees.

By this Ufe the following Problem in Navigation may be folved, viz. Two Ports, both lying under the fame Meridian, being any Number of Miles diftant from each other, fuppofe 30, and the Pilot of a Ship, out at Sea on a certain time, finds the Bearing of one of the Ports is S W by S, and the Bearing of the other N W : the Ship's Diftance from each of the Ports at that time is required?

To folve this Problem ; draw the right Line AB equal to 3 Inches, or 3 of the largeft equal Parts on the Diagonal Scale, which is to reprefent the 30 Miles, or the Diftance from one of the Ports, as A to the other B; at the Point B make an Angle, equal to the bearing Fig. 9. of the Port B from the Ship, which muft be 33 Degrees, 45 Minutes; likewife make another Angle at the Point A, equal to the bearing of the Port A from the Ship, which mult be 45 Degrees, then the Point C will be the Place the Ship was in at the time of Obfervation.

Now to find the Diftance of the Ship from the Port A, take the Length of the Side A C in your Compaffes, and applying it to the Diagonal Scale, you will find it to be $17 \times-\frac{1}{-0}$ Miles. In the fame manner the Diftance of the Ship, from the Port B, will be found $2 \frac{1}{1} \frac{1}{2}$ Miles.

Note, The Reafon why the Angles A and B are equal to the bearing of the Ship from each of thofe Ports, depends on Prop. 29. lib. 1. Eucl.
USE IV. The Bafe A B of a Triangle being given 60 Leagues, the oppofite Angle A C B 108 Fig. 10 Degrees, and the Side C B 40 Lengues; to make the Said Triangle, and find the Length of the other Side A C.
Draw the Line $a b$ equal to A B, the given Bafe ; and becaufe in any Triangle the Sines Fig. rro of the Sides are proportionable to thie Sines of the oppofite Angles (as is demonftrated by Trigonometrical Writers) it follows, that as A B is to the Sine of the given Angle C, which is of 72 Degrees, viz. the Complement of 108 Degrees to 180 ; fo is the given Side BC, to the Sine of the Angle C A B : therefore make $b c$ equal to the given Side BC of 40 Leagues. Take in your Compaffes, upon the Line of Sines, the Sine of 72 Degrees, to which Length make b e equal, and draw the Line $a c$; likewife draw ed parallel to $a c$, and (by Prop. 4. lib. 6. Eucl.) $b d$ will be the Sine of the Angle C A B, which will be found, by applying it to the Line of Sines, about 39 Degrees: therefore make an Angle at the Point A of 39 Degrees, then take in your Compaffes the Length 40 Leagues, and fetting one foot in the Point B, with the other defcribe an Arc, which will cut the Side A C in the Point C, and confequently the Triangle A B C will be made, and the Length of the Side A C will be found 34 Leagues.

U S E V. Concerning the Line of Rbumbs.

The Ufe of the Line of Rhumbs is only to lay off, or meafure, the Angles of a Ship's Courfe in Navigation, more expeditioully than can be done by the Line of Chords: As fuppofe a Ship's Courfe is N NE, it is required to lay it down.

Draw the Line A B, reprefenting the Meridian; take 60 Degrees from the Line of Fig. Iso Chords, and about the Point Λ defcribe the Arc B C. Now becaufe N NE is the third Rhumb from the North, therefore take the third Rhumb in your Compantes, on the Liue of Rhumbs, and lay it of upon the Arc from B to C; draw the Line A C, and the Angle B A C will be the Courfe.

U S E VI. Of the Line of Longitude.
The Ufe of this Line is to find in what Degrees of Latitude a Degree of Longitude is $1,2,3,4, \mathcal{V}^{c}$. Miles, which is eafily done by means of the Line of Chords next to it: for it is only feeing what Degree of the Line of Chords anfwers to a propofed Number of Miles, and that Degree will be the Latitude, in which a Degree of Longitude is equal to that pro-
pofed Number of Miles. As for Example ; againft io Miles, on the Line of Longitude, frand 80 Degrees, and fomething more ; whence, in the Latitude of about 80 Degrees, a Degree of Longitude is no Miles. Again, 30 Miles on the Line of Longitude, anfwers to 60 Degrees on the Line of Chords ; therefore in the Latitude of 60 Degrees, a Degree of Longitude is 30 Miles. Moreover, againft 58 Miles, on the Line of Longitude, ftands 15 Degrees of the Line of Chords, which fhews that a Degree of Longitude, in the Latitude of 15 Deg. is 58 Miles; and fo for others.

USE of the Plain-Scale in Spherical Geometry.
 U S E I. To find the Pole of any Great Circle.

If the Pole of the Primitive Circle be required, it is its Center.
If the Pole of a right or perpendicular Circle be fought, it is go Degrees diftant, reckoned upon the Limb from the Points, where this Circle, which is a Diameter, cuts it.
If the Pole of an oblique Circle be required,
(i.) Confider that this Circle muft cut the primitive in two Points, that will be diftant from each other juft a Diameter, as is the Cafe of the Interfection of all great Circles.
(2.) The Pole of this Circle muft be in a right Line perpendicular to its Plane.
(3.) This Circle's Pole cannot but lie between the Center of the primitive one, and its own.

Example. Let the Pole of the oblique Circle A B C be required.

1. Draw the Diameter A C, and then another, as D E, perpendicular to it.
2. Lay the Eige of your Scale from A to B , it will cut the Limb in F ; then take the Chord of 90 Degrees, and fet it from F to b.
3. Lay the Edge of your Scale from b to \dot{A}, it will cut DE in g, which Point g is the Pole required.
Note, To find the Points F and b, is called reducing B to the primitive Circle, and to the Diameter. Alfo, Note, that every of the primitive Circles in this Ufe, and the following ones, are fuppofed to be defcribed from 60 Degrees, taken off from the leffer Line of Chords on the Scale.

U SE II. To defribe a Spherical Angle of any Number of given Degrees.
I. If the angular Point be at the Center of the primitive Circle, then it is at any plane Angle, numbring the Degrees in the Limb from the Line of Chords; for all Circles paffing thro the Center, and which are at right Angles with the Limb, muft be projected into right Lines.
2. If the Angle given is to be defcribed at the Periphery of the primitive Circle, draw a Diameter, as AC; then take the Secant of the Angle given in your Compaffes, and fetting one Foot in A, crofs the Diameter in e : or if no Diameter be drawn, placing one Foot in C, and crofing the former Arc, you will find the fame Point e, which is the Center of the Circle A a C, which, with the Primitive, makes the Angle D A a required.
Note, If the Angle given be obtufe, take the Secant of irs Supplement to 180 Degrees.
3. If a Point, as a, were affigned, thro which the Arc of the Circle confituting the Angle mult pais, draw the Diameter A C (as before) then take the Secant of the given Angle, and fetting one Foot in A or C, Arike an Arc as at e; and then with the Secant of the given Angle, ferting one Foot in a, crofs the other Arc in e; which will be the Center of the oblique Circle required.
US E III. To draw a great Circle thro any two Points given, as a and b, within the primitive ore.
Draw a Dianeter thro that Point which is furthelt from the Center, as $\mathrm{D} R$, producing it beyond the Limb if there be Occafion; fet 90 Degrees of Chords from D or R, to O, and draw $\mathrm{O} a$.
Then ereat OH perpendicular to $a \mathrm{O}$, and produce it till it cuts the Diameter prolonged in H ; that Interfeetion H is a third Point, thro which, as alfo a and b, if a Circle be drawn, it will be a great Circle, ase a $b \mathrm{~g}$.
Which is eafily proved, by drawing the Lines e $\mathrm{C} g$; for that Line is a Diameter, becaufe its Parts, multiplied into one another, are equal to $a \mathrm{c} \times \mathrm{CH}$, equal to O C fquared. Per Prop.35. lib.3. © Coroll. 8. lib. 6. Eucl.

U S E IV. To draw a great Circle perpendicular to, or at right Angles with another.

Let it pafs through its Poles, and it is done.
Of which there will be four Cafes :

1. To draw a Circle perpendicular to the Primitive, which is done by any ftrait Line paffing thro' the Center.
2. To draw a Circle perpendicular to a right Circle, is only to draw a Diameter at right Angles with that right Circle.
3. To draw an oblique Circle perpendicular to a right one, only draw a right Circle that fhall pafs thro both the Poles of fuch a right Circle.
'Thus the oblique Circle DCR is perpendicular to the right one OQ' becaufe it paffes thro its Poles \mathbf{D} and R.
4. To draw an oblique Circle perpendicular to another :

Firt find P , the Pole of the given obliqne Circle Ce , and then draw any-how the Dia- Fig: $1 .{ }^{\circ}$ meter D R : fo a Circle, drawn thro the three Points D, P, and R, will be the Circle required ; for paffing thro the Poles of the oblique Circle $C e B$, it muft be perpendicular to it.

U SE V. To meafure the Quantity of the Degrees of any Arc of a great Circle.

1. If the Arc be part of the Primitive, it is meafured on the Line of Chords.
2. If the Arc be any part of a right Circle, the Degrees of it are meafured on the Scale of Semi-Tangents, fuppofing the Center of the primitive Circle to be in the beginning of the Scale ; fo that if the Degrees are to be reckoned from the Center, you muft account according to the Order of the Scale of Half-Tangents.

But if the Degrees are to be accounted from the Periphery of the Primitive, as will often happen, then you muft begin to account from the end of the Scale of Half-Tangents; calling 80 , $10 ; 70,20, \mathcal{E}^{\circ} c$.
3. To meafure any part of an oblique Circle; firft find its Pole, and there laying the Ruler, reduce the two Extremities of the Arc required to the primitive Circle, and then meafure the Diftance between thofe Points on the Line of Chords.

Thus, in the laft Figure, if the Quantity of $e \mathrm{~B}$, an Arc of the oblique Circle $\mathrm{C} e \mathrm{~B}$ be required, lay a Ruler to P the Pole, and reduce the Points $e \mathrm{~B}$ to the primitive Circle ; fo Fig. to fhall the Diftance between O and B, meafured on the Line of Chords, be the Quantity of Degrees contained in the ArceB.

U S E VI. To meafure any Spherical Angle.

1. If the angular Point be at the Center of the primitive Circle, then the Diftance between the Legs taken from the Limb, and meafured on the Chords, is the Quantity of the Angle fought.
2. If the angular Point be at the Periphery, as A C B ; here the Poles of both Circles be-Fig. $\dot{*}$ ing in the fame Diameter, find the Pole of the oblique Circle C B O, which let be P; then the Diftance of BP , meafured on the Scale of Half-Tangents, is the Meafure of the Angle A C B.

For the Poles of all Circles mult be as far diftant from each other, as are the Angles of the Inclinations of their Planes.

But if the two Poles are not in the fame Diameter, being both found in their proper Diameter, reduce thofe Points to the primitive Circle; and then the Diftance between them there, accounted on the Line of Chords, is the Quantity of the Angle fought.

When the angular Point is fomewhere within the primitive Circle, and yet not at the Fig. $3^{?}$ Center, proceed thus: Suppofe the Angle $a b \mathrm{C}$ be fought; find the Pole P of the Circle $a b d$, and then the Pole of the Circle e $b c$; after which lay a Ruler to the angular Point, and the two Poles \mathbf{P} and Q, and reduce them to the primitive Circle by the Points x and z; fo is the Arc $x z$, meafured on the Line of Chords, the Meafure of the Angle a $b \mathrm{C}$ required.

U S E VII. To draw a Parallel-Circle.

1. If it be to be drawn parallel to the primitive Circle, at any given Diftance, draw it from the Center of the Primitive, with the Complement of that Diftance taken from the Scale of Half-Tangents.
2. If it be to be drawn parallel to a right Circle ; as fuppofe $a b$, parallel to A B, was to Fig. q. be drawn at 23 Deg. 30 Min . Diftance from it; from the Line of Chords take 23 Deg. 30 Min. and fet it both-ways on the Limb from A to a, and B to b (or fet its Complement 66 Deg. 30 Min . both-ways from P the Pole of A B) to the Points a and b.

Then take the Tangent of the Parallel's Diftance from the Pole of the right Circle A. B, which is here 66 Deg . 30 Min . and fetting one foot in a and b, with the other ftrike two little Arcs, to interfect each other fomewhere above P, which will give C, the Center of the parallel Circle $a b d$ required.
3. If it be drawn parallel to an oblique Circle, and at the Diftance fuppofe of 40 Degrees : Fig. 5 . Firft find P, the Pole of the oblique Circle A B C, and then meafure, on the Scale of Half-Tangents, the Diftance $g \mathrm{P}$, which fuppofe to be 34 Degrees; then add to it 50 De grees, the Complement of the Circle's Diftance, it will make 84 Degrees; and alfo fubftracting 50 from it, or it from 50 , it will make 16 Degrees: Then this Sum and Difference taken from the Scale of Half-Tangents, and fet each way from P the Pole of the oblique Circle, will give the two Extremes $a b$ of the Diameter, or the Points of the Interfection of the Parallel; and then the middle Diftance between a and b, is the Center of the true parallel Circle $\mathrm{P} a b$, which is parallel to the given oblique Circle A B C ; and at the given Diftance of 40 Degrees : or the Half-Tangent of 84 , fet from g, will give b; and the Half-Tangent of 16 Degrees, fet alfo from g, and the Points a and b, the two Ends of the parallel Circle's Diameter will be had.

U S E VIII. To meafure any projected Arc of a parallel Circle.

1. If it be parallel to the Primitive, then a Ruler, laid thro the Center and the Divifion of the Limb, will divide the Parallel into the fame Degrees, or determine, in the Limb, the Quantity of any Arc parallel to it.
2. If the Circle be parallel to a right one, as $a d b$ is, in cafe the fecond of the laft Ufe, and it were required to meafure that $\operatorname{Arc} a b$, or to divide it into proper Degrees: Since that parallel Circle is $66 \mathrm{Deg}$.30 Min . diftant from P, the nearer Pole of the right Circle A B, and confequently 113 Deg. 30 Min . diftant from its other Pole; take the HalfTangent of 113 Deg. 30 Min . or the Tangent of its half, 56 Deg .45 Min . and with that Diftance, and on the Center of the Primitive, draw a Circle parallel to the Limb; and divide that half of it, which lies towards the oppofite Pole of $\mathrm{A} B$, into its Degrees: Then a Ruler laid from P, and the equal Divifions of that Semicircle, will divide $a b$, or meafure any part thereof.
3. To meafure or divide the Arc of a Circle which is projected, parallel to an oblique one.

As fuppofe the Circle $a b$, which is parallel to the oblique one A B C, Fig Cafe 3 . of the precedent Ufe, and at the Diftance of 40 Degrees; this parallel Circle being 40 Degrees diftant from the Plane of the Circle A B C, muft be 50 Degrees diftant from its Pole, and confequently 130 Degrees from its oppofite Pole: therefore take the Semi-Tangent of 130 Degrees, or the Tangent of its half, 65 Degrees, and with that, as a Radius, draw a Circle parallel to the Limb of the Primitive, which Circle divide into proper Degrees; then fhall a Ruler laid thro P, and the equal Divifion of that Circle, cut the little Circle ab into its proper Degrees, or truly give the Meafure of any part thereof.

Thefe being moft of the general Ufes of the Scales of Lines commonly put upon PlainScales, their particular Applications in Navigation, Spherical 'Trigonometry, and Aftronomy, would take up too much room; therefore I proceed to Gunter's Scale.

As for its Ufe in the Projection of the Sphere, fee Ufes of the Englifh Sector.

C H A P. VII. Of the Conftruction and USes of Gunter's-Scale.

THIS Scale is commonly made of Box, and fometimes of Brafs, exactly two Foot long (tho there are others but a Foot long, which are not fo exait) about an Inch and ${ }^{3}$ broad, and of a convenient Thicknefs.

The Lines that are put on one Side of it are the Line of Numbers, marked on the Scale Numbers; the Line of artificial Sines, marked Sines; the Line of artificial Tangents, marked Tangents; the Line of artificial verfed Sines, marked V.S. fignifying Verfed Sines; the artificial Sines of the Rhumbs, marked S.R. fignifying the Sines of the Rhumbs; the artificial Tangents of the Rhumbs, marked T.R. fignifying Tangents of the Rhumbs; the Meri-dian-Line in Mercator's Chart, marked Merid. fignifying Meridian-Line ; and equal Parts, marked E. P. fignifying equal Parts.
There are commonly placed on thefe Scales, that are but a Foot long, the Lines of Latitudes, Hours, and Inclinations of Meridians.

On the Back-fide of this Scale are placed all the Lines that are put upon a Plain-Scale.
The Lines of artificial Sines, Tangents, and Numbers are fo fitted on this Scale, that, by means of a Pair of Compaffes, any Problem, whether in right-lined, or fpherical Trigonometry, may be folved by them very expeditioufly, with tolerable Exactnefs; and therefore the Contrivance of thefe Lines on a Scale is extremely ufeful in all Parts of Mathematicks that Trigonometry hath to do with; as Navigation, Dialling, Aftronomy, ©́c.

Conftruction of the Line of Numbers.

The Conftruction of the Line of Numbers is thus: Having pitched upon its Length, which, on Gunter's Scale, let be 23 Inches, take exaEty half that Length, which will be the Length of either of the Radius's ; then take that half Length, and divide into io equal Parts, one of which diagonally fubdivide into 100 equal Parts, that is, make a Diagonal Scale of 1000 equal Parts of the aforefaid Half-Length, which may eafily be done from our Author's 8th Uié.

Now having drawn, on Gunter's Scale, three Parallels, for better diffinguifhing the Divifions of the Line of Numbers, and made a Mark for the begiming of it, half an Inch from the beginning-end of the Scale, look in the Table of Logar:thms for the Number 200, and againft it you will find 2.301030; and rejecting the Characteriftick 2, and alfo the three laft Figures 030 , becaufe the Length of the Radius is divided but into 1000 equal Par:s, take 301 of thofe 1000 Parts in your Compafies, and lay off that Diftance from the begianing of

the Line, at the end of which write 2 for the firf Prime: Again; to find the Divifion for the fecond Prime, look in the Table of Logarithms for the Number 300, and againft it you will find 2.477 12 I ; and rejecting the Characteriftick 2, and the three laft Figures 121, as before, take 477 from your Diagonal Scale, and lay off that Diftance from I at the beginning, at the end of which write 3 for the fecond Prime. In this manner proceed for all the Primes of the firfi Radius to I, which will be the whole Length of your Diagonal Scale, or 1000 equal Parts. And becaufe each of the Primes of the fecond Radius are at the fame Diftance from I, at the end of the firt Radius, as the fame Primes, on the firft Radius, are diftant from i at the beginning, the Primes on the fecond Radius are eafily found.

The Divifions of the Tenths, between each of the Primes in both Radius's, are found thus: Look in the Table of Logarithms for IIo, and againft it you will find 2.041393, and rejecting the Characteriftick 2, and the three laft Figures, there will remain 41 ; which taken from the aforefaid Diagonal Scale of 1000 , will give the firft Tenth in the firft Prime. Again, look in the Table for 120, and againft it you will find 2.079 I 8 I ; and by rejecting the Characteriftick, and the three laft Figures, there will remain 79 ; which taken from the Diagonal Scale, will give the fecond Tenth in the firft Prime. Proceed thus for all the Tenths in the firft Primes of both Radius's. And to find the Tenths in the fecond Primes of both Radius's, look in the Table for the Number 210, and againft it you will find 2.32219 , whence rejecting as before, you will have 322 , which laid off from the beginning of the firtt Prime, will give the firft Tenth in the fecond Prime. Again, to find the fecond Tenth in the fecond Prime, look for the Number 220, and againft it you will find 2.342423 , whence by rejecting, as before, you will have 342 for the fecond Tenth, in the fecond Prime. In like manner may the Tenths in all the Primes of both Radius's be found.

To find every two Centefms in the firf Prime of the fecond Radius, look for the Number 102 in the Table of Logarithms, and againft it you will find 2.008600 , and by rejecting, as at firft, you will have 8 for the fecond Centefm. Again, look in the Table for ro4, and proceed as before, and you will have 17 for the third Centefm. In like manner you may have every fecond Centefm in the firt, and alfo the Second Primes of the fecond Radius.

Note, In bifecting every of the two Centefms in the firft Prime, Centefms will be had. Note alfo, that the third, fourth, and fifth Primes, cannot be divided into every two Centefms, but only into cvery five, becaufe of the Smallnefs of the Divifions.

Conftruction of the Line of artificial Sines and Tangents.

The Line of artificial Sines on Gunter's Scale, is nothing but the Logarithms of the natu* ral Sines, tranflated from the Tables of artificial Sines and Tangents, almoft in the fame Manner as the Logarithms of the natural Numbers was; the Method of doing which is thus:
Having drawn three Parallels under the Line of Numbers for diftinguifhing the Divifions of the Line, and marked a Point exactly half an Inch from the beginning-end of the Scale, reprefenting the beginning of the Line of Sines, look in the Tables of artificial Sines and Tangents, for the Sine of 40 Minutes, which is the firf Subdivifion of the Line, and it will be found 8.065776 : then rejecting the Characteritick 8, and the three laft Figures 776, as in the Conftruction of the Line of Numbers, the 65 remaining, muft be taken on the fame Scale of 1000 Parts, as ferved before for the Line of Numbers; this 65 laid off from the beginning of the Line of Sines, will give the Divifion on the Line of Sines for 40 Minutes. Again, to make the next Divifion which is for 50 Minutes, feek in the Table for the Sine of 50 Minutes, which will be found 8.16268I; then rejecting the Characteriftick 8, and the three laft Figures 681, take the Remainder 162, from your Scale of 1000 Parts, and lay it off from the beginning of the Line, and that will give the Divifion for 50 Minutes. Moreover, to make the Divifion for a Degree, feek the Sine of I Degree, which is 8.241855 , and rejecting as before, take the Remainder 241 from the Scale of 1000 , and lay it off from the beginning on the Line of Sines, which will give the Divifion for I Degree. Proceed thus for the other Degrees and Minutes to 90 ; only take notice, that when you come to 5 Degrees, 50 Minutes, the Parts to be taken off the Scale are more than rooo, and confequently longer than the Scale itfelf. In that Cafe you muft make a Mark in the Middle of the Line of Sines; from which lay off all the Parts found above 1000, for the Degrees and Minutes: As, to make the Divifion for 6 Degrees, the Sine of which is 9.019235 , the Parts to be taken off the Scale will be IOI9; therefore lay off is from the middle Point, reprefenting 1000 , and the Divifion for 6 Degrees will be had. Proceed in the fame manner for the Line of artificial Tangents, till you come to 45 Degrees, whofe Length is equal to Radius; and the Divifions for the Degrees and Minutes above 45, which fhould go beyond 45, are fet down by their Complements to 90 . For Example, the Divifion of 40 Degrees hath its Complement so fet to it, becaufe the proper equal Parts taken off the Scale of iooo to make the Divifion, for the Tangent of 50 Deg. will be as much above 1000 (which are the equal Parts for the Tangent of 45 Degrees, to be laid off from the middle of the Line of Tangents) as the equal Parts for the Divifion of the Tangent of 40 Degrees wants of 1000 ; an Example of which will make it manifeft : The Tangent of 40 Degrees is 9.924813 , and by rejecting the Characteriftick, and the three laft Figures, the Parts of 1000 , viz. 924 taken from 1000 , and there remains 76, which are the Parts that the Tanger of 40 Degrees is diftant from the

Tangent

Tangent of 45 Degrees. Again, the Tangent of 50 Degrees is 10.076186 , and by rejecting the Characteriftick, and the three laft Figures, the Parts 76 above 1000, for the Divifion of the Tangent of 50 Degrees, which mutt fall beyond 45 Degrees, are equal to the Parts that the Divifion of 40 Degrees wants of 1000 . Underftand the fame for the Tangent of any other Degree, or Minute, and its Complement : the Reafon of this is, becaule Radius is a mean Proportional between any Tangent and its Complement.

The Conftruction of the artificial Sines of the Rhumbs, and quarter Rhumbs, is deduced from a Confideration that the firt Rhumb makes an Angle of 11 Deg. is Min. witly the Meridian ; the fecond, 22 Deg. 30 Min. the third, 33 Deg .45 Min . the fourth, 45 Deg. © c c . therefore to make the Divifion on Gunter's Scale, for the firt Rhumb, take the Extent of the artificial Sine of 11 Deg. 15 Min . on the Scale, and lay it off upon the Line drawn to contain the Divifions of the Line of Rhumbs, and that will give the Divifion for the firft Rhumb. Again; take the Extent, on the Line of artificial Sines, of the Sine of 22.30 Min . and lay it off in the fame manner as before, and you will have the fecond Rhumb : proceed thus for all the other Rhumbs. The Divifions for the half Rhumbs, and quarter Rhumbs, are alfo made in the fame manter: the Divifions of the artificial Tangents of the Rhumbs, are made in the fame manmer as the Divifions of the artificial Sines of the Rhumbs, by taking the artificial Tangents of the feveral Angles that the Rhumbs and quarter Rhumbs make with the Meridian.

The Conftruction of the Line of artificial vers'd Sines.

This Line, which begins at about II Deg. 45 Min. and runs to 180 Deg. which is exadly under 90 of the Line of Sines (tho on the Scale they are numbered backwards; that is, to the vers'd Sine of each 10 Degrees above 20, are fet the Numbers of their Complements to 182, for a Reafon hereafter fhewn) may be thus made, by means of the Table of Sines, and the aforefaid equal Parts. Suppofe the Divifion for the verfed Sine of 15 Digrees be to be made. Take half 15 Degrees, which will be $7^{\text {d }} \cdot 30^{\mathrm{m}}$; the Sine of which doubled will be $\mathbf{1 8 . 2 3 1 3 9 6}$, and by fubtracting the Radius therefrom, you will have 8.231396 ; and rejecting the three laft Figures, and tie Characteriftick, there will remain 231; this 231 taken from your Scale of 1000 , and laid off from a Point directly under the beginning of the Line of Sines, will give the Divifion for the yerfed Sine of 15 Degrees, at which is fet 165 , viz. the Complement of $15^{\text {d }}$ to 180^{d}. Again; to make the Divifion for 20 Degrees; twice the Sine of 10 Degrees, (its half) will be 18.479340°; from which, fubftracting Radius, and rejecting the Characteriftick, and the three lalt Figures, you will have 479; which taken from your Scale, and laid off from the beginning of the Line, will give the Divifion for the verfed Sine of 20 Degrees. And in this manner may the Line of verfed Sines be divided to 180 Degrees, by obferving what I have faid in the Conftruction of the Line of Sines.

The Manner of projecting the Lines of Numbers, artificial Sines and Tangents, in Circles, and Spirals of any Number of Rerisolutions.

Fig. \%. Suppofe the Circle BC is to be divided into a Line of Numbers of but one Radius; firf, divide the Limb into 1000 equal Parts, begimning from the Point G; then take 301 of thofe Parts, which fuppofe to be at p, and lay a Ruler from the Center A, on the faid Point p, and that will cut the Periphery of the Circle BC in the Point for the Log. of 2. Again; take 477 Parts upon the Limb, and a Ruler laid from the Center upon the faid Divifion, will cut the Circle BC in the Point for the Log. of the Number 3 : and thus by taking the proper Parts upon the Limb, from the Point G, which were before directed to be uled in dividing this Line upon the Scale; and laying a Ruler from the Center, may the Line of Numbers be projected upon the Circle BC. And in the fame manner may the Lines of artificial Sines and Tangents be projected, from the Sine of $5^{\mathrm{d}} 45^{\mathrm{m}}$, and Tangent of $5^{\mathrm{d}} 42^{\mathrm{m}}$ to the Sine of 90°, and the Tangent of 45 d, by taking (as before directed in the Confruction of the ftraight Lines of Sines and Tangents) the Parts of 1000 for thie Degrees and Minutes, and laying them of upon the Limb from the Point G, and then laying a Ruler from the Center, which will divide the Circles into Lines of Sines and Tangents.

Now to project a Line of Numbers upon the Spiral of Fig. 8. having four Revolutions, or 'Turns; firft, divide the Limb into 1000 equal Parts, beginning from the Point G; then take 301 , which is the Log. of the Number 2 (when the Characteriftick, and the three laft Figures are rejected) and multiply it by 4, becaufe the Spiral hath four Revolutions, and the Product is I204: then if 204 of the Parts of 1000 , be taken upon the Limb from G to p, and a Ruler be laid from the Center A to p, it will cut the fecond Revolution of the Spiral in the Point for the Number 2. Again ; having multiply'd 477, the Log. of the Number 3, by 4, the Product will be 1908; whence, taking 908 Parts from the Point G on the Limb, to the Point q, lay a Ruler from A to q, and that will cut the fecond Revolution of the Spiral, in the Point for the Number 3. Moreover, multiply 602 by 4 , and the Product will be 2408 ; whence take 408 Parts upon the Limb from G, and laying a Ruler from A, it will cut the third Revolution of the Spiral in the Point, for the Number 4: and in thus proceeding may the Spiral be divided into a Line of Numbers, whofe beginning is at the Point C, and

End at the Point B. This being underiltood, it will be no difficilt Matter to projeat the Sines and Tangents in a Spiral of any Number of Revolutions.
In ufing either the Circular or Spiral Lines of Numbers, Sines, and Tangents, there is an opening Index placed in the Center A, confifting of two Arms; the one called the antecedent Arm, and the other the confequent Arni ; then three Numbers, Sines, or Tangents being given, to find a fourth. If you move the antecedent Arm to the firtt, and open the other Arm to the feconid (the two Arms keeping the fame Opening) and afterwards the antecedent Arm be moved to the third, the confequent Arm will fall upon the fourth required.
But, Note, that as many Revolutions of the Spiral as the fecond Term is diftant from the firt, fo many Revolutions will the fourth Term be diftant from the third.

Of the Meridian Line.

The Meridian Line, on Gunter's Scale, is nothing but the Table of Meridional Parts in Mercator's Projection transferred on a Line, which may be done in the following manner, by help of the Line of equal Parts fet under it, and a Table of Meridional Parts.
Take any one of the large Divifions of the aforefaid Line of equal Parts, whofe Length Figo 9_{0} let be A B, and divide it into fix equal Parts upon fome Plane ; at the Points A B raiie the Perpendiculars AC, B D, equal to A B, and compleat the Parallelogram ABDC; divide the Sides A C,BD, into ten equal Parts, and the Side D C into fix, draw the Diagonals AF, 1020 , E_{c} c. as per Figure, and you will have a Diagonal Scale, by which any part of the aforefard Divifion under σ o may readıly be taken.
Now to make the Divifions of the Meridian Line, look in the Table of meridional Parts for 1 Degree, and againft it you will find 60 : and rejecting the laft Figure, which in this Cafe is o, take fix equal Parts from the aforementioned Diagonal Scale, and lay it off on the Meridian Line, which will give the Divifion for one Degree. Again, to find the Divifion for 2 Degrees, feek in the Table of Meridional Parts, for the Parts againft 2 Degrees, and they will be found 120: whence rejecting the laft Figure (which always muft be done) take 12 from your Scale, and lay it off from the beginning of the Meridian Line, and the Divifion for 2 Degrees will be had. Moreover, to find the Divifion for 1 I Degrees, you will find anfwering to it 66_{4}; and rejecting the laft Figure, the remainder will be 66 , which muft be laid off from the beginning of the Meridian Line to have the Divifion for 1 I Degrees. But becaufe 66 cannot be taken from the Dagonal Scale, you muft take only 6 from it ; and for the 60 , take its whole Length, or elfe lay off the 6 from the End of the firt Divirion of the Line of equal Parts, and the Divifion for in Degrees will be had. In this manner may the Meridian Line be divided into Degrees and every thirty Minutes, as it is upon the Scale.
There are feveral other ways of dividing this Meridian Line, but let this fuffice.
The Ufe of this Line is to project a Mercator's Chart.

Projection of the Line of Latitudes and Hours.

Upon the end A, of the Diameter of the Circle, erect a Line of Sines at right Angles, of Fi_{F}, ro, the Length of the Diameter ; then from tlie Point B, the orther end of the Diameter, draw right Lines to each Degree of that Line of Sines, cutting the Quadrant A C. Now having drawn the Chord-Line A C, which is to be the Line of Latitudes, fet one foot of your Compafies upon the Point A, and with the other transfer the Interfections made by the Lines drawn from B, on the Quadrant, to the Chord-Line A C, by means of which it will be divided into a Line of Latitudes. Or the Line of Latitudes may be made by this Canon, viz. As Radius is to the Chord of 90 Deg. fo is the Tangent of any Degree, to another Tangent, the natural Sine of whofe Arc, taken from a Diagonal Scale of equal Parts, will give the Divifion, for that Degree, on the Line of Latitudes, and fo for any other Degree.
Again; to graduate the Line of Hours, draw the Tangent GH equal to the Diameter A B, and parallel thereto; then divide each of the Arcs of haif the Quadrants A K, K B, into three Parts, for the Degrees of every Hour from 12 to 6, which muft again be each fubdivided into Halfs, Quarters, \mathcal{G} c. then if thro' each of the aforefaid Divifions and Subdivifions, Lines be drawn from the Center, cutting the Tangent Line G H, they will divide the faid Line into a Line of Hours.

As for the Line of Inclination of Meridians, ufually put upon Scales, it is nothing but the Line of Hours numbered with Degrees inftead of Time; and the Lines of the Style's Height, and Angle of 12 and 6 , fometimes put upon Scales, are made from Tables of the Style's Height, © c. and no otherwife ufed.
Whence the Line of Hours is but two Lines of natural Tangents to 45 Degrees, each fet together at the Center, and from thence beginning and continued to each End of the Diameter, and from one End thereof, numbered with 90 Deg. to the other End; and may otherwife be thus divided: Let A B be the Radius of a Line of Tangents, CD another Radius Fig. an, equal and parallel thereto, and C B the Diameter to either of the faid Radius's, which is to be divided into a Line of Hours. Now if right Lines are drawn from the Point D, to every Degree of the Tangent-Line A B, thofe Lines will divide GB, half of the Line of

Hours, as required; and Lines drawn from the Point A, to every Degree of the Tangent $C D$, will divide the other half of $C B$: therefore from the fimilar Triangles C D F, EF B, it will be as the Radius $C D$ is to the Tangent $E B$ of any Arc under 45 : fo is CF to F B ; that is, as Radius is to the Tangent of any Arc under 45 Degrees, fo is Radius plus the Cotangent of the faid Arc to 45 Degrees, to Radius lefs the faid Cotangent, as in Fig. I2. As the Radius A B, to the Tangent BC of any Arc, fo is $A B+E \bar{G}$, to $A B-E G$: for call $\mathrm{A} B, r$; and BC, b; and from the Point C, draw C F parallel to E G, and make $\mathrm{B} D$ equal to A . Then $\mathrm{DF}(=\mathrm{FC})=\sqrt{r r-2} \underline{r b+b b}$, and $\mathrm{AF}=\sqrt{r r+2 r b+b b}$: Whence as $A:\left(\frac{\sqrt{r r+} 2 r b+b b}{2}\right): F C\left(\frac{\sqrt{r r-2 r b+b b}}{2}\right): A B(r): E G$ $\left(\frac{r r-r b}{r+b}\right)$. therefore it will be $\mathrm{AB}:(r): \mathrm{BC}(b):: \mathrm{AB}+\mathrm{B} G\left(\frac{2 r r}{r+b}\right): A B-$ E G $\left(\frac{2 r b}{r+b}\right)$.

Thus having given the Conftruction of the Lines on Gunter's Scale, I now proceed to fhew their manner of ufing; but, Note, thefe Lines are alfo put upon Rulers to flide by each othor, and are therefore called Sliding-Gunters, fo that you may ufe them without Compaffes; butany Perfon that underfands how to ufe them with Compaffes, may alfo, by what 1 have faid of Everard's and Coggefball's Sliding-Rules, ufe them without.

U SE of the Lines of Numbers, Sines, and T'angents.

U SE I. The Bafe of a right-angled right-lined Triangle being given 30 Miles, and the oppofite Angle to it 26 Degrees, to find the Lengtis of the Hypothenufe.
As the Sine of the Angle, 26 Degrees, is to the Bafe, 30 Miles, fo is Radius to the Length of the Hypothenufe. Set one Foot of your Compafles upon the 26th Degree of the Line of Sines, and extend the other to 30 on the Line of Numbers; the Compaffes remaining thus opened, fet one Foot on 90 Degrees, or the End of the Line of Sines, and caufe the other to fall on the Line of Numbers, which will give 68 Miles and about a half, for the Length of the Hypothenufe fought.
U S E. II. The Bafe of a right-angled Triangle being given 25 Miles, and the Perpendicular 15, to find the Angle oppofite to the Perpendicular.
As the Bafe 25 Miles is to the Perpendicular 15 Miles, fo is Radius to the Tangent of the Angle fought; becaufe if the Bafe is made Radius, the Perpendicular will be the Tangent of the Angle oppofite to the Perpendicular. Extend your Compaffes on the Line of Numbers, from 15, the Perpendicular given, to 25, the Bafe given, and the fame Extent will reach the contrary way, on the Line of 'Tangents, from 45 Degrees to 31 Degrees, the Angle fought.
U S E III. The Bafe of a right-angled Triangle being given, fuppofe 20 Miles, and the Angle oppofite to the Perpendicular 50 Degrees, to find the Perpendicular.
As Radius is to the Tangent of the given Angle 50 Degrees, fo is the Bafe 20 M les to the Perpendicular fought. Extend your Compaffes on the Line of Tangents, from the Tangent of 45 Degrees to the Tangent of 50 Degrees, and the fame Extent will reach on the Line of Numbers the contrary way, from the given Bafe 20 Miles, to the required Perpendicular, about $23 \frac{3}{4}$ Miles.

Note, The Reafon why the Extent on the Line of Numbers was taken from 20 to $23 \frac{9}{4}$ forwards, is, becaufe the Tangent of 50 Degrees (as I have already mentioned in the Conftruction of the Line of Tangents) fhould be as far beyond the Tangent of 45 Degrees, as its Complement 40 Degrees wants of 45 Degrees.

U SE IV. T'be Bafe of a right-angled Triangle being given, fuppofe 35 Miles, and the Pcrpendicular 48 Miles; to find the Angle oppofite to the Perpendicular.

As the Bafe 35 Miles is to the Perpendicular 48 Miles, fo is Radius to the Tangent of the Angle fought. Extend your Compafles from 35, on the Line of Numbers, to 48 ; the fame Extent will reach the contrary way on the Line of Tangents, from the Tangent of 45 Degrees, to the Tangent of 36 Degrees 5 Minutes, or 53 Degrees 55 Minutes; and to know which of thofe Angles the Angle fought is equal to, confider that the Perpendicular of the Triangle is greater than the Bafe ; therefore (becaufe both the Angles oppofite to the Perpendicular and Bafe together make 90 Degrees) the Angle oppofite to the Perpendicular will be greater than the Angle oppofite to the Bafe, and confequently the Angle 53 Degrees 55 Minutes, will be the Angle fought.

U S E V. The Hypotbenufe of a right-angled Spherical Triangle being given, fuppofe 60 Degrees, and one of the Sides zo Degrees; to find the Angle oppofite to that Side.
As the Sine of the Hypothenufe 60 Degrees is to Radius, fo is the Sine of the given Side 20 Degrees, to the Sine of the Angle fought. Extend your Compaffes, on the Line of Sines, from 60 Degrees to Radius or 90 Degrees, and the fame Extent will reach on the Line of Sines the fame way, from 20 Degrees, the given Side, to 23 Degrees 2 Minutes $_{3}$ the Quantity of the Angle fought.

USE VI. The Courfe and Difance of-a Ship given; to find the Difference of Latitude and Departure.
Suppofe a Ship fails from the Latitude of so Deg. io Min. North, S. S. W. 48.5 Miles : As Radius is to the Diftance failed 48.5 Miles, fo is the Sine of the Courfe, which is two Points, or the fecond Rnumb, from the Meridian, to the Departure. Extend your Compaffes from 8, on the artificial Sine Rhumb-Line, to 485 on the Line of Numbers; the fame Extent will reach the fame way from the fecond Rhumb, on the Line of artificial Sines of the Rhumbs, to the Departure Wefting 18.6 M.les. Agam, as Radius is to the Diftance failed 48.5 Miles, fo is the Co-Sine of the Courfe 67 Deg. 30 Min . to the Difference of Latitude. Extend your Compafes from Radius, on the Line of Sines, to 48.5 Miles on the Line of Numbers; the fame Extent will reach the fame way, from 67 Deg. 30 Min. on the Line of Sines, to 44.8 on the Line of Numbers; which converted into Degrees, by allowing 60 Miles to a Degree, and fubftracted from the given North-Latitude 50 Deg. Io Min. leaves the Remainder ${ }_{49}$ Deg. 25 Min. the prefent Latitude.

USE VII. The Difference of Latitude and Departure from the Meridian being given; to find the Course and Difance.

A Ship, from the Latitude of ${ }^{5} 9$ Deg. North, fails North-Eaftward till fhe has altered her Latitude I Deg. Io Min. or 70 Miles, and is departed from the Meridian 57.5 Miles; to find the Courfe and Diftance.

As the Difference of Lacitude 70 Miles is to Radius, fo is the Departure 57.5 Miles to the Tangent of the Courle 39 Deg. 20 Min. or three Points and a half from the Meridian. Extend your Compaffes from the fourth Rhumb, on the Line of artificial Tangents of the Rhumbs, to 70 Miles on the Line of Numbers: the fame Extent will reach from 57.5 on the Line of Numbers, to the third Rhumb and a half on the Line of artificial 'Tangents of the Rhumbs. Again ; as the Sine of the Courfe 39 Deg. 20 Min. is to the Departure 57.5 Miles, fo is Radius to the Diftance 90.6 Miles. Extend your Compaffes from the third Rhumb and a half, on the artificial Sines of the Rhumbs, to 57.5 Miles on the Line of Numbers, and that Extent will reach from the Sine of the eighth Rhumb, on the Sines of the Rhumbs, to 90.6 Miles on the Line of Numbers.

U SE of the Line of TVerfod Sines.

The three Sides of an oblique Spherical Triangle being given, to friad the Angle oppofte to the gieateft Side.

Suppofe the Side A B be 40 Degrees, the Side B C 60 Degrees, and the Side A C 96 De- Fig. 13. grees, to find the Angle A B C. Firft add the three Sides together, and from half the Sum fubfrate the greater Side A C, and note the Remainder ; the Sum will be 196 Degrees, half of which is 98 Degrees; from which fubftracting 96 Degrees, the Remainder will be two Degrees.
This done, extend your Compaffes from the Sine of 90 Degrees, to the Sine of the Side A B 40 Degrees; and applying this Extent to the Sine of the other Side B C 60 Degrees, you will find it to reach to a fourth Sine about 34 Degrees. Again ; from this fourth Sine extend your Compaffes to the Sine of half the Sum, that is, to the Sine of 72 Degrees, the Complement of 98 Degrees to 180 , and this fecond Extent will reach from the Sine of the Difierence 2 Degrees, to the Sine of 3 Deg. 24 Min. againft which, on the Verfed Sines, ftands 151 Deg. 50 Min. which is the Quantity of the Angle fought.

That the Reafon of this Operation may appcar, it is demonftrated in moft Books of Trigonometry, that as Radius is to the Sine of A B, fo is the Sine of $B C$ to a fourth Sine; then as this fourth Sine is to Radius, fo is the Difference of the verfed Sines of A C and $\mathrm{AB}+\mathrm{BC}$ to the Verfed Sine of the Complement of the Angle ABC to $\mathbf{1 8 0}$ Degrees. It is alfo demonftrated, that as Radius is to the Sine of half the Sum of any two Arcs, f_{0} is the Sine of half their Difference to half the Difference of the Verfed Sines of thefe two Arcs: whence, if the Sine of A B be called a, the Sine of B, b, and the Sine of AC, c, the fourth Sine in the firf Analogy will be had ; in faying, as $r: a:: b: \frac{a b}{r}$. Now to get the Difference of Verfed Sines of $A C$, and $A B+B C$, let us call the Sine of $A B+B C+A C$,
and the Sine of $\frac{\mathrm{AB}+\mathrm{BC}-\mathrm{AC}}{2}$, then as $r: p:: q: \frac{p q}{r}$, which laft Term will be half the Difference of the verfed Sines of $A C$, and $A B+B C$: therefore if we again fay, as $\frac{a b}{r}: r:: \frac{2 p q}{r}: \frac{2 r p q}{a b}$ this laft Term will be the verfed Sine of the Complement of the Angle A BC: To find which at two Operations, you muft fay, As $r: a:: b: \frac{a b}{r}$; then as $\frac{a b}{r}: p:: q: \frac{r p q}{a b}$; which taft Term, multiplied by 2 , will be the verfed Sine Complement fought. Buc to aroid multiplying by 2 , the verfed Sines on Scales are fitted from this Proportion, viz. As Radius is to half the Sine of an Arc, fo is half the Sine of the fame Arc, to half the verfed Sine of that Arc.

U SE of the Line of Latitudes and-Hours.

Thefe Lines are conjointly ufed, in readily pricking down the Hour-Lines from the Subftyle, in an Ifofceles Triangle, on any kind of upright Dials, having Centers in any given Latitude ; that is, by means of them there will be this Proportion worked, viz. As Radius is to the Sine of the Style's Height, fo is the Tangent of the Angle at the Pole, to the Tangent of the Hour-Lines Diffance from the Subftyle.

Now fuppofe the Hour-Lines are to be pricked down upon an upright Declining-Plane, declining 25 Deg. Eaftwards: Firft draw C I2 the Meridian, perpendicular to the Horizontal Line of the Plane, and make the Angle F C 12 equal to the Subtyle's Diftance from the Meridian, and draw the Line F C for the Subfyle. This being done, draw the Line B A perpendicular to the faid Subfyle, pafing thro the Center C; then out of your Line of Latituder fet off C A, C B , each equal to the Style's Height, and fit in the Hour-Scale, fo that one End being at A, the other may meet with the Subftyle Line at F.

Now şet the Difference between 30 Deg. 47 Min. the Inclination of Meridians, and 30 Degrees, the vext Hour's Diftance leffer than the faid 30 Deg. 47 Min. and the Difference is 47 Minutes, that is, 3 Minutes in time ; then count upon the Line of Hours,

Hours. Min.

37		And make Points at the Ter-
2	11	minations, to which draw-
2 3 3	¢from $\mathrm{Fto}{ }_{11}{ }^{12}$	ing Lines from the Center
$\begin{array}{ll}3 & 3 \\ 4 & 3\end{array}$	2	C, they fhall be the Hour-
3 J	3	

Again, fitting in the Hour-Scale from B to F, count from that End at B, the former Arcs of Time.

Hours. Min.
\(\left.\begin{array}{rr}00 \& 03

1 \& 3

2 \& 3

3 \& 3

4 \& 3

5 \& 3\end{array}\right\}\) from B to \begin{tabular}{r}
4

5

7

7

$|$

And make Points at the Ter-

minations, thro which draw

Lines from the Center C, and

they will be the Hour-Lines

on the other Side the Sub-

Ityle.
\end{tabular}

You maft proceed thus for the Halfs and Quarters, in getting the Difference between the Half-Hour next leffer (in this Example 22 Deg. 30 Min.) under the Arc of Inclination of Meridians; the Difference is 1 Deg. 17 Min. which in time is 33 Minutes, to be contiuually augmented an Hour at a time, and fo be pricked off, as before was done for the whole Hours.
If the Hour-Scale reach above the Plane, as at B, fo that B C cannot be pricked down; then may an Angle be made on the upper Side of the Subftyle, equal to the Angle FC A on the under Side, and thereby the Hour-Scale laid in its due Pofition, having firft found the Point F on the Subftyle.
'That the Reafon of the conjoint Ufe of thefe Lines, in pricking off the Hour-Lines from the Subfylar-Line may appear ; let us fuppofe A C to be the Subifylar-Line, A the Center of a Dial, B A a Portion of the Line of Latitudes, at right Angles to A C, and B C the Line of Hours fitted thereto. Now if C D be the Quantity of any Arc taken on the Line of Hours, and a right Line be drawn from the Center A thro the Point D, the Angle FAC will be the fame, as that found by faying, As Radius is to the Sine of the Number of Degrees pricked off upon the Line of Latitudes (that is, to the Sine of the Style's Height) from A to B ; fo is the Tangent of that Number of Degrees pricked of from C to D on the Line of Hours (that is, the Tangent of the Angle at the Pole) to another Tangent,

Chap. 7

whofe Arc will be equal to F A C (that is, to the Tangent of the Diftance of the HourLine A F from the Subfyle.)

Now to prove this, it is evident, from the Conftruction of the Line of Latitudes, that as the Radius $B C$ is to the Sine $B G$ of an $A r c$; fo is $A C$ to $A B$: whence if $A C$ be fuppofed Radius, B A is the Sine of the Arc pricked down from the Line of Latitudes.

Again, from the Nature of the Line of Hours ; if CD be taken for the Tangent of an Arc, B D will be the Radius thereto. This being evident, let C E be the Tangent of the Angle F A C, then the Triangles B A D, DE C, will be fimilar; whence as the Radius BD is to B A, the Sine of an Arc ; fo is CD, the Tangent of an Arc, to EC, the Tangent of the Angle F A C.

B O O K II. Of the Conftruction and Ufes of the S E C T O R.

C H A P. I.

Of the Conftruction of the Sector.

H E Se\&tor is a Mathematical Inftrument, whofe Ufe is to find the Proportion between Quantities of the fame kind; as between one Line and another, between one Superficies and another, between one Solid and another, E'c.

This Inftrument is made of two equal Rules, or Legs, of Silver, Brafs, Ivory, or Wood, joined to each other by a Rivet, fo worked, as to render its Morion regular and uniform. To do which, firt make two Slits with a Saw, about an Inch deep, at one End of one of the Rules, in order to fit therein the Head-Pieces, which muft be well rivetted. Afterwards the Head muft be rounded, by filing off the Superfluities, in fuch manner, that the Middle-Piece and HeadPieces may be even with each other. Then to find the Center of the Rivet, fet one Foot of your Compaffes at the bottom of the Middle-Piece, and mark with the other Foot four Sections in the middle of the Rivet, by opening the Middle-Piece of the Joint to four or more different Angles, and the Middle-Point of thofe Sections will be the Center of the Rivet, and confequently alfo the Center of the Sector. This being done, a Line muft be drawn upon the Rule from the Center, near the inward Edge, by which Line the inward Edge of the Rule muft be filed Itrait ; the inward Edge of the other Rule being alfo made ftrait, and nit, to receive the Middle-Piece, you mult cut away its Corner in an Arc, fo as it may well fit the Joint, and then rivet, with three or four little Rivets, the Rule to the MiddlePiece ; by which means the two Legs may eafily open and fhut, and keep at any Opening required. But Care muft be taken that the Legs are filed very flat, and do not twift ; Care mult alfo be taken that the Sector be well center'd, that is, that being entirely opened, both Infide and Outfide, may make a right Line, and that the Legs be very equal in Length and Breadth; in a word, that it be very ftrait every way. Note, The Length and Breadth of the aforefaid Rules are not determinate, but they are commonly fix Inches long, three quarters of an Inch broad, and about one quarter in Thicknefs.

There are commonly drawn upon the Faces of this Inftrument fix kind of Lines; siz. the Line of equal Parts, the Line of Planes, and the Line of Pulygons on one Side; the Line of Chords, the Line of Solids, and the Line of Metals on the other.

There is generally placed, near the Edge of the Sector, on one Side, a divided Line, whofe Ufe is to find the Bores of Cannons; and on the other Side, a Line fhewing the Diameters and Weights of Iron-Bullets, from one Quarter to 64 Pounds, whofe Conftruction and Ufes we fhall give, in feaking of the Infruments belonging to the Artillery.

SECTION I.

Of the Line of Equal Parts.

TH IS Line is fo called, becaufe it is divided into equal Parts, whofe Number is com- Plate 6 . monly 200, when the Sector is fix Inches long.

Having drawn upon one of the Faces of each Leg the equal Lines A B, A B, from the Center of the Joint A: Firft, divide them into t wo equal Parts, each of which will confequently be roo; then each of thofe Parts being again divided into two equal Parts, and each Part ariing will be 50 ; then divide each of thefe laft Parts into five others, and each Part produced will be 10; and finally dividing each of thefe new Parts into 2 , and each of thefe laft into five equal Parts, and by this means the Lines A B, A B, will be each divided into 200 equal Parts, every 5 of which muft be diftinguifhed by fhort Strokes, and every ro numbered from the Center A to 200, at the other End.

Now becaufe the two other Lines, drawn upon the fame Faces of each Leg, muft terminate in the Center A, the Extremity B of the Line of equal Parts muft be drawn as near as poffible the outward Edges of each Leg, that fo there may be Space enough left to draw the Line of Planes in the middle of the Breadth of the faid Legs, and the Line of Polygons near their inward Edges ; but Care muft be taken, in drawing of thefe Lines, that each one, and its Feilow, be equally diftant from the interior Edges of each Leg, as may be feen in the Figure.

SECTION II.
 Of the Line of Planes.

THIS Line is fo called, becaufe it contains the homologous Sides of a certain Number of fimilar Planes, Multiples of a fmall one, beginning from the Center A ; that is, whofe Surfaces are double, triple, quadruple, $\dot{\sigma}_{c \text {. }}$ that fmall Plane, from Unity, according to the natural Order of Numbers, to 64, which is commonly the greatef Term of the Divifions, denoted upon the Line A C.

This Line may be divided two ways, both of which are founded upon Prop. 20. lib. 6. Eucl. which demonftrates, That fimilar Plane Figures are to each other, as the Squares of their homologous Sides. The firlt way of dividing this Line is by Numbers, and the fecond without Numbers, as follows:

Having drawn the Line A C, from the Center A, upon each Leg of the Sector ; firt divide it into eight equal Parts, the firft of which, next to the Center A, which reprefents the Side of the leaft Plane, hath no need of being drawn. The fecond Divifion from the Center, which is double the firft, is the Side of a fimilar Plane quadruple the leaft Plane, (whofe Side is fuppofed one of the eight Parts the Line A C is divided into) becaufe the Square of 2 is 4. The third Divifion, which is three times the firft, is the Side of a fimilar Plane, nine times greater than the firft, becaufe the Square of 3 is 9 . The fourth Divifion, which is four times the firft, and confequently half of the whole Scale, is the Side of a fimilar Plane, fixteen times greater than the firft, becaufe the Square of 4 is 16 . Laftly, the eighth Divifion, which is eight times the firft, is the Side of a fimilar Plane, fixty four times greater, becaufe the Square of 8 is 64 .

There is fomething more to do to find the homologous Sides of Planes that are double, tripie, quadruple, \mathcal{W}_{c}. of the firt. For you muft have a Scale divided into rooo equal Parts, Figo 20 (as that whofe Conftruction we have already given in Book I.) whofe Length muft be equal to the Line A C ; and becaufe the Side of the leaft Plane is of the Line A C, it will confequently be $\frac{1}{8}$ of 1000 , which is 125 . Again, to have in Numbers the Side of a Plane double the leaft, the fquare Root of a Number twice the Square of 125 muft be found. This Square is 15625 , which doubled is 31250 , the Square Root of which is about 177, the Side of a fimilar Plane double the leaft, whofe Side is fuppofed to be 125. Moreover, to have the Side of a Plane three times the firf, the fquare Root of a Number three times the Square of the firft muft be found. The Number is 46875 , and its Root, which is about 216, is the Side of a fimilar Plane three times the leaft, and fo of others; therefore by laying off from the Center A, upon the Line of Plans, 177 Parts of the aforefaid Scale, you will have the Length of the Side of a fimilar Plane double the leaft Plane. Again, laying off 216 Parts of the fame Scale from the Center A, the Length of the Side of a fimilar Plane will be had, which is three times the leaft Plane.

According to the aforefaid Directions the following Table is calculated, that fhews the Number of equal Parts which are contained in the homologous Sides of all the fimilar Planes that are double, triple, quadruple, \& ${ }^{\circ}$. of a Plane whofe Side is 125 , to the Plane 64, that is, which contains it 64 times, and whofe Side is 1000.

125	17	515	33		49	875
177	18	530	34		50	${ }_{88}^{88}$
216	19	545	35	739	51	892
43250	20	559	36	750°	52	901
5279	21	573	37	760	53	910
306	22	586	38	770	54	918
330 353	23	599	39		55	927
$\frac{353}{375}$	$\frac{24}{25}$	$\frac{612}{625}$	4	$\frac{790}{800}$	5	935
8 38 10 395 15	26	625 637	42	8 ro	57	944
11814	27	650	43	819	59	960
12.433	28	661	44	829	6	968
13450	29	${ }^{673}$	45		${ }_{6} 6$	976
14 467 18 48 18 5	30	${ }^{684}$	46		62	984
\| $\begin{aligned} & 484 \\ & 500\end{aligned}$			47		${ }_{6}^{63}$	992

Each of the ten Divifions which the Scale of 1000 Parts contains, is 100 ; and each of the Fig $:$:。 Subdivifions of the Line A B is 10 : therefore if it is to be ufed for dividing any of the Lines of the Sector ; as, for Example, the Line of Planes; take on the Scale a Line denoting the Hundreds, and the Excefs above muft be taken in the Space between the Points A B : As to denote the firft Plane, to which the Number 125 anfwers, place your Compaffes on the fifth Line of the Space marked 100, and open them to the Diftance OP; in the fame manner, if the Plane 50 is to be denoted, to which the Number 884 anfwers, for 800 take the 8 th Space of the Scale, and for 84 take in the Space A B, the Interfection of the 8th Tranfverfal, with the fourth Parallel, which will be the Diftance N L.
The Line of Planes may otherwife be divided in the following manner without Calcula-: tion, founded on Prop. 47. lib. 1. Eucl. Make the right-angled Ifofceles Triangle K M N, whofe Side K M, or K N, let be equal to the Side of the leaft Plane, and then the Hypothenufe M N will be the Side of a fimilar Plane double to it ; therefore having laid off with your Compaffes the Diftance M N, on the Side iK L produced, from K to 2 , the Length K 2 will be the Side of a Plane double the leaft Plane. In like manner lay off the Diftance M_{2}, from K to 3, the Line K_{3} will be the Side of a Plane triple the firf. Again, lay off the Diftance M 3, from K to 4, the Line K 4 (twice K M) will be the Side of a Plane four times greater, that is, which will contain the leaft Plane four times; and fo of others, as may be feen in the Figure.

SECTION III.
 Of the Line of Polygons.

This Line is fo called, becaufe it contains the homologous Sides of the firf twelve regular Polygons infcribed in the fame Circle, that is, from an equilateral Triangle to a Dodecagon.
The Side of the Triangle being the greateft of all, muft be the whole Length of each of the Legs of the Sector; and becaufe the Sides of the other regular Polygons, infribed in the fame Circle, ftill diminifh as the Number of Sides increafe, the Side of the Dodecagon is leaft, and confequently muft be nigheft the Center of the Sector.

Now fuppofing the Side of a Triangle to be a thoufand Parts, the Length of the Sides of every of the other Polygons muft be found ; and becaufe the Sides of regular Polygons, infcribed in the fame Circle, are in the fame Proportion as the Chords of the Angles of the Center of each of the Polygons, it is neceffary to fhew here how to find the faid Angles.

To do which, divide 360 Deg. by the Number of the Sides of any Polygon, and the Quotient will give the Angle of the Center.

If, for Example, the Angle of the Center of a Hexagon is required, divide 360 Deg. by σ, and the Quotient will be 60 ; which fhews that the Angle of the Center of a Hexagon is 60 Deg. If likewife the Angle of the Center of a Pentagon be required, divide 360 Deg. by 5, the Number of Sides, and the Quotient will be 72; which Shews that the Angle of the Center of a Pentagon is 72 Deg . and fo of others.

The Angle of the Center being known, if it be fubftracted from 180 Degrees, the Remainder will be the Angle of the Polygon : As, for Example, the Angle of the Center of a

Chap. I.

Pentagon being 72 Degrees, the Angle of the Circumference will be 108 Degrees, and fo of others, as may be feen in the following Table.

Regular Polygons. Angles of the Center. Angles at the Circumference.

Now to find in Numbers the Sides of the regular Polygons infcribed in the fame Circle $:$ Having fuppofed that the Side of the equilaterai Triangle is rooo equal Parts, inftead of the Chords of the Angles of the Center, take their Halves, which are the Sines of half the Angles at their Centers, and make the following Analogy.

For Example, to find the Side of the Square, fay, A.s the Sine of 60 Degrees, half the Angle of the Center of the equilateral Triangle, is to the Side of the fame Triangle, fuppofed iooo ; fo is the Sine of 45 Degrees half the Angle of the Center of the Square, to the Side of the fame Square, which, by calculating, will be found 816 .

And in this manner are the following Tables of Polygons conitructed.
The Side of an equilateral Triangle, denoted on the
Sector by the Number
Of a Square by the Number
Of the Pentagon by the Numb.
Of the Hexagon by the Numb.
Of the Heptagon by the Numb.
Of the Octagon by the Numb.
Of the Nohagon by the Numb.
Of the Decagon by the Numb.
Of the Undecagon by the Numb.
Of the Dodecagon by the Numb.

We have neglected the Fractions remaining after the Calculation in this Table, as in all others; as being but thoufandth Parts, which are not confiderable.

Thofe that will not denote an equilateral Triangle upon the Sector, becaufe of the Facility of defcribing it, and which confequently begin at the Square, ufe the following Table, wherein the Side of the Square is fuppofed 1000 Parts.

Another Table of Polygons.

To make the Line of Polygons upon the Sector (the fame Scale of iooo equal Parts being ufed, as that for making the Line of Planes) you muft lay off from the Center \mathbf{A}, upon both the Lines A D, the Number of Parts expreffed in the Table, that thereby the Numbers $3,4,5$, σ^{c}. may be graved upon the Sector, fignifying the Numbers of the Sides of the regular Polygons.

SECTION IV.

Of the Line of Cbords.

THIS Line is fo named, becaufe it contains the Chords of all the Degrees of a Semicircle, whofe Diameter is the Length of that Line, which is denoted upon the other Surface of each Leg of the Sector, from the Point A, which is the Center of the Joint, to the end F of each Leg ; fo that the two Lines A F are exactly equal, and equidiftant from the interior Edges of the Sedor.

Note, The Line of Chords mult be drawn directly under the Line of equal Parts, becaufe of fome Operations that require a Correfpondence between thofe two Lines.

It is alio proper for the Line of Solids to be drawn under the Line of Planes, and the Line of Metais under the Line of Polygons.
For the Divifion of the aforefaid Line A F, defcribe a Semicircle, whofe Diameter let be equal to it, which divice into 180 Degrees; afterwards lay off the Lengths of the Chords of all thofe Degrees upon the Diameter of the Semicircle ; then lay the Diameter of the Semicircle upon the Legs of the Sector, and mark upon them Points that reprefent the Degrees of the Semicircle, every fifth of which, diftinguifh by fhort Strokes, and every tenth by Numbers, beginning from the Point A, and going on to F.
The fame Degrees may ocherwife be denoted, upon the Line of Chords, by help of Numbers, in fuppofing the Semidiameter of a Circle, or the Chord of 180 Degrees, to be 1000 equal Parts ; all of which Numbers may be found ready calculated in the common Tables of Sines: for inftead of the Chords, there is no more to do but to take their halves, which are the Sines of half their Arcs. As for Example ; inftead of the Chord of io Degrees, the Sine of 5 mult be taken; and becaufe the Calculation in Tables is made for a Radius of 100000 Parts, the two laft Numbers muft be taken away, as may be feen in the following Table, where the Chords of all the Degrees to 180 are denoted.

Note, This Divifion is made with a Scale of rooo Parts.
A T ABLE for the Line of Chords.

							Ch.	D.	Ch.	D.	Ch.
1	8	31	267	61	507	91	713	121	870	151	968
2	17	32	275	62	515	92	719	122	874	152	970
3	26	33	284	63	522	93	725	123	879	153	972
4	35	34	292	64	530	94	731	124	883	154	974
5	43	35	300	65	537	95	737	125	887	155	976
6	52	36	309	66	544	96	743	126	891	156	978
7	61	37	317	67	552	97	749	127	895	157	980
8	70	38	325	68	559	98	754	128	899	158	981
9	78	39	334	69	566	99.	760	129	902	159	983
10	87	40	342	70	573	100	766	130	906	160	985
11	96	41	350	71	580	101	771	131	910	161	986
12	104	42	358	72	588	102	777	132	913	162	987
13	113	43	366	73	595	103	782	133	917	163	989
14	122	44	374	74	602	104	788	134	920	164	990
15	130	45	382	75	609	105	793	135	924	165	991
16	139	46	390	76	615	106	798	136	927	166	992
17	145	47	399	77	622	107	804	137	930	167	993
18	156	4^{8}	406	78	629	108	So9	138	933	168	994
19	165	49	414	79	636	109	814	139	936	169	995
20	173	50	422	80	643	$1{ }^{10}$	819	140	939.	170	996
21	182	51	430	81	649	II 1	824	141	941	171	997
22	191	52	438	82	656	112	829	142	945	172	997
23	199	53	446	83	662	113	834	143	948	173	998
24	208	54	454	84	669	114.	8.38	144	951	174	998
25	216	55	462	85	675	115	8843	145	954	175	999
26	225	56	469	86	682	116	848	146	956	176	999
27	233		477		638	117	852	147	959	177	999
28	242	58	485	88	694	118	857	148	961	178	1000
29	250	59	492	89	701	119	${ }_{861}^{861}$	149	963	179	1000
30	259	60	50	90	707	120	866	150	966	180	000

SECTIONV.

Of the Line of Solids.
TH I S Line is fo called, becaufe it contains the homologous Sides of a certain Namber of fimilar Solids, Multiples of a leffer from Unity, according to the natural Order of Numbers, to 64, which is commonly the greateft of the Divifions of this Line, which is marked Fig. q_{0} A H, next to the Line of Chords.
To make the Divifions upon it, the Scale of rovo Parts mult be ufed, and the Side of the 64th and greateft Solid muft be fuppofed 1000 equal Parts ; then becaufe the Cube-Root of 64 is 4 , and the Cube-Root of I is I , it follows that the Side of the $64^{\text {th }}$ Solid is quadruple the Side of the firft and leait Solid, which confequently will be 250 , becaufe (per Prop. 33. lib. II. Eucl.) fimilar Solids are to each other, as the Cubes of cheir homologous Sides.

The Number 500 (twice 250) is the Side of the eighth Solid, that is, of a Solid eight times as great as the firf : becaufe the Cube of 2 , which is 8 , is eight times the Cube of Unity.
Likewife the Number 750 , which is three times 250 , is the Side of the 27 th Solid ; becaufe the Cube of 3 , which is 27 , is 27 times the Cube of Unity.

There are more Calculations required to find the Sides of Solids double, triple, quadruple, \mathcal{O}_{c}. the firft, which cannot exactly be expreffed in Numbers, becaufe their Roots are incommenfurable ; neverthelefs they may be fufficiently approached for Ufe, by the following Method.
For Example ; to find the Number expreffing the Side of a Solid, twice the firf and leaft : its Side 250 muft be cubed, which is 15625000 ; then this Number muft be doubled, and the Cube-Root of it extracted, which will be almoft 315, for the Side of a Solid double the firt. To have the Side of a Solid triple the firt, the faid Cube muft be tripled, and its Cube= Root, which is 360 , will be the Side of a Solid triple the firt ; and fo of others, as may be feen in the following Table.

A TABLE for the Line of Solids.

I	250	17	643	33	802	49	914
2	315	18	655	34	810	50	921
3	360	19	667	35	818	51	927
4	397	20	678	36	825	52	933
5	427	21	689	37	833	53	939
6	454	22	700	38	840	54	945
7	478	23	711	39	848	55	951
8	500	24	721	40	855	56	956
9	520	25	731	41	862	57	962
10	538	26	740	42	869	58	967
11	556	27	750	43	876	59	973
12	572	28	759	44	882	60	978
13	588	29	768	45	889	61	984
14	602	30	777	46	896	62	989
15	616	31	785	47	902	63	995
16	630	32	794	48	908	64	1000

The Sides of all thefe Solids being thus found in Numbers, they are denoted on the Line of Solids, by laying off from the Center A the Parts which they contain, taken upon the Scale.

SECTION VI.

Of the Line of Metals.

THIS Line is fo named, becaufe it is ufed to find the Proportion between the fix Me tals, of which Solids may be made.
It is placed upon the Legs of the Sector, hard by the Line of Solids, and the Metals are Fig. 4n figured thereon by the Characters, which have been appropriated to them by Chymitts and Naturalifts.
The Divifion of this Line is founded upon Experiments that have been made of the differ rent Weights of equal Maffes of each of thefe Metals, from whence their Proportions are calculated, as in the following Table.

Advertifencent.

Gold	\odot	730.
Lead	5_{2}	863.
Silver	O	895.
Brafs	9	937.
Iron	0	974.
Tin	4	1000.

That of all the fix Metals which has the leaft Weight, which is Tin, is marked at the End of each Leg (as A G) at a Diftance from the Center, equal to the Length of the Scale of rooo Parts; and the other Metals nigher the faid Center (each according to the Numbers which correlpond with them) taken upon the fame Scale.
Becaufe moft of the aforementioned Lines, marked on the Sector, are divided by means of the Scale of 1000 equal Parts, it is requifite that they be exactly equal between themfelves and to the faid Scale; therefore becaufe they all center in one Point (which is the Center of the Joint) they muft all be terminated at the other End by an Arc, made upon the Surface of each of the Legs.

It is not always neceffary to divide the Sector by the Methods we have given; for, to make them fooner, prepare a Ruler of the fame Length, Breadth, and Thicknefs as the Sector, and draw upon it the fame Lines we have already prefcribed : then with a BeamCompafs transfer the fame Divifions upon the Sector, having firft drawn upon it the Lines to contain them.

S E C T I O N VII.

Containing the Proofs of the Six Lines commonly put upon the Sector.

The Proof of the Line of equal Parts.

The Divifion of this Line is fo eafy, that there is no need of any other Proof, but to examine, with your Compaffes, whether the two correfpondent Lines, drawn upon the Legs of the Sector, are very equal, and equally divided; which may be kriown by taking between your Compaffes (whofe Points let be very fharp) any Number at pleafure of thofe equal Parts, beginning any where : for if the Line of equal Parts be well divided, by carrying that fame Opening of your Compaffes on the faid Line, the two Points will always contain between them the fame Number of equal Parts upon either of the Legs, reckoning from the Center, ox from any other Point of Divifion.

The Proof of the Line of Chords.

The Method before explained will not ferve to know whether the Line of Chords be well divided, becaufe the Divifions are not equal : the Chord of 10 Degrees, for Example, is greater than half that of 20 ; likewife the Chord of 20 Degrees is greater than the half of that of 40 Degrees, and fo on: fo that the Divifions are greater towards the Center of the Sector, than towards the Ends of its Legs, as is manifeft from the Nature of the Circle. But becaufe we have given two Methods for dividing the Line of Chords, one by help of Numbers, and the other by means of the Chords of Arcs, one of thefe Methods will ferve to prove the other.

But there is fill another Method, which is this: Take at pleafure, on the Line of Chords, two Numbers equally diftant from 120 Degrees; as for Example, 110 and 130, which are each io Degrees diftant from it ; the firft in Defect, and the laft in Excefs: Then take in your Compaffes the Diftance of the two Numbers 110 and 130 , which muft be equal to the Chord of io Degrees, or to the Diftance of the Point 10, upon the Line of Chords, from the Center of the Sector.

You will find, by the fame means, that the Diftance betweer 100 and 140 Degrees, is equal to the Chord of 20 Degrees; as likewife the Diftance between 90 and 150 is equal to the Chord of 30 Degrees, which is the Number by which 120 exceeds 90 , and"by which 150° exceeds I20, and fo of others, as may eafily be noted by the aforegoing Table of Chords, where you may fee (for Example) the Number 44, which is the Chord of 5 Degrees, is the Difference between 843, which is the Chord of 115 Degrees; and 887, which is the Chord of 125 ; as likewife 87, the Chord of 10 . Degrees, is the Difference between the Chord of 110 Degrees and I30, \mathcal{F}_{c}. which are equally diftant from 120 Degrees.

Proof of the Line of Polygons.

You may know whether this Line be well divided, by help of the Line of Chords, in the following manner.

Take in your Compafies, upon the Line of Polygons, the Diftance of the Number 6, denoting a Hexagon, from the Center of the Joint; then carry this Diftance upon the Line of Chords, putting each Poine of your Compaffes upon the correfpondent Points, from 60 to 60, denoting the Angle of the Center of an Hexagon.

Chap. I.

The Sector being thus opened, take upon each Line of Chords the Diftance of the two Points, marked 72 from the Center, and lay it off upon the Line of Polygons; placing one Foot in the Center of the Joint ; then the other Foot muft reach to the Point 5, which appertains to a Pentagon, whofe Angle at the Center is 72 Degrees.

Likewife in taking upon the Line of Chords the Diftance of the two Points, denoting 90, and laying it off upon the Line of Polygons, the Foot of your Compaffes muit meer the Point 4, appertaining to a Square, whofe Angle of the Center is 90 Deg. and fo of others.

Proof of the Line of Planes.
Becaufe we have given two Methods for dividing the Line of Planes, one may ferve to prove the other ; but ftill you may eafier know whether the Divifions be well made, in the following manner : Take between your Compaffes the Diftance of any Point upon this Line from the Center of the Joint, and lay it off from the fame Point on the other Side of the fame Line of Planes; then the Foot of your Compaffes will fall upon the Number of a Plane four times greater than that which was taken towards the Center: and if again your Compaffes thus opened fhould be once more turned over, towards the End of the faid Line, the Point would fall upon the Number of a Plane nine times greater. As, for Example; if you take the Diftance from the Center to the Plane 2, in placing one Point of your Compdfes on 2, the other ought to fall rupon 8 ; and by turning the Compaffes once more, one of its Points muft fall upon 18, which contains 9 times 2. Moreover, in turning the Compaffes once more over, the other Point ought to fall upon the Number 32 , containing ${ }^{2} 2$, 16 times. If, laftly, you turn over the Compaffes again, it mult fall upon 50 , and fo of other fimilar Planes, becaufe they are to each other as the Squares of their homologous Sides. It is this that facilitates the Divifion of the Line of Planes; for having the firft, thefe are likewife had, viz. the 4 th, the 9 th, the 16 th, the 20 th, the 25 th, the 36 th, the 49 th, and the 64 th . Having found the 2 d , the 8 th, the 18 th ; the 32 d , and the 5 oth will be had : likewife having found the 3 d , the 12 th, the 27 th and the 48 th will be had; and fo of others.

> Piroof of the Line of Solids.

You may know whether this Line be well divided, in the following manner: Take between your Compaffes the Diftance of fome Point on this Line from the Center of the Joint; then place one of its Points, thus opened, upon this Point of Divifion, and turn the other Point over towards the End of the Line. Now this Point muft fall upon the Number of a Solid 8 times greater than that which was taken. Again, if the Compaffes be once more turned over, it will fall upon a Solid 27 times greater than that which was firft taken. As, for Example ; the Diftance of the firf Solid from the Center, will be equal to the Diftance from 8 to 27 , and from 27 to 64 . Likewifc, twice the Diffance from the Center to 3, will be equal to the Diftance from 3 to 24. By the 4 th Solid, the 32 d will be had. Moreover, the 5 th Solid will give the 40 th ; by the 6 th the 48 th Solid will be had; and, in a word, by help of the 7 th, the 56 th Solid will be had; becaufe fimilar Solids are to each other, as the Cubes of their homologous Sides, which facilitates the Divifion of the Line of Solids.

> Proof of the Line of Metals.

We have already mentioned, that the $\mathbf{D i v i f i o n ~ o f ~ t h i s ~ L i n e ~ i s ~ f o u n d e d ~ u p o n ~ E x p e r i m e n t s ~}$ made of the different Weights of a Cubic Foot of each of the fix Metals, as they are here denoted.

Metals. Weights of a Cubic Foot.

Gold.	-	1326 Pounds, 4 Ounces.	
Lead.	802.	2.	
Silver.	-	720.	12.
Brafs.	-	627.	12.
Iron.	-	558.	0.
Tin.	-	516.	2.

From thefe different Weights of the fix Metals the beforementioned Table was calculated, by means of which the Line of Metals was divided.

Now becaufe Tin is the lighteft of the faid fix Metals, it is manifert that if, for Example, a Ball of Tin is to be made of the fame Weight as a Ball of Iron, or Brafs, the Ball of Tin muft be greater than either of them; as alfo the Ball of Iron ought to be greater than that of Brafs, and fo on to that which will be the leaft. Therefore fuppofing the Diameter of a Ball of 'Tin to be rooo, the Queltion is to find the Lengths of the Diameters of Iron and BrafsBalls, that may be of the fame Weight as the Ball of Tin.

Now to do this, you mult make a Rule of Three, whofe firf Term let always be the heavieft of the two Metals to be compared ; the fecond Term muft be the Weight of the Tin, and the third muft be the Number 64, which is the greatelt Solid of the Table of Solids, to which the Number 1000 anfwers. As, for Example; to compare Iron, a Cubic Foot of which weighs 558 Pounds, with Tin, a Cubic Foot of which weighs 516 Pounds, 2

Ounces: Having reduced them all into Ounces, the 558 Pounds make 8928 Ounces; and the 516 Pounds, 2 Ounces, make 8258 Ounces : then fay, if 8928 gives 8258 , what will 64 give? The Rule being finifhed, the fourth Term will be 59 and a fimall Remainder; then look for the Number 59 in the Table of Solids, and the Number anfwering thereto is 973 ; inftead of which take 974, becaufe of the remaining Fraction: therefore, I fay, that the Diameter of the Ball of Iron muft be 974. In the fame manner, by making four other Rules of Proportion, you may know whether the Numbers, marked againft the four other Metals, are well calculated, and confequently whether the Line of Metals be well divided.

C HAP. II. Of the Use of the Sector.

THE Ufes we fhall here lay down,' are only thofe that moft appertain to the Sector, and which by it can be better performed, than by any other Inftrument.

> S E C T I O N I.
> Of the U S E of the Line of equal Parts.

U S E I. To divide a given Line into any Number of equal Parts; for Example, into feven.
T AKE between your Compaffes the propofed Line, as A B, and carry it, upon the Line of equal Parts, to a Number on both Sides, that may eafily be divided by 7 , as 70 , whofe 7 th Part is io; or elfe the Number 140, whofe 7th Part is 20. Then keeping the Sefor thus opened, flhut the Feet of your Compaffes, fo that they may fall on the Numbers io on each Leg of the Sector, if the Number 70 be ufed ; or upon the Numbers 20, if 140 be taken for the Length of the propofed Line ; and this opening of your Compaffes will be the 7th Part of the propofed Line.

Note, If the Line to be divided be too long to be applied to the Legs of the Sector, only divide one half, or one fourth of it by 7 , and the double, or quadruple, of this 7th Part, will be the 7 th Part of the whole Line.

U SE 1I. Severalight Lines, conffituting the Perimeter of a Polygon, being given, one of which is fuppofed to contain any Number of equal Parts: to find how many of thefe Parts are contained in each of the other Lines.
Take that Line's Length, whofe Meafure is known, between your Compaffes, and fet it over, upon the Line of equal Parts, to the Number on each Side, expreffing its Length. The Sector remaining thus opened, carry upon it the Lengths of each of the other Lines, parallel to the beforementioned Line, and the Numbers that each of them falls on will fhew their different Lengths: But if any one of the faid Lines doth not exaitly fall upon the fame Number of the Lines of equal Parts, upon both Legs of the Sector ; but, for Inftance, one of the Points of the Compaffes falls upon 29, and the other upon 30 ; the Length of the faid Line will be 29 and a half.

U S E III. Aright Line being given, and the Number of equal Parts it contains; to take from it a leffer Line, containing any Number of its Parts.
Let, for Example, the propofed Line be 120 equal Parts, from which it is required to take a Line of 25. Firf take the propofed Line between your Compafles, and then open the Sector, fo that the Feet of your Compaffes may fall upon 120, on the Line of equal Parts, upon each Leg of the Sector: The Sector remaining thus opened, take the Diftance from 25 to 25 , and that will give the Line defired. It is manifeft, from the three aforementioned Ufes, that the Line of equal Parts, upon the Legs of the Sector, may rery fitly ferve as a Scale for all kinds of plane Figures, provided that one of their Sides be known; and that, by means of this Line, they may be augmented or diminifhed.

U S E IV. Two right Lines being given, to find a third Proportional: and three being given, to find a fourth.
If there be but two Lines propofed, then take the Length of the firt between your Compaffes, and lay it off upon the Line of equal Parts from the Center, in order to know the Number whereon it terminates; then open the Sector, fo that the Length of the fecond Line may be terminated by the Length of the firft. The Sefor remaining thus opened, lay off the Length of the fecond Line upon one of the Legs from the Center ; and, Note, the Number whereon it terminates, and the Diftance between that Number, on both Legs of the Sector, will give the third Proportional required.

Let, for Example, the firt Line propofed be A B, 40 equal Parts; and the fecond C D, 20. Firft take the Length of 20 between your Compaffes, and opening the Sector, fet over Fig. 3. this Diftance upon 40, and 40 on each Leg of the Sector. The Sector remaining thus opened, take the Diftance from 20 to 20 , which will be the Length of the third Proportional fought; which being meafured, on the Line of equal Parts, from the Center, you will find it io ; for as 40 is to 20 , fo is 20 to ro.
But if three Lines be given, and a fourth Proportional to them required; take the fecond Line between your Compaffes, and, opening the Sector, apply this Extent to the Ends of the firt, laid off from the Center, on both Legs of the Sectur. The Sector being thus opened, lay of the third Line from the Center, and the Extent between the Number, whereon it terminates on both Legs of the Sector, will be the fourth Proportional required.

Ler the firf of the three Lines be 60, the fecond 30, and the third 50 ; carry the Length of 30 to the Extent from 60 to 60 ; and the Sector remaining thus opened, take the Diftance from 50 to 50 , which is 25 , and this will be the fourth Proportional fought: for 60 is to 30 as 50 to 25 .

U SE. V. To divide a Line into any given Proportion.

As for Example ; to divide a Line into two Parts, which may be to each other as 40 is to 70: Firf add the two Numbers together, and their Sum will be 110; then take between your Compaffes the Length of the Line propofed, which fuppofe 165, and carry this Length to the Diftance, from ilo to IIO, on both Legs of the Sector. The Seetor remaining thus opened, take the Extent from 40 to 40 , and alfo from 70 to 70 ; the firft of the two will give 60, and the latter 105, which will be the Parts of the Line propofed ; for 40 is to 70 , as 60 is to 105 .

U SE VI. To open the Seftor, So that the two Lines of equal Parts may make a right Angle.
Find three Numbers, that may exprefs the Sides of a right-angled Triangle, as 3, 4, or 5, or their Equimultiples ; but fince it is better to have greater Numbers, let us take 60,80 , and roo. Now having taken, between your Compaffes, the Diftance from the Center of the Sector to 100, open the Sector, fo that one Point of your Compaffes, fet upon 80 on one Leg, may fall upon 60, of the Line of equal Parts, upon the other Leg ; and then the Sector will be fo opened, that the two Lines of equal Parts make a right Angle.

USE VII. To find a right Line equal to the Circumference of a given Circle.

The Diameter of a Circle is to the Circumference almoft as 50 to 157; therefore take, between your Compaffes, the Diameter of the Circle, and fet it over, upon the Legs of the Sector, from 50 to 50 , on both Lines of equal Parts. The Sector remaining thus opened, take the Diftance from 157 to 157, between your Compaifes, and that will be almoft equal to the Circumference of the propofed Circle; I fay almoft, for the exact Proportion of the Diameter of a Circle to its Circumference hath not yet been Geomerrically found.

S E C TION II.

Of the U SE of the Line of Planes.

U SE I. To augment or diminijb any Plane Figures in a given Ratio.

LET, for Example, the Triangle A B C be given, and it is required to make another Tri- Fig. 4i angle fimilar, and triple to it.
Take the Length of the Side A B between your Compaffes, and open the Sector, fo that the Points of your Compaffes fall upon I and I , on each Line of Planes; the Sector remaining thus opened, take the Diftance from the third Plane to the third, on each Leg of the Sector, which will be the Length of the homologous Side to the Side A B. After the fame manner may the homologous Sides to the other two Sides of the given Triangle be found, and of thefe three Sides may be formed a Triangle triple to the propofed one. Note, If the propofed Plane Figure hath more than three Sides, it muft be reduced into Triangles, by drawing of Diagonals.
If a Circle is to be augmented or diminifhed, you muft proceed in the fame manner with its Diameter.

U S E II. Two fimilar Plane Figures being given; to find the Ratio between them. :
Take either of the Sides of one of the Figures, and open the Sector, fo that it may fall upon the fame Number or Divifion, on the Line of Planes, on both Legs of the Sector. Then take the homologous Side of the other Figure, and apply that to fome Number or Divifion on both Legs of the Sector ; and then the two Numbers, on which the homologous Sides fall, will exprefs the Ratio of the two Figures. As fuppofe the Side $a b$, of the leffier Fig.s; Figure, falls upon the fourth Plane ; and the homologous Side A B, of the greater, falls upon the fixth Plane, the two Planes are to each other as 4 to 6 . But if the Side of a Figure is applied to the Extent of fome Plane, on both Legs of the Sector, and the homologous Side cannot
not be adjufted parallel to it, fo as it may fall on a whole Number on both Less of the Seçtor ; then you mult place the Side of the firf Figure upon fome oilier Number, on eac.. Lec, till a whole Number is found on both Legs of the Sector, whofe Extent is equal to the Length of the homologous Side of the other Figure, to avoid Fractions.

If the propofed Figures are fo great, that their Sides cannot be applied to the opening of the Legs of the Settor, take the half, third, or fourth Parts of any of the two homolegous Sides of the faid Figures, and compare them together, as betore, and you will hate the Proportion of the faid Figures.

U SE III. To open the SeEtor, So that the two Lines of Planes may mako a right Aingle.
Take betwcen your Compafles the Extent of any Plane from the Center of the Sector; as, for Example, the 40 th : then apply this opening of your Compaties, upou the Litue of Planes, on both Sides, to a Number equal to half the precedeut one, which, in this Example, is 20 ; then the two Lines of Planes will be at right Angles: becaufe, by the Confruction of the Line of Planes, the Number 40, which may reprefent the longelt Side of a Triangle, fignifies a Plane equal to two other fimilar Planes, denoted by the Number 20 upon the Legs of the Sector: Whence, from Prop. 48. lib. I. Eucl. the aforenamed Angle is a tight one.

USE IV. To make a plane Figure fimilar and equal to two other givan fimilar plane Figures.
Open the Sefor (by the precedent Ufe) fo that the Lines of Pianes be at right Angles, and carry any two homologous Sides, of the two propofed Figures, upon the Line of Planes, from the Center, the one upon one Leg, and the other upon the other Leg; and thein the Diftance of the two Numbers found will give the homologous Side of a plane Figure fimilar and equal to the two given ones.

As, for Example, the Side of the leffer Figure being laid off from the Center, will reach to the fourth Plane; and the homologous Side of the greater Figure, 11kewife laid of upon the other Leg, will extend to the ninth Plane : then the Difance from 4 to 9 is the homologous Side of a Figure equal to the two propofed ones, by means of which it will be eafy to make a Figure fimilar to them.

By means of this Ufe may be added together any Number of fimilar plane Figures, viz. in adding together the two firf, and then adding their Sum to the third, and fo on.
USE V. Trio fimilar unequal plane Figures being given; to find a thivd equal to their Difference.
Open the Sector, fo that the two Lines of Planes may make a right Angle ; then lay off one Side of the leffer Figure from the Center of the Setor. This being done, take the homologous Side of the greater Figure, and fet one Foot of your Compaffes upon the Number whereon the firf Side terminates, and the other Point will fall on the other Leg, upon the Number required.

As, for Example ; having laid off the Side of the leffer Figure from the Center, which falls upon the Number 9, take the Length of the homologous Side of the greater Figure, and fetting one Foot of your Compaffes upon the Number 9 , the other will fall on the Number 4 of the other Leg; therefore taking the Diftance of the Number 4 from the Center of the Sector, that will be the homologous Side of a Figure finilar and equal to the Difference of the two given Figures, whofe Ratio is as 9 to 13 .

U S E VI. To find a mean Proportional between two given Lines.

Lay off both the given Lines upon the Line of equal Parts, in order to have their Lengths expreffed in Numbers ; the leffer of which fuppofe 20, and the greater 45: Then opeis the Sector, fo that the Diftance from 45 to 45 , of the Lines of Planes, be equal in Length to the greater Line. The Sector remaining thus opened, take the Diftance from 20 to 20 of the Line of Planes, which will be the mean Proportional fought; and having meafured it upon the Line of equal Parts from the Center, you will find it to be 30 : for as 20 is to 30 , fo is 30 to 45.
But becaufe the greateft Number on the Line of Planes is 64 , if any one of the Lines propofed be greater than 64 , the Operation muft be made with their half, third, or fourth Parts, in the following manner : Suppofe the leffer Number be 32 , and the greater 72 ; open the Sector, fo that half of the greater Number, viz. 36 , may be equal to the Diftance from 36 to 36, of the Line of Planes, upon both Legs of the Seqor; and then the Diftance from 16 to 16 doubled, will be the mean Proportional fought.

SECTION III.
 Of the USES of the Line of Polygons.

U SE I. To infribe a regular Polygon in a given Circle.
Fig. 6.
TAKE the Semidiameter A C, of the given Circle, between your Compaffes, and adjuft it to the Number 6, upon the Line of Polygons, on each Leg of the Sector ; and the SeZor remaining thus opened, take the Difance of the two equal Numbers, expreffing the Num-
ber of Sides the Polygon is to have : for Example; take the Diftance from 5 to 5, to infcribe a Pentagon; trom 7 to 7 for a Heptagon, and fo of orhers: eirher of thefe Diftances, carried about the Circunference of the Circle, will divide it into fo many equal Parts. And thus you may eafily defcribe any regular Poiygon, froni the equilateral Triangle to the Dodecagon.

U SE II. To defcribe a regular Polygon upon a given right Line.

If, for Example, the Pentagon of Fig. 6. is to be defcribed upon the Line A B: Take the Fig. 6: Length of the faid Line betw een your Compaffes, and apply it to the Extent of the Numbers 5,5 , on the Line of Polygons: The Sector remaining thus opened, take, upon the fame Lines, the Extent from 6 to 6 , which will be the Semidiameter of the Circle the Polygon is to be infcribed in; therefore if, with this Diftance, you defcribe, from the Ends of the given Line A B, two Arcs of a Circle, their Interfection will be the Center of the Circle.

If an Heptagon was propofed, apply the Length of the given Line to the Extent of the Numbers 7 and 7, on both Legs of the Sector, and always take the Extent from 6 to 6, to find the Center of the Circle ; in which it will be eafy to infcribe an Heptagon, each Side of which will be equal to the given Line.

U SE III. To cut a given Line, as D E, into extreme and mean Proportion.

Apply the Length of the given Line to the Extent of the Numbers 6 and 6, on both Fig. 7% Sides, upon the Line of Polygons; and the Sector remaining thus opened, take the Extent of the Numbers 10 and Io, on both Legs of the Sector, which are thofe for a Decagon. This Extent will give D F, the greatef Segment of the propofed Line, becaufe the greateft Segment of the Radius of a Circle, cut into mean and extreme Proportion, is the Chord of 36 Degrees, which is the roth Part of the Circumference.

If the greater Segment is added to the Radius of the Circle, fo as to make but one Line, the Radius will be the greater Segment, and the Chord of 36 Degrees will be the leffer Segment.

U S E IV. Upon a given Line D F, to defcribe an Ifofceles Triangle, bavirig the Angles at the Bafe double to that at the Vertex.

Open the Sector, fo that the Ends of the given Line may fall upon 10 and 10 , of the Fig. 8. Line of Polygons, upon each Leg of the Sector. 'The Sector remaining thus opened, take the Diftance from 6 to 6 , and this will be the Length of the two equal. Sides of the Triangle to be made.

It is manifelt that the Angle, at the Vertex of this Triangle, is 36 Degrees, and that each of the Angles at the Bale is 72 Degrees; but the Angle of 36 Degrees, is the Angle of the Center of a Decagon.

U SE V. To open the Sector fo, that the two Lines of Polygons may make a right Angle.
Take between your Compaffes the Diftance of the Number 5, from the Center, on the Line of Polygons; then open the Sector, fo that this Diftance may be applied to the Number 6 on one Side, and to the Number io on the other, and then the two Lines of Polygons will make a right Angle ; becaufe the Square of the Side of a Pentagon is equal to the Square of the Side of a Hexagon, together with the Square of the Side of a Decagon.

SECTION IV.

Of the USES of the Line of Cbords.

U SE I. To open the Sector, fo that the two Lines of Choids may make an Angle of any Number of Degrees.
EIRST take the Diftance, upon the Line of Chords, from the Center of the Joint, to the Number of Degrees propofed; then open the Sector, fo that the Dillance, from 60 to 60 on each Leg, be equal to the aforefaid Diftance, and then the Lines of Chords will make the Angle required.

As, to make an Angle of 40 Degrees; take the Diftance of the Number 40 from the Fig. 9. Center, then open the Sector, till the Diftance from 60 to 60 , be equal to the faid Diftance of 40 Degrees. If a right Angle be required, take the Diftance of 90 Degrees from the Center, and then let the Diftance from 60 to 60 be equal to that, and fo of others.

U S E II. The Sector being opened, to find the Degrees of its Opening.

Take the Extent from 60 Degrees to 60 Degrees, and lay it off upon the Line of Chords from the Center; then the Number, whereon it terminates, fheweth the Degrees of its Opening.

Sights are fometimes placed upon the Line of Chords, by means of which Angles are taken, in adding to the Sector a Ball and Socket, and placing it upon a Foot, to elevate it to the heig.t of the Eye : but thefe Operations are better performed with other Inftruments.

Fig. in.

U SE III. To make a vight-lined Aingle, upon a given Line, of any Number of Degrees.
Defcribe, upon the given Line, a circuar Arc, whofe Center let be the Point whereon the Angle is to be made; then fet off the Radius, from 60 to 60, on the Lines of Cnords. The Sector remaining this opened, take the Diftance of the two Numbers upon each Leg, expreffing the propofed Degrees, and lay it from the Line upon the Arc defuribed. Lattly, draw a right Line from the Center, thro the End of the Arc, and it will make the Angle propofed.
Suppofe, for Example, an Angle of 40 Degrees is to be made at the End B, of the Line A B; having defcribed any Arc at out the Point B, always lay of the faid Radius from 60 to 60 on the Line of Chords, (becaufe the Radius of a Circle is always equal to the Chord of 60 Degrees) and lay off the Diftance of 40 Deg and 40 Deg. from C to D . Laftly, drawing a Line thro the Points B and D, the Angle of 40 Degrees will be had. Vid. Fig. 10.
By this Ufe a Figure, whofe Sides and Angles are known, may be drawn.
USE IV. A right-lined Angle being given; to find the Number of Degrees it contains.
About the Vertex of the given Angle defcribe the Arc of a Circle, and open the Sector, fo that the Diftance from 60 to 60 , on eaci Leg, be equal to the Radius of the Circle. Then take the Chord of the Arc between your Compaffes, and carrying it upon the Legs of the Sector, fee what equal Number, on each Leg, the Points of your Compafles fall on, and that will be the Quantity of Degrees the given Angle contains.

U S E V. To take the Quantity of an Arc, of any Number of Digrees, upon the Circumference of a given Circle.

Open the Seetor, fo that the Diftance from 60 to 60 , on each Line of Chords, be equal to the Radius of the given Circle. The Sector remaining thus opened, take the Extent of the Chord of the Number of Degrees upon each Leg of the Sector, and lay it off upon the Circumference of the given Circle.
By this Ufe may any regular Polygon be infcribed in a given Circle, as well as by the Line of Polygons, viz. in knowing the Angle of the Center, by the Method and Table before expreffed, in the Conftruction of the Line of Polygons.

For Example; to make a Pentagon by means of the Line of Chords: Having found the Angle of the Center, which is 72 Degrees, open the Sector, fo that the Ditance from 60 to 60, on each Leg of the Sector, be equal to the Radius of the given Circle ; and then take the Extent from 72 to 72 , on each Leg, between your Compaffes, which carried round the Circumference, will divide it into five equal Parts, and the five Chords being drawn, the Polygon will be made.

U S E VI. To defribe a regular Polygon upon the given right Line F G.

As, for Example, to make a Pentagon, whofe Angle of the Center is 72 Degrees; open the Sector, fo that the Diftance from 72 Degrees to 72 Degrees, on each Line of Polygons, be equal to the Length of the given Line. The Sector remaining thus opened, take the Difance from 60 to 60 , on each Leg, between your Compaffes; with this Diffance, about the Ends of the given Line, as Centers, defcribe two Arcs interfecting each other in D; and this D will be the Center of a Circle, whofe Circumference will be divided, by the given Line, into five equal Parts.

SECTIONV.
 Of the U SE S of the Line of Solids.

U S E I. To augment or diminifbany fimilar Solids in a given Ratio.
LET, for Example, a Cube be given, and it is required to make anotier double to it. Carry the Side of the given Cube to the Diftance of fome equal Number, on both Lines of Solids, at pleafure; as, for Example, to 20 and 20 . 'The Sector being thus opened, take the Extent, on both Legs of the Sector, of a Number double to it, that is, of 40 and 40 ; and this is the Side of a Cube double the propofed one.

If a Ball or Globe be propofed, and it is required to make another thrice as big ; carry the Diameter of the Ball to the Diftance of fone equal Number, on both Lines of Solids, at pleafure, as to 20 and 20 ; then take the Diftance from 60 to 60 , (becaufe 60 is thrice 20) and that will be the Diameter of a Ball three times greater than the propofed one, becaufe Balls are to each other as the Cubes of their Diameters.

If, again, a Cheft, in figure of a right-angled Parallelopipedon, contains three Meafures of Grain, and it be required to make another fimilar Cheft to contain five Meafures; open the Settor, fo that the Diftance from 30 to 30 , on each Line of Solids, be equal to the Length of the Bafe of the Cheft ; then the Difanice fromiso to 50 , on each Leg, will be the homologous Side of that Solid to be made. Again, apply the Breadth of the Bafe to the Diftance of the faid Numbers 30 and 30 , and then the Diflance from 50 to 50 will be the homologous
mologous Side to the faid Breadth. Now having made a Paralldogram with thefe two Lengths, your next thing will be to find the Depth: To do which, open the Sector, fo that the Diffance from 30 to 30 be equal to the Depth of the given Cheft ; then the Diftance from 50 to 50 will be the Deprh of the Cheft to be made. This being done, it will be eafy to make the Parallelopipedon, containing the five propofed Meafures.

If the Lines are fo long, that they cannor be applied to the Legs of the Sector, take any of their Parts, and with them proceed as before; then the refpective Parts of the required Dimentions will be had.

USE II. Two fimilar Bodies being given; to fund their Ratio.

Take either of the Sides of one of the propofed Bodies between your Compaffes, and having carried it to the Difance of fome equal Number, on each Line of Solids, take the homologous Side of the other Sulid, and note the Number on each Leg it falls upon ; and then the fiild Numbers will fhew the Ratio of the two fimilar Solids.

But if the Side of the firlt Solid be fo applied to fome Number on each Leg of the Sector, that the homoiogous Side of the other cannot be applied to the Extent of fome Number on each Leg ; then you mult apply the Side of the firlt Solid to fuch a Number on each Line, that the Length of the Side of the fecond Solid may fall upon fome whole Number on each Line of Solids, to avoid Fractions.
U SE III. To confruct and divide a Line, wbore Ufe is to find the Diameters of Canion-Balls.
It is found, by Experience, that an Iron Ball, three Inches in Diamerer, weighs 40 Pounds; whence it will be eafy to find the Diameters of other Balls of different Weights, and the fame Metal, in the following manner: Open the Sector, fo that the Diftance from the 4 th Solid to the $4^{\text {th }}$ Solid, on each Line of Solids, be equal to three Inches. The Sector remaining thus opened, take upon the Lines of Solids the Diftances of all the Numbers, from I to 64 , on one Leg, to the fame Numbers on the other Leg; chen lay of all thefe Lengths upon a right Line drawn on a Ruler, or upon one of the Legs of the Sector, and where the Diameters terminate, denote the Weights of the Balls.

But now to mark the Fractions of a Pound, as $\frac{1}{4}, \frac{1}{2}, \frac{3}{4}$, open the Sector, fo that the Diflance of the 4 th Solid, on each Leg of the Sector, be equal to the Diameter of a Ball of one Pound. The Sector remaining thus opened, tie Difiance from the ift Solid to the ift on each Leg of the Sefor, will give the Diameter for $\ddagger+$ of a Pound; from the $2 d$ to the $2 d$, for $\frac{\pi}{2}$ of a Pound; and from the 3 d to the 3 d, for $\frac{3}{3}$ of a Pound, and fo of others. When the Dameters of Balls are known, the Diameters or Bores of Cannon, to which they are proper, will likewife be known : but there are commonly two or three Limes given for the Vent of great Balls, and for leffer ones in proportion. The Diameters of Balls are meafured with fipherick Compafies, as will be more fully explained among the Inftruments for Artillery.

U S E IV. To make a Solid fmilar and equal to the Sum of any Number of $\sqrt{2}$ milar given Solids.

Open the Setor, and apply eithcr of the Sides of either of the Bodies to the fame Number on each Line of Solids; then note on what equal Numbers, on both Legs of the Sector, the homologous Sides of the other Solids fall. This being done, add together the faid Numbers, and take the Extent, on both Lines of Solids, of the Number arifing from that Addition; and this Extent will be the homologous Side of a Body, equal and fimilar to the Sum of the given Bodies.

Example ; Suppofe the Side chofen of the firt Solid be applied to the fifth Solid, on each Leg of the Setor, and the homologous Sides of the others fall, the one on the 7 th , and the other on the 8 eth Solid, on each Line of Solids; add the three Numbers 5,7 , and 8 together, and their Sum is 20 ; therefore the Diftance from 20 to 20 , on each Line of Solids, will be the homologous Side of a Body, equal and fimilar to the three others.

USE V. Tivo fimilar and triequal Bodies being given; to find a third fimilar and equal to their Difference.
Open the Sector, and apply either of the Sides of either of the Bodies to fome equal Number on each Leg of the Sector, and fee what equal Numbers, on both Legs, the homologous Sides of the other Solids fall upon ; then fubftract the lener Number from the greazer, and take the Difance from the remaining Number, on one Line of Solids, to the fame on the other ; and this will be the homologous Side of a Body, equal to the Difference of the two "given ones.
As, fur Example ; the Side of the greateft being fet over, upon the Line of Solids, from 15 to 15 , the homologous Side of the leffer will be equal to the Ditance from 9 to 9 ; then taking 9 from 15 , there remains 6 : therefore the Diftance from 6 to σ will be the homologous Side of the Solid fought.

U S E VI. T'u find two mean Proportionals between two given Lines.

For Example; fuppofe there are two Lines, one of which is 54 , and the other 16: open the Sector, fo that the Diftance from 54 to 54 , on each Leg of the Sccior, be equal to the

Lengrh of the longert Line. The Sector remaining thus opened, the Diftance from 16 to 16, on each Leg, will be equal to the greater of the mean Proportionals, and will be found to be 36. Again, fhutting the Legs of the Seetor clofer, till the Diftance between 54 and 54 , on each Leg, be equal to 36 ; then the Diftance from 16 to 16 will be the leffer of the miean Proportionals, and will be found to be 24: Whence thefe four Lines, will be in continual Proportion, $54,36,24,16$.

If the Lives be too long, or the Numbers of their equal Parts too great, you muft take their halfs, thirds, or fouths, छ'c. and proceed as before. For Example ; to find two mean Proportionals between two Lines, one of which is 32 , and the other 256 , take the fourth Parts of both the Lines, which are 8 and 64 . This being done, open the Sector, fo that the Difance from 8 to 8 , on each Line of Solids, be equal to 8 ; then take the Difance from 64 to 64 , and that gives 16 , for $\frac{4}{4}$ of the firft of the two mean Proportionals. Again, open the Sector, fo that the Diffance from 8 to 8 be equal to 16 ; the Sector being thus operied, the Diftance from 64 to 64 will give 16 , for $\frac{74}{4}$ of the fecond of the mean Proportionals fought : whence the mean Proportionals are 64 and 128 ; for $32,64,128,256$, are proportional.

U SE VII. To find the Side of a Cube cqual to the Side of a given Parallelopipedon.

Firft, find a mean Proportional between the two Sides of the Bafe of the Parallelopipedon; then between the Number found, and the Height of the Parallelopipedon, find the firt of two mean Proportionals, which will be the Side of the Cube fought.

For Example, let the two Sides of the Parallelopipedon be 24 and 54 , and its Height 63 ; the Side of a Cube equal to it is fought.

Open the Sector, to that the Diftance between 54 and 54, on the Line of Planes, be equal to the Side of 54 ; then take the Diftance from 24 to 24 on the fame Line, which, meafured upon the Line of equal Parts, will give 36 for a mean Proportional. This being done, take 36 between your Compaffes, and open the Setor, fo that the Points of the Compaffes may fall upon 36 and 36 , on each Line of Solids; then take the Diftance from 63 to 63 on the Lines of Solids, which will be found almoft $44 \frac{5}{2}$, for the Side of a Cube equal to the given Parallelopipedon.

U S E VIII. To confruct and divide a Gauging-Rcd to meafure Casks, and other the like Veffels, proper to bold Liquors.

The Gauging-Rod, of which we are now going to fpeak, is a Ruler made of Metal, divided into certain Parts, whereby the Number of Pints contained in a Veffel may be found, in putting it in at the Bung-hole, till its End touches the Angle, made by the Bottom, with that part of the Side oppofite to the Bung-hole, as the Line A C diagonally fituated.

The Gauging-Rod being thus pofited, the Divifion, anfwering to the middle of the Bunghole, fhews the Quantity of Liquor, or Number of Pints the Veffel, when full, holds.

But it is neceffary to change the Pofition of the aforefaid Rod, fo that its End C may touch the Angle of the other Bottom B, in order to fee whether the middle of the Bung-hole be in the middle of the Veffel; for if there is any Difference, half of it muft be taken.

The Ufe of this Gauging-Rod is very eafy : for, without any Calculation by it, the Dimenfions of Casks may immediately be taken; all the Difficulty confifts only in well dividing it.

Now, in order to divide it, a little Cask, holding a Setier, or eight Pints, muft be made fimilar to the Veffels that are commonly ufed ; for this Rod will not exactly give the Dimenfions of diffimilar Veffels, that is, fuch that have the Dianeters of the Heads, thofe of the Bungs, and the Lengths not proportional to the Diameters of the Head, Bung, and Length of that which the Divifions of the Rod are made by.
Now fuppofe the Diameter, at the Head of a Cask, be 20 Inches, the Diameter of the Bung 22, and the interior Length 30 Inches; this Vefiel will hold 27 Setiers of Paris Meafure, and its Diagonal Length, anfwering to the middle of the Bung-hole, will be 25 Inches, 9 Lines and a half, as is eafy to find by Calculation: becuufe in the right-angled Triangle $\mathrm{A} D \mathrm{C}$, the Side C D being is Inches, and DA $=1$, by adding their Squares together, you whil have (per Prop. 47. lib. x. Eucl.) the Square of the Hypothenufe A C; and by extraeting the Square Root, A C will be had.

Accorung to the fame Proportions a Cask, whofe Dimenfions are one Third of the former .ises, will contain one Setier, or eigit Pints; that is, if the Dianierer of the Head be 6 Inches, and 8 Lines; that of the Bung 7 Inches, 8 Lines; the Lengtl 8 Inches, 8 Lines; aild ins Dagonal 8 Inches, 7 Lines.
Atiother Cask, whofe Dimenfions are half of that before-mentioned, will coutain one Pint; that is, if the Diameter of the Head be 3 lnches, 4 Lines; that of the Bung 3 Inches, 8 Lines; the interior Length of the Cask 5 Inches; and the Diagonal, anfwering to the middle of the Bur g -hole, 4 Inches, 3 Lines and a half.

Now take a Rod about 3 or 4 Feet long, and chufe either of the three Meafures, which you judee mof proper: As, for Example; if you will make Divifions for Setiers upon the 1. . , make a Point, in the middle of its Breadth, diftant from one of its Ends, 8 Inches, 7 t nes, and there make the Dvifien for one Setier upon it ; donble that Extent, and there make a Mark for 8 Setiers; triple the fome Extent, and there make a Mark for 27 Setiers;
quadruple is, and there make a Mark for $\sigma+$ Setiers; becaufe fimilar Solids are to each otheř, as the Cubes of their homologous Sides.

Again, to make Divifions upon it for the other Setiers; take between your Compafles the Lengch of 8 Inches, 7 Lines; fet over this Diftance, upon eaci Line of Solids of your Sector, from the firlt Solid to the firf. The Sector remaining thus opened, take the Diftance from the fecond Solid to the fecond, which mark upon the Rod for the Divilion of two Setiers.

Again ; take the Diftance from the third Solid to the third, which mark upon the Rod for the Length of the Diagonal, agreeing to three Setiers, and fo on; by which means the Rod will be divided, for taking the Dimenfions of Veffels in Setiers. With the fame facility may the Divifions for Pints be made upon the Rod ; for half of the Diftance of the Divifion of two Seriers, will give the Divifion for two Pints; half of the Diftance of the Divifion for three Seriers, will give the Divifion for three Pints ; half of the Diftance of the Divifion for four Setiers, will give the Divifion for four Pints, and fo on.

If the Sector be not long enough to take the Diagonal Length anfwerable to one Setier, from the firft Solid to the firlt, take the Diagonal Length anfwerable to one Pint ; and having divided the Rod for any Number of Pints, the Diagonal Lengths of the fame Number of Seriers may be had, by doubling the Diagonal Lengths of the Pints. As, for Example ; if the Diagonal Lengch for 6 Pints be doubled, that Diftance will be the Diagonal Lengti of a Veffel holding 6 Setiers: Alfo if the Diagonal Length of 7 Pints be doubled, the Length of the Diagonal of a Veffel, holding 7 Setiers, will be had ; and fo of other Diagonal Leingths.
If the Diagonal Length is yet too long to be applied to the Diftance of the Divifion for the firt Solid, on each Leg of the Sector, its half mult be applied to the fame ; and the Sector remaining thus opened, take the Diftance of the Divifions for the fecond Solid on both Lines of Solids, and double it ; then you will have the Diagonal Length of a Veffel holding two Pints. Having again taken the Diftance of the Divifion for the third Solid upon each Leg of the Sector, which Diftance being double, the Diagonal Length of a Veffel holding three Pints will be had, and may be marked upon your Rod; and fo of others.

The Divifions for Setiers go acrofs the whole Breadth of the Rod, upon which are their refpective Numbers graved ; and the Divifions for Pints are fhorter than the others, for their better Diftinction.

In order for this Gauging-Rod to ferve to take the Quantity of Liquor contained in different diffimilar Veffels, other Divifions may be made upon its Faces, according to the different Proportions of their Lengths and Diameters, and at the bottom of the Faces muft be writ the Diameters and Lengths by which the Divifionswere made : For Example; at the bottom of the Face, upon which the precedent Divifions were made, there is wrote, the Diameter of the Head 20, the Diameter of the Bung 22, and the Length 30.

If, for dividing another Face, you ufe a Veffel, whofe Diameter of the Head is 21 Inches, that of the Bung 23, and the interior Length $27 \frac{\pi}{2}$ Inches; this Veffel is fhorter than that before-named, but contains almoft the fame Quantity of Liquor, when full, vit. 27 Setiers, and the Length of its Diagonal will be 26 Inches.

If another V.effel hath all its Dimenfions $\frac{\pi}{3}$ of the precedent ones, this Veffel will hold one Setier, and its Diagonal A C will be 8 Inches and 8 Lines in Length. Now by means of this Veffel, and its Diagonal Length, you may divide the aforefaid Face in the manner directed for dividing the firf Face, and at the bottom of this Face you muft write, Diameter reduced 22, Length $27 \frac{\text { t. }}{2}$.

If the four Faces of the Rod are divided, as before-named, you will have four different Gauges for gauging four different kinds of Veffels; and by examining the Proportions of the Diameters of the Heads and Lengths, you muft make ufe of fuch a Face accordingly.
Inftead of ufing the Sector in dividing the before-mentioned Gauging-Rod, it is better ufing the Table of Solids.
For having found, by Calculation, that the Length of the Diagonal of a Veffel, holding 27 Seriers, is 6 Inches, it will be eafy to find the Diagonals of Veffeis of any propofed Bigneffes, having the fame Proportions to the Diameters reduced, as 22 to $27 \frac{3}{2}$, or as 4 to 5 .

As, for Example; it is required to find the Diameter of a Quaveanl, which holds 9 Se tiers ; feck, in the Table of Solids,' the Number anfwering to the 9 th Sotid, which will be found 520 ; at the fame time find the correfpondent Number to the 27 th Solid, which will be found 750 : then fate a Ruie of Three, in the following manner; 750: $520:: 26: 18$; whence 18 Inches will be the Length of the Diagonal of a Veffel holding 9 Setiers. The Coopers about Paris make their Veffels almoft in the Proportion of 4 to 5 ; as is, for Example, a talf Muid, having 19 Inches 2 Lines in Diameter reduced, and 24 Inches in Length; in which Cafe the Diagonal will be 22 Inches, $8 \frac{3}{2}$ Lines, as you will eafily find by Calculation.

But, in general, as foon as the Proportions ufed in making Veffels are known, the Diagoral of fome one of thofe Veffels, holding a known quantiry of Setiers being firft found (per Prop. 47. lib. 3. Eucl.) you may afterwards find the Lengths of the Diagonals of all Veffels made in the fame proportion, by means of the aforefaid Table of Solids.

SECTION VI.
 Of the Conzfruction and Ufe of other kinds of Gauging-Rods.

THE Gauging-Rod, of which we have already fpoken, ferves only to find the Quantity of Liquor contained in fimilar Veffels; but that which we are now going to mention, may be ufed in taking the Dimenfions of diffimilar Veffels.
In order to conftruet the firit Gauge of this kind, the Meafure which you ufe muft be determined, by comparing it with fome regular Veffel, as a Concave Cylinder, in which a Quart or a Galion of Water being poured, you mult exactly note the Depth occupied by the Water.

As, for Example, if a Gauge is to be made for Paris, where a Pint is 48 Cubic Inches, or 61 Cylindrick Inches, you will find, by Calculation, that a Concave Cylinder, 3 Inches, ${ }^{11} \frac{\tau}{3}$ Lines in Diameter, and the like Number in Depth, contains one Pint of Paris; and a Cylinder, whofe Dimenfions are double the aforefaid ones, that is, 7 Inches, $10 \frac{2}{3}$ Lines, will hold one Setier : for fimilar Solids are to each other, as the Cubes of their like Sides.

This being fuppofed, lay off that Length of 3 Inches $11 \frac{\pi}{\text { Lines, }}$, upon one Face of the Rod, as often as the Length of the Rod will admit, and mark Points, whereon fet $1,2,3$, $4,5, \mathcal{H}$. each of thefe Parts may be fubdivided into 4 or more. This Face, thus divided, is calied the Face of equal Parts, and is ufed in meafuring the Lengths of Veffels.

You mult likewife mark, upon another Face of the Rod, the Diameter of the Cylinder of 3 Inches, ${ }^{\frac{T}{3}}$ Lines, and then the Diameters of Circles double, triple, quadruple, ${ }^{\text {Fic. }}$, by any of the Methods before explained for dividing the Line of Planes on the Sector, the eafielt and florteft of which is to make a right-angled Ifofceles Triangle ABC; each of the Legs about the right Angle of which being 3 Inches, $11 \frac{1}{3}$ Lines, the Hypothenufe BC will be the Diameter of a Circle double to that, whofe Diameter is 3 Inches, $11 \frac{\pi}{3}$ Lines: therefore having produced one of the Legs A B towards D, lay off the faid Hypothenufe from A towards D, and at the Point whereon it terminates mark the Number 2; then take the Diftance C 2, and having laid it of upongthe Line A D, mark the Number 3 at the Point whereon it terminates. Again, take the Diftance C 3, and having laid it off upon the Line A D, there mark the Number 4, ofc.

Note, A 4, which is the Diameter of a Circle quadruple the firt, is double A C, or $A B$; becaufe Circles are to each other as the Squares of their Diameters: whence fince AB is 1 , its Square is alfo I; and the Line A 4 being 2 , its Square mult confequently be 4 .

To ufe this Gauge, you muft firt apply the Face of equal Parts to the exterior Length of the Veffiel, from which you muft take the Depth of the two Croes, that thereby the true interior Length may be had.

This being done, apply the Face of Diameters to the Diameters of the Heads of the Veffel, and note the Number anfwering to them, and whether they are equal ; for if thete be any Difference between the Diameters of the Heads, you muft add them together, and take haif their Sum for the mean Head-Diameter.

Again ; put the Rod downright in at the Bung-hole, in order to have the Diameter of the Bung, which add to the Head-Diameter, and take half the Sum for an arithmetical Mean ; this being multiplied by the Length of the Veffel, will give the Number of Pints the Veffiel holds.
As fuppofe the interior Length of a Veffel is $4 \frac{3}{4}$ of the equal Parts of the Rod, the Diameter at the Head 15, and the Bung-Diameter 17; add 15 to 17, and their Sum is 32, half of whicl is 16 ; which multiplied by the Length $4^{\frac{3}{4}}$, and the Product 76 will give the Number of Pints the Veffel holds.

Now to conftruet the fecond kind of Rods, it is found, by Experience, that a Cylinder, whofe Height and Diameter is 3 Foot, 3 Inches, and 6 Lines, holds 1000 Paris Pints.

Then take upon a Ruler a Length of 3 Feet, 3 Inches, and 6 Lines, which divide into Io Parts, each of which will be the Height and Diameter of a Cylinder holding one Pint, (becaufe fimilar Cylinders are to each other as the Cubes of their Diameters.) Again, divide each of thefe Parts into 10 more, which may eafily be done by help of the Line of Lines on the Sector; then each of thefe laft Parts will be the Height and Diameter of a Cylinder holding the 1oooth part of a Pint: Every five of thefe fmall Parts being numbered, your Rod will be made. One of thefe Rods, of 4 or 5 Feet in Length, will lerve to gauge great Veffies, as Pipes, ©́c.

To ufe this Rod, you muft note how many of the fmall Divifions of the Rod the Diameters of the Head and Bung, as alfo the Length, contains.

But, Note, by the Length of a Veffel is underfood the interior Length, which is the Diftance between the Head and the Bottom ; and by the Diameters is underftood the interiour Diameiers included between the Staves.

IVore aifo, if the Diameters at Top and Bottom are unequal, compare one of them with the Bung-Diameter, and the middle between thefe two is called the mean Diameter of the Vefiel.

But if the Diameters at Top and Botton are unequal, add theni together, and take half of their Sum, which is called the mean Diameter of the Head and Bottom; then compare this mean Diameter with the Dianeeter at the Bung, add them rogether, and take half their Sum for the mean Diameter of the Vefiel.

Then fquare the mean Diameter of the Vefiel, and multiply the faid Square by the Length of the Veffel ; then the Product will give you the Quantity of Liquor in 1000th Parts the Veffel holds; and by cafting away the laft three Figures, you will have the Number of Pints contained in the Veffel, when full.
Let, for Example, the Diameter at the Head be 58 Parts of the Gauging-Rod, and the Bung-Diameter 62 ; add thefe two Numbers together, and their Sum will be 120, whofe half 60 is the mean Diameter of the Veffel : then the Square of this mean Diarneter will be 3600 ; and if this Square be multiplied by the Length of the Veffel, which fuppofe 80, the Product will be 288000 ; and by taking away the three laft Figures, the Number of Paris Pints the Veffel holds will be 288 .

This way of Gauging is exact enough for Practice, when there is but a fmall Difference between the Bung and Head-Diameters, as are the Diameters of Paris-Muids; but when the Difference between the Bung and Head-Diameters is confiderable, as in the Pipes of Anjou, whofe Bung-Diameters are much greater than the Head-Diameters, Dimenfions taken in the before-directed manner will not give the Quantity of Liquor exact enough : But to render the Method more exact, divide the Difference of the Bung and Head-Diameters into 7 Parts; and add 4 of them to the Head-Diameter, and that will give you the mean Diameter: for Example; if the Diameter of the Head is 50 , and the Bung-Diameter 57, the mean Diameter of the Veffel will be 54; with which mean Diameter proceed as before.

Having found by the Rod how many Paris Pints a Vefiel holds, you may find how many other Meafures the fame Veffe! holds, in the following manner:

A Paris Pint of frefh Water weighs I Pound, is Ounces; therefore you need but weigh the fought Meafure full of Water, and by the Rule of Three you may have your Defire.

As, for Example ; a certain Meafure of Water weighs 50 Ounces, and it is required to find how many of the fame Meafures is contained in a Paris-Muid, which holds 288 Pints Say, by the Rule of Three, As 50 is to 3 I , fo is 288 Pints to a fourth Number, which will be 178 , of the faid Meafures.

There may be marked Feet and Inches upon the vacant Faces of the aforefaid GaugingRod, each of which Inches may be fubdivided into four equal Parts, which will be a fecond means to gauge Veffels ; the Feet are marked with Roman Charaters, and the Inches with others.

We have already faid, that a Paris Pint contains 6_{1} Cylindrick Inches; therefore having the Solidity of a Veffel in Cylindrick Inches, it mult be divided by 6I, to have the Number of Pints the Veffel holds. An Example or two will make this manifeft.
Let the Length of a Veffel be 36 Inches, the Head-Diameter 23, and the Bung-Diameter 25 ; add the two Diameters together, and their Sum will be 48 , half of which is 24 for the mean Diameter: This Number 24 being fquared, will be 576 ; and this Square being multiplied by the Length 36 , gives 20736 Cylindrick Inches: which being divided by 61 , the Quotient will give 339 Pints, and about ${ }_{4}$.

If the Diameters and Lengths of Veffels are taken in fourth Parts of tnches, the laft Product muft be divided by 3904 , to have the Number of Pints contained in a Veffel, when full.

Let, for Example, the Length of a Veffel be $35 \frac{\text { r }}{4}$ Inches, the Head-Diameter 23 Inches, and the Diameter at the Bung $25 \frac{1}{2}$ Inches; add the two Diameters together, and their Sum will be $4^{\frac{3}{3}}$, half of which will be $24^{\frac{1}{4}}$; which, for eafe of Calculation, reduce to 4 ths : 97 is the Number to be fquared, which will be 9409 ; which multiply by 141 , and that Product again by $35 \frac{\text { i }}{4}$, reduced to 4 ths of Inches, wiil give this Product 1326669 ; which being divided by 3904 , the Quotient will (as before) be 339 Pints, and about ${ }_{4}^{3}$.

The Conftruction and U S E off a new Gauging-Rod.

Mr. Sauveur, of the Academy of Sciences, has communicated to us a new Gauging-Rod of his Invention, by means of which may be found, by Addition only, the Quantity of Liquor that any Veffel holds, when full; whereas hitherto Multiplication and Divition has been ufed in Gauging.
To make this Gauging-Rod, you muft firt chufe a Piece of very dry Wood, as Sorbaple Fig. 17\% or Pear-tree, without Knots, about 5 Foor long, in Figure of a Paratilelopipedon, and 6 or 7 Lines in Breadth ; Fig. 17. fhews its four Faces.
Now upon the firtt of the four Faces are made Divifions for taking the Diameters of Veffels.
The Divifions of the fecond Face ferves to meafure the Lengths of the Diameters.
The Divifions upon the third Face are for finding the Contents of Veffels.
And, Laftly, upon the fourth Face, the Numbers of Setiers and Pints, which the Veffel holds, are marked.
The aforefaid Divifions are made in the following manner:
Firf, divide the fourth Face into Inches, and each Inch into ro equal Parts; thofe Divifions denote Pints, and are numbered $1,2,3,4,5,6$, だc. every 8 being Setiers, becaufe

I Setier is 8 Pints: On the end of this fourth Face is written Pints and Setier:.
The Divifions of the other three Faces are made by help of Logarithms, in maniner following.

Nute, The Divifions of the fourth Face ferse as a Scale to the third, and ought to be contigucus to it.

To divide the third Face of the Rod.
If you have a mind to place any Number upon the third Face of your Rod; for Example, $240:$ feek in the Table of Logarithms for 240, or the nigheft Number to it, which will be found againf 25I in your Table; then place 240 upon the third Face, over againft 251 Pints on the fourth Face, and, proceeding in this manner, you may divide the third Face.

But becaufe, in the Table of Logarithms, 240 doth not ftand againft 25 I , but inftead thereof there ftands 2.39996, which nighly approaches it ; therefore to make the Divifions as exact as poffible, you muft add i to the firft Number of the Logarithm 2.40, and then feek for $3 \cdot 40$, over againft which flands 2512 ; which fhews, that the Logar. 2 to mult be placed not over againft 25 I of the Divifions of Pints, but againft 251 and rwo Parts of the Divifion of a Pint, fuppofed to be divided into io Parts more. You muft write Contents at one End of this third Face.

The Manner of dividing the fecond Fate.

A Cylindrical Veffel, whofe Length and Diameter is 3 Inches, ir $\frac{4}{3}$ Lines, holds one $p a$ ris Pint ; therefore the firlt part of the fecond Face, which is without Divifions, muft be of that Length. This faid Length muft be laid off ten times, and more, if poffible, upon the faid Face, upon which make occult Marks; then one of thefe Parts muft be divided into 100 more, upon a feparate Ruler, ferving as a Scale.

This being done, fuppofe any Number is to be placed upon the fecond Face; as, for Example, 60 : Seek in the Table of Logarithms for 60, which will be found againft 39 and 40, or rather againft 398 I, without having regard to the Numbers $1,2,3$, that precede it, and which are called Characterifticks : therefore I take 98 , or 98 I , by efteeming one Part divided into 10 , upon the fmall Scale divided into 100 , and I place this Diftance next to the third occult Point, which denotes three Centefms, or three Thoufandths. You muft thus mark Divifions from 5 to 5 , and every of thefe 5 ths muft again be fubdivided into 5 equal Parts. Finally, upon the End of this Face, you mult write Lengths.

The Manner of dividing the firft Face.

'The firft Part of this Face, which is not divided, reprefents the Diameter of a Cylindrical Veffel holding one $P_{\text {aris }}$ Pint ; therefore its Length muft be 3 Inches, $11 \frac{1}{3}$ Lines.

And for dividing this Face, lay off upon it the Divifions of the fecond Face; but inftead of writing $5,10,15,20,25, \mathcal{E}^{\circ} c$. write their Doubles, $10,20,30,40,50, \mathcal{E}_{c}$. and fubdivide the Intervals into io Parts, and at the End of this Face write Dianeters.

The US E of the New Gauging-Rod.

Meafure the Length of the mean Diameter of the Veffel with the Face of Diameters of your Rod, which fuppofe to be 153.00. Likewife take the Length of the Veffel
153.00 with the fecond Face of your Rod, which fuppofe to be 92.85 ; add thefe two
92.85 Numbers together, then feek their Sum 245.85 upon the third Face, and over againft it, on the fourth Face, you will have 36 Setiers, or 288 Pints.
245.85

But to make the Ufe of this Rod general ; fuppofe the Weight of a Pint of frefh Water of fome Country be 50 Ounces Avoirdupoife; then feek 31, the Number of Ounces Avoirdupoife a Pavis Pint of frefh Water weighs, upon the fourth Face of Setiers of the Rod, which will be found againft 239.4 on the third Face.

Likewife, againft 50 on the fourth Face, anfwers 260.2 on the third Face.

Now againft this Number 225.05, on the third Face, you will find, on the fourth Face, 22 Setiers 2 Pints, or 178 Pints, which is the Number of Pints of that Country a Veffel of the aforefaid Dimenfions holds.

SECTIONVII.

Of the U SE of the Line of Metals.
USE I. The Diameter of a Ball, of any one of the $j x x$ Metals, being given; to find the Diameter of another Ball of any one of them, which foull bave the fame Weight.
OPEN the Sector, and.taking the given Diameter of the Ball between your Compaffes, apply its Extremes to the Characters upon each Line of Metals, expreffing the Metal the Ball
is made of. The Sector remaining thus opened, take the Diftance of the Characters of the Metal, the fought Diameter is to be of, upon each Line of Metals, and this will be the Fig. 18. Diameter fought. As, for Example, let A B be the Diameter of a Ball of Lead; and it is required to find the Diameter of a Ball of Iron, having the fame Weight. Open the Sector, fo that the Diftance between the Points I_{2} and 5 be equal to the Line A B: The Sector remaining thus opened, take the Diftance of the Points of σ^{7} on each Line of Metals, and that will give C D, the Length of the Diameter fought. If, inftead of Balls, fimilar Solids of feveral Sides had been propofed, make the fame Operation, as before, for finding each of their homologous Sides, in order to have the Lengths, Breadths, and Thickneffes of the Bodies to be made.

U S E II. To find the Proportion that each of the fix Metals bave to one another, as to their Weight.
For Example; it is required to find what Proportion two fimilar and equal Dodies, but of different Weights, have to one another.

Having taken the Diffance from the Center of the Joint of your Sector, to the Point of the Character of that Metal of the t wo propofed Bodies which is leaft, (and which is always more diftant from the Center) apply the faid Diftance acrois to any two equal Divifions on both the Lines of Solids. 'The Sector remaining thus opened, take the Diftance on the Line of Metals, from the Center of the Joint to the Point, denoting the ocher Metal : and applying it to both Lines of Solids, fee if it will fall upon fome equal Number on each Line ; if it will, that Number, and the other before, will, by permuting them, fhew the Proportions of the Metals propofed.

As, for Example: to find the Proportion of the Weight of a Wedge of Gold, to the Weight of a fimilar and equal Wedge of Silver.

Now becaufe Silver weighs lefs than Gold, open the Sector, and having taken the Difance from the Center of the Joint to the Point D, apply it to the Numbers 50 and 50 on each Line of Solids. The Sector remaining thus opened, take the Diftance from the Center to the Point \odot, and applying it on each Line of Solids, and you will find it to fall nearly upon the 27 th Solid on each Line. Whence I conclude, the Weight of the Gold to the Weight of the Silver, is as 50 to $27 \frac{7}{5}$, or as 100 to $54 \frac{7}{3}$; that is, if the Wedge of Gold weighs 100 Pounds, the Wedge of Silver will weigh $54 \frac{\pi}{3}$ Pounds, and fo of other Metals, whore Proportions are more exactly laid down by the Numbers of Pounds and Ounces that a cubick Foot of each of the Metals weighs, as is expreffed in the Table adjoining to the Proof of the Line of Metals. If neverthelefs their Proportions are required in leffer Numbers, you will find, that if a Wedge of Gold weighs 100 Marks, a Wedge of Lead, of the fame Bignefs, will weigh about $60 \frac{\frac{5}{2}}{2}$, one of Silver $54 \frac{5}{\frac{5}{3}}$, one of Brafs $47^{\frac{5}{4}}$, one of Iron 42 ㄷor, and one of Tin 39 Marks.
USE III. Any Body of one of the fix Metals being given; to find the Weight of any one of the five others, which is to be made fimilar and equal to the propofed one.
For Example ; let a Ciftern of Tin be propofed, and it is required to make another of Silver equal and fimilar to it. Firft weigh the Tin-Ciftern, which fuppofe 36 Pounds. This being done, open the Sector, and having taken the Diftance fron the Center of the Sector to the Point), (which is the Metal the new Ciftern is to be made of) apply that Diffance to 36 and 36 on each Line of Solids. Then take the Diftance, upon the Line of Metals, of the Point 4 , from the Center ; and applying that Diftance crofs-wife on each of the Lines of Solids, you will find it nearly fall upon 50 and 50 on each Line: Whence the Weight of a Silver Citern muft be $50 \pm$ Pounds, to be equal in Bignefs to the Tin-Cittern. The Proof of this Operation may be had by Calculation, viz, in multiplying the different Weights reciprocally by thofe of a Cubick Foot of each of the Metals. As, in this Example ; multiplying 720 lib. 12 Ounces, which is the Weight of a Cubick Foot of Silver, by 36 lib. which is the Weight of the Tin-Ciftern; and again, multiplying 516 lib . 2 Ounces, which is the Weight of a Cubick Foot of Tin, by $50 \frac{3}{4}$ Pounds, which is the Weight of the Silver Ciftern, the two Products ought to be equal.

U SE IV. The Diameters, or Sides, of two fimilar Bodies of different Metals, being given; to find the Ratio of their Weights.
Let, for Example, the Diameter of a Ball of Tin be the right Line E F, and the Line Fig. 19, GH the Diameter of a Ball of Silver; it is required to find the Ratio of the Weights of thefe two Balls. Open the Sector, and taking the Diameter EF between your Compaffes, apply it to the Points $\%$ on each Line of Metals. The Sector remaining thus opened, take the Diftance of the Points > on each Leg of the Settor ; which compare with the Diameter G H, in order to fee whether it is equal to it : for if it be, the two Balls mult be of the fame Weight. But if the Diameter of the Ball of Silver be leffier than the Diftance of the Points , , on each Leg of the Sector, as here K L is, it is manifeft that the Ball of Silver weighs lefs than the Ball of Tin ; and to know how much, the Dianneters G H and G L muft be compared together. Wherefore apply the Diftance of the Points ?, which is G H, on each Leg of the Sector, to fome equal Number on both the Lines of Solids; as, for Exam-

Line of Chords; then, as I have already faid, the fame Extent will reach from 45 to 45 , on the Line of Tangents; alfo on the other Side of the Sector, the fame Diftance of three Inches, will reach from 90 to 90 on the Line of Sines: fo that if the Lines of Chords be fer to any Radius, the Lines of Sines and Tangents are alfo fet to the fame. Now the Sector being thus opened, if you take the parallel Diftance between ro and ro on the Line of Chords, it will give the Chord of 10 Degrees. Alfo if you take the parallel Diftance on the Line of Sines between 10 and ro, you will have the Sine of io Degrees. Laftly, if you take the parallel Extent on the Line of Tangents, between 10 and 10 , it will give you the 'Tangent of 10 Degrees.

If the Chord, or 'Tangent of 70 Degrees, had been required; then for the Chord you muft take the parallel Diftance of half the Arc propofed, that is, the Chord of 35 Degrees, and repeat that Diftance twice on the Arc you lay it down on, and you will have the Chord of 70 Degrees; and for finding the Tangent of 70 Degrees to the aforefaid Radius, you mult make ufe of the fmall Line of Tangents: for the great one running but to 45 Degrees, the Parallel of 70 cannot be taken on that, therefore take the Radius of three Inches, and make it a Parallel between 45 and 45 on the fmall Line of Tangents; and then the parallel Extent of 70 Degrees on the faid Line, is the Tangent of 70 Degrees to 3 Inches Radius.

If you would have the Secant of any Arc, then take the given Radius, and make it a Parallel between the beginning of the Line of Secants, that is o and o; fo the parallel Diftance between 10 and 10 , or 70 and 70 , on the faid fecant Line, will give you the Secant of Io, or 70 Degrees, to the Radius of three Inches.

After this manner may the Chord, Sine, or 'Tangent of any Arc be found, provided the Radius can be made a Parallel between 60 and 60 on the Line of Chords, or between the fmall Tangent of 45 , or Secant of o Degrees. But if the Radius be fo large, that it cannot be made a Parallel between 45 and 45 on the fmall Line of Tangents, then there cannot be found a Tangent of any Arc above 45 Degrees, nor the Secant of no Arc at all to fuch a Radius, becaufe all Secants are greater than the Radius, or Semi-diameter of a Circle.

If the Converfe of any of thefe things be required; that is, if the Radius is fought, to which a given Line is the Chord, Sine, Tangent, or Secant of any Arc, fuppofe of ro Degrees; then it is but making that Line (if it be a Chord) a Parallel on the Line of Chords between 10 and 10, and the Sector will ftand at the Radius required; that is, the parallel Extent between 60 and 60 , on the faid Chord-Line, is the Radius.

And fo if it be a Sine, Tangent, or Secant, it is but making it a Parallel between the Sine, Tangent, or Secant of ro Degrees, according as it is given; then will the Diftance of 90 and 90 on the Sines, if it be a Tangent, the Extent from 45 to 45 on the Tangents, and if it be a Secant, the Extent or Diftance between \circ and 0 , be the Radius.

Hence, you fee, it is very eafy to find the Chord, Sine, Tangent, or Secant to any Radius.

SECTION III.

Of the U SE of the Sector in Trigonometry.

US E I. The Bafe A C of the right-lined right-angled Triangle A B C being given 40 Miles, and the Perpendicular A B 30 : to find the Hypotbenufe B C.
Fig. 22. Open the Sector, fo that the two Lines of Lines may make a right Angle (by Ufe VI. of our Author's) then take, for the Bafe, A C, 40 equal Parts upon the Line of Lines on one Leg of the Sector ; and for the Perpendicular A B, 30 equal Parts on the Line of Lines upon the other Leg of the Sector. Then the Extent from 40 on one Line, to 30 on the other, taken with your Compaffes, will be the Length of the Hypothenufe BC ; and applying it on the Line of Lines, you will find it to be 50 Miles.

> US E II. The Perpendicular A B of the right-angled Triangle A B C being given 30 Miles, and the Angle B C A 37 Degrees; to find the Hypothenufe B C.

Fig. 22. Take the given Side A B, and fet it over, as a Parallel, on the Sine of the given Angle A C B ; then the parallel Radius will be the Length of the Hypothenufe B C, which will be found 50 Miles, by applying it on the Line of Lines.
U S E III. The Hypothenufe B C being given, and the Bafe A C ; to find the Perpendicular A B.
Fig. 22. Open the Sector, fo that the two Lines of Lines may be at right Angles; then lay of the given Bafe A C on one of thefe Lines from the Center; take the Hypothenufe B C in your Compaffes, and fetting one Foot in the Term of the given Bafe A C, caufe the other to fall on the Line of Lines on the other Leg of the Sector, and the Diftance from the Center to where the Point of the Compaffes falls, will be the Length of the Perpendicular A B.

U S E IV. The Hypothenuse B C being given, and the Angle A C B ; to find the Perpendicular A B.
Take the given Hypothenufe B C, and make it a parallel Radius, and the parallel Sine of the Angle A C B will be the Length of the Side A B.
x

-ane

$=$ 1
-20 3
3
$\frac{3}{2}$
3 \qquad $4=$

\qquad $\frac{5 \mathrm{x}}{\mathrm{m}} \mathrm{m}$ $=-$ \qquad

Line of Chords, then, as I have already faid, the fame Extent will reach from 45 to 45, on the Line of Tangents; alfo on the other Side of the Sector, the fame Diftance of three Inches, will reach from 90 to 90 on the Line of Sines: fo that if the Lines of Cinords be fet to any Radius, the Lines of Sines and Tangents are alfo fet to the fame. Now the Sector being thus opened, if you take the parallel Diftance between no and io on the Line of Chords, it will give the Chord of 10 Degrees. Alfo if you take the parallel Diftance on the Line of Sines between io and io, you will have the Sine of io Degrees. Laftly, if you take the parallel Extent on the Line of Tangents, between 10 and 10 , it will give you the Tangent of 10 Degrees.

If the Chord, or Tangent of 70 Degrees, had been required; then for the Chord you muft take the parallel Diftance of half the Arc propofed, that is, the Chord of 35 Degrees, and repeat that Diffance twice on the Arc you lay it down on, and you will have the Chord of 70 Degrees; and for finding the Tangent of 70 Degrees to the aforefaid Radius, you mutt make ufe of the fmall Line of Tangents: for the great one running but to 45 Degrees, the Parallel of 70 cannot be taken on that, therefore take the Radius of three. Inches, and make it a Pa rallel between 45 and 45 on the fmall Line of Tangents; and then the parailel Extent of 70 Degrees on the faid Line, is the Tangent of 70 Degrees to 3 Inches Radius.

If you would have the Secant of any Arc, then take the given Radius, and make it a $\mathrm{Pa}-$ rallel between the beginning of the Line of Secants, that is o and o; fo the parallel Diftance between 10 and 10 , or 70 and 70 , on the faid fecant Line, will give you the Secant of IO, or 70 Degrees, to the Radius of three Inches.

After this manner may the Chord, Sine, or 'Tangent of any Arc be found, provided the Radius can be made a Parallel between 60 and 60 on the Line of Chords, or between the fmall Tangent of 45 , or Secant of o Degrees. But if the Radius be fo large, that it cannot be made a Parallel between 45 and 45 on the fmall Line of Tangents, then there cannot be found a Tangent of any Arc above 45 Degrees, nor the Secant of no Arc at all to fuch a Radius, becaufe all Secants are greater than the Radius, or Semi-diameter of a Circle.

If the Converfe of any of thefe things be required; that is, if the Radius is fought, to which a given Line is the Chord, Sine, Tangent, or Secant of any Arc, fuppofe of io Degrees; then it is but making that Line (if it be a Chord) a Parallel on the Line of Chords between 10 and 10 , and the Sector will fland at the Radius required; that is, the parallel Extent between 60 and 60, on the faid Chord-Line, is the Radius.

And fo if it be a Sine, 'Tangent, or Secant, it is but making it a Parallel between the Sine, Tangent, or Secant of ro Degrees, according as it is given; then will the Diftance of 90 and 90 on the Sines, if it be a Tangent, the Extent from 45 to 45 on the Tangents, and if it be a Secant, the Extent or Diftance between 0 and 0 , be the Radius.

Hence, you fee, it is very ealy to find the Chord, Sine, Tangent, or Secant to any Radius.

SECTION III.

Of the U SE of the Seltor in Trigonometry.

US E I. The Bafe A C of the right-lined right-angled Triangle A B C being given 40 Miles, and the Perpendicular A B 30: to find the Hypothenufe B C.
Fig. 22 Open the Sector, fo that the two Lines of Lines may make a right Angle (by USe VI. of our Author's) then take, for the Bafe, A C, 40 equal Parts upon the Line of Lines on one Leg of the Sector ; and for the Perpendicular A B, 30 equal Parts on the Line of Lines upon the other Leg of the Sector. Then the Extent from 40 on one Line, to 30 on the other, taken with your Compaffes, will be the Length of the Hypothenufe BC ; and applying it on the Line of Lines, you will find it to be 50 Miles.

U S E II. The Perpendicular A B of the right-angled Triangle A B C being given 30 Miles,
and the Angle B C A 37 Degrees; to find the Hypotherufe B C.
Take the given Side A B, and fet it over, as a Parallel, on the Sine of the given Angle A C B ; then the parallel Radius will be the Length of the Hypothenufe BC, which will be found 50 Miles, by applying it on the Line of Lines.

U S E III. The Hypothenufe B C being given, and the Bafe A C ; to find the Perpendicular A B.

Open the Sector, fo that the two Lines of Lines may be at right Angles; then lay off the given Bafe A C on one of thefe Lines from the Center; take the Hypothenufe B C in your Compaffes, and fetting one Foot in the Term of the given Bafe A C, caufe the other to fall on the Line of Lines on the other Leg of the Sector, and the Diftance from the Center to where the Point of the Compaffes falls, will be the Length of the Perpendicular AB.

U S E IV. The Hypothenufe B C being given, and the Aingle A C B ; to find the Perpendicular A B.
Take the given Hypothenufe B C, and make it a parallel Radius, and the parallel Sine of the Angle A C B will be the Length of the Side A B.

of the Englifh Sector.

U SE V. Tive Bufe A C, and Perpendicular A B, being giver, to jind the Augle B C A.
Lay off the Bafe A C on both Sides of the Seftor fron the Center, and note its Extent; then take the Perpendicular A B, and to it open the Sefor in the Terms of the Bafe A C: fo the Parallel Radius will be the Tangent of BCA.

U S E VI. Ii any right-lined Triungle, as A B C, the Sides A C, and B C, being given, one 20 Miles, and the other 30, and the inchuded Angle A CB 1 io Degrees, to find the Bafe A B.
Open the Sector, fo that the two Lines of Lines may make an Angle equal to the given An- Figor 3. gle A C B of iro Degrees: then take out the Sides AC, C B, of the Triangle, and lay them off from the Center of the Settor on each of the Lines of Lines, and take in your Compaffes the Extent between their Terms, or Ends, and that will be the Length of the fought Side $A B$, which will be found $4 I^{\frac{7}{2}}$ Miles.

U SE VII. The Angles C A B, and A C B, being given, and the Side C B : to find the Bafe A B.
Take the given Side C B, and turn it into the parallel Sine of its oppofite Angle C A B, Fig. 23. and the parallel Sine of the Angle A C B, will be the Length of the Bafe A B.

USE VIII. The thise Angles of a Triangle, as A B C, being given, to find the Proportion of the Sides A B, A C, B C.
Take the lateral Sines of the Angles A C B , C B A, C A B, and meafure them in the Line Fig. 23. of Lines, for the Numbers belonging to thofe Lines will give the Proportions of the Sides.

U SE IX. The thrce Sides A C, A B, C B, being given, to find the Angle A C B.
Lay the Sides A. C, CB, on the Lines of Lines of the Sector from the Center, and let the Fig. 23. Side A B be fitted over in their Terms; fo fhall the Seator be opened in thofe Lines, to the Quantity of the Angle A CB.
USE X. The Hypothenufe A C, of the iright-angled Spherical Triangle A B C, being given, fuppofe 43 Degrees, and the Angle C A B, 20 Degrees, to find the Side C B.
As Radius is to the Sine of the given Hypothenufe 43 Degrees, fo is the Sine of the given Fig. 24. Angle C A B 20 Degrees; to the Sine of the Perpendicular C B.

Take either the lateral Sine of the given Angle C A B, 20 Degrees, and make it a parallel
Radius; that is, take 20 Degrees from the Center on the Line of Sines, in your Compaffes, and fet that Extent from 90 to 90 ; then the parallel Sine of 43 Degrees, the given Hypothenufe, will, when meafured from the Center. on the Line of Sines, give I3 Deg. 30 Min. Or take the Sine of the given Hypothenufe A C, 43 Degrees, and make it a parallel Radius; and the parallel Sine of the given Angle CAB, taken and meafured laterally on the Line of Sines, will give the Length of the Perpendicular C B, 13 Deg. 30 Min. as before.

US E XI. The Perperdicular B C given, and the Hypothenuse A C, to find the Bafe A B.
As the Sine Complement of the Perpendicular B C, is to Radius, fo is the Sine Comple- Fig. 24. ment of the Hypothenufe A C, to the Sine Complement of the Bafe required.
Make the Radius a parallel Sine of the given Perpendicular B C, viz. 76 Deg. 30 Min . and then the parallel Sine of the Complement of the given Hypothenufe, viz. 47 Degrees, meafured laterally on the Line of Sines, will be found 49 Degrees, 25 Minutes: therefore the Complement of the required Bafe, will be 49 Degrees, 25 Minutes; and confequently the Bafe will be 40 Degrees, 35 Minutes.
The Ule of the Sector in the Solution of the before-mentioned Cafes of Trigonometry, being underfood, its Ufe in folving the other Cafes, which I have omitted, will not be difficult.
Note, The feveral Ufes of the Line of Lines, and Line of Polygons, on this Sefor, are the fame as the Ufes of thefe Lines upon the French Sector, which fee.
I now proceed to give fome of the particular Ufes of the Sector in Geometry, Projection of the Sphere, and Dialling.

SECTION IV.

USE I. To make any regular Polygon, whofe Area flall be of a given Magnitude.

LET it be required to find the Length of one of the Sides of a regular Pentagon, whofe fuperficial Area fhall be 125Feet, and from thence to make the Poiygon.
Having extracted the fquare Root of ${\underset{\zeta}{5}}_{\frac{7}{5}}$ Part of 125 (becaufe the Figure is to have 5 Sides) which Root will be 5 ; make the Square A B, whofe Side let be 5 Feet: then by means of the Line of Polygons (as directed by our Author in USEI. of the Line of Polygons) upon any Fig. 25.
right Line, as CD, make the Ifocceles Triangle CGD fo, that CG, being the Seni-diameright Line, as CD, make the Ifofceles Triangle C G D fo, that C G, being the Semi-diameter of a Circle, CD may be the Side of a regular Pentagon infcribed in ir, and let fall the

Perpendicular GE. Now continuing the Lines E G, and E C, make E F equal to the Side of the Square A B ; and from the Point F, draw the right Line F H parallel to G C ; then a mean Proportional betwen $G E$, and $E F$, will be equal to half the Side of the Polygon fought, which doubled, will give the whole Side. Now having found the Length of the whole Side, you muft, upon the Line expreffing its Length, make a Pentagon, (as directed by our Author in USE II. of the Line of Polygons) which will have the required Magnitude.

USE II. A Circle being given, to find the Side of a Square efrual to it.

Let EF be the Diameter of the given Circle, which divide into 14 equal Parts, by means of the Line of Lines (as directed by our Author in the Ufe of the Line of equal Parts) then EP, which is 12.4 of thofe Parts, will be the Side of the Square fought.

Note, 12.4 is the fquare Root of II $\times 14$.
U S E III. A Square being given, to find the Diameter of a Circle equal to it.
Fig. 270

Fig. 28.

Fig. 29.

Fig. 3^{1-}

Let A B be one Side of the given Square, which divide into in equal Parts, by means of the Line of Lines on the Sector; then continue the faid Side, fo that A G may be I2.4; that is, I. 4 of thofe Parts more, and the Line A G, will be the Diameter of a Circle, equal to the Square whofe Side is A B.

U SE IV. The tranfverfe and conjugate Diameters of an Ellipfos being given, to find the Side of a Square equal to it.

Let A B and C D, be the tranfverfe and conjugate Diameters of an Ellipfis: firf, find a mean Proportional between the tranfverfe and conjugate Diameters, which let be the Line EF ; then divide the faid Line EF, into 14 equal Parts, 12 and ${\underset{\tau}{7}}_{\frac{7}{0}}$ of which, will be E G, the Side of the Square equal to the aforefaid Ellipfis.

USE V. T'o find the Magnitude of two right Lines which fall be in a given Rativ; about which, an Ellipfos being defcribed, in taking them for the tranfverfe and conjugate Diameters, the Area of the faid Ellipfis, may be equal to a given Square.
Let the given Proportion that the tranfverfe and conjugate Diameters are to have, be as 2 to 1 ; then divide the Side A.B of the given Square, into 11 equal Parts. Now as 2 is to I, (the Terms of the given Proportion) fo is $I I \times 14=154$ to a fourth Number ; the fquare Root of which being extracted, will be a Number to which, if the Line A G is taken equal, (fuppofing one of thofe I I Parts the Side of the Square is divided into, to be Unity) the faid Line A G, will be the conjugate Diameter fought. Then to find the tranfverfe Diameter, fay, as I is to 2, fo is the conjugate Diameter A G, to the tranfverfe Diameter fought: To work the firft of the faid Preportions by the Line of Lines on the Sector, fet I over as a Parallel on 2; then the parallel Extent of 154 taken, and laterally meafured on the Line of Lines, will give 77, the fourth Proportional fought. In the fame manner may the latter Proportion be worked.

U S E VI. To defcribe an Ellipfir, by baving the tranfverfe and conjugate Diameters given.
Let $A B$, and $E D$, be the given Diameters: take the Extent $A C$, or $C B$, between your Compaffes, and to that Extent, open the Legs of the Sector fo, that the Diftance between 90 and 90 of the Line of Sines, may be equal to it: then may the Line A C be divided into a Line of Sines, by taking the parallel Extents of the Sine of each Degree, on the Legs of the Sector, between your Compaffes, and laying them off from the Center C ; the Line A C being divided into a Line of Sines (I have only divided it into the Sine of every 10 Degrees) from every of them raife Perpendiculars both ways. Now to find Points in the faid Perpendiculars, thro which the Ellipfis muft pafs, take the Extent of the femi-conjugate Diameter $C E$, between your Compafies; and then open the Sector fo, that the Points of 90 and 90 , on the Lines of Sines of the Sector, may be at that Diftance from each other. This being done, take the parallel Sines of each Degree, of the Lines of Sines of the Sector, and lay them off, on thofe Perpendiculars drawn thro their Complements, in the Line of Sines AC, both ways from the faid Line AC, and you will have two Points in each of the Perpendiculars thro which the Ellipfis muft pafs.

As for Example, the Sector always remaining at the fame Opening, take the Diftance from 80 to 80 , on the Lines of Sines, between your Compaffes, and fetting one Foot in the Point 10 , on the Line AC; with the other make the Points a and b, in the Perpendicular paffing thro that Point : then the Points a and b, will be the two Points in the faid Perpendicular, thro which the Ellipfis muft pafs. All the other Points, in this manner, being found, if they are joined by an even Hand, there will be defcribed the Semi-Ellipfis D A E. In the fame manner may the other half of the Ellipfis be defcribed.
U S E VII. The Bearings of three Towers, fanding at A PC, to each cther being given, that is, the Angles A B C, B C A, and C A B ; and alfo the D. fances of each of them from a fourth Tower fanding between them, as at D, being given; that is, $\mathrm{B} \mathrm{D}, \mathrm{D} \mathrm{C}$, and A D being given:
to find the Difances of the Towerrs at A B C from each other ; that is, to find lle Lengliss of the Sides A B, BC, AC, of the Triangle A B C.
Having drawn the Triangle E F G fimilar to ABC, divide the Side E G in the Point H; Fig. ${ }^{3}$ fo that EH may be to HG, as AD is to DC; which may be done by taking the Sum of the Lines AD and DC between your Compaffes, and fetting that Extent over as a Parallel on the Line of Lines of the Sector, upon the Side E G of the Triangle, laterally takers on the Line of Lines ; for then the parallel Extent of $\mathrm{A} D$ will give the Length of EH , and coniequently the Point H will be had.
In like manner muft the Side EF (or F G) be divided fo in I, that E I may be to I F, as $A D$ is to $D B$ (or F G mult be fo divided, that the Segments mult be as B D to D C.)
Again, having continued out the Sides E G, EF, fay, As E H-H G is to H G, fo is EH + HG to GK; and as EI-IF is to IF, fo let EI + IF be to FM, which Proportions may eafily be worked by the Line of Lines on the Sector. This being done, bifeet HK and I M, in the Points L N; and about the faid Points, as Centers, and with the Difances LH and IN defrribe two Circles interfecting each other in the Point O ; to which, from the Angles EF G, draw the right Lines EO, FO, and O G, which will have the fame Proportion to each other, as the Lines A D, B D, D C. Now if the Lines E O, F O, and GO are equal to the given Lines AD, BD, DC, the Diftances EF, F G, and E G, will be the Diftances of the Towers fought. But if EO, OF, OG are leffer than $A D, D B, D C$, continue them out fo, that $P O, O R$, and $O Q$ be equal to them ; then the Points P, Q, R being joined, the Diftances $P R, R Q$, and $P Q$ will be the Difances of the Towers fought. Lafty, if the Lines EO, OF, O G, are greater than A D, D B , DC, cut off from them Lines equal to A D, B D, D C, and join the Points of Section by three right Lines ; then the Diftances of the faid three right Lines, will be the fought Diffances of the three Towers.
Note, If $E H$ be equal to $H G$, or EI toIF, the Centers L and N, of the Circles, will be infinitely diftant from H and I ; that is, in the Points H and I there muft be iwo Perpendiculars raifed to the Sides E F, E G, inftead of two Circles, till they interfect each other : But if EH be leffer than $\mathrm{H} G$, the Center L will fall on the other Side of the Bafe E G continued ; underftand the fame of E I, I F.

US E VIII. To project the Sphere Orthographically upon the Plane of the Meridian.

Let the Radius of the Meridian Circle, upon which the Sphere is to be projected, be AE; Plate \& then divide the Circumference of the faid Circle into four equal Parts in E, P, A, S, and Fig. ru* draw the Diameters E \mathbb{E}, P S ; the former of which will reprefent the Equator, and the latter P S, the Hour-Circle of 6, as alfo the Axis of the World ; P being the North-Pole, and Sthe South-Pole. Then muft each Quarter of the Meridian be divided into 90 Degrees, by making the Extent from 60 to 60 of the Lines of Chords, on the Sector, equal to the Radius of the Meridian Circle ; and taking the parallel Extent of every Degree, and laying them off from the Equator towards the Poles; in which if 23 Deg. 30 Min. be numbered, (viz, the Sun's greatef Declination) from E to so Northwards, and from \mathbb{E} to wo Southwards, the Line drawn from so to wo will be the Ecliptich, and the Lines drawn Parallel to the Equator, thro se and w s, will be the Tropicks.
Now if each Semidiameter of the Ecliptick be divided into Lines of Sines (by making the Diftance of the Points of 90 and 90 , on the Lines of Sines of the Sector, equal 'to either of the Semidiameters, and taking out the parallel Extent of each Degree, and laying them off both ways from the Center A) the firtt 30 Degrees, from A towaeds 50 , will ftand for the Sign Aries; the $3 \circ$ Degrees next following for Taurus ; the reft for $I, \mathscr{F}, \Omega, \mathcal{U}_{6}$. in their Order.
If, again, A P, A S, are divided into Lines of Sines, and have the Numbers 10, 20, 30 , Uc. to $9 \circ$ fet to them, the Lines drawn thro each of thefe Degrees, parallel to the Equator, will reprefent the Parallels of Latitude, and fhew the Sun's Declination.
If, moreover, AE, A Æ are divided into Lines of Sines, and alfo the Parallels, and then there is a Line carefully drawn thro each is Degrees; the Lines fo drawn will be Elliptical, and will reprefent the Hour-Circles; the Meridian P E S the Hour of 12 at Noon; that next to it, drawn thro 75 Degrees from the Center, the Hours of 11 and 1 ; that which is drawn thro 60 Degrees from the Center, the Hours of 10 and $2, \mathcal{U}_{c}$.
Then with refpect to the Latitude, you may number it from E, Northwards, towards Z, and there place the Zenith, (that is, make the Arc EZ 51 Des. 3_{2} Min. for London ;) thro which, and the Center, the Line ZA N being drawn, will reprefent the vertical Circle paffing thro the Zenith and Nadir Eaft and Weft ; and the Line M A H, crofing it at right Angles, will reprefent the Horizon. Thefe two being divided, like the Ecliptick and Equator, the Lines drawn thro each Degree of the Radius A Z, parallel to the Horizon, will reprefent the Circles of Altitude, and the Divifions in the Horizon, and its Parallels will give the Azimuths, which will be Ellipfes.
Lafty, If thro 18 Degrees in A N, be drawn a right Line I K, parallel to the Horizon, it will flow the Time of Day-breaking, and the End of Twilight. For an Example of this Projection, let the Place of the Sun be the laft Degree of z, the Parallel paffing thro this Place is L D, and therefore the Meridian Altitude will be M L ; the Depreffion below the

Forizon at Miduight H D ; the fenidiurnal Arc LC ; the feminofurnal Arc C D ; the Declination $A b$; the afcenfional Difference $b \mathrm{C}$; the Amplitude of Afcenfion AC: The Difference between the End of 'Twilight, and the Break of Day, is very fmall ; for the Sun's Parallel hardy crofies the Line of ${ }^{\top} T$ wilight.

If the Suns Altitude be given, let a Line be drawn for it parallel to the Horizon; fo it fhall crofs the Parallel of the Sun, and there fhew both the Azimuth and the Hour of the Day. As fuppofe the Piace of the Sun being given, as before, the Altitude in the Morning was found, 20 Degrees, the Line F G, drawn parallel to the Horizon thro 20 Degrees in A Z, would crofs the Parallel of the Sun in \odot; wherefore $F \odot$ fhews the Azimuth, and $L \odot$ the Quantity of the Hour from the Meridian, which is about half an Hour paft 6 in the Morning, and about half a Point from the Ealt. The Difance of two Places may be alfo fhewn by this Projection, in having their Latitudes and Difference of Longitude given.
For fuppofe a Place in the Eaft of Arabia hath 20 Degrees of North Latitude, whofe Difference of Longitude from London, by an Eclipfe, is found to be five Hours and an half: Let Z be the Zenith of London, and the Parallel of Latitude for that other Place be L D, in which the Difference of Longitude is $\mathrm{L} \odot$; wherefore © reprefenting the Pofition of that Place, draw thro \odot a Parallel to the Horizon M H, croffing the vertical A Z about 70 Degrees from the Zenith ; which multiplied by 69, the Number of Miles in a Degree, gives 4830 Miles, the Diftance of that Place from London.

USE IX. To project the Sphere Stereograpbically upon the Plane of the Horizoin ; fuppofe for the Latitude of 5 I Degrees, 32 Minutes.

Fig. 2.
Draw a Circle of any Magnitude at pleafure, as N E, S W, reprefenting the Horizon; in which draw the two Diameters, W E, NS , croffing one another at right Angles, which will be the Reprefentations of two great Circles of the Sphere croffing each other at right Angles in the Zenith. Let N reprefent the North, E the Eaft, S the South, and W the Weft Part of the Horizon.

Note, In all thefe Projections, the Eye is commonly fuppofed to be in the Under-pole of the primitire Circle, projecting that Hemifphere which is oppofed to the Eye, which will all falt within the primitive Circle ; but that Hemifphere in which the Eye is, will all fall without the primitive Circle, and will run out in an infinite annular Plane, in the Plane of the Projection, and confequently cannot all of it be projected by Scale and Conpafs.
I. But now let us begin with projecting the Equinoctial. And here we mult firt determine the Line of Meafures, in which the Center of this Circle will be; and this will be done by determining in what Points a Plane, perpendicular to the primitive Circle, will cut the Horizon, whether in the North and South, Eaft and Weit, or in what other intermediate Points fuch a Plane fhall cut it. The Pole of the World, in this Projeztion, is elevated 51 Deg. 3_{2} Min. and confequently the Equinoctial, on the Northern Part of the Horizon, will fall below the Horizon, and it is the Southern Part which here mult be projected, or which will fall within the primitive Circle ; that Plane, whofe Interfection with the Horizon fhall produce the Line of Meafures, will be the Plane of a Meridian paffing thro the North and South Parts of the Horizon: wherefore NS will be the Line of Meafures, in which the Center of the projected Equinoctial mult fall ; and fince it is the Southern Part of the Equinotial which we are to project, its Center will be towards the North.

To find whereabouts in the Line of Meafures the faid Center will fall, you muft firt open the Legs of the Sector, fo that the Diftance from 45 Degrees to 45 Degrees, on the Lines of Tangents, is equal to the Radjus of the primitive Circle; then take the parallel Extent of the Tangents of 38 Deg. 28 Min. the Height of the Equiroctial above the Plane of the Horizon, and lay it off from Z to n, and n will be the Center of the projected Equinoctial ; and the Secant of the fame, 38 Deg. 30 Min . will give its Radius, with which the Circie W QE mult be defcribed, which is the Reprefentation of that part of the Equinoctial which is above our Horizon, for the Latitude of 51 Deg. 32 Min.
II. We will next project the Ecliptick, which being a great Circle of the Sphere, muft cut the Equinoctial at a Diameter's Diftance; that is, in E, W, the Eaft and Weft Points of the Horizon, and confequently will have the fame Line of Meafures with that of the Equinotial, viz. N S. Now let us confider whether the Center of the Ecliptick falls towards the North, or towards the Sourh of the Horizon ; and this will eafily be determined, by confidering that the Equinocial is elevated above the Southern Part of the Horizon 38 Des. 28 Min . and the Northern Part of the Ecliptick, or the Northern Signs, arc elevated above the Equinoctial 23 Deg. 30 Min. which in all, make 62 Degrees, which is leffer than 90 Deg. So that it muff fall towards the South, and confequently the Center muft be Northwards, and will be found, (the Sector remaining open as before) by fetting off the Tangent of 62 Deg. from z to b, and the Secant of 62 Deg. will give its Radius; with which the Circle W C E, the Reprefentation of the Northern half of the Ecliptick, mun be defcribed.

The Southern Part of the Ecliptick is likewife, for the moft part, projected on the horizontal Projettion, and made to fall within the primitive Curcle ; but this cannot be, the Globe remaining fixed: for that part of the Ecliptick, which is below the Irrizon, will be thrown out of the primitive Circle; fo that it cannot be projected, unlefs the Globe be fuppofed to

Plate VII

of the Englifh Sector:

be turned round, and by that means the Southern Part of the Ecliptick to be broughe abore the Horizon ; but fuch a Revolution of the Sphere, where it makes any Alteration, is farce allowable : however, I fhall fhew how it is ufually projected.

The fame Line of Mealures N S remains 1till, and the Circle muft fall to the South, and confequently its Center to the North of the Horizon ; therefore nothing remains but to find its Elevation above the Horizon. The Northern Part of the Ecliptick falls ${ }_{23}$ Deg. 30 Min. nearer the Zènith then the Equinoctial does; therefore the Southern Part, being brought above the Horizon, muft be 23 Deg. 30 Min .. nearer the Horizon than the Equinoctial : fo that ${ }_{2} 3$ Deg. 30 Min. being taken from 38 Deg. 28 Min. there remains 15 Deg. for the Diftance of that part of the Ecliptick above the Horizon. It will be reprefented by We E_{2} which is defcribed by fetting off the Tangent of is Degrees for the Center, and taking the Secant of the fanie for the Radius.
III. N S produced will alfo be the Line of Meafures for all Parallels of Declination, and Parallels of Latitude : for the Poles of leffer Circles being the fame as thofe of the great Circles, to which they are parallel, it is manifeft that the fame Plane, which is at right Angles to the Equinoctial and Horizon, will allo be at right Angles to all leffer Circles parallel to the Equinoctial, and the fame will hold as to Circles parallel to the Ecliptick: But NS is the Line of Meafures of the Equinoctial and Ecliptick, and confequently muft be the Line of Meafures of all Circles parallel to either of them ; therefore the Centers of fuch leffer Circles will be in N S produced, if there be Occafion. Now to project them, for Inftance, the Tropick of Cancer; confider, in this Pofition of the Sphere, what will be its nearef and greateft Difance from the Zenith, or the Pole of the primitive Circle, which you will find to be 28 Degrees; for the Equinoctial being elevated 38 Deg. 28 Min . above the Horizon, and the Tropick of Cancer being 23 Deg. 30 Min. from the Equinoctial, which, being added together, gives 62 Deg . which fuuftracted from 90 Deg . leaves 28 Deg. its Diftance from the Zenith on the South-fide of the Horizon; therefore the Half-Tangent of 28 Deg. or the Tangent of 14 Deg. Fet from Z to C, will give one Extremity of its projected Diameter: Then the Diftance from the Zenith to the Pole, being 38 Deg. $28 \mathrm{Min}$. and from the Pole to the Tropick of Cancer 66 Deg. 30 Min. the Sum of thefe, viz. 104 Deg. 58 Min . will be its greateft Difance from the Zenith; the Half-Tangent of which, fet from Z to a, will give the ocher Extremity of its projected Diameter : therefore having got C a the Diameter, bifect it, and defcribe the Circle so C .

The Tropick of Capricom may be defcribed in the fame manner: for the Ditance of the Equinoctial and the Zenith being 5 I Deg. 32 Min. if to this be added 23 Deg. 30 Min. you will have 55 Deg. 2 Min. equal to the neareft Diftance of the Tropick of Capricom, on the South-fide of the Horizon; the Half-Tangent of which being fet from Z to e, will give one Extremity of its Diameter. Then the Diftance between the Zenith and the Pole, viz. 38 Deg. 28 Min. and the Diftance between the Pole and the Equinoctial, which is 90 Deg. and the Diftance between the Equinoctial and the Tropick of Capricorn, which is 23 Deg. $3^{\circ} \mathrm{Min}$. being all added together, will give the greateft Diftance of the Tropick of Capricorn, from the Zenith, viz. 152 Deg. 2 Min. the Semi-tangent of which being fet from Z towards the North, will give the other Extremity of the Diameter. Difect the Diameter found in e, and defcribe the Circle ws C , which is the Reprefentation of fo much of the Tropick of Capricom, as falls within the primitive Circle.
IV. The Polar Circle is 23 Deg. 30 Min, from the Pole; but the Fole being elevated; on the North-fide the Horizon, 51 Deg. 32 Min. and 51 Deg. 32 Min. added to 23 Deg. 30° Min. whofe Sum is 75 Deg. 2 Min. is lefler than 90 Deg. fo that it does not pafs beyond the Zenith; therefore 75 Deg. 2 Min. taken from 90 Deg. leaves 15 Deg. which is the neareft Diftance of the Polar Circle from the Zenith: And the Half-Tangent of I_{5} Deg. fet from Z to v, will give one Extremity of its projected Diameter ; and then 15 Deg. added to 47 Deg. equal to σ_{2} Deg. will be its greateft Diftance from the Zenith: the Half- ${ }^{-}$Tangent of which Diftance, fet from Z to P, will give the other Extremity of its projected Diameter ; fo that iss Diameter $v p$ being found, it is but bifecting it, and the Circle may be defcribed.
V. I fhall now fhew how to project the Hour-Circles. And, Firt, a Line of Meafures muft be determined, in which their Centers fhall be, if poffible ; but you may eafily difcover it impoffible for one Line of Meafures to ferve them all : for they are differently inclined to the Horizon, and fo the Plane of no one great Circle can be at right Angles - to the Horizon and all the Hour-Circles; therefore the Plane of a great Circle at right Angles to the Horizon, and one of them, nuft be found : which is pofible, becaufe the Hour-Circles being all at right Angles to the Plane of the Equinoctial, their Poles will be all found in this Circle ; but the Poles of all great Circles, being 90 Degrees diftant from their Planes, the HourCircle of 12 , and the Hour-Circle of 6 , muft of neceflity pals thro each other's Poles, and fo will be at right Angles to one another: But the Hour-Circle of 12 is at right Angles to the Horizon, and interfects it in NS; therefore the Line N S will be the Line of Meafures, in which the Center of the Hour-Circle of 6 will be, and its Center will be towards the South-Parts of the Horizon, becaufe all the Hour-Circles pafs thro the Pole which fails towards the North, the Elevation of this Circle above the Horizon being the fame with that
of the Pole, viz. 51 Deg. 32 Min . then take the Tangent of 5 r Deg. 32 Min. and fet it from \mathbb{Z} to K ; and upon the Center K , and wihh the Secant of the fane Elevation, defrribe W P E, which is the Circle required.

The Point P, where NS S W E, interfect one another, is the Reprefentation of the Pole of the World ; for NS being the Reprefentation of the Hour-Circle of 12, the pprojected Pole mult be fomewhere in this Line; but it muft be fomewhere in W E, which is likewife the Projection of an Hour-Circle: therefore it muft be in that Point where thele two projected Circles interfect one another, that is, in the Point P ; P is the Point thro which all the Hour-Circles muft pass in the Projection.

In order to draw the reff of the Hour-Circles, we muft have recourfe to a Secondary Line of Meafures, which may thus be determined: To P K, at the Point K, erect D B at right Angles, and produce the Circle WP E, till it meet the Line DB, in the Points D and B; and the Line D B will be the fecondary Line of Meafures in which the Centers of all the Hour-Circles will be found ; for let the Hour-Circle of 6, D P B , be conficiered as the primitive Circle, in whofe Under-Pole (which will be in the Equinoctial) K, let the Eye be placed ; then D B will be the Reprefentation of the Equinoctial, for it pafing thro the Eye will be projected into a right Line: but the Equinoctial is at right Angles to the Hour-Circles, botin the primitive and all the reft ; therefore it will be the fecondary Line of Meafures, upon this Suppofition, upon which will be all their Centers. In order to find which, fet the Sector to the Radius P K, then take off parallel-wife the Tangents of 15 Deg .30 Deg . 45 Deg. the Elevations of the Hour-Circles above the Hour-Circle at 6 , and fet them both ways, from K to r, from K to δ, from K to r, $\mathcal{\sigma}_{\mathrm{c}}$. then upon thofe Centers, and with the Secants of the fame Elevations, defcribe the Circles PP, PQ, and P T, which will be the Hour-Circles ; for they are all great Circles of the Sphere, paffing thro the Pole P, and make Angles with one another of 15 Deg. or are 15 Deg. diftant from each other: and the Portions of thofe Circles which fall within the primitive Circle NESW, as H P h, are the Reprefentations of thofe Halves of the Hour-Circle, which are above our Horizon in our Latitude.
VI. In like manner the Circles of Longitude may be drawn, by determining the fecondary Line of Meafures R S, in which all their Centers will be; and this Line will be determined after the fame manner with DB above, and the Circles of Longitude drawn as before the Meridians were drawn : for the Line NS will be the Line of Meafures, with refpett to one of them paffing thro E and W, the Eaft and Weft Points of the Horizon. In order to draw this Circle, confider its Elevation above the Horizon, which will be found by confidering the Diftance of the Pole of the Ecliptick, from the Pole of the World, which will be 28 Deg. 2 Min. the Elevation of this Circle above the Horizon. Set the Tangent of 28 Deg. 2 Min. from Z to Q, and with the Secant of the fame Diftance, defcribe the Circle WpE ; to $p Q$, at the Point Q, erect R S at right Angles, which will be the fecondary Line of Meafures. In this Line from Q (the Sector being fet to $p Q$) fet off the Tangents of 24 Deg . 40 Deg. according to the Number of Circles you have a Defire to draw, from Q to x, from Q to $y, \sigma_{c} c$ and with the Secants of 20 Deg. 40 Deg. © c. defcribe the Circles of Longitude, M P m, \&c.
VII. The Reprefentations of Azimuths, in this Projection, will be all right Lines, and any Number of them may be drawn, making any affigned Angles with one another, if the Limb be divided into its Degrees by help of the Sector, and thro thefe Degrees be drawn Diameters to the primitive Circle.
VIII. All Parallels of Altitude, in this Projection, will be Circles parallel to the primitive Circle, and may be eafily drawn, by dividing a Radius of the primitive Circle, into HalfTangents, and defcribing upon the Center Z, thro the Points of Divifion, concentrick Circles. I fhall omit drawing of them, left the Scheme be too much perplexed.

U SE X. To project the Sphere.Stereographically upon the Plane of the Sulfitial Coluve for the Horizon of 5 I Deg. 32 Min . reprefenting the Horizon: Set off the Chord of 5 I Deg. 32 Min. from O to P, having firft fet the Sector to the Radius of the Circle, which will give the Polar Point, and draw the Diameter $\mathrm{P} p$, reprefenting the Hour-Circle of 6 .
I. The Equinoctial may be reprefented, by drawing the Diameter E Q at right Angles to the Diameter $\mathrm{P} p$.
II. Set off 23 Deg. 30 Min . from the Chords, from E to s , and from Q to v9, which will reprefent the Ecliptick.
III. 'The Tropicks of Cancer and Capricorn may be drawn thus: Take the Secant of 66 Deg. 30 Min. the Diftance of each of them from their refpective Poles, and fet it both ways, from the Center A in P p produced, which will give the two Points ee the Centers of the cwo Circles, and their Radii will be the Tangents of the fame, 66 Deg. 30 Min .
IV. The Polar Circles, as alfo all other Parallels of Declination, may be drawn in the fame manner.
V. The Line of Meafures for the Azimuths will be H O, and the Line of Meafures for the Almacanters will be BC.

of the Englifh Sector.

VI. 5 , vొ, or the Ecliptick, will be the Line of Meafures for the Circles of Longitude, and the Line of Meafures for the Circles of Latitude will be NS , all of which may be eafily drawn from what is faid in the precedent Ufe.
VII. The Ecliptick may be divided into its proper Signs in this Projeetion, by fetting off the T'angents of 15 Deg. 30 Deg. ${ }_{5}$ Deg. both ways from A .

U SE XI. To draw the Hour-Lines upon an erect direct Soutb Plane, as aljo on an Horizontal Plane.
Firft, draw the indefinite right Line CC, for the Horizon and Equator, and crofs it at Fig' 4 right Angles in the Point A, about the middle of the Line, with the indefinite right Line A B, ferving for the Meridian, and the Hour Line of 12. then take out 15 Deg. from the Line of Tangents, on the Sector (the Sector being fet to a parallel Radius lefler than the Extent from 45 Deg. to 45 Deg. of the leffer Lines of Tangents, when the Sector is quite opened) and lay them of in the Equator on both Sides from A, and one Point will ferve for the Hour of II, and the other for the Hour of 1. Again, take out the Tangent of 30 Deg. (the Sector being opened to the fame Radius) and lay it off on both Sides the Point A in the Equator, and one of thefe Points will ferve one for the Hour of 10 , and the other for the Hour of 20 In the fame manner, lay off the Tangent of 45 Deg. for the Hours of 9 and 3, the Tangent of 60 Deg. for the Hours of 8 and 4, and the Tangent of 75 Deg. for the Hoirs of 7 and 5 , But note, becaufe the greater Tangents on the Sector run but to 45 Deg. therefore you mult fet the parallel Radius of the leffer Tangents, when you come above 45 Deg. to the Extent of the Radii of the greater Tangents.

Now if you have a mind to fet down the Parts of an Hour, you mult allow 7 Deg. 30 Min. for every half Hour, and 3 Deg. 45 Min. for one quarter. 'This done, you muft confider the Latitude of the Place in which the Plane is, which fuppofe s 1 Deg. 30 Min . then if you take the Secant of 51 Deg. $3_{2} \mathrm{Min}$. off from the Sector, it remaining opened to the parallel Radius of the leffer Tangents, and fet it off from A to V, this Point V will be the Center of the Plane; and if you draw from V, right Lines to II, IO, $9, \mathcal{V}_{\text {c. }}$, and the reft of the Hour Points, they will be the required Hour Lines.

But if it happen, that fome of thefe Hour Points fall out of the Plane, you may thus remedy yourfelf, by means of the larger Tangents.
At the Hour Points of 3 and 9, draw occult Lines parallel to the Meridian ; then the Difo tances D C, between the Hour-Line of 6 , and the Hour Points of 3 and 9 , will be equal to the Semi-diameter AV ; and if they be divided in the fame manner as the Line $\mathrm{A} C$ is divided, you will have the Points of $4,5,7$, and 8 , with their Halves and Quarters.

For take out the Semi-diameter A V, and make it a parallel Radius, by fitting it over in the 'Tangents of 45 and 45 ; then take the parallel Tangent of 15 Deg. and it will give the Diftance from 6 to 5 , and from 6 to 7 . The Sector remaining thus opened, take out the parallel Tangent of 30 Deg. and it will give the Diftance from 6 to 4 , and from 6 to 8 : the like may be done for Halves and Quarters of Hours.

The Hour Points may be otherwife denoted thus: Having drawn a right Line for the Equator, as before, and afliumed the Point A for the Hour of 12 , cut off two equal Lines A io, and A 2. then upon the Diftance between ro and 2, make an equilateral Triangle, and you will have B for the Center of the Equator, and the Line A B, will give the Diftance from A to 9, and from A to 3. This done, take out the Diftance between 9 and 3, and this will give the Diftance from B to 8 , and from 8 to 7 , and from 8 to 1 : and again, from B to 4, and from 4 to 5 , and from 4 to 11 ; fo have you the Hour Points: and if you take out the Diftances B I , B $3, \mathrm{~B}_{5}$, \mathcal{O}_{c}. the Points may be found not only for the Half-Hours, but for the Quarters.

In the fame manner are the Hour Lines drawn on a Horizontal Plane, only with this Difference, that A H is the Secant of the Complement of the Latitude, and the Hour Lines of 4, $5,7,8$, are continued thro the Center.

U S E XII. To draw the Hour Lines upon a Polar Plane, as alJo on a Meridional Plane.
In a Polar Plane, the Equator may be alfo the fame with the Horizonal Plane, and the Hour Fig. so Points may be denoted as before, in the laft Ufe: but the Hour Lines muft be drawn parallel to the Meridian.

In a Meridional Plane, the Equator will make an Angle with the Horizontal Line, equal to the Complement of the Latitude of the Place; then may you affume the Point A, and there crofs the Equator with a right Line, which will ferve for the Hour Line of 6 : then the Tangent of ${ }_{15}$ Deg. being laid off in the Equator on both Sides from 6, will give the Hour Points of 5 and 7 ; and the Tangent of 30 Deg. the Hour Points of 8 and 4 ; the Tangent of 45 Deg. the Hour Points of 3 and 9 ; the Tangent of 60 Deg. the Hour Points of 2 and 10: and laftly, the Tangent of 75 Deg. will give the Hour Points of I and II ; and if right Lines are drawn thro thefe Hour Points, croffing the Equator at right Angles, thefe fhall be the Hour Lines required.

USE XIII. To arato the Hour Lines upori a vertical declining Planc.

Firt draw $A V$ the Meridian, and $A E$ the Horizontal Line, croffing one another in the Point A ; then take out AV, the Secant of the Latitude of the Place, which fuppofe 5 I Der, 32 Min. and prick it down on the Meridian from A to V . Now becaufe the Pane declines, which fuppofe 40 Deg. Eafward, you muft make an Angle of the Declination upon the Center A , below the Horizontal Line, on the left Side of the Meridian, becaufe the Plane declines Eaftwards; for if it had declined Weftward, the faid Angle muft have been made on the right Side of the Meridian. This being done, take A H, the fecant Complenient of the Latitude, out of the Seetor, and prick it down in the Line of Declination from A to H , as was done for the Semi-dianeter in the Horizontal Plane: then draw an indefinite right Line thro the Point A, perpendicular to A H, which will make an Angle, with the Horizontal Line, equal to the Plave's Declination, and will be as the Equator in the Horizontal Plane. Again, take the Hour Points out of the 'Tangents, as in the laft Problem, and prick them down in this Equator on borh Sides, from the Hour of 12 at A.; then lay your Ruler, and draw right Lines thro the Center H , and each of thefe Hour Points, and you will have all the Hour Lines of an Horizontal Plane, except the Hour of σ, which is drawn thro \mathbf{H} perpendicular to H A. Lafly, you mait note the Interfections that thefe Hour Lines make with A E, the Horizontal Line of the Plane, and then if right Lines are drawn thro the Center V, and each of thefe Interfections, they will be the Hour Lines required.

The Hour Points may be pricked down otherwife, thus: Take out the Secant of the Plane's Declination, and prick it down in the Horizontal Line from A to E, and thro E draw right Lines parallel to the Meridian, which will cut the former Hour Lines of 3 or 9, in the Point C; then take out the Semi-diameter A V, and prick it down in thofe Parallels from C to D , and draw right Lines from A to C , and from V to D ; the Line $\mathrm{V} D$ will be the Hour of σ : and if you divide thofe Lines AC, DC, in the fame manner as $D C$ is divided in the Horizontal Plane, the Hour Points required will be had.
Or you may find the Point D , in the Hour of 6 , without knowing either H or C ; for having pricked down $\mathrm{A} V$ in the Meridian Line, and AE in the Horizontal Line, and drawn Parallels to the Meridian thro the Points at E, take the Tangent of the Latitude out of the Seftor, and fit it over in the Sines of 90 Deg. and 90 Deg. and the paraliel Sine of the Plane's Declination, meafured in the fame Tangent Line, will there fhew the Complement of the Angle DVA, which the Hour Line of 6 makes with the Meridian : then having the Point D, take out the Semi-diameter $V \mathcal{A}$, and prick it down in thofe Parallels from D to C ; fo fhall you have the Lines D C, A C, to be divided, as before.
'Thus have you the Ufe of the Sector apply'd in refolving feveral ufful Problems. I might have laid down many more Problems in all the pratical Parts of Marthematicks, wherein this Inftrument is ufeful ; but what I, and our Author have faid of this Inftrument, will, I belicve, be fufficient to fhew Perfons skill'd in the feveral pratical Parts of Mathematicks, the Manner of ufing this Inftrument therein.

For the Uies of the Lines of Numbers, Artificial Sines, and Tangents; as alfo the Lines of Latitude, Hours, and Inclination of Meridians; See U S ES of Gunter's Salde.

I Senar frulp.t

(77)

B O O K III.

Of the Confruction and Ufe of Several different Sorts of Compaffes, and other Curious Inftruments.

$000: 0000000090090000000300300000900900000000000$
:

C H A P. I.

Of the Conftruction and USes of Serveral Sorts of Compaffes.

A VING already treated of Common Compaffes, ufually put into Cafes of Inftruments, we proceed now to mention fome others, fometimes likewife placed in Cafes of different Bigneffes.

The Confruction of Hair-Compaffes.

Thefe Compaffes are fo called, becaufe of a Contrivance in the Body of Plate 9. them, by means of which an Extent may be taken to a hair's Breadth. Fig.A. We have before hinted, that the Goodnefs of Companfes confifts chiefly in having the Motion of their Head fufficiently eafy, and that they open and fhut very equally ; and that they may do fo, the Joints ought to be well flit, and very equal in Thicknefs.

The Manner of conftructing the Joints, is thus: We firft, with a Steel-Saw, flit the Head in two Places, fo that there remains a Middle-Piece, the Thicknefs of a Card; then we flit the other Leg of the Compaffies, in the middle of the Joint, to receive the MiddlePiece which was referved for that purpofe; afterwards the Joints mult befied and ftraightned, fo that they may be well joined every where. This being done, we drill a round Hole thorow the middle of the Head, in Bignefs proportional to that of the Compafles, for the Rivet to go through ; the Rivet ought to be very round, and exaelly fill the aforefaid Hole. When we have rivetted it, the Head of the Compafles muft be warmed, and a little yellow Wax poured between the Joints, for leffening the Friction of the Leegs in opening and Thutting. Laftly, we generally put upon the Head two turned Cheeks, ferving for CounterRivets, and to preferve the Head.

The little Screw at the Bottom of the Body of thefe Hair-Compafics, is to move the Steel Point backwards or forwards, at pleafure : this Point is faftened to the Top of the Compafies by two Rivets, fo that in turning the Screw it fprings. The other Steel Point munt be folder'd to the other Leg, as all other Points of Compaffes are that are fixed. Now to fit theie Points for foldering, they muft be filed fo, as to go into two Slits made in the Bottom of the Body of the Compaffes, that there they may be well joined, and the Solder frongly hold them.

Note, Solder is commonly made with Silver and Thirds of Copper, that is, twice more Silver than Copper : For Example; with one Dram of Silver, we mix half a Dram of Copper, which mult be firt melted in a Crucible, and afterwards, when cold, hammer'd to abrut the Thicknefs of a Card, and cut into fmall Pieces that it may the fooner run, when there is ufe for it. Solder is likewife often made with Copper and Zink mixed together, viz.

In melting ; of Copper, with ${ }^{2}$ of Zink: In foldering, we ufe Borax finely bruifed, which makes the Solder better run and penerrate the Joints, or any thing elfe to be foldered.

of the German Compaffes.

The Legs of thefe Compaffes are fomething bent, fo that, when flut, the Points only touch each other. One Point of thefe Compaffes may be taken off, and others put on, by means of a fmall fquare Hole made in the Bottom of the Body, for the Points to go in, and a Screw to keep them faft when in : but thefe Points ought very well to fit the aforefaid fquare Hole, that they may not fhake.

The Points generally put on, are,
Firft, A Drawing-Pen Point, by means of which, Lines fine or coarfe may be drawn with Ink, by help of a little Screw near the Point of the Drawing-Pen. This DrawingPen Point, as well as the other Points to be put on, has a fmall Joint, almoft like the Head of a Pair of Compaffes, by means of which it may be kept perpendicular to the Paper, according as the Compaffes are more or lefs opened. This Point is reprefented by Fig. 3.

Secondly, A Porte-Craion Point, reprefented by Fig. 2, for drawing Lines with a Pencil.
And Lafly, a Dotting-Wheel Point, (Fig. r.) whofe Ufe is to make dotted Lines. What we call a Dotting-Wheel, is a little Wheel of Brafs, or other Metal, about 3 Lines in Diameter, round which is made little pointed Teeth. 'This Wheel is faftened between two little Pieces of Brafs by a fmall Pin, fo that it may freely turn round, almoft like a Spur ; but the faid Teeth muft not be too far diffant from each other, becaufe then the Dots the Wheel makes, will alfo be too far diftant from each other.

The Conftruction of thefe Compaffes as to their Joints, ${ }^{*} c$. being the fame as thofe before fpoken of, I fhall only add, that fince the Beaury of Compaffes confifts very much in their being well polifhed; for this effect, we firf rub the Compafles with Slate-Stone dipped in Water ; then we rub every part of the Compaffes with a flat Stick of foft Wood, and a Mixture of Eniery temper'd with Oil, or fine Tripoly. And laftly, we wipe the Compafles clean with a Cloth or Piece of Shamoy.

> Of the Spring-Compaffes.

Thefe Compaffes are all made of tempered Steel, which are fo hard every where, that a

Of the three-legg'd Compafes.

The Ufe of thefe Compaffes is to take three Points at once, and fo to form a Triangle, or to lay down three Pofitions of a Map to be copied at once, \mathcal{U}_{c}.
The Conftruction of thefe Compaffes doth not much differ from the Conftruction of the others, excepting only that the third Leg has a Motion every way, by means of a turned Rivet, riveted by one End to the two other Legs; and at the other End there muft be a turned Cheek, and a round Plate ferving for a Joint to the third Leg : the little Figure I fhows how the Rivet is made.

Of the Sea-Chart Compaffes.

Chap. I: of Several Sorts of Compaffes.
appears from the Figure, and their Ufe will be mentioned in the Inftruments for Navigationt.
Of the fimple Proportional Conipaffes.
Thefe Compaffes are ufed in dividing of Lines into $2,3,4$, or 5 equal Parts, as alfo to re-Fig. C. duce fmall Figures to greater ones, and contrariwife, \mathcal{F}_{c}. You mult take care in making thefe Compaffes, that the Head be drill'd in a right Line with the Legs, and that the Points are not one forwarder than another. Now if you have a mind to make one of thefe Pair of Compaffes to take the $\frac{1}{2}$ of a Line, the Diftance from the Center of the Joint to the Ends of either of the longeft Legs, muft be twice the Length of either of the fhortef L.egs; and fo in proportion for others. Note, The Compafies of Figure G, are for dividing of Lines into 3 equal Parts; whence the Diftance from the Center marked 5, to the Points 2, 2, is three times the Diftance from the faid Center, to the Points 3 or 4 : fo that if the third Part of the Line 2, 2, be required, its whole Length muft firft be taken between the longeft Legs of the Compafles, which remaining thus opened, the Diftence between the Points of the fhorten Legs, will be $\frac{1}{3}$ of the given Line.

Of the moveable-headed Proportional Comprifes.

The Ufe of thefe proportional Compaffes, is to divide a given Line into any Number of Fis. Hio equal Parts, as alfo to divide the Circumference of a Circle, fo that a regular Polygon may be infrribed therein.
Thefe Compafies confift of two equal Legs, each of which is furnifh'd with two Steel Points, and are hollow'd in, for a Curior to llip up and down; in the middle of which Curfor, there is a Screw ferving to join the Legs, and to faten them in divers Places by means of a Nut : but the Legs muft be hollow'd in exactly in the middle of their Breadth, that fo the Center of the Curfor may be in a right Line with the Points of the Legs, and the Curfor fide very exactly along the Legs : as alfo the Head-Screw muft exaclly fill the Hole in the Curfor, fo that nothing may fhake when the Legs are faftened with the Nut.
Figure 1, reprefents the Screw, Figure 2, the Nut, Figure 3, half the Curfor, which muft be joined by a like half. You may fee by that little Figure, that there is a Piece in the middle left exactly to fit the Hollow of the Leg of the Compaffes: the fhadow'd Spaces of the faid Figure, are to contain the two Sides of the Leg; underfand the fame of the other haif of the Curfor.
Figure I, is one of the Legs feparate, upon which are the Divifions for equal Parts: for upon one Side of one of the Legs, are the Divifions for dividing of Lines into equal Parts; and upon one Side of the other Leg, are denoted the Numbers fhewing how to inferibe any requalar Polygon in a propofed Circle.

Now ta make the Divifions for dividing Lines into equal Parts, take a well divided Scale; or a Seftor, which is better, becaufe it is almoft a univerfal Scale : then take the exact Length of one of the Legs of your proportional Compaffes between your Compaffes, and having opened the Sector, fo that the Diffance between 120 and 120 of the Line of Lines be equal to that Extent, take the Diffance from 40 to 40 , which lay off upon the Leg of your Compaffes, and at the End thereof, fet the Number 2, which will ferve to divide any given Line into two equal Parts: The Sector fill continuing opened to the fame Angle, take the Diftance from 30 to 30 , on the Line of equal Parts, and lay off upon the aforefaid Leg of the Compaffes, where fet down the Number 3, and that will give the Divifion for taking $\frac{7}{3}$ of any given Lire. Again ; take 24 equal Parts, as before, from the Line of Lines, lay them off upon the Leg, and that will give the Divifion for dividing a Line into 4 equal Parts.

Moreover, take 20 equal Parts, and that will give you the Divifion upon the Leg of the Compaffes, ferving to divide a Line into 5 equal Parts: the fame Opening of the Sector will fill ferve to divide a Line into 7, 9, and 1 e equal Parts. But to avoid Fractions, the aforefaid Opening mult be chang'd, to make the Divifion of $6,8,10$, and 12, upon the Leg: but before the faid Opening of the Sector be altered, take the Diftance from Is to 15 , which will give the Divifions for dividing a Line into 7 equal Parts.

Again ; take 12, and that will give the Divifion for dividing a Line into 9 equal Parts; and lafly, the Difance from to to 10 , will give the Divifion for dividing any Line into if equal Parts.

But to make the Divifion for dividing a Line into 6 equal Parts, take between your Compaffes the Length of one of the Legs of the proportional Compaffes, and open the Sector fo, that the Diftance betwecn 140 and 140, on each Line of equal Parts, be equal to the aforefaid Length. The Sector remaining thus opened, take the Diftance from 20 to 20 , on each Line of equal Parts, and lay it off upon the Leg of the Companfes, and that will give the Divifion for dividing a Line into 6 equal Parts.
Again ; having taken the Length of the Leg of your Compaffes; open the Sector, fo that the Diftance from 180 to 180 , of each Line of equal Parts be equal thereto. 'Then take the Extent from 20 to 20, and that laid off upon the Leg of the Compaffes, will give the Divifion for dividing a Line into 8 equal Parts.

Moreover, open the Sector fo, that the Diftance from ino to Iro, be equal to the Length of the Leg of your Compafies. The Sector remaining thus opened, the Diftance
from to to io, will give the Divifion for dividing a Line into ten equal Paris
Lafty, the Sector being opened, fo that the Length of the Leg of your Compates be equal to the Difance from 130 to 130 ; and then the Dittance from 10 to 10 will give tire Dirition for dividing a Line inco twelve equal Parts.

The Ule of this Line is eafy : for fuppofe a right Line is to be divided into three equal Parts: firft pufh the Curfor, fo that the middle of the Screw may be juft upon the Figure 3; and having firmly fixed it upon that Point, take the Length of the propofed Line between the two longeit Parts of the Legs; then the Diftance between the two fhortett Parts of the Legs will be ${ }^{\frac{7}{3}}$ of the given Live. Proceed thus for dividing a given Line into other equal Parts.

Now to make the Divifions for regualr Polygons, divide the Leg of your Compafles into two equal Parts; and having opened the Sector, let the Diftance from 6 to 6 , on the two Lines of Pelygons, be equal to one of thofe Parts. The Sector remaining thus opened, take the Diftance from 3 to 3 for a Trigon, and lay it off from the End of the Leg of your preportional Compafles, where mark 3. Again, take the Diftance from 4 to 4 for a Square, upon the Line of Polygons, and that will give the Divifion for a Square. Moreorer, take the Diftance from 5 to 5 , on the Lines of Polygons, and lay off upon the Leg of your Compaffes, which will give the Divifion for a Pelltagon; proceed thus for the Heptagon, and the other Polygons, to the Dodecagon. It is needlefs to make the Divifion for a Hexagon, becaufe the Semidiameter of any Circle will divide its Circumference into fix equal Parts.

The Ufe of this Line for the Infcription of Polygons is very eafy ; for if, for Example, a Pentagon is to be infcribed in a given Circle, puff the Curfor \mathcal{C}_{C}, that the middle of the Screw may be againt the Number 5 for a Pentagon; then with the fhortef Parts of the Legs, take the Semidiameter of the Circle; and the Legs remaining thus opened, the Difance berween the Points of the longeft Parts of the Legs, will be the Side of a Pentagon infcribed in the given Circle.

Again, fuppofe a Heptagon is to be infcribed in a Circle ; fix the Screw againft the Number 7 ; then take the Semidiameter of the Circle between the longef Parts of the Legs of your Compaffes, and the Diftance between the fhorteft Parts of the Legs will be the Side of a Heptagon infcribed in the faid Circle.

Of the Beam-Compafs.

This Compafs confifts of a very even fquare Branch of Brafs or Steel, from I to 3 or 4 Feet in Length. There are two fquare Brafs Boxes or Curfors exactly fitted to the faid Branch, upon each of which may be screwed on Steel, Pencil, or Drawing-Pen Points, according as you have ufe for them. One of the Curfors is made to flide along the Branch, and may be made faft to it by means of a Screw at the Top thereof, which preffes againft a little Spring ; the other Curfor is fixed very near one End of the Branch, where there is a Nut fo faftened to it, that by turning it about the Screw, at the End of the Branch, the faid Curfor may be moved backwards or forwards at pleafure.

Thefe Compaffes ferve to take great Lengths, as alfo exactly to draw the Circumferences of great Circles, and exatty divide them.

Of the Elliptick Compaffes.

rig. L.
This Inftrument, whofe Ufe is to draw Ellipfes of any kinds, is made of a crofs Branch of Brafs, very ftrait and equal, about a Foot long, on which are fitted three Boxes, or Curfors, to flide upon it. 'To one of the Curfors there may be fcrewed on a Steel-Point, or elfe one to draw with Ink, and fometimes a Porte-Craion. At the bottom of the two other Boxes are joined two fliding Dove-Tails (as the little Figure I fhews;) thefe fliding Dove-Tails are adjufted in two Dove-Tail Grooves, made in the Branches of the Crofs. The aforefaid two fliding Dove-Tails, which are affixed to the Bottoms of the Boxes by two round Rivets, and fo have a Motion every way, by turning about the long Branch, move backwards and forwards along the Crofs; that is, when the long Branch has gone half way about, one of the Miding Dove-Tails will have moved the whole Length of one of the Branches of the Crofs; and then, when the long Branch is got quite round, the fame Dove-Tail will go back the whole Length of the Branch : underftand the fame of the other niding Dove-Tail.

Note, The Diftance between the two fliding Dove-Tails, is the Diftance between the two Foci of the Ellipfis; for by changing that Diftance, the Ellipfis will more or lefs fivell.

Underneath the Ends of the Branches of the Crois, there is placed four Steel-Points, to keep it faft upon the Paper. The Ufe of this Compafs is eafy; for by turning round the long Branch, the Ink, or Pencil-Point, will draw an Oral, or Ellipfis, required. Its Figure is enough to fhew the Conftruction and Ufe thereof.

Of Cylindrick and Spberick Compaffes.

Fig. M. Figure M is a Pair of Compaffes ufed in taking the Thickneffes of certain Bodies, as Cannon, Pipes, and the like things, which cannot be well done with Compaffes of but two Points. Thefe Compaffes are made of two Pieces of Brafs, or other Metal, having two circular Points, and two flat ones, a little bent at the Ends. When you ute them, one of the
flat Points muft be put into the Cannon, and the other without; then the two oppofite Points will fhew the 'Thicknefs of the Cannon.

Nute, The Head of thefe Compafies ought to be well drilled in the Center ; that is, if a Line be drawn from one Point to the oppofite one, the faid Line muft exactly pafs thro the Center ; and when the Compaffes are fhut, all the Points ought to touch one another.

The Figure N is a Pair of Spherick Compaffes, which differs in nothing from the Con- Fig. Nion ftruction of Common Compaffes, except only that the Legs are rounded, to take the Diameters of round Bodies, as Bullets, Globes, ©fc.

Lafty, the Figure \mathbf{O} is another Cylindrical Pair of Compaffes, whofe Legs are equal : The Figure is enough to fhew their Conftruction and Ufe.

Additions to CHAP. I.

Of the Turn-up Compafjes, and the Proportional Compafjes, with the Sector Lines upon ibem.

Of the Turnup Compaffes.

THE Body of thefe Compaffes, is much like the Body of common Compaffes, nigh the Fig. it Bottom of which, and on the outward Faces, are adjufted two Steel Points, one of them having a Drawing-Pen Point at the End, and the other a Porte-Craion at its End, fo that they may turn round. Nigh the middle of the outward Faces, are two little Steel Spring Catches, to hinder the Points giving way when ufing. The Benefit of this Contrivance, is, that when you want to ufe a Drawing-Pen Point, or a Pencil, you have no more to do, but turn the Drawing-Pen Point, or the Porte-Craion, until the Steel Points come to the Catch : whereas, in a common Pair of Compaffes, you have the trouble of taking off a Steel Point, in order to put either of the aforefaid Points in its place. The Figure of this Compafs is fufficient to fhow its Conftruction and Ufe.

Of the Proportional Compaffes, with the Sector Lines upon them.

Thefe Compaffes are made of two equal Pieces of Brafs or Silver, of any Length, the Breadth Fiz. 2? and Thicknefs of which muft be proportionable. Along the greateft Part of their Length are two equal Dove-tail Slits made, in each of which go two Sliding Dove-tails of the fame Length, each having a Hole drilled in the Middle, thro which paffes a Rivet, with a turned Cheek fixed at.one End, (which turned Cheek is faftned to one of the Sliding-Dove-Tails) and a Nut at the other. There is another equal turned Cheek, faftened to the other Dovetail ; fo that the two Sliding Dove-tails, together with the two turned Cheeks and River, make a Curfor to flip up and down the Slits, and likewife ferve as a moveable Joint for the Branches of the Compaffes to turn about.

At the Ends of the aforefaid Pieces of Brals, or Silver, are fixed four equal Steel-Points; the Lengths of each of which muft be fuch, that when the Curfor is flid as far as it can go, to either of the Ends of the Slits, the Center of the Rivet may be exactly ${ }_{3}^{2}$ Parts of the Diftance from one Point to the other.

At a fmall Diftance from the four Ends of the two Sliding Dove-tails, are drawn acrofs four Lines, or Marks; and when the Center of the Rivet is in the Middle between the Points, the Divifions of the Lines on the Broad-Faces, begin from thofe Lines, and end at them: But the Divifions on the Side-Faces, begin and end againft the Center of the Rivet, when it is in the Middle between the Points.

The Lines on the firft broad Face of thefe Compaffes, are, ift, the Line of Lines, divided into 100 unequal Parts; every roth of which are number'd, at the 'Top of which is writ Lines. $2 d l y$, A Line of Chords to 60 Degrees, at the Top of which is writ Chords. On the other broad Face, are, ift, A Line of Sines to 90 Degrees, at the 'Top of which is writ Sines. 2 dly , A Line of Tangents to 45 Degrees, at the Top of which is writ Tangents'.

On the firt Side-Face, are the Tangents from 45 Deg. to 7r Deg. 34 Min. to which is writ Tang. and on the fecond, are the Secants fromo Deg. to 70 Deg. 30 Min . to which is writ Sec.

Conftruttion of the Line of Lines on the fe Compaffes.

Draw the Lines A D, C B , of the fame Length that you defign to have the Branches of Fig. 3 a the Compaffes, croffing each other in the Middle G; with one Foot of your Compaffes in A, and the Diftance $A D$, defcribe the $\operatorname{Arc} E D$; and with the fame Diftance in the Point B, defcribe the Arc CE: thro the Points E, G, draw the right Line E M, which will bifect the Line drawn from C to D, in the Point F ; alfo bifect F D in H, and raife the Perpendicular HR. Now if from the Point R, a right Line is drawn to A, it will cut the Line EM in.
the Point k; and if with one Foot of your Compaffes in A, and the Diftance A k, you defrribe an Arc cutting the Side A D in the Point 50; the faid Point 50, on the Side A D, will be the Divifion for 50 and 50 of the Line of Lines, if the Center of the Curfor was to be flid to the Divifions, when the Compais is ufing. But becaufe the Lines drawn acrofs near the Ends of the Sliding Dove-tail, are to be flipped to the Divifions, when the Compaties are to be ufed, the Divifion for 50 muft be as far beyond the Point 50 , as the aforefaid Line on the Sliding Dove-tail, is diftant from the Center of the Curfor ; which Diftance fuppofe G Q, or $G \mathrm{~L}$ its Equal. Underftand the fame for all other Divifions, which are found in the manner that I am now going to fhew.
Divide DH into 50 equal Parts, and from every of which raife Perpendiculars to cut the Arc ED (I have only drawn every 1o.) Now if from the Point A, to all the Points wherein the Perpendiculars cut the Arc E D, right Lines are drawn, cutting the Line E M; and if the Diltances of thefe Sections from the Point A, are laid off from the fame Point on the Line A D, the Divifions from o to 50 , for the Line of Lines, will be had; and likewife from 50 to 100, which are at the fame Diftance from the Center G; in obferving to place each of them, found out as directed, fo much further from the Center G, as the Line $G Q$ is diftant from it.

The Divifions for the Line of Lines being found, as before diretted, they muft each of them be transfer'd to the Face of your Compalfes, and be numbered as per Figure.

Conftrution of the Line of Chords, Sines, Tangents, and Secants.

Having taken half of the Line of Lines, and divided the Spaces from o to ro, ra to 20; 20 to 30,30 to 40 , and 40 to 50 , into 100 Parts, by means of Diagonals; that half fo divided, will ferve as a Scale whereby the Tables of Natural Sines, Tangents, and Secants, and the Divifions of all the other Lines on this Compafs, may be eafily made.

Now having flid the Center of the Curfor to the Middle of the Compaffes, the Beginning and Ending of the Line of Chords muft be (as in all the other Lines drawn upon thefe Compafs's, two broad Faces) where the Line drawn acrofs the Sliding Dove-tail cuts the Sides of the Slit: then to find where the Divifion of any Number of Degrees, or half Degrees, fuppofe 10, muft be, look in the Table of Natural Sines for the Sine of 5 Degrees, which is half 10, and you will find it 871.557; which doubled, will give the Chord of 10 Degrees, viz. 1743.114 : but becaufe the Radius to the Table of Natural Sines, Tangents, and Secants, is $\mathbf{1 0 0 0 0}$, and from the aforefaid Semi-Line of Lines made into a Diagonal Scale, can be taken but 500 Parts; therefore reject the laft Figure to the right-hand, together with the Decimals, and you will have 174 for the Chord of ro Degrees, when the Radius is but 1000 or the Length of the Line of Lines. Now take 174 Parts from the Diagonal Scale, and lay them off from o, on the Parallels drawn to contain the Divifions of the Line of Chords, and you will have the Divifion for 10 Degrees. Again, to find the Divifion for 20 Degrees, look for the Natural Sine of io Degrees, and it will be found 1736.482 ; which doubied, will give the Chord of 20 Degrees, viz. 3472.964, and rejecting the laft Figure to the right-hand, and the Decimals, you will have 347, which being taken from your Diagonal Scale, and laid off from $0 \circ$ on the Parallels, you will have the Divifion for the Chord of 20 Degrees. In this manner proceed for finding the Divifions for the Chords of any Number of Degrees, or half Degrees. But note, when you come to the Chord of 29 Degrees, you are got to the furthef Divifion from the Center ; becaufe, from the Table of Sines, the Chord of 29 Deg. is half Radius, (or at leaft near enough half for this Ufe) or 500 , and confequently the Length of your whole Scale : therefore you mult, for the Divifions of the Chords of any Number of Degrees above 29, lay off the Parts above 500, taken on the Diagonal Scale, from the Divifion of 29 Degrees, back again towards the Center, on the other Side the Slit, to 60 . As for Example ; to find the Divifion for the Chord of 40 Degrees; the Chord is 684 , from which 500 being fubftracted, you mult take the Remainder 184 from your Diagonal Scale, and lay it off towards the Center, on the Parallels drawn on the other Side of the Slit, from a Point over-againft the Divifion for the Chord of 29 Degrees; and fo for any other.

The Lines of Sines, or Tangents, on the other broad Face of thefe Compaffes, are made in the fame manner as the Line of Chords is: As, for Example, to make the Divifion for the Sine of any Number of Degrees, fuppofe io; you will find from the Table of Natural Sines, that the Sine of 10 Degrees is 173 ; whence lay off 173 Parts, taken on the Diagonal Scale, from the beginning of the Lines drawn to contain the Divifions, and you will have the Poine for the Sine of 10 Degrees. Again ; to find the Divifion for the Sine of 25 Degrecs, you will find from the Table, that 422 is the Sine of 25 Degrees; therefore take on your Scale 422 Parts, and lay them off from o, and you will have the Divifion for the Sine of 25 Degrees. Thus proceed for the Divifions of any other Number of Degrees, until you come to 30 , whofe Sine is equal to Half-Radius, and from 30 back again to 90 , in obferving the Directions afore-: given about the Chords, when they return towards the Center.

The Divifions for the Tangent of any Number of Degrees, fuppofe 1o, are likewife thus found; for the Tangent of ro Degrees, by the Table, is 176; wherefore taking 176 Parts from your Scale, and laying them off from $\circ \circ$ on the Parallels drawn to contain the Divifions, the Divifion for the 'Tangent of ro Degrees will be had. Again; to find the Divifion for the

Chap. I. of feveral Sorts of Compaffes.

Tangent of 25 Degrees; by the Table of Tangents, the Tangent of 25 Degrees will be found 466 ; whence taking 466 Parts from your Scale, and laying them off from 00 , you will have the Divifion for the Tangent of 25 Degrees. Thus proceed for the Divifions of the Tangents of any other Number of Degrees, until you come to the Divifion of the Tangent of 26 Deg. 30 Min. which is half the Radius; and from 26 Deg. 30 Min. back again to 45 Dcg. whofe 'Tangent is equal to Radius, in obferving the Directions afore-given about the Line of Ciords, when they return.
The Conftruction of the Tangents to a fecond and third Radius, on the fide Face of thefe Compaffes, is thus: Let the Beginning of the fecond Radius, which is at the Tangent of 45 Degrees, be in the Middle between the Points of the Compaffes; becaule when the Compafs is ufing, a little Notch in the Side of the turned Cheek, which is directly againt the Center of the Curfor, is flid to the Divifions: then to make the Divifions for the Tangents of the Degrees, and every 15 Minutes, from the Tangent of 45, to the Tangent of 56 Degrees, and about 20 Minutes, which is half a fecond Radius, you muft look for the refpective Tangents in the Table of Natural Tangents; and having caft away the laft Figure to the right-hand, and the Decimals, (which always do) fubtraet rooo from each of them, becaule that is equal to one of our Radius's, and the Remainders take from your Scale, and lay off from 45 ; fo fhall you have the Divifions to the Tangent of 56 Deg. and about 20 Min . Then again, to have the Divifions from 56 Deg . 20 Min . to 63 Deg . and 27 Min. the Tangent of which is equal to 2000 , or two of our Radius's, you muft fubftract 1500, which is 2 and a half of our Radius's, from every of the refpective Tangents, found and ordered as before directed; and then take each of the Remainders from the Scale, and lay them off from 56 Deg. 20 Min. on the Top, and you will have the Divifions of the Tangents of the Degrees, and every 15 Min. from 56 Deg. 20 Min. to 63 Deg. 27 Min. which will fall againft 45 Deg, on the Side of the other Branch. Again; to find the Divifions of the Tangents of the Degrees, and every 15 Minutes, from 63 Deg. ${ }_{2} 7$ Min. to 68 Deg. 12 Min. which makes two Radius's and a half, or 2500 , you muft fubftract 2000 from each of the Tangents, found and ordered as aforefaid, and the Remainders muft be taken off your Scale, and laid off from 63 Dego ${ }_{27}$ Min. and you will have the Divifions for the Tangents of the Degrees, and every ${ }_{15}$ Min. from 63 Deg. 27 Min. to 68 Deg. 12 Min. Laftly, to have the Divifions from 68 Deg. 12 Min. to 7 I Deg. 34 Min. which ends at 45 Deg. and makes up the third Radius, or 3000 : you muff fubftract 2500 from each of the Tangents found in the Table, and ordered as before directed ; and take off the Remainders from your Scale, which laid off upwards from 68 Deg. 12 Min. will give the Divifions for the Tangents of the Degrees, and every 15 Minutes, be-. tween 68 Deg. 12 Min. and 71 Deg. 34 Min .
The Divifions for the Secants, on the other narrow Face of the Compaffes, which run from o Degrees, in the middle between the two Points of the Compaffes, to 70 Degrees, 32 Minutes, that is, which are the Secants to a fecond and third Radius (like as the Tangents laft mentioned) are made exactly in the fame manner, from the Table of natural Secants, as thofe Tangents to a fecond and third Radius are made.

U S E of these Proportional Compaffes:

U SE I. To divide a given right Line into any Number of equal Parts, lefs than 100:

Divide roo by the Number of equal Parts the Line is to be divided into, and flip the Curfor fo, that the Line drawn, upon the fliding Dove-Tail, may be againft the Quotient on the Line of Lines : then taking the whole Extent of the Line between the two Points of the Compaffes, that are furtheft diftant from the Center of the Curfor, and afterwards applying one of the two oppofite Points to the Beginning or End of the given Line, and the other oppofite Point will cut off from it one of the equal Parts that the Line is to be divided into.

As, for Example ; to divide the Line A B into two equal Parts: 100 , divided by 2, givesFif. s; 50 for the Quotient; therefore flip the Line on the Dove-Tail to the Divifion 50 on the Line of Lines, and taking the whole Extent of the Line AB between the Points furthe? from the Center ; then one of the oppofite Points fet in A or B , and the other will fall on the Point D , which will divide the Line A B in two equal Parts.

Again ; to divide a right Line into three equal Parts, divide roo by 3, and the Quotient will be 33.3 ; therefore flip the Line of the Dove-Tail to the Divifion 33, and for the three Tenths conceive the Divifion between 33 and 34 to be divided into Io equal Parts, and reafonably eftimate 3 of them. Proceed as before, and you will have a third Part of the faid Line, and therefore it may eafily be divided into 3 equal Parts. Moreover, to divide a given Line into so equal Parts, divide 100 by 50 , and the Quotient will be 2 ; therefore flip the Line, on the fliding Dove-Tail, to the Divifion 2 on the Line of Lines. Proceed as at firf, and you will have a soth Part of the Line propofed ; whence it will be eafy to divide it into 50 cqual Parts.

Note, If each of the Subdivifions, on the Line of Lines, is fuppofed to be divided into roo equal Parts; then a Line may, by means of the Line of Lines on thefe Compaffes, be dirided into any Number of equal Parts lefs than 1000. As, for Example; to divide a Line
into 500 equal Parts : Divide 1000 by 500 , and the Quotient will be 2 ; therefore flip the Line, on the Dove-Tail, to 2 Tenths of one of the Subdivifions of 100 , and proceed, as at firft directed, and you will have the 5 coth Part of the Line given, which afterwards may eafily be divided into 500 equal Parts. Again ; to divide a Line into 200 equal Parts : divide 1000 by 200, and the Quotient will be 50 ; therefore nip the Line, on the Dove-Tail, to 5 of the Subdivifions of 100 , on the Line of Lines, which will now reprefent 50 ; proceed as at firt, and you will have the 200th Part of tne Line given : therefore it will be eafy to divide it into 200 equal Parts. Moreover, to divide a given Line into 150 equal Parts, divide I 000 by 150 , and the Quotient will be 6.6 ; wherefore reafonably eftimate 6 of the ro equal Parts that the firt of the Subdivifins of 100 is fuppofed to be divided into, and flip the Line, on the fliding Dove-Tail, to the 6 th; then proceeding as at firf, and the Line may be divided into iso equal Parts. If a Line be folong, that it cannot be taken between the Points of your Compafies, you muft take the half, third, or fourth Part, \mathcal{F}_{c}. and proceed with that as before directed; then one of the Parts found being doubled, trebled, ©c. will be the correfpondent Part of the whole Line.

US E II. A right Line being given, and fuppofed tó be divided into 100 equal Parts : to take any Number of thofe Paits.
Slip the Line, on the fliding Dore-Tail, to the Number of Parts to be taken, as 10 ; then the Extent of the whole Line being taken between the Points of the Compafles, furtheft diftant from the Curfor, if one of the oppofite Points be fet in either Extreme of the given Line, the other will cut off the Part required.

U S E III. The Radius being given; to find the Chord of any Aic under 60 Degrees.

Slip the Line, on the fliding Dove-Tail, to the Degrees fought on the Line of Chords; then take the Radius between the Points of the Compaffes, furtheft diftant from the Center of the Curfor, and the Extent, between the two oppofite Points, will be the Chord foughr, if the given Number of Degrees be greater than 29, whofe Chord is Half-Radius; but if the Number of Degrees be lefs than 29, then the Diftance of the two oppofite Points, taken from Radius, will be the Chord of the Degrees required.
If the Chord of a Number of Degrees under 60 is given, and the Radius to it be required; you muft flip the Line, on the fliding Dove-Tail, to the Degrees given on the Line of Chords ; and taking the Length of the given Chord between the two Points of your Compafles, that are nigheft the Curfor, the Extent of the two other oppofite Points will be the Radius required.
Fig. 6.

Fig. 70 Example, for the firt Part of this Ufe : Suppofe the Length of the Radius be the Line A B, and the Chord of 35 Degrees be required; Slip the Line, on the fliding Dove-'Tail, to 35 Degrees on the Line of Chords; take the whole Extent of the Line A B between the Points of the Compafles, furtheft diftant from the Curfor; and placing one of the oppofite Points in the Point A, the other Point will give the Extent A D for the Chord of 35 Degrees. Again ; to find the Chord of 9 Degrees : Slip the Line, oin the fliding Dove-Tail, to 9 Degrees on the Line of Chords ; then take the Extent of the Radius, which fuppofe A B, berween the two Points of the Compafies, furtheft diftant from the Center; and placing one of the oppofite Points in the Point A, the other will fall on the Point C, and the Difference between A B and A C, viz. C B, will be the Chord of 9 Degrees.

> U S E IV. The Radius being given, fuppofe the Line A B; to fund the Sine of any Number of Degrees, as 50.

Slip the Line, on the fliding Dove-Tail, to 50 Degrees on the Line of Sines; then if the Extent A B is taken between the two Points of the Compaffes, furtheft from the Curfor, and one of the oppofite Points be fet in the Point A, the other will give AC for the Sine of 50 Degrees; but if the Sine fought be leffer than the Sine of 30 Degrees, which is equal to Half-Radius, the Difference, between the Extents of the oppofite Points, will be the Sine of the Angle required.
U SE V. The Radius being given; to find the Tangent of any Number of Degrees, not above.7r:
If the Tangent of the Degrees, under 26 and 30 Minutes, whofe Tangeat is equal to Half-Radius, be fought : You muft flip the Line, on the fiding Dove-Tail, to the Degrees propofed on the Line of Tangents; and then take the Radius between the Points of the Compafs, furthef diftant from the Curfor, and the Difference between the oppofite Points will be the Tangent of the Number of Degrees propofed.
If the Tangent of any Number of Degrees above 26 and 30 Minutes, and under 45, be fought ; then you muff flip the Line, on the fliding Dove-Tail, to the Number of Degrees given on the Tangent-Line, and take the Radius between the Points of the Compafs furtheft from the Curfor ; then the Diftance, between the two oppofite Points, will be the Tangent of the Degrees required.
If the Tangent required be greater than 45 Degrees, but lefs than 56 Degrees, and about 20 Minutes; you mutt flip the Notch, on the Side of the turned Cheek, to the Degrees of
the Tangents upon the Side of the Compafs, and take the Radius, between the Points of the Compafs, furtheft diftant from the Curfor ; the Difference between the oppofite Points, added to Radius; will be the Tangent of the Degrees fought.
If the Taugent required be greater than that of 56 Degrees, 20 Minutes, but lefs than 63 Degrees, 27 Minutes, you muft flip the Notch to the Degrees propofed, and take the Radius, as before, between the Points of the Compals; then the Extent, between the two oppofite Points; added to Radius, will be the Tangent required.

If the Tangent required be greater than 63 Degrees, 27 Minutes, but lefs than 68 Degrees ; you mult flip the Notch, on the Side of the turned Cheek, to the Degrees propofed, and take the Radius between the Points of the Compafs, as before ; then the Difierence between the oppofite Points, added to twice Radius, will be the Tangent of the Degrees propofed.

Lafly, If the Tangent be greater than 68 Degrees, but lefs than 71 , you muft add the Difance between the oppofite Points of the Compass, to two Radius's, and the Sum will be the Tangent of the Degrees fought.
The Secant of any Number of Degrees, under 70, by having Radius given, in obferving the aforefaid Directions about the Tangents, may be eafily found.

C H A P. II.

Of the Conftruction of divers Mathematical Inftruments.

Of the Sliding Porte-Craion.

THIS Inftrument is commonly about four or five Inches long, the Outfide of which is Plate 10. filed into eight Faces, and the Infide perfectly round, in which a Porte-Craion is put, Fig. A, which may be flid up and down by means of a Spring and Button; of which we fhall fpeak hereafter. The Compaffes of the Figure B is made to frew into one End of this Inftrument.

There are commonly drawn, upon the Faces of this Porte-Craion, the Sector-Lines, whofe manner of drawing is the fame, as thofe on the Sector; and their Ufe is the fame as the Ufe of thofe on the Sector, excepting only that they are not fo general. For Example; If you have a mind to make an Angle of 40 Degrees upon a given Line ; take the Extent of 60 Degrees of the Line of Chords, and therewith defcribe an Arc upon the given Line: then take the Extent of 40 Degrees, and lay off upon that Arc, and from its Center draw a Line, which will make an Angle of 40 Degrees with the given Line.

Note, There are alfo round Inftruments of this kind, whofe Outfides are divided into Inches, and each Inch into Lines.

This is another Porte-Craion made of Brafs, round within, and commonly fo withour, hav- Fig. C. ing the Porte-Craion of Figure D made to flip up and down in it. In the Ends of the faid Porte-Craion are put Pencils, which are made faft by two Rings; and in the middle is placed a well-hammered Brafs or Steel Spring, having a Female Screw made in it at 1, in order to receive the Male Screw at the End of the Button E, which goes thro a Slit made in the Body of the Inftrument. The Figure, and what I have faid, is enough to fhew the Nature of this Porte-Craion.

Of the Fountain-Pen.

This Inftrument is compofed of different Pieces of Brafs, Silver, © c. and when the Pieces Fig. F. FGH are put together, they are about five Inches long, and its Diameter is about three Lines. The middle Piece F carries the Pen, which ought to be well flit, and cut, and fcrewed into the Infide of a little Pipe, which is foldered to another Pipe of the fame Bignefs, as the Lid G; in which Lid is foldered a Male Screw, for frewing on the Cover: as likewife for ftopping a little Hole at the Place I , and fo hindering the Ink from running through it. At the other End of the Piece F, there is a little Pipe, on the Outfide of which the Top-Cover H may be frewed on. In this Top-Cover there goes a Porte-Craion, that is to fcrew into the laft mentioned little Pipe, and fo fop the End of the Pipe at which the Ink is poured in, by means of a Funnel.

When the aforementioned Pen is to be ufed, the Cover G muft be taken off, and the Pen a little fhaken, in order to make the Ink run freely. Note, If the Porte-Craion does not fop the Mouth of the Piece F, the Air, by its Prefliure, will caufe the Ink all to run out at once. Note alfo, that fome of thefe Pens have Seals foldered at their Ends.

> Of Pincers for bolding Papers together.

This little Inftrument is made of two well-hammered thin Pieces of Brafs, faftened toge- Fig. I. ther at top, and having a Brafs Spring between them, and a Ferril, that flides up and down, in order to draw chem together. The whole Piece is about two Inches long, and its Figure is enough to fhew the Conftruction and Ufe thereof.

Of the Pentograph, or Parallelogram.

Fig. K.
This Inftrument, called a Pentograph, as ferving to copy any mamer of Defigns, is compofed of four Brafs, or very hard Wooden Rulers, ver", equal in Breadrh and 'Thicknefs; two of them being from 15 to 18 Inches in Length, and the ciher two but haif of their Length, and their Thicknefs is ufually 2 or 3 Lines, and Breadth 5 or 6 .

The Exactnefs of this Inftrument very much depends upon having the Holes made at the Ends, and in the middle of the longet Rulers, at an equal Difance from the Holes at the Ends of the fhortelt Rulers; for this reafon, that being put together, they may always make a Parallelogram : and when the Intrument is to be ufed, there are fix fmall Pieces of Brals put on it.

The Piece I is a little turned Brafs Pillar, at one End of which is a Screw and Nut, ferving to join and fanten the two long Rulers together; and at the other is a little Knob for the Inftrument to finde upon. The Piece 2 is a turned-headed Rivet, with a Screw and Nut at the End ; two of which there muft be for joining the two Ends of the two fhort Rulers to the middle of the long ones, at the Places 2, 2. The Piece 3 is a Brafs Pillar, one End of it being hollowed into a Screw, having a Nut to fit it; and at the other End is a Worm- to forew into the Table, when the Inftrument is to be ufed. This Picce holds the two Ends of the fhort Rulers together, at Fig. 3. Fig. 4. is a Porte-Craion, or Pen, which may be fcrewed into the Pillar 4, which is fixed on at the Place 4, to the End of the great Ruler. Laftly, Fig. 5. is a Brafs Point, fomething blunt, fcrewed into a Pillar like one of the former ones, which is fcrewed on to the End of the other long Ruler. This Inftrument being put together, and difpofed, as per Figure, the next thing will be to fhew its Ufe.

Now when a Defign, of the fame Bignefs as the Original, is to be copied, the Inftrument muft be difpofed, as in Figure K ; that is, you muft firev the Worm into the Table at the Place 3, and lay the Paper under the Pencil 4, and the Defign under the Point 5 ; then there is no more to do but move the Point 5 over every part of the Defign 5, and at the fame time the Pencil, at Figure 4, will mark the faid Defign upon your Paper. But if the Defign is to be reduced, or made lefs by half, the Worm muft be placed at one End of the long Ruler, the Paper and the Pencil in the middle, and then you muft make the Brafs Point paifs over all the Tracts of the Defign, and the Pencil at the fame time will alfo have defcribed all thofe Tracts; Eut they will be of but half the Length of the Tracts of the Defign : for this reafon; becaufe the Pencil, placed in the manner aforefaid, moves but half the Length, in the fame time, as the Brafs Point does. And, for the contrary Reafon, if a Defign is to be augmented, for Example, twice the Original, the Brafs Point and the Defign muft be placed in the middle, at Figure 3, the Pencil and Paper at the End of one of the long Rulers, and the Worm at the End of the other long Ruler; by this means a Defign twice the Original may be drawn.

But to augment or diminifh Defigns in other Proportions, there are drilled Holes at equal Diftances upon each Ruler, viz. all along the fhort ones, and half-way the great ones, in order to place the Pieces carrying the Brafs-Point, the Pencil, and the Worm in a right Line in them ; that is, if the Piece carrying the Brafs Point be put into the third Hole, the two other Pieces muft be likewife each put into the third Hole.

Note, If the Point and the Defign be placed at any one of the Holes of one of thefe great Rulers, and the Pencil with the Paper under one of the Holes of the Chort Ruler, which forms the Angle, and joins to the middle of the faid long Ruler, that then the Copy will be lefs than half the Original: But if the Pencil and Paper be placed under one of the Holes of that fhort Ruler, which is parallel to the long Ruler, then the Copy will be greater than half the Original. In a word, all thefe different Proportions will be eafily found by Experience.

Confrution of Sizes: To know the Weight of Pearls.

Fig. M.
This little Inftrument, whofe Ufe is to find the Weight of very fine and rounä Pearls, is made of five thin Pieces, or Leaves, of Brafs, or other Metal, about two Inches long, and $f i x$ or feven Lines broad. The faid Leaves have feveral round Holes drilled in them of different Diameters; the Holes in the firlt Leaf ferve for weighing Pearls from half a Grain to 7 Grains; thofe in the fecond Leaf are for Pearls from 8 Grains, which is 2 Carats, to 5 Carats; thofe in the third for Pearls weighing from $2 \frac{5}{2}$ Carats to $5 \frac{x}{2}$ Carars; the fourth for Pearls weighing from 6 Carats to 8 ; and the fifth for Pearls weighing from $6 \frac{5}{2}$ Carats to $8 \frac{5}{2}$.

Now the Diameters of the greateft and leaft Holes of each Leaf being found, by weighng of Pearls in nice fine Scales, the Diameters of all the other Holes from thence, by proportion, may be found.

The Hole, fhewing the Weight of a Pearl of one Grain, is $2 \times$ Lines in Diameter ; that fhowing the Weight of a Pearl of 2 Carats, is $2 \frac{5}{2}$ Lines; that fhowing the Weight of a Pearl of 5 Carats, is 4 Lines; that fhewing $2 \frac{5}{2}$ Carats, is $2 \frac{3}{4}$; that of $5 \frac{5}{2}$ Carats, is $4 \frac{r^{\prime}}{3}$ Lines; that of 6 Carats, is $4^{\frac{1}{3}}$ Lines; that of 8 Carats, is $4 \frac{7}{2}$ Lines; and, Lafty, the Diameter of that Hole for Pearls weighing $8 \frac{5}{2}$ Carats, is $4 \frac{3}{4}$ Lines.

Plate IX
firnting page 86 .

The Leaves are faftened together at one End by a Rivet, about which they are moveable, and included between two thin Pieces of Brafs, ferving as a Cafe for them.
Jewellers likewife ufe little Scales, and very fmall Weights, which they call Carats, to weigh Diamonds, and other precious Stones, as alfo Pearls that be not round. A Carat is 4 Grains, and is divided into ${ }^{2}$, ${ }^{\frac{1}{3}, \frac{t}{3}, ~ a n d ~}{ }^{x}$ of a Carat: the word Carat is alfo ufed for the Degrees of Perfection of Gold; as a Carat of fine Gold is the 24th part of an Ounce of pure Gold, which is fo foft, that it cannot be worked; for which reafon the Goldfniths of P_{a-} ris ufe Gold of 22 Carats, that is, 22 Parts of fine Gold, and two Parts of Brafs; by which Mixture it is rendered harder and fitter to work.

Of the Fixed Square.

This Inftrument is called a Fixed Square, becaufe its Sides do not open or fhut; all its Fig. E . Exactnefs confilts in being very ftrait, and that both the inward and outward Faces of the two Sides be at right Angles; which that they may be, it is neceffary for them to be parallel to each other.

The Figure N is another Square, which opens or Chuts. Thefe Squares principal Ufes are to know whether any Line or Plane be at right Angles to another.

> Of the Foot-Level.

This Inftrument is compofed of two Branches of Brafs, or other Matter, about half an Fig. O. Inch broad, and opens and fhuts like a Two-foot Rule; half-way the Infide of both thefe Branches are hollowed in, to receive a kind of Tongue, or thin Piece of Brafs (which is faftened to one of the Branches) that fo the two Branches may be fliur clofe together. The Ufe of this Tongue is fuch, that when the End of it is placed in the Branch it is not faftened to, where there is a Pin that holds it, the two Branches of the Level will be fixed at right Angles, as per Figure. There is likewife a thin fquare Piece of Brafs adjufted to the Head of this Inftrument, that fo it may ferve for a Square, and at the Botom of the Angle of the faid Piece of Brafs is a little Hole made, in which is faftened a Silken Line, with a Plummet at the End thereof; which falling upon a perpendicular Line, drawn on the middle of the Tongue, thews whecher any thing the Inftrument is applied to be level or not. Note, The inward Angles of the Branclies are cut away, that fo the Inftrument may better ftand upon a Plane to be levelled. Note alfo, that this Inftrument ferves for a Level, a Square, and a Foot-Rale.

- Of the Paris Foot-Rule, and the Comparifon of its Length with that of other Countrys.

The Confruction of the Body of this Inftrument does not differ from that of the Sector be- Fig. P, 'fore fpoken of ; and when the Paris Foot is only put thereon, each Leg is but about five Lines in Breadth ; but when the Foot of other Countrys, compared with the Paris Foot, is put thereon, it is made brcader. If fhall here lay down the Comparifon between the Foot of moft chief Towns in Europe, compared with that of Paris.

A Point is $\frac{1}{x_{2}}$ of an ordinary Grain of Barley; a Line is 12 Points, or the Thicknefs of one Grain of Barley; an Inch is 12 Lines, and a Foot is 12 Inches. The Foot Royal of Paris is 12 of the aforefaid Inches, but fometimes it is divided into 720, or 1440 equal Parts, for better expreffing its Relations to the Meafures of other Countries. The Foot of Lyons and Grenoble is fomething bigger than that of Paris; for it contains is Inches, 7 Lines. The Foot of Dijon is leffer, and contains but 11 Inches, 7 Lines; that of Befançon 11 Inches 5 Lines; that of Maçon I2 Inches, 4 Lines; and the Foot of Rouen is equal to that of Paris.
Incles.
A Foot of Sedan is 12
A Foot of Loratn 10
A Foot of Brufels 10
AFoot of Amferdam 10
A Foot of the Rhine I 1
A Foot of London I 1
A Foot of Dantzick 10
A Foot of Sweden 12
A Foot of Denmark 10
A Foot of Rome 10
A Foot of Bologne 14
A Foot of Venice 11

The great Foot of Milan is I Foot, 10 Inches.
And the fmall one, i Foot, 2 Inches, 8 Lines.
A Foot of Turin is I Foot, 6 Inches, II Lines,
A Foot of Savoy io Inches.
A Foot of Geneva is 18 Inches.
A Foot of Vienna is in Inches, 8 Lines:
A. Foot of Confantinople is 2 Feet, 2 Inches, 2 Lines.

Some other Meafures compared with the Paris Fiot.

A Roman Palme is 8 Inches, 2 Lines; that of Genoa is 9 Inches, I Line; that of Naples is 9 Inches, 9 Lines; and that of Portugal, is 8 Inches, 2 Lines.

A Pan, which is a Meafure ufed in many Places of Italy, is 8 or 9 Inches.
The Ell of Paris, is 3 Feet 8 Inches; that of Provence, Montpelier, and Avignon, is $\frac{2}{3}$ of that of Paris, and che Ell of Flanders and Germany, is $\frac{7}{\sqrt{2}}$ of that of Paris.

The Fathom of Milan, ufed by Mercers, is r Foot, 7 Inches, 4 Lines; and that of LinenDrapers, is 2 Foot, II Inches.

A Fathom of Florence, is I Foot, 9 Inches, 6 Lines.
The Ras of Piemont, and Lucque, is 22 Inches.
The Yard of Seville, is 30 Inches, 1 I Lines.
The Varre of Madrid and Portugal, is 3 Foot, 9 Lines.
The Varre of Spain in general, is 5 Foot, 5 Inches, 6 Lines:
The Cane of Touloufe, is of the fame Length.
'The Cane of Rome, is 6 Feet, 1 Inches, 7 Lines.
The Cane of Naples, is 6 Feet, 10 Inches, 2 Lines.
The Pic of Conftantinople, is 2 Foot, 2 Inches, 2 Lines.
The Geufe of India and Perfia, is 2 Foot, ro Inches, 1 I Lines.

Conjtruction of Parallel Rules.

Thefe Inftruments are commonly made of Brafs, or hard Wood, from 6 to 18 Inches in Length, and about two Lines in Thicknefs: the two parallel Pieces ought to be very ftraight every way, and parallel, that is, very equal in Breadth from one End to the other; for this is the chief thing upon which the Exactnefs of thefe Inftruments depends.

The two parallel Pieces of this Inftrument are joined together by two Brafs Blades, from about 2 to $3^{\frac{\pi}{2}}$ Inches long, and 6 Lines broad, filed and fafhion'd, as per Figure, near the Ends of which are round Holes very equally drill'd thro them, which ought to be done by laying them one upon the other. Then the parallel Pieces muft be divided Length-wife into. tivo equal Parts, and afterwards one of the Halves of each into 3 equal Parts, and at the firt of thefe Parts from the middle, a Hole mult be made in each parallel Piece, in the middle of their Breadth, in which muft be placed two turned-headed Rivets, for joining one End of each Blade to the faid parallel Piece. Likewife, near, and equally diftant from the two oppofite Ends of each Piece, muft two more Holes be made, in which muft be put two more Rivets, for joining the other two Ends of the two Blades, to the parallel Pieces. The Pieces being thus joined, if you move them backwards and forwards, to the right hand and the left, and the inward Edges of the faid Pieces do exactly meet each other, it is a fign the Rule is well made.
The Figure Q, is another kind of parallel Rule, the two parallel Pieces of which, are joined together by two others fomething fhorter, which are joined to each other in the Middle, and make a kind of Crofs, which opening or fhutting, caufe the two parallel Pieces to recede parallelly from, or accede to each other. In the middle of each parallel Piece of both thefe Inftruments, is fixed a Brafs Button, for more eafier managing them.

The principal Ufe of thefe Inftruments, is to draw parallel Lines, by opening or fhutting the parallel Pieces, and are of excellent Ufe in Architecture and Fortification, wherein a great Number of parallel Lines are to be drawn.

Conftruction of the Pedometer or Waywifer.

Fig. S.
This Inftrument is about two Inches in Diameter, commonly about 7 Lines in Thicknefs, and hath all its Parts joined together in a Cafe, almoft like that of a Watch.

The Plate T, is placed in the Bottom of the Cafe, upon which are faftened feveral Pieces, as they appear per Figure. The Piece 1, is a little Steel Catch with its two Springs ; this Catch is held by a round Tenon going into a Hole in the faid Plate, fo that by pulling the Piece F, which is faftened to one End of the Catch, the faid Catch turns round the Steel Star 2, having 6 Points, and carrying a Pinion of Six Teeth of the fame Height as the two Wheels, of which we are going to fpeak. The Spring 4, is for hindering the Star from going back; and that marked 5, is to lift up the End of the Catch, when it hath made the Star move one Point forwards.

The Pare V is like the Plate ' T, only it hath upon it two equal Wheels placed on each other ; the upper Wheel hath 100 'Teeth, and the under one IOI, which are both put in Motion by the Pinion upon the Star; fo that when the upper Wheel hath gone round once, and run roo equal Parts, with its Hand upon the greater Dial-Plate S; the Wheel which hath ioz Tceth, wants one of going round, and makes the leffer Hand move the $\frac{1}{1} 00$ Part of the Circumference of the lefler Dial-Plate the contrary way; whence the greater Hand mult go reand ioo times, before the little Hand hath gone round once the contrary way; and confequently, the Piece F mu:f be pull'd 10000 times, before the little Hand will go round once: there are 3 Tenons fived to the under Plate, by means of which, the upper Plate is caflemed to it with little Pins.

Chap. 2. of divers Mathematical Inferuments.

The whole Machine is inclofed in its Cafe, cover'd with a Glafs, and having on one Side of it two Rings, thro which a String is put for hanging the Inftrument to any thing; and at the other Side of the Cafe, is an Opening left for the Piece F to cone out thro, which Piece receives a String faftened to one's Garter.
The Ufe of this Inftrument is fuch, that being hung to a Perfon's Belt, at each Tenfion of the Knee, that is, every time he fteps forwards, the String pulls the Piece F, and this the Catch, which caufes the greater Hand to move one Divifion forwards. When any Perfon hath a mind to know how many Paces he hath moved, he muft look upon the Dial-Plate, and that will inform him. Note, A Pace is nearly 2 Foot, and a Perfon in walking may fo accuftom himfelf, as to take his Steps of that Length; but when Ground is not level, Paces are not equal, for in defcending they are longer, and in afcending fhorter, which muft be regarded, and corrected by Experience.

There are alfo thefe kinds of Inftruments made, and fitted to Wheels of known Circumferences ; for Example, a Fathom round : fo that every time the Wheel comes to a certain Point, where there is a Tenon which pulls the Piece F, the Catch caufes the larger Hand to move one Divifion forwards; and by this means you may know how many Fathom you have gone.
Pedometers are likewife adjufted behind Coaches, fo that when one of the great Wheels of a Coach comes to a certain Point, it caufes the Catch to move the Hand one Divifion forwards, fo that in knowing the Circumference of the faid Wheel, the Length the Coach hath moved may be known.

Note, 'The lefler Dial-Plate muft be carry'd round by the upper Wheel of 100 Teeth, of ' elfe it will not at any time be eafy to tell, how many Paces you have gone by the faid lefier〔Plate, but muft flay till the Hand of the greater Plate hath made one Revolution.'

The Conftrution of a Macchine for cutting and dividing the WTheels, and Pinions. of Clocks, or Watches.

The Machine A, is for cutting and dividing the Wheels and Pinions of Clocks and Watches; and is very commodious, and extremely fhortens the Time of doing them.

The Plate A is made of Brafs, very even,about 8 Inches Diameter, and one Line in Thick- Fig I_{6} nefs, having feveral Concentrick Circles drawn upon it, whofe Peripherys are divided into feveral even or uneven Numbers of equal Parts, the greater of which are always more diftant from the Center.

As for Example; to divide the Periphery of one of the Circles into 120 equal Parts, you muft firt divide the faid Periphery into 2 equal Parts, each of which will be 60 , which again fubdivide by 2, and each Part will be 30 ; which again divided by 2, and each Part will be 15, which being divided by 3 , produces 5 . Laftly, dividing each of thefe laft Parts by 5 , the whole Periphery will be found divided in I20 equal Parts.

But if one of the Circles is to be divided into an odd Number of equal Parts, for Example, into 81 , you muft firlt divide it into 3 equal Parts, each of which will be 27 , which being divided by 3 , will produce 9 ; each of which being divided by 3 , will produce 3 ; each of which being again divided by 3 , will produce 1 : wherefore the Periphery of the Circle will be divided into 8 I equal Parts.

The like may be done for any other Number, in taking the moft proper aliquot Parts thereof, to make a propofed Divifion.

The Circles of the Plate being divided, there ought to be made, at every Divifion, fmall round Holes, with a fine Steel Point.
Now when a Clock Wheel is to be fimply divided by means of thefe Concentrick Circles, in order to cut it with the Hand, the faid Wheel muft be placed upon the Arbre in the Center of the Plate, and having fixed it faft, you muft divide it with a fine Steel Ruler, one End of it being placed in the Center: then by moving the faid Ruler round from Divifion to Divifion, upon the Circumference of one of the Concentrick Circles, anfwerable to the Number of Teeth the Wheel is to have, the Wheel may be divided; which being done, the Teeth muft be made with a very fine File, obferving to leave as much Space between them, as you file away.
But when this Machine is ufed to very expeditiounly cut Clock Wheels, it is compofed in the following Manner.
Fig. 1. reprefents the Plan of the whole Machine put together, and fit for Ufe.
The Piece I , is a Steel Saw-Wheel, the Breadth of the Interval between the Teeth of a Wheel to be cur by it : this Saw-Wheel is placed upon a fquare Arbre, as likewife a. little Pully, to turn it between two Steel Points. The Place 2, is the Porte-'Touret, having a Motion at the two Ends thereof, like the Head of a Pair of Compafles, that fo the file Wheel may be raifed, or lower'd, at pleafure.

At the Place I, of Figure 2, is the Saw-Wheel put upon its Arbre, as likewife the Pully between the two Steel Points, that are faftened by 2 headed-Screws 7, 7. The two Ends of the Porte-Touret, are reprefented by 2, 2. The Screws 9,9 , are for fixing the Part of the Machine carrying the Saw-Wheel, upon the Square Iron Ruler 3, which is put thro a fquare Hole, between the Screws 9, 9. There are two of the faid Iron Rulers, that is, there is one
above the circular Brafs Plate, and another underneath it, both of then being of a convenient Bignefs, and are io faftened together at the Ends by ftrong Screws, that there is room enouga left between them for the circular Brafs Plate, and allo for the Touret, or Frame, and a kind of Spring, which carries the Point (of which we fhall fpeak prefently) to flide freely along the fquare Iron Ruler 3.

Figure 3, reprefents the Side-Draught of the whole Machine put together, whereof the Piece I, is the Touret, or Frame, placed near the Wheel to be cut, which is reprefented by Number 6: this Wheel is placed in the Center of the Brafs Plate, and is faftened by the A rbre Sorew. The Piece 3, is the Iron Ruler along which the Touret of Figure 2 nides, as alfo the Spring carrying the Point 4 : and Number 5 is a Piece of Iron, by means of which the Machine may be faftened in a Vice, when it is to be ufed.

Figure 4 , is a very fine and well-tempered Steel Point, fcrew'd into the End of a kind of Spring, having a circular Motion, that thereby the faid Steel Point may be put into any of the Holes of the Circunferences of either of the concentrick Circles upon the Plate. There is likewife another Piece joined to the Spring, in order to keep, by means of a Screw, the Point upon any propofed Divifion of the Circumference of any of the concentrick Circles, While one Tcoth of a Wheel is fawing.

Laftly, Figure 5, is the Arbre placed in the Center of the Machine, and upon which is put the Wheels to be cut, which are firmly fixed thereon, by means of Screws at the 'Top and Bottom. 'There are commonly feveral Arbres of different Bigneffes, in proportion to the Holes in the Centers of Wheels to be cut.

The Ufe of this Machine is eafy, for you have no more to do but fix a Wheel to be cut into Teeth, in the Center, (at Number 6) and then fit the Spring (reprefented by Fig. 4.) fo that its Point may exactly fall upon the Divifions of that concentrick Circle, which is divided into the fame Number of equal Parts you defign your Wheel to have Teeth; and then you muft move the Touret, with its Saw-Wheel, to cut the Wheel, by means of a MaleScrew (one End of which goes into a round Hole 8, in the Bottom of the Touret, and is there faftened with a Pin) and a Female-Screw to fit it, at the End of the Iron Ruler, denoted by Number 5 ; fo that by turning the faid Male-Screw, the Touret may be moved backwards and forwards at pleafure. The Saw-Wheel being thus placed, you muft turn it 4 or 5 times about, by means of a Bow, whofe String is put about the Pully, and then one Side of a Tooth will be cut; and having moved the Steel Point 4, to the next Divifion in the Circumference of that concentrick Circle upon the Plate, whofe Divifions are the fame in Number you defign your Wheel to have Teeth, give 4 or 5 Strokes with the Bow, and the other Side of the Tooth will be cut: and in this manner may all the Teeth be cut; Pinions are alfo thes cut.

Note, There are Saw-Wheels of divers Thicknefles, conformable to the Space there ought to be left between the Teeth of different Wheels.

> Thbe Conftuction of Armour for Load-Stones, as alfo bow to cut the faid Stones, in order to arm them.

The Figures 6, 7, reprefent two armed Load-Stones; the firft in the Form of a Parallelopipedon, and the fecond in the Form of a Sphere: But before we fhew the beft way of arming them, we will enumerate fome of the Properties and Virtues of Load-Stones.

The Load-Stone is a very hard and heavy Stone, found in Iron Mines, and is almoft the Colour of Iron, for which reafon it is reckoned among the Metallick Kind : it hath two wonderful Properties, one whereof is to attract Iron, and the other to direct itfelf towards the Poles of the World.

The Load-Stone attracts Iron, and reciprocally Iron-attracts the Load-Stone, notwithftanding any other Body's Interpofition between them. Thís Stone likewife communicates to Iron a Faculty of attracting Iron: For Example, an Iron Ring that hath been touch'd with a good Load-Stone, will lift up another Iron Ring by only touching it, and this fecond a third, © c. but the firft Ring muft have a greater Degree of Attraction, than the fecond, and the fecond than the third, ofc.

The Blade of a Knife that hath been touch'd with a Load-Stone, will likewife lift up Needles, and fimall Pieces of Iron : alfo feveral Sewing-Needles being laid upon a Table in a Row, and a Load-Stone being brought near the firt, by which receiving the Magnetick Virtue, the faid firt Needle will attract the fecond, the fecond the third, \mathcal{E}_{c}. till they all come together.

That Iron reciprocally attracts the Load-Stone, when it can move freely, may be thus Thewn : For if you put a Load-Stone into a hollow Piece of Cork, and fet it floating upon the Surface of a Bafon of Water, and bring a Piece of Iron at a convenient Diftance to it, the Piece of Cork, together with the Stone, will accede to the Iron.

That Property of the Load-Stone which is always to refpect the Poles of the World, may be fhewn by the following Experiment: For having put a Load-Stone into a hollow Piece of Cork, and fet them both a floating upon the Surface of ftill Water, (there being no Iron, or other Obfable near.) the Load-Stone will always fo difpofe itfelf, that one certain Point thereof will regard the North, and the oppofite Point the South.

Chap.2. of divers Mathematical Inferuments.

But you muft note, that the Load-Stone doth not exaftly refpect the North, it having at different Times, and in different Places of the Earth's Superficies, different Declinations, of Variations therefrom, and at this time at Paris, varies 12 Deg. 15 Min. Weftwards: fo that the South Pole of the Load-Stone varies above 12 Degrees from that of the World, and its Oppofite fo likewife. The Poles of a Load-Stone, are thofe two Places thereof, that refpect the two Magnetick Poles of the World ; and the principal Axis, is a right Line drawn from one Pole to the other, about which, the greatef Force of the Load-Stone manifefts itfelf, and at the two Poles is greateft. Spherical Load-Stones have alfo ficted Equators, and Meridians, $\in c$. from whence they are called Magnetick Spheres.

Now, in order to find the Poles of a Load-Stone, you muft cut a Hole in a Card of the Figure of the Stone, in which the Stone muft be put, fo that its principal Axis may be found in the Plane of the Card. This being done, Iron or Steel Filings muft be ftrew'd upon it: after which frrike the Card foftly with a little Stick, fo that by putting the Filings in Motion, the Magnetick Matter may let them take a Circuit conformable to the way which that Matter takes in moving from a North Pore to another South one, and you will perceive the Filings ranged in the Figure of feveral Semi-Circumferences, whofe oppofite Ends are the Poles of the Load-Stone.

The Poles of a Load-Stone may otherwife be found, in plunging it into Iron or Steel Filings, or into very little Bits of Steel Wire ; for then they will make different Configurations round the Stone, fome of them lying flat on it, others half bent; and finally, others quite upright on it : and thofe Places of the Stone where the little Bits of Steel are perpendicular to it, are the Poles ; and where they lie along, is the Equator.

Having thus found the Poles of a Load-Stone; which is the North or South Pole, may be known in laying the Stone in a hollow Piece of Cork, fwimming on Water, or by fufpending it with a Thread, fo that its Axis be parallel to the Horizon; for then that Pole of the Stone turning towards the North Pole of the World, will be the South Pole of the Stone, and the oppofite Point the North Pole.

The Poles of a Load-Stone may likewife be found by means of a Compafs; for bringing a touch'd Needle to the Stone, the End that was touch'd, will immediately turn towards that Pole of the Stone agreeing therewith, and the other End of the Needle will likewife, turn towards the other Pole of the Stone.

The Poles of the Stone being found, the next thing will be to cut, and give it a regular Figure, in taking away the Superfluities either with a Saw, and Powder of Emery, or elfe with a Knife-Grinder's Grind-ftone, preferving its Axis as long as poffible, and giving a. like Figure to its Poles.

Now to make a great many Experiments, it is neceffary to give to a Load-Stone the moft regular Figure poffible, which is determined by the Likenefs it hath to that of the irregular Mafs it is compofed of: the Cube, the Parallelopipedon, the Oval, and the Round are to be preferr'd, on account of having the principal Axis of the Stone as long as may be. If a Load-Stone is to be made in Form of a Sphere, it will not be difficult to find its Poles and Axis; you need only figure it with Powder of Emery in a round Iron Concave, and afterwards finifh it with find Sand, in a round Brafs Concave.

A Load-Stone in Figure of a Sphere, is very fit for many Experiments, and its Poles may be found in manner aforefaid: but it is neceffary, before any pains be taking in cutting and figuring of a Load-Stone, to be affured of its Goodnefs, in obferving whether it ftrongly attracts Filings, or little Bits of Steel; and whether there be not other Matter paffing thro its Pores, which hinders the Magnetical Matter from circulating and paffing from one Pole to the other.

The Goodnefs of a Load-Stone confints in two effential Things; which are, firf, That it be homogenous, having a great Number of Pores filled with Magnetick Matter, which paffing thro them form about the Stone, as it were, a very extenfive Whirlwind. In the fecond place, its Figure very much contributes to its Force, (as we have already faid) for it is certain, that of all Load-Stones of a like Goodnefs, that which hath the beft Poles, its Axis longeft, and whofe Poles meet exactly in the Extremes, will be moft vigorous.
'Two Load-Stones placed in two hollow Pieces of Cork, which are both fet floating upon the Surface of the Water, having their Poles of contrary Denominations turned to each other, will acceed to each other; but if the Poles of the fame Denomination be turned towards each other, then the Load-Stones will mutually recede from one another.
If a Load-Stone be cut into two Pieces, parallel to its Axis, the Sides of the Pieces that were together before the Divifion, will mutually recede from each other.
But if a Load-Stone be cut into two Pieces, according to its Equator, the Sides of the Pieces that were together before they were cut, will be found to have Poles of a contrary Denomination, and will accede to each other.
A ftrong Load-Stone touching a weak one, will attract it with its Pole of the fame Denomination, ©́s.

The Defrripzion of the Armour, or Caping for Load-fones.

The Armour for a Loadfone, cut into the Form of a right-angled Parallelopipedon, is compofed of two fquare Pieces of very fmooth Iron or Steel ; but tempered Steel is better than Iron, becaufe its Pores are clofer, and there are a greater Number of them. Care muft be taken, that the Armour well encompaffes, and exactly touches the Poles of the Loadfone, and that the Armour: is in Thicknefs proportionable to the Goodnefs of the Stone : for if frong Armour be put upon a weak Stone, it will produce no Effect, becaufe the magnetick Matter will not have force enough to pafs thro it ; and, on the contrary, if the Armour of a ftrong Stone be too thin, it will not contain all the magnetick Matter it ought, and confequently the Sione will not produce fo great an Effect, as when the Armour is thicker.

Now, to fit the Armour exactly, you muft file it thinner by Degrees; and when you find the Effect of the Stone to be augmented as much as poffible, the Armour will be in its juft Proporion, and will have its convenient Thicknefs; after which it muft be fmoothed within Side, and polifhed without.

The Heads of the Armour (whereon is writ North and Soutb) muft be thicker than the other Parts, and cover about $\frac{2}{3}$ of the Length of the Axis.

The Breadth and Length of the Armour, beft fitting a Stone, may alfo be found by filing it by little and little; but, above all, Care muft be taken that the two Heads are equal in Thicknefs, and that their Bafes very exactly meet in the fame Plane. Number 5 is a Brafs or Silver Girdle fitted about the Stone, ferving to faften and hold the Armour, by means of two Screws I, I ; and at 6 and 6 are two Screws faftening a round Brafs Plate, carrying the Pendant 4, and its Ring, to the Top of the Armour.

The Armour of a fpherical Loadfone is compofed of two Steel Shells, faftened to the Piece 8 by two Joints 6, 6 ; of a Girdle 5, 5; of a Pendant and Ring 4; and of a Piece (or Porte-Poid) 2, to hold the Hook 3. Great Care muft be taken that the Shells very exactly join the Superficies of the Stone, and that they well encompafs the Poles of the Stone, and cover the greatelt part of the Convexity thereof. The convenient Breadth and Thicknefs of this Armour may be found by Trials, as before-mentioned.

It is very wonderful, that two little Pieces of Steel, compofing the Armour of a Loadftone, fhould give it fuch a Property, that a good Stone, after it is armed, will attraft above 150 times more than before it was armed.

There are indifferent good Stones, which, unarmed, weigh about three Ounces, and will lift up but half an Ounce of Iron ; but being armed, will lift up more than feven Punds.

To preferve a Loadftone, you muft keep it in a dry Place among little Bits of Steel-Wire; for Filings, which are always full of Duft, make it rufty.

We fometimes fufpend Loadftones, fo that having the liberty to move, they may conform themfelves to the Poles of the World ; and if, in this Situation, the Piece carrying the Hook, or Porte-Poid, be put on, and the Weight the Stone commonly carries be hung on, and from time to time there be hung to it fome fmall Weight more, you will find that, when the Stone has continued fufpended fome Days, that it will lift up' a much greater Weight than it did before it was hung up.

Serveral common Experiments made with the Load-fone.

The firt and ufefullen Experiment made with the Loadfone, is that of touching the Needles of Sea-Compaffes; for rightly doing of which, you muft draw the Needle foftly over one of the Poles of the Loadfone, from its Middle to its End, and then it will receive its Vertue. But, Note, that that End of the Needle, which hath been touched with one of the Poles of a Loadftone, will turn towards the oppofite Part of the World, to that which that Pole regards; therefore if the End of a Needle is to turn towards the North, it muft be touched with that Pole of the Stone refpecting the South. Note, The longer Needles are, the lefs will they viberate.

This admirable Direction of the Loadftone and Touched Needle hath not been known in Europe much above two hundred Years, by means of which, Navigation hath been almoft infinitely advanced. But there is one Inconveniency, which is, that a Touched Needle doth not exactly refpect the Poles of the World, but declines or varies therefrom towards the Eaft or Weft, at different Times, and in different Places, varioufly. In the Year 1610, it varied at Paris S Degrees North-Eafterly; in 1658 , it had no Variation ; and in the Year 1716 , it varied about 12 Deg. 15 Min. Weftward.

Moreover, the Needle hath alfo an Inclination as well as a Declination; that is, the Necdle of a Sea-Compafs being in Equilibrio upon its Pivot, will, when touched, lofe that Equilibrium, and the End that turns North, on this fide the Equator, will drip or incline towards the Earth, as if it was heavier on that Side; for which reafon the North Side of a Needle muft be made lighter, before the Needle be touched, than the South Side, and going towards the Poles, this Inclination grows greater; but in going towards the Equator, it grows leffer : fo that under the Equator, the Inclination will be nothing; and in paffing the Line, the other End of the Needle, refpecting the South, will begin to incline; fo that Pilots are obliged to fick as much Wax to the End of the Needle, as will make it in Equifibrio. Note,

[^3]Chap. 2. of divers Matbematical Infrumonts.
the greater Force that Loadftones, which touch Needles, have, the more will the Needlics incline.

There are Needles purpofely made to obferve this Inclination, which at Peris is about 70° Degrees.

If a long thin Piece of Steel be drawn over one of the Poles of an armed Loadfone (in the fame manner as was faid before of the Needles) this Piece of Steel will in an inftant acquire the magnetick Virtue, and will not lofe it but by degrees after feveral Months, unlefs it be put in the Fire. Note, A Piece of Steel, touched by a good Stone, will lift up 14 Ounces.

The two Ends of a Steel Blade thus touched will become North and South Poles; that End whofe Contact ends on the South Pole of the Stone, being the North, and the other the South Pole : for if this Piece of Steel be made light enough to fwim, one End thereof will turn to the North, and the other to the South.

Again ; that End of the Steel Blade where the Contact ended, will attract much ftronger than the other End; and if the faid Blade be once drawn over the Stone the contrary way, it will quite lofeits Virtue, and attract no more. Underftand the fame of the Needle of a Compafs, the Blade of a Knife, Ưc. two touched Steel Blades will avoid each other, and approach like two Loadftones.

A Piece of Steel, in a hollow Piece of Cork fwimming on the Water, may be any ways moved, by bringing the Pole of a Loadfone towards it, or another touched Piece of Steel.

A fine Sewing-Needle, fufpended by a Thread, will fhew what is meant by Sympathy and Antipathy ; for this Needle will be repelled by one Pole of a Loadftone, and attracted by the other.

A Needle may be kept upright, without its touching a Loadftone; fo that there may be put between it and the Stone a Piece of Silver, or other Matter, provided it be not Iron.

If, about a Loadfone, fufpended by a String, be circularly placed feveral little touched Needles of a Compafs, upon their Pivots, and the Loadftone be moved any how, you will likewife fee all the Needles move in a pleafant manner ; and when the Stone ceafes moving, the Needles will alfo ceafe.

What we have already fpoken about ftrewing of Filings about a Loadftone; may be faid alfo of ftrewing them about a Piece of touched Steel.

If Filings be ftrewed upon a Piece of Pafteboard, and a Loadftone be moved under it, the Filings will erect themfelves, and then lie along on that Side from whence the Stone came.

If, inftead of Filings, you lay upon a Piece of Pafteboard feveral Bits of the Eirds of bro: ken Needles; by bringing one Pole of a Loadftone towards them, they will erect themfelves upon one of their Ends ; and by bringing the other Pole, they will fall, and rife upon their other Ends.

It is eafy to feparate a black Powder mixed with white Sand, and propofing it to a Perfor;; not knowing the Secret, he will think it impoffible ; for if Iron Filings be mixed with fine Sand, they may be feparated from it by a Loadftone, or Piece of touched Steel : for either of them being put into the Mixture, at divers times, you may get all the Filings from among the Sand.

A Loadftone will lift up a Whirlegig in Motion, whofe Axis is Steel ; and if it be fomething heavy, it will turn a longer time in the Air than upon a Table, where the Friction foon ftops its Motion ; and if the Stone be a good one, this Whirlegig may lift up another, and both of them will turn contrary ways. Another diverting Experiment may yet be made, by putting little Steel Fifhes, or Swans, into a flat Bafon of Water; for by moving a good Loadfone under the Bafon, you will fee them prettily fwimming about; and moving the Stone different ways, they will likewife have different Motions; if the Stone be turaed round, the Fifhes will alfo turn round; if the Pole of the Stone is turned towards them, they will plunge themfelves, as it were, to join themfelves to the Stone. You may likewife put little Steel Soldiers into the Bafon, which may be made to approach to or recede from each other in form of a Battel ; and by bringing the Equator of the Stone towards them, they will fall down.

It is pleafant enough to fee a Sewing-Needle threaded, or a little Arrow, faftened by a Hair to the Arc of a Cupid's Bow, remain fufpended in the Air eight or ten Lines diftant from a good Loadftone.

There are feveral other Experiments made with the Loadftone, but mentioning them here would take up too much time.

The Conftruction of an Artificial Magnet.

This Inftrument, invented by Mr. Foblot, is compofed of feveral very ftrait Steel Blades Fig. 8: laid upon one another ; and to make it paffably good, there ought to be at leaft 20 of them, (according to the force of the Magnet to be made) each about 10 Inches long, I Inch broad, and half a Line in Thicknefs. It is ufelefs to make them thicker, becaufe the magnetick Virtue will not penetrate further into the Steel Blades.

Now thefe Blades being firf touched with a good Stone, are afterwards laid one upon and other, having their Poles, of the fame Denomination, turned the fame way, forming a Parallelopipedon; then they are preffed together with four Brafs Stirrups, and as many little Wed-
ges $3,3,3,3$, of the fame Metal, and encompaffed with Iron Armour of a proper Length, Breadth, and Thicknefs. This Armour is held by a Brafs Girdle, and faftened with the Screws 2, 2. At the Top is placed a Brafs Plate, to which is faftened the Pendant 4, and its Ring; and at the Bottom is the Porte-Poids 5. But, Note, that the Bafe of the Porte-Poids muft make the perfectelt Contact poffible with the Heads a, b, of the Armour. When artificial Maguets are well made, and touched with good Stones, they will have as much Virtue in them as good natural ones, and may be ufed for the fame Experiments.

The Conftruction of the Spring Steel-yard.

This Machine, which is portable, and ferves to weigh any thing from one Pound to about forty, is compofed of a Brafs Tube or Pipe, open at the Ends, about 4 or 5 Inches long, and 7 or 8 Lines broad, one End whereof is marked 3; the reft being open for fhewing the Infide, which is a Spring (2) of tempered Steel-Wire, made like a Worm. Number 6. is a little Feril fcrewed upon the Top of the fquare Brafs Rod 1 , which the Spring croffes. Upon this Rod are the Divifions of Pounds, and Parts of a Pound, which are made in fucceffively hanging on the Hook (4.) 1,23 , \mathcal{E}_{c}. Pounds: for the Spring being faftened by a Screw to the Bottom of the fquare Rod, the greater the Weight is, that is hung on the Hook, the more will the Spring be contracted; and confequently a greater part of the Rod will come out of the Tube, thro the fquare Hole C : therefore if you have a mind to mark the Divifion for any Number of Pounds upon the Rod, fuppofe ro, hang ro Pounds upon the Hook, and where the Edge of the fquare Hole C, at the Top of the Tube, cuts the Rod, make a Mark upon the Rod for ro Pounds, and fo for any other.

The Ufe of this Inftrument is very eafy; for having fcrewed the Feril 6 on the Top of the Rod, if you hold the Initrument in your Hand by the Hook 5, and hang any thing to be weighed upon the Hook 4; then where the Edge C of the fquare Hole cuts the Rod, will be the Weight of the thing required.

The chief Goodnefs of this Inftrument confifts in having a well-tempered Spring ; fo that it may fold according to the Force of the Weight it is to carry, and alfo in having a Bignefs proportionable.

The Conftruttion of the Beam Steel-yard.

This Inftrument, which is a kind of Steel-yard, or Balance of Mr. Caffini's Invention, confifts of a Rod fufpended by a Beam, in its Point of Equilibrium 5, which divides the faid Rod into two Arms (like the two Arms of a common Balance) each of which are lengthwife divided into equal Parts, beginning from the Point of Sufpenfion or Equilibrium.

The Ufe of this Balance is to find both the Weight and Price of Goods at the fame time: If you ufe it for weighing any thing, the Counter-Weight 4 of one Pound, or one Ounce, mult be hung to one of the Arms (according as Goods are to be weighed by Pounds or Ounces) fo that it may flide along the Arm, like as in Roman Balances; and on the other Arm mutt be hung on a filken Line, for fuftaining things to be weighed. Then to weigh any thing, you muft place the filken Line, to which the thing is hung, upon the firf Divifion of the Arm, nigheft the Point of Equilibrium ; and moving the Counter-weight upon the other Arm, till it makes an Equilibrium, the Point whereon it falls will fhow the Weight fought.

To know the Weight of Goods, according to any Price; for Example, at feven Pence an Ounce or Pound; place the Line, fuftaining the Goods, upon the Divifion 7 of the Arm; then placing the Line, carrying the Counter-weight upon the other Arm, fo that it be in EquiJibrio, and the Number of Divifions, from the Point of Sufpenfion to the Line fuftaining the Counter-weight, will give the Value of the Goods weighed.

But for Goods that cannot be weighed, unlefs in a Scale, take a Scale of a known Weight, and having hung it upon a Hook to the Arm, proceed as before, and fubitract the Weight of the Scale.

A Paris Pound is 16 Ounces, and is divided into 2 Marks, each of which is 8 Ounces; an Ounce is fubdivided into 8 Drams, a Dram into ${ }_{72}$ Grains, and a Grain, which is nighly the Weight of a Grain of Wheat, is the leaft Weight ufed.

A Quintal weighs roo Pounds.

> The Paris Pound compared with thofe of other Countries:
'The Pound of Avignon, Lyons, Montpelier, and Thouloufe is I_{3} Ounces.
The Pound of Mar feilles and Rochell is 19 Ounces.
The Pound of Roïen, Befançon, Strasburgh, and Amfterdam is 16 Ounces, like that of Pairis,
The Pound of Milan, Naples, and Venice is 9 Ounce.
The Pound of Mef/ina and Genoa is $9{ }^{\frac{3}{4}}$ Ounces.
The Pound of Florence, Leghorne, Pifa, Sarragoffa and Valence is io Ounces.
'The Pound of Turin and Modena is $10 \frac{T}{2}$ Ounces.
The Pound of London, Antwerp, and Flanders is 14 Ounces.
'The Pound of Bafil, Berne, Frankfort, and Nuremburgh is 16 Ounces and 14 Grains'
That of Geneva is 17 Ounces.

Conftrution of an Infrument for raifing of Weights.

The Inffrument of Fig. II. confifts of two Sheaves, each of which carries eight Pullies, Fig. 1ti hollowed in to receive a Rope, which is faftened at one End to the upper Sheave; and after having put it round all the Pullies, the other End of it muft be joined to the Power reprefented by the Hand. Four of the Pullies are carried upon one Axel-Tree, and four upon another, as well in the upper Sheave as in the lower one. At the Top of the upper Sheave is a Ring to hang the Machine in a fixed Place, and at the Bottom of the other, there is another Ring to hang the Weights to.

The Ufe of this Machine is to lift up or draw great Burdens, by multiplying the Force of the Power, which augments, in the Ratio of Unity, to double the Number of the Pullies in the lower Sheave ; fo that in this Infrument, where the lower Sheave carries eight Pullies, if the Weight (4) weighs 16 Pounds, the Power need be but a little above one Pound to make an Equilibrium ; I fay, a little above, becaufe of the Friction of the Ropes and Axes. The Pullies of the upper Sheave do not at all contribute to the Augmentation of the Force, but only to facilitate the Motion in taking away the Friction of the Rope, becaufe being as Leavers of the firlt kind, whofe fixed Point is in the middle, the Power will be equal to the Weight ; but the Pullies below are as Leavers of the fecond kind, whofe fixed Point is at one of the Ends : for their Diameter is, as it were, fixed at one End, and lifted up at the other; by which each of the Pullies double their Force, fince the way moved thro' by the Power, is double to that moved thro' by the Weight.

The Confruction of the Wind-Cane.

This Inftrument is about three Foot long, and twelve or fifteen Lines in Thicknefs. The Fis. $1 \mathrm{z} \mathbf{1}$ Tube 3 is made of Brafs, very round, and well foldered, from 4 to 6 Lines in Diameter, ftopped af one End a. At the Place I is likevife another larger Tube, fo difpofed about the former one, that there remains a Space 4, wherein the Air may be clofely included. Thefe two Tubes ought to be joined together at one End by a circular Plate cc, exactly foldered to them both, for hindering the Air's getting out of the Space 4. The Piece 8 is a Valve ftopping a Hole, permitting the Air to pafs from 2 towards I, but not to return from I towards 2. There are, moreover, two Holes near the fopped End of the Tube 3 ; thro one of thefe Holes, which is marked 6, the Air would come out of the Space 4 into the Tube 3, if it was not hindered by a Spring-Valve opening outwardly. The other Hole is marked 5 , thro which there is a Communication with the outward Air, and the Air in the Cavity of the Tube 3; but yet fo, that the Air, inclofed in the Space 4, cannot come out thro the Hole 5, it being hindered by a little fhort Tube foldered to the Tubes I and 3. Laftly, the Tube 2 reprefents the Body of a Syringe, by which as much Air as poffible may be intruded into the Space 4; after which having put a Bullet into the Cavity of the Tube 3, near the little Tube 5, the Cane will be charged. Now, to difcharge it, you muft pufh up the SpringValve 6, by means of a little Pin exactly filling the Cavity of the little Tube 5; then the compreffed Air, in the Cavity 4, will dilate itfelf; and paffing thro' the Hole 6, into the Cavity of the Tube 3, will pufh the Bullet out with a great force, even to its penetrating thro ${ }^{3}$ a Board of an ordinary Thicknefs.

Note, At Number 7 this Cane may be taken into two Pieces, by unfcrewing of it ; and the Handle 12 may be taken out, and inftead thereof the Head of a Cane put thereon.

The Confruction of the Æolipile.

This Inftrument is made of hammered Copper, in form of a Ball, br hollow Pear, havingFig. 3_{30} a Neck foldered to it, and a very little Hole drilled at the End of this Neck.
The Air in the Ball is firft rarefied, by bringing it to the Fire ; and afterwards plunging it into cold Water, will condenfe the Air in it, and the Water will pafs thro the little Hole into the Cavity of the Inftrument.
Now having let about as much Water, as will fill of the 灰olipile, get into it, if it be fet upon a good Fire, in the fame Situation as in the Figure, the Water, as it grows hot, will dilate itfelf by little and little, and throw up Vapours into the Space of Air contained between the Surface of the Water, and the little Hole at the End of the Neck, which, together with the Air, will very fwiftly crowd thro' the little Hole, and produce a Wind and violent Hiffing, continuing till all the Water be evaporated, or the Heat extinguifhed. Note, This Wind has all the Properties of the natural Wind blowing upon the Surface of the Earth.

The Confrustion of four different Microfopes.

This is a Microfcope for viewing very minute Objects and Animals that are in Liquors. Fig. aqe It is compofed of two Plates of Brafs, or other Metal, about 3 Inches long, and 8 Lines broad, faftened together, nigh the Ends, by two Screws, 2, 2, which likewife ferve to fix the Plates at fuch a Diftance from each other, that a Wheel may turn which has fix round Holes, in every of which are flat Pieces of Glafs to put different Objects upon, marked 3, 4, \%, efc. Next to the Eye there is a concave Piece of Brafs 1 , having a Hole in the middle, in which is put a very fmall Lens, or Ball of Glafs. This Ball ought to be very convex, and well polifhed,
in order to diftinguifh minute Objects. The End of the Machine is fied in manizer of a Handle to hold it.

The Ufe of this Inftrument is very eafy; if the Objects are tranfparent, as the Feet of a Flea, or of Flies, their Wings, the Mites in Cheefe, or other minute Animals; as likewife Hairs of the Head, their Roots, eic. they are put upon the Glafs Plates on the Wheel, and are held faft with a little Gum-water: and to fee the little Animals in Itale Urine, Vinegar, in Water where there has been infufed Pepper, Coriander, Straw, Hay, or almoft any kind of Herbs; little Drops thereof muft be taken up with the End of a little Glars Pipe, and laid upon the aforefaid Glaffes: then the Wheel muft be turned and raifed, or deprefied by means of the Screws 2,2, and a Spring between the Plates, which ferves to keep the Wheel in any Situation required, in fuch manner that a little Drop may be exactly under the Lens. Things being thus ordered, take the Microfcope in your Hand, and having placed your Eye to the Concave 1, over the Lens, look fteadily at the Drop in broad Daylight, or at Night by the Light of a Wax Candle; at the fame time turn the Screw at the End by little and little, to bring the Drop nigher, or make it further from the Lens, until the Point be found where the Object will be tranfparent, or the Animals fwimming in the Drop of Liquor, appear very large and diftinct.

ConftruEtion of another Microfcope.

Fig. 15.
This Microfcope is compofed of a Brafs Plate about three Inches high, and $\frac{7}{2}$ an Inch broad; cut in Form of a Parallelogram, at the Bottom of which there is a Handle to hold it. The Place marked 1 , is a little Groove drilled thro the Middle, in the Hole of which is placed a Lens faftened in a little Frame; there may be put into it Lenfes of diverfe Foci, according to the different Objects to be obferved. Note, That the Focus of a Glafs, is its Diftance from the Object, and that Lenfes are ufed in thefe Microfcopes, whofe Foci are from half a Line to four Lines.

On the Backfide of the aforefaid Plate, (at the Place 2.) is fixed a little fquare Branch of Brafs or Steel, carrying another Plate that flides upon it by means of a little Box, a Spring, and a Screw, turned by help of a Wheel, cut into Teeth, which ferves to bring the faid Plate nigher to, or more diftant from that which carries the Lens. Towards the Top of the fecond Plate; which has a Hole drilled in it, is alfo a Groove, in which is placed little Pieces of plain Glafs, and round Concaves to put Liquors on. There may be different Glaffes put in that Groove for viewing different Objects. Lafty, Obferve that all the Objects anfwer to the Center of the Lens, and that there mult be adjufted on the other Side of the Plate a little Tube (marked 3.) of Brafs, about an Inch Diameter, and one or two long, whofe Center muft very exactly anfwer to the Center of the Lenfes. It has been found that with fuch a Tube, thefe Microfcopes will have much more effect upon tranfparent Objects, than without it. The Circulation of the Blood may pretty diftinctly be obferved in the Tails of little Fifhes by this Microfcope, which is, in my Opinion, the moft commodious of any.

The Ufe of this Inftrument is very eafy; for having placed the Object over-againft the Center of the Lens, move it backwards and forwards by means of the Screw, till it be feen very diftinctly.

Conftruction of a fingle Glafs Microfoope.

Fig. IG.
The little Inftrument of Fig. I 6 . is a Microfcope commodious enough, compofed of a Branch of Brafs, or other Metal, having a Motion towards the Top, for putting it into the Situation as per Fig. The Piece, at the End, carries a very convex Lens, magnifying the Object very much : this Branch is fcrewed into a little Box 5, bored through the Bottom. The Piece 4, is two Springs faftened to one another in the Middle with a Rivet, to give it a Motion defired. The Branch which carries the Lens, is put through one of the Springs; and through the other there is put a little Branch, carrying at one End the Piece 2, which is white on one Side, and black on the other, for different Objects. The other End 3, is a little kind of Pincer, which opens by preffing two little Buttons; it ferves to hold little Animals, or other Bodies. The Foot 5, is about I $\frac{5}{2}$ Inch in Diameter, the Branch fcrews into it, in order to take to pieces the Inftrument.

The Ufe of it is very eafy, for the Objects being placed upon the little round Piece, or at the End of the Pincer, you muft bring the Lens towards them, by fliding the Spring along the Branch, till the Objects be feen very diftinct.

There may likewife be difcovered with this Microfcope, the Animals which are in Liquors, by putting a flat Glafs in the Place of the little round Piece 2, which unfcrews.

Conftruction of a Three-Glafs Microfcope.

Fig. I $\%$
This Inftrument is compofed of three Glafies, viz. the Eye Glafs 3, the Middle Glafs 4, and the ObjeEt Lens 5. There is a Cover fcrewed on at the Top to preferve the Eye Glafs from Duft : thefe three Glaffes are fet in wooden Circles, and fcrewed into their Places, for eafier taking them out to cleanfe. The Eye Glafs, and the middle one, are placed at the Ends of a Tube of Parchment, exactly entering into the outward Tube, in order to lengthen the Microfcope, and place it at its exact Point, according to a Line drawn round about the
aforefaid Tube. To have this Inftrument of a reafonable Bignefs, the focal Diftance of the Eye Glafs ought to be about 20 Lines, that of the middle Glais about 3 Inches, and placed about 3 Inches 3 Lines diftant from one another.

The Object Lens is placed at the End of a wooden Tail-piece, glued to the End of the outward 'Tube, and is enclofed in a little Box, bored through the Bottom, which unfrews in order to change the Object Lenfes, and put in others of different focal Diftances, which are commonly 2, 3, 4, and 5 Lines in Diameter, and are more or lefs convex. The Goodnefs of thefe Glaffes confifts in having the concave Brafs Bafons they are ground iti; turned in a juft Proportion to the Glafles to be worked; as alfo in the Motion of the Hand; and the Goodnefs of the Matter ufed to conftruct them, and above all in well polifhing them. Brown Freeftone is firft ufed to fafhion them in the Bafon, then fine Sand to fmooth them, and Tripoli to polifh them. I fhall fay no more of the Conftruction of thefe Glaffes, M. Cherubin having fufficiently fpoken thereof.

The Foot 1, which ought to be pretty heavy to keep the Microfcope from falling, is made of Brafs 4 or 5 Inches in Diameter, having a Cavity in the Middle, wherein is put a little Piece, white on one Side, and black on the other : black Objects are placed upon the white Side, and white Objects upon the black Side.

The round Brafs Branch is faftened at the Edge of the Foot, upon which the Microfcope may flide up or down, and turn round by means of the Support or double Square 2 : there is a Circle, or Ring, ftrongly faftened to the Support, and which very exactly encompafles the outward Tube. There is alfo a Steel Spring which bears againft the Branch, and keeps the Inftrument in a required Situation.

Number 6, is a little Brafs Frame, having in it a Piece of flat Glafs to lay trañfparent Objects upon. This Frame may flide up and down the Branch underneath the Microfcope; and is fupported by a double Square.

Laftly, Number 7 is a convex Glafs converging the Rays of Light, coming from a Candle under it ; and throwing them ftrongly under the tranfparent Object on the Glafs, makes it be feen more diftinctly. The aforefaid Glafs is fet in a Brafs Circle, and rifes, falls, and turns by means of a little Arm carrying it, as the Figure fhews.

USE of the aforefaid Microfcope.

'To ufe this Inftrument, for Example, to obferve the Circulation of the Blood in fome Animal ; a live Fifh muft be placed upon the Glafs 6, fo that one part of the Fins of the Tail be exactly oppofite to the Object Glafs; and over the Ray of the Convex-Glafs in broad Daylight, or the Spot of the Candle, in the Night ; then place the Microfcope exactly to fuch a Point, and you will fee the Blood rife, defcend, or circulate.

Number 9, is a little Piece of Lead hollowed, to keep the Fifh from any how ftirring to hinder the Experiment.

Liquors may alfo by this Microfcope be very well examined; for if you put a little Drop of Vinegar upon the Glafs juft over the bright Spot ; the little Animals in it will very diftinctly be obferved. The fame may be obferved of Water in which Pepper or Bariey has been infufed, $\sigma^{\circ} c$. as alfo the Eels and other little Animals obferved in ftanding Water.

A Drop of Blood may be obferved by putting it hot over the Speck of the Candle, upon the Glafs; after which its Serofity, and little Globules of a reddifh Colour, may be difcovered therein.

The beft way to get a Drop of Blood is to tie a Thread about one's Thumb, and then' prick it with a Needle.

The beft way to put Liquors upon the Glafs, is by taking a Drop of them up with the fmall End of a little Glafs Tube; and then blowing foftly at the other End, will make the Liquor defcend and drop upon the Glafs.
'To get a great Number of little Eels in a fmall Quantity of Liquor ; the Liquor' muft be put into a very narrow-necked Bottle, and always kept full; for by this means, the Animals coming to the Top to get Air, may be fucked into a little Tube in greater Numbers, than if the Neck of the Bottle was wider.

The Eyes of Flies, Ants, Lice, Fleas, and Mites, are put in the Middle of the Foot of the Microfcope, as alfo Sand, Salt, $\mathcal{E}^{2} c$. to examine their Colours and Qualities; always obferving to lay black Objects upon the white, and white Objects upon the black Side.

I fuppofe here that the Microfcope Glaffes are well worked, and placed in their Focî. Note alfo, that the fhorter the Focus of an Object Glafs is, the greater will the Object appear, but not altogether fo diftinct.

B O O K IV.

Of the Construction and USes of Mathematical Infruments for measuring and laying out of Land, taking of Plots, Heights, and Diftances; the moot usual of which, are Staffs, Lines, the Toife or Fathom, the Chain, Surveying-Crofles or Squares, RecipientAngles or Meafure-Angles, Theodolites, the Quadrant, the Semi-circle, and the Compass.
Wemeaceow

CH A P. I.

Containing the Description and USes of Staffs, Lines, the Fathom or Toije, and the Chain.

Plate II.
Fig. A.
Fig. B.
Fig. C.

Fig. D.

Fig. E_{0}
 TAFFS are made of hard Wood, 2 or 3 Foot long, cut pecked at one End, upon which are put pointed Caps of Iron, to make them go eafier into the Ground. There are fometimes longer ones made, in order to be feen at a great diftance.

Lines ought to be of good Packthread, or Whipcord, well twifted, and of a convenient Thickness, that they may not eafily ftretch. The 'Toife, or Fathom, is a round Staff 6 Foot long, divided into Feet by little Rings, or Brass Pins; the lat Foot being divided into I2 Inches, likewife diftinguifh'd by little Brass Pins.

There are Toifes that may be taken into 2,3 , or 4 Pieces, by means of Ferils and Brafs Screws at the End of each Piece.
There are alfo two Brafs or Steel Ferils, put upon each End of the Toife, to preferve its Length.
The Chain is compofed of feveral Pieces of thick Iron or Brafs Wire, bent at the Ends, each of which is a Foot long, and are joined together with little Rings.
Chains are commonly a Perch, or elfe 4 or 5 'Toifes in Length, diftinguifh'd by a great Ring from 'Toile to Toife. Thefe fort of Chains are very commodious, becaufe they will not entangle themfelves, as thole will that are made with little Iron Rings.
In the Year 1668, there was placed a new Toife for a Standard, at the Foot of the Stairs of the Grand Chatelet at Paris, for having recourfe to in cafe of Need.

We have faid that a Toife in Length contains 6 Feet, and each Foot 12 Inches.
A fquare Toife contains 36 fquare Feet, and a fquare Foot $1+4$ Inches ; becaufe 6 times 6 is 36 , and 12 times ir is 144 .

Plate 5

A Cubick Toife contains 216 Cubick Feet, and a Cubick Foot 1728 Cubick Inches ; becaufe the Cube of σ is 216 , and the Cube of 12 is 1728 .

The Length of a Perch is not determined
That of Paris is 3 Toifes, or 28 Feet ; in other Countries it is 20,22 , and 24 Feet.
The Perch, ufed in France, to meafure Waters and Forefts, according to the laft Regalation, is 22 Feet long, and confequently a fquare Perch is 484 fquare Feet.

The Arpent is a fuperficial Meafure, ufed to meafure Ground or Woods.
The Arpent of Paris, and the adjacent Parts, contains 100 fquare Perches, or 900 Toifes: the Side of which muft confequently be 10 Perches, or 30 Toifes.

A League is a Meafure for High-ways, or great Diftances ; its Length is not determined, being different in different Countries.

It is reckoned from the Gate of Paris, nigh the Grand Chatelet, to the Gate of the Church of St. Dennis, 2 Leagues, each of which is 2200 Toifes.

The Gentlemen of the Academy of Sciences have found, that a Degree of a great Circle of the Earth contains 57060 Toifes; and giving 25 Leagues to a Degree, each League will contain 2282 Toifes.

A Sea-League is greater, for there goes but 20 to make a Degree; therefore it contains about 3000 'Toifes.

The Italians reckon by Miles, each of which contains rovo Geometrical Paces.
A Geometrical Pace is five of the antient Feet, one of which the antient Roman Palm is three quarters, which may be efteemed about I i of our Inches; and confequently an Italian Mile contains about 769 of our Toifes.

The Germans alfo reckon by the Mile, but they are much greater than the Italian Miles; for one of them contains 3626 Toifes.

They count by Leagues in Spain, one of which contains 2863 Toifes, 20 of which exactly make one Terreftrial Degree,
The fame may be faid of the Engligh and Dutch Leagues.
U S E I. To draw a right Line thro two Points given upon the Ground, and produce it to any required Length.
Plant a Staff upon each of the given Points, very upright, and having ftrained a Line from one Staff to the other; by that Line, as a Guide, draw a Line upon the Ground.

That right Line may be continued by planting a third Staff, fo that by placing the Eye to the Edge of the firft, the Edges of the two others may be but juft feen ; and again, the Line may be continued, by taking that Staff, which was the firf, and placing it as a third, ©Cc.

U S E II. To meafure a right Line upon the Ground.

When a long Line upon the Ground is to be meafured, Precaution mut be ufed that we do not miftake, and be obliged to begin again. To do which, two Men muft each of them have a Toife; the firft having laid down his, muft not lift it up, till the fecond has placed his at the End of the firf Man's Toife. The firft Man baving lifted up his Toife, muft loudly count I; and when he has again laid his down to the End of the fecond Man's, the fecond Man muft lift up his, and count 2. In thus continuing on to the End, and in order to lay the Toifes in a right Line, there mult be placed two Staffs, at a Diftance before them, to look at; for if there is but one, the Toifes cannot be fo truly laid in a right Line by help of it.

To fpare Time and Pains, you ought to have a Chain of 30 Feet, or 5 Toifes long, with a Ring at each End, carried by two Men, the firt of which carries feveral Staffs. When the Chain is well extended on the right Line to be meafured, the foremoft Man muft place a Staff at the End of 5 Toifes, to the end that the hinder Man may know where the Chain ended; for the whole Matter confifts in well counting, and exactly meafuring.

U S E III. From a Point given in a right Line, to raije a Perpendicular.
Let the given Line be A. B, and the given Point C.
Plant a Staff in the Point C, and two others, as E, D, in the fame Line, equally diftant Fig. i, from the Point C ; then faften the two Ends of a Line to the two Staves E, D, and fold the Line into two equal Parts in F ; afterwards ftretch the Line tight, and at the Point F plant a S:aff, and the Line F C will be perpendicular to A B.

Otherwife; meafure 4 Feet, or 4 Toifes, from the Point C, on the Line AB, and plant Fig. zi there the Staff G; take a Line containing 8 Feet, or 8 Toifes (according as the former are Feet or Toifes) faften one End of the Line to the Staff C, and the other to the Staff G; then ftretch the Line, fo that 3 of thofe Parts be next to the Point C, and 5 next to G; plant a Staff in H, and the Line $H C$ will be perpendicular to $A B$.

U S E IV. From a given Point without a Line, to draw a Perpendicular.
Let the given Line be A B, and the Point F.
Fold your Line into two equal Parts, and fix the middle to the Staff F; ftretch the two Fig. 3. Halves (which I fuppofe long enough) to the Line A B ; then plant two Staffs, namely, one
to each End of your Line, and divide their Diftance into two equal Parts, which may be done by folding a Line as long as the Diftance A B ; plant a Staff in the middle C, and the Line C F wiii beperpendicular to the Line A B.

U SE V. To draw a Line parallel to another, at a given Diftance from it.

Eig. s. This Problem is the Converfe of the former.

Fig. 8 .

Fig. 5 .

Let the given Line be A B, and it is required to draw a Line parallel to it at the Diffance of 4 Toiles.

Raife (by Ufe 3.) two Perpendiculars, each of 4 'Toifes, upon the Points A, B ; and upon the Points C, D plant two Staffs ; by which draw the Line $C D$, which will be parallel to A. B.

USE VI. To make an Angle on the Ground, at the End of a Line, equil to an Angle given.
Let A B C be the given Angle (which fuppofe is drawn upon Paper.)
About the Point B, as a Center, defcribe upon the Paper the Arc A C, and draw the right Line A C, which will be the Chord of the faid Arc. Meafure with a Scale, or the Line of equal Parts of the Sector, the Length of one of the equal Legs A B or BC of the faid Angle; likewife meafure, with the fame Scale, the Length of the Chord AC; which, for Example, fuppofe 36 of thofe equal Parts, whereof the Leg A B contains 30.

Now let there be upon the Ground a right Line, as BC, to which it is required to draw another Line F B, making an Angle with B C equal to the propofed one. Plant a Staff in the Point B , and having meafured 30 Feet, or 5 Toifes, on the Line B C, there plant a Staff, as D ; then take two Lines, one of 30 Feet long, which faften to the Staff B, and the other 36 Feet, which likewife faften to the Staff D: Draw the Lines tight, and make their Ends meet in the Point F, where again plant a Staff, from which draw the Line FB; which will form, at the Point B, the Angle F B C equal to the propofed one A B C.

U S E VII. To dratu upon Paper an Angle, equal to a given one upon the Ground.
Let the given Angle upon the Ground be F B C ; meafure 30 Feet, or 5 Toifes, from B towards C, at the End of which plant the Staff D; meafure likewife 30 Feet from B towards F, and there plant another Staff; meafure alfo the Diftance of the Staffs F, D, which fuppofe will be 36 Fcet, (as in Ufe VI.)

Now let B C be a Line upon the Paper ; then about the Point B, as a Center, and with a Length of 30 equal Parts (taken from a Scale) defcribe the Arc A C; and take 36 of the fame Parts, and lay then of from the Point C, upon the Arc C A, and a Line drawn from B to A will make, with the Line $B C$, the Angle required.

If, moreover, the Quantity of the aforefaid Angle be defired, it will be found, by the Protractor, fomething lefs than 64 Degrees.

The Quantity of Angles (whofe Chords are known) in Degrees and Minutes, may more exatty be knowa by the following Table, which is calculated for Angles, always contained under equal Sides of 30 Feet each.
'The Ule of the faid T'able is very eafy for finding the Quantity of any Plane Angles upon' the Ground: for meafure 30 Fect upon each of the Lines forming an Angle, and plant a Siaff at the End of 30 Feet upon each Line; then meafure the Diftance between the two Staff, which fuppofe to be 36 Feer (as in the preceding Exampla) look in the Table in the Column of Bafes of 36 Feet, and you will find over againft it, in the Column of Angles, 63 Degrees, 44 Minutes, the Quantity of the faid Angle.

A T A B L.E of Plano Angles, contained under Sides of 30 Fect.

Note, That in the Columns of Bafes are only fet down every 2 Inches, and the Feet from I to 60 . By means of this Table may be eafily and exactly found the Opening and Quantity of any Angle; for fuppofe your Bafe be in Length 50 Feet, 3 Inches, and the other 2 Sides cach 30 Feet, which they mult always be. Seck 50 Fcet, 2 Inches, in the Column of Bafes; and againft it you will find, in the Column of Angles, 113 Deg. 28 Min. whence by making due Proportion with the Inches and Minutes, the Quantity of the Angle fought will be 113 Deg. 44 Min. This Table, together with a well divided Brafs Scale, may be ufed in meafuring or laying off Angles upon Paper, with as much Exactnefs as Lines will do them upon the Ground; becaufe the Sides of equi-angled Triangles are proportional to each other.

This Method of meafuring plane Angles, may likewife ferve to make Defigns of Fortifications, both regular and irregular, to find the Quantities of Angles, as well of Baftions as of the Polygon, formed by the Concourfe of the Lines of the Bafes, or exterior Sides, either upon Paper or the Ground.

To draw Angles by this Table, feek for the Degrees and Minutes you defign an Angle to confitt of, which, for Example, fuppofe 54 Deg. 34 Min. and againft them, in the Column of Bafes, is the Number of Feet and Inches correfponding thereto, viz. ${ }_{2} 7$ Feet, 6 Inches ;
which is the Length of the Bafe of the Angle, each of the other Sides of which is 30 Feet, and fo of others.

U S E VIII. To take the Plan or Plot of a Place within it:

Let the Place whofe Plan is required, be A BCDE.

Firft, make a Figure upon your Paper, fomething like the Plan to be taken, and after ha= ving meafured with a Toife the Sides $A B, B C, C D, D E$, and $E A$, write the Lengths found upon each of their correfponding Lines on the Paper; then inftead of meafuring the Angles made by the Sides, meafure the Diagonals A D, BD, which write down in your Book, and the Figure will be reduced into three Triangles, whofe Sides are all known, becaufe they have been actually meafured. Then the Figure muft be drawn neat in your Book by means of a Scale of equal Parts.

Note, Of all the Ways to take the Plans of Places, that of taking it within is the beft.

U S E IX. To take the Plot of any Place (as a Woods or marfhy Ground) by meafuring round about it.

Firf draw a rough Sketch of the Figure in your Field-Book: if it takes not too much time in going round the Place; then meafure with a Toife, or Chain, all the Sides encompaffing the Figure propofed, and fet the Numbers found upon each correfpondent Line, in your Book; but for the Angles, you muft meafure them as follows.

To meafure, for Example, the Angle E F G, produce the Side E F, 5 Toifes, and plañ a Staff at the End K; produce alfo the Side G F , the Length of 5 Toifes, and plant a Staff at the End L. Meafure the Diftance L K, and fuppofing it 6 Toifes, 4 Feet, that is 40 Feet; fet it down upon the Line L K in your Book, by which means the three Sides of the Ifofceles Triangle L F K will be had ; and confequently the Angle LF K, may be known by the aforementioned Table, or otherwife. Now the aforefaid Angle is equal to its oppofite one E F G and if you feek 40 Feet in the Column of Bafes, the Angle will be found 83 Deg. 37 Min .

In the fame manner may the Angle F G H, or any other of the propofed Figure, be meafured: or elfe thus, Produce the Side H G, the Length of 5 Toifes, to N, where plant a Staff; make likewife G M, 5 Toifes. Meafure the Diftance $M \mathbf{N}$, which fuppofe, for Ex: ample, 6 Toifes, 2 Feet, or 38 Feet, which write upon the Line MN in your Book.

This Number fought in the Column of Bafes, correfponds to 78 Deg. 35 Min . for the exterior Angle MGN, whofe Complement toI Deg. 25 Min. is the Quantity of the Angle FGH.

Then the Figure in your Field-Book mutt be drawn neat by means of a Scale of equal Parts, as well to denote the Lengths of the Sides, as the Bafes of all the Angles, which may, exactly be had without the Trouble of taking their Quantities in Degrees and Minutes.

U SE X. To draw any regular Polygon upoin a given Line on the Ground.

Let, for Example, the given Line be AB, upon which it is required to make an cquilateral 'Triangle.

Meafure 30 Feet upon the Line A B, from A to D, where plant a Staff: then take 2 Lines, each $3 \circ$ Feet long, one of which faften to the Staff D, and the other to the Staff A, and ftretch them till their Ends join in the Point C, where plant another Staff.
Make the fame Operation at the other End of the given Line, and produce the Lines A C, and BF, till they meet in the Point E, and form the equilateral Triangle A E B required.

If a Square be to be made upon the given Line A B, raife upon cach End A and B, a Perpendicular, (by $U S E$ III.)

Then make each of thofe Perpendiculars equal to the Line given, plant Staffs at their Ends C and D, and draw the Line $C D$, which will compleat the Square propofed.

If a Pentagon is required to be drawn upon the given Line A B :
You will find that the Angles formed by the Sides of a Pentagon, are each 108 Degrees $;$ (as before has been faid, in USE 3. of the Protractor, and in the third Seetion, concerning the Line of Polygons of the Sector) therefore feek for, in the Table of Plane Angles, the Number that anfwers to 108 Degrees, or nighly approaches it, and you will find 48 Feet, and fomething above 6 Inches: for that Number anfwers to 107 Deg. 52 Min . which is leffer by 8 Min. than 108 Degrees; whence 48 Feet, $6 \frac{\gamma}{2}$ Inches, may be taken for the aforefaid Bafe.

Now meafure upon the given Line, from the Point A towards B, 30 Feet, and plant a Staff in the Point C, where the faid Length terminates: then take 2 Lines, one 30 Feet, the End of which faiten to the Stafi A; and the other 48 Feet, $6 \frac{\pi}{2}$ Inches, which likewife faften to the Staff C; frain the Lines equally, till they join in the Point E, where plant a Staff, and by that means will be had an Angle of 108 Degrees: then produce the Line A E, till it be equal to $A B$; make the fame Operation at the End B of the given Line, by which means three Sides $A B, A G, B D$, of the required Pentagon will be had, which afterwards may be compleated by the fame Method.

If the Pentagon be not too big, it may be compleated by means of 2 Lines, each equal to the given Side, one faftened to the Staff D, and the other to the Staff G; for if they are
equally

Chap. I. of Siaffs, Lines, the Fathom, and Chain.
equally ftrained, they will form the two other Sides of the Polygon, by meeting in the Point H.
Any other regular or irregular Polygon, by the fame Method, may be made upon the Ground, by feeking in the before-mentioned Table, the Numbegr of Feet and Inches anfwering to the Angle of the Polygon to be drawn.

U SE XI. To find the Diftance of two Objects, inacceflile in refpect of each other.

The Diftance, for Example, from the Tower A, to the Windmill B, is required.
Plant the Staff C in fome Place from whence it may be eafy to meafure the Diftance in a right Line from it to the Places A and B.
Meafure thofe Diftances exactly, as for Example, from C to A, which fuppofe 54 Toifes; then produce the Line AC to D, likewife 54 Toifes : meafure alfo the Line BC, which fuppofe 37 Toifes, and produce it to E, fo that CE may be 37 Toifes likewife; by which means the Triangle CDE, will be formed equal and fimilar to the Triangle ABC, and confequently the Diftance D E will be equal to the propofed inacceffible Diftance from B to A .

U SE XII. To find the Difance of two Objeets, one of which is inacceffible.
Let it be propofed, for Example, to find the Breadth A B of a River : being at one of its Fig. 1ze Sides A, plant there a Staff A C, 4 or 5 Feet high, and very upright ; make a Slit towards the 'Top of the Staff, in which put a very ftraight Piece of Steel or Brafs (that may flide up and down) about 3 Inches long, which muft be flipp'd up or down, till the Point B, on the other Side of the River be feen along it; afterwards turn the Staff, and look along (keeping the aforefaid Piece of Brafs in the fame Pofition) the Side of the River upon Ievel Ground, till you fee the Point D , where the vifual Rays terminate. The Diftance A D meafured with a Chain, will give the Breadth of the River, to which it is equal.

This Propofition, as fimple as it is, may ferve to know what Length Timber muft be of, to make Bridges over Ditches or Rivers.
U S E XIII. To draw upon the Ground a right Line from the Point A , to the Point B , bed tween which there is a building, or other Obffacle, that hinders the continuing of it.
Find, upon very level Ground, a third Point, as C, from which you may fee Staff planted Fig. ris in the Points A and B ; then meafure exactly the Diftance from C to A , and from C to B : this being done, take the Half, Third, or any other Part of each of thofe Lines, whereat plant Staffs, as in D bifecting CB, and in E bifecting CA; then draw a right Line from \mathbf{D} to E; which produce as is neceflary, and draw a Parallel to it paffing by the Points A and B, by means of Staffs planted between the Point A and the Houfe, as alfo between the Houfe and the Point B, which will fhew the Direction from A to B.

U ȘE XIV. It is required tō cutt a Paffage thro a Hill from the Point A to B .

Draw on one Side of the Hill a right Line, as DC, and on the other Side another right Fig. 340 Line, as EF, parallel to $C D$; then let fall from the Point A, to the Line $C D$, the Perpendicular A G ; and in fome other Point beyond the Hill, draw another Perpendicular, as CH , equal to A G.

Again; from the Point B, let fall upon the Line EF the Perpendicular BI; and from fome other Point beyond the Hill, draw another Perpendicular to the fame Line, as LM, equal to B I, fo that the Diftance I L, may be equal to C G; then draw a right Line from the Staff H , to the Staff M , (and produce it as far as is neceffary) which will be parallel to the Paffage to be made from A to B; therefore any Number of Staffs may be planted at an equal Diftance to that Parallel $\mathbf{H M}$ on both Sides the Hill, as $\mathrm{O}, \mathrm{P}, \mathrm{Q}$, which will ferve as a Guide to pierce the Hill thro from A to B.

I fhall again mention the Ufe of the aforefaid Infruments in the little Treatife of Fortific, cation, hereafter laid down.

C H A P. II. Of the Defcription and USe of the Surveying-Crofs.

THE Surveying-Crofs is a Brafs Circle of a good Thicknefs, and 4, 5, or 6 Inches Fig. rgi Diameter. It is divided into 4 equal Parts, by two Lines cutting one another at right Angles in the Center. At the four Ends of thefe Lines, and in the Middle of the Limb, there are fixed four ftrong Sights well riveted in fquare Holes, and very perpendicularly flit over the aforefaid Lines, having Holes below each Slit, for better difcovering of diftant Objects: the Circle is hollowed to render it more light.

Underneath, and at the Center of the Inftrument, there ought to be fcrewed on a Feril, fevins to fufain the Crofs upon its Staff of 4 or 5 Feet long, according to the Height of the Obferver's Eye. 'This Staft muft be furnimed with an Iron Point, to go into the Ground the better.

Ail the Exaetnefs of this Inftument confifts in having its Sights well flit at right Angles, Whieh may be known by looking at an Object thro' two Sights, and another Object thro' two other Sights : then the Crofs mult be exactly turned upon its Staff, and you muft look at the fame Objects through the oppofite Sights; if they are very exactly in the Direction of thee Slits, it is a ifgn the fnftrument is very juft.
'To aroid breaking or damaging the Crofs, the Staff muft firft be put in the Ground, and when it is well fixed, the Crofs muft be fcrewed upon it.

Thefe kinds of Crofles fometimes are made with eight Sights, in the fame manner as the aforefaid one, and ferve to take Angles of 45 Degrees; as alfo for Gardeners to plant Rows of T'rees by.

U SE I. To take the Plot and Area of a Field within it.

Let the Field propofed be A B CDE, and having placed at all the Angles Staffs, or Poles very upright, exactly meafure the Line A.C (in the manner we have already laid down, or any other at pleafure) then make a Memorial, or rough Draught, fomewhat reprefenting the Field propofed, on which write all the Dimenfions of the Parts of the Line A C, and of Perpendiculars drawn from the Angles to the Line A C. If, for Example, you begin from the Stafi A, find the Point F in the Line A C, upon which the Perpendicular EF falls: then meafure the Lines AF and EF, and fet down their Lengths upon their correfpondent Lines in your Memorial.

Now to find the Point F, plant feveral Staffs at pleafure in the Line A C ; as alfo the Foot of your Crofs in the fame Line, in fuch a manner that you may difcover thro' two oppofite Sights, two of thofe Staffs, and thro' the other two Sights, (which make right Angles with the two firft ones) you may fee the Staff E. But if in this Station țhe Staff E cannot be feen, remove the Inftrument backwards or forwards, till the Lines A F, E F , make a right Angle in the Point F, by which means the Plot of the Triangle A FE will be had.

In the fame manner may the Point H be found, where the Perpendicular DH falls, whofe Length, together with that of G F, muft be fet down in your Memorial, in order to have the Plot of the Trapezium EFHD. Again, meafure H C making a right Angle with HD, and the Plot of the Triangle D H C will be had.

Having likewife meafured the whole Line A C, there is no more to do but find the Point G, where the Perpendicular B G falls; and proceeding as before, the Plot of the Triangle A BC may be had, and confequently the Plot of the whole Field A. BCDE. The Area of the Field will likewife be had, by adding the 'Triangles and Trapeziums together, which may eafily be done by the Rules of Planometry; in the following manner:

Suppofe, for Example, A. F is 7 Toifes, and the Perpendicular E F ro; multiply 7 by 10, and the Product is 70 , half of which is 35 , the Area of the Triangle A F E.

If moreover the Line FH is 14 Toifes, and the Perpendicular HD I2, add 12 to 10, (which is the Perpendicular F E) the Sum will be 22, half of which being I I, multiplied by 14, will give 154 \{quare 'Toifes, for the Area of the Trapezium EF H D; and if the Line HC is 8 Toifes, multiplying 8 by I_{2}, the Product is 96 , whofe half 48 , will be the Area of the Triangle C 11 D.

The whole Line A C is 29 Toifes, and the Perpendicular B G 10 ; whence the Product is 290, whole half 145, is the Area of the Triangle A B C. Finally, adding together 35, 154, 48, and 145 , the Sum 382, will be the Number of fquare Toifes contained in the Field ABCDE.

U S E II. To take the Plan of a Wuod, Morafs, \&ic. in which it is not eafy to enter.
Let the Morafs EF G H I be propofed: Set up Staves at all the Angles, fo made as to include the Morafs within a Rectangle, which meafure; then fubftract the Triangles and Trapezia included between the Sides of the Morafs, and the Sides of the Rectangle, from the faid Rectangle, and the Area of the propofed Morafs will be had.

If, for Example, you begin at the Staff E, produce by help of the Crofs the Line E F, as far as is neceffary, to which, from the Point G, let fall the Perpendicular G K ; fet up a Staff at K , and produce $\mathrm{K} G$ to L , to which, from the Point H , draw the Perpendicular L H, which likewife produce as far as is neceffary : afterwards draw from the Staff E, to the Line H L, produced, the Perpendicular EM: whence the Rectangle E MLK will be had, whofe Sides muft be meafured with a Chain or Toife.

Suppofe, for Example, the Liae EK, or its Parallel ML (which ought to be equal to it) is $35^{\text {'Toifes, }}$ and the Line EM, or its Parallel, 10 Toifes; mulciplying thefe two Numbers by one aucther, there will arife 350 fquare Toifes for the Area of the Reftangle EMLK: but if EK is 5 Toifes, and G•K 4, by multiplying 4 by 5, the Product is 20, whofe half so Toifes, is the Area of the Triangle FK G. The Line G L, being 6 Toifes, and HL 4 , the Product of 4 by 6 is 24 , whofe half 12 is the Area of the Triangle GLH.

After-

Chap. 3.

Afterwards a Point mult be found in the Line H M, where a Perpendicular drawn from the Siaff I falls, which furms a Triangle and a Trapezium ; fo that if the Diftance H N be $=4$ Toifes, and the Perpendicular N I 4 Toifes, 24 by 4 gives 96 , whofe half 48 , is the Area of the Triangle HNI. Laftly, N M being 7 Toifes, ME Io, and its Parallel N I 4 Toifes, adding ro to 4, the Sum will be 14, whofe half 7, multiplied by 7, produces 49 for the Area of the Trapezium EMNI.

Therefore adding together the Areas of the three Triangles, and that of the 'Trapezium; there will be had in Toifes, which taken from 350, the Area of the Rectangle, and there remains 23 I , the Area of the propofed Morafs. The fame may be done with any other Figure. Thefe two Ufes are enough to fhow how Surveyors ufe their Inftruments for meafuring and taking the Plot of any Piece of Ground.

C H A P. III.

Of the Confruction and USes of divers Recipient-Angles.

THERE are feveral Sorts of Recipient-Angles, but the beft and moit in ufe, are thole whofe Defcription we are now going to give.
The Recipient-Angle A, is compofed of two Rules very equal in breadth, for the Infides of them mult be parallel to their Outfides; their Breadth is about an Inch, and their Length a Foot or more. Thofe two Ruiers are equally rounded at the Top, and faltened to one another by means of a Rivet artificially turned, fo that the Inftrument may eafily open and fhut. When an Angle is taken with it, the Center of a Protractor muft be put to the Place where the two Rulers join each other, and the Degrees cut by the Edge, will fhow the Quantity of the Angle ; or elfe the Angle which the two Rulers make, is drawn upon Paper, and then it is meafured with a Protractor.

The Recipient-Angle B, is made like the precedent one, only there are two Steel Points at Fig. B: the Ends, in order for it to ferve as a Pair of Compaffes.

The Recipient-Angle C, is different from the others, becaufe it fhows the Quantities of Fig. Cs Angles without a Protractor.

It is compofed of 2 Brafs Rulers of equal Breadth and parallel, about 2 Feet long, and 2 or 3 Inches thick, joined together by a very round Rivet : it has befides a Circle divided into 360 Degrees at the End of one of the Rulers, and a little Index fixed to the Rivet, which fhows the Number of Degrees the 2 Rulers contain between them. I fhall not here fhew how to divide the Circle, having fufficiently fpoken of it in the Conftruction of the Protractor ; only note, that the Degrees are always reckoned from the Middle of the Rule, where the Center is.

There are thefe Sorts of Recipient-Angles made by dividing a Circle upon the under Ruler, and filing the upper one like the Head of a Sector, that thereby the Degrees of the opening of the Legs may be known, by means of the two Shoulders of the upper Leg.

To meafure a faliant Angle with any one of the three Recipient-Angles, apply the Infides of the two Rulers, to the Lines forming the Angle; and to meafure a rentrant Angle, apply the Outfides of the fame Rulers to the Lines forming the Angle,

The Recipient-Angle D, is made of 4 Brafs Rules, equal in Breadth, joined together by Fig. ©o 4 round Rivets, forming an equilateral Parallelogram.

At the End of one of the Rules there is a Semi-circle, divided into 180 Degrees. The other Branch paffing upon the Semi-circle, is continued to the Divifions of the Semi-circle, in order to fhow the Quantities of Angles.

The faid Rules are made one or two Feet long, 8 or 10 Lines broad, and of a convenient Thicknefs; they ought to be drilled very equal in Length, namely, that where the Center of the Semi-circle is (marked 2.) and at the other End in the Point I. That which ferves for an Index, ought to be drilled in the Points 2 and 3. And laftly, the two other Rules in the Point 4. The Rule ferving for an Index, muft be faftened to the Center of the Semicircle; and the two other Rules, which are of equal Length, muft be faftened underneath the two others, all of them fo as their Motion may be very uniform.

When a faliant Angle is to be meafured with this Recipient-Angle, the 2 equal Rules muft be put underneath the 2 others, fo that the End 4 be underneath 2, and thereby the 4 Rules make but 2 to encompafs the Angle: but when a rentrant Angle is to be meafured, the two Rules muft be drawn out, (as per Figure) and applied to the Corner of the Angle; and fince in every Parallelogram the oppofite Angles are equal, the Degrees of the Angle may be known by the Semi-circle.

U SE I. Of the Recipient-Angle.
To take the Plan of a Baftion ; as, for Example ; A B C D E, make a Memorial, and then Fig. 19? meafure, with the Recipient-Angle, the rentrant Angle E, made by the Courtine of the Place,
and the flanguant Angle of the propofed Baftion, by applying it horizontally, in fuch manner that one of the Rules may be in the Direction of the faid Courtine, and the orther in the Direction of the Flank; and having found the Quanticy of it in Degrees, fet it cown upois a little Arc in your Memorial ; then meafure the Flank E D, which fet down upon the Line $e d$ in your Memorial. Again, apply the Rules of your Inftrument to the faliant Angle D, and fer down its Quantity upon a little Arc ; meafure the Length of the left Face C D, take the Quantity of the flanquant Angle C, and of all the other Angles of the Baftion, as likewife the Length of the Faces and Flanks ; after which, by help of a Scale, the Plan of the Baftion may be drawn neat.

But fince it often happens that thefe Angles, which are commonly made of Free-Stone, are not well cut, by the Negligence of Workmen, who make them either too acute or obtufe; to remedy this, there muft be a long Rule horizontally applied to each Wall, whofe Direction is good, tho' the Angles are not; and putting the Legs of the Inftrument level upon thofe two Rules, the Angle to be meafured may be more exactly had.

U S E II. To take the Plot of a Piece of Ground encompaffed by right Lines.

Let the Piece of Ground propofed be A•BCDEFG; meafure exactly the Length of all the Sides, and fet them down upon the relative Lines of your Memorial ; then take, with any recipient Angle, the Quantity of each Angle, as, for Example, the Angle A G F, and fet down the Quantity of it upon the relative Angle $a g f$, in the Memorial ; meafure alfo the Angle FE D, by applying the Inftrument to it (as per Figure) and fet down the Quantity thereof upon the relative Angle of the Memorial, and fo of all the other Angles, whofe Quantities being noted in Degrees, las likewife the Lengths of all the Lines, the Plot $a b c d$ ef g may be neat drawn, and fimilar to ABCDEFG.

In this Plate may be feen the Plan of a Pentagon fortified, with the Names of the Parts of its Fortification.

C H A P. IV.

Of the Conftruction and VSe of the Theodolite.

Plate 12.
Fig. A.

THIS Infrument is made of Wood, Brafs, or any other folid Marter, commonly circular, and about one Foot in Diameter. In the Center of this Inftrument is fet upright a little Brafs Cylinder, or Pivot, about which an Index turns, furnifhed with two Sights, or a Telefcope, having a right Line, called The Fiducial Line, exactly anfwering to the Center of the aforefaid little Cylinder, whofe Top ought to be cut into a Screw, for receiving a Nut to faften the Index, upon which is fixed a fmall Compafs for finding the Meridian Line.

The Limb of the Theodolite is a Circle of fuch a Thicknefs, as to contain about fix round Pieces of Pafteboard within it (of which we are going to fpeak) and of fuch a Breadth as to receive the Divifions of 360 Degrees, and fometimes of every fifth Minute.

There are feveral round Pieces of Pafteboard, of the Bignefs of the Theodolite, pierced thro the middle with a round Hole, exactly to fit the Pivot; fo that the Pivot may be put thro each of the aforefaid Holes in the Pieces of Pafteboard, and the upper Pafteboard may have the Index moving upon it. This upper Pafteboard may be fixed at pleafure, by means of a little Point faftened to the Limb of the Inftrument, and entering a little way into the Pafteboard. There is commonly drawn with Ink, upon each of thefe Pafteboards, a Radius or Semidiameter, ferving for a Station-Line.

- Underneath the Theodolite is faftened a Ball and Socket, reprefented by the Figure D, which is a Brafs Ball enclofed between two Shells of the fame Metal, that may be more or lefs opened by means of a Screw, and a Socket G, in which goes the Head of a three-legged Staff, of which more by and by.

Fig. A, reprefents the Inftrument put together. We now proceed to fhew the Confruction of the Pieces compofing it, in beginning with the Divifion of its Limb.

Firft, Draw upon the Limb two or threc concentrick Circles, to contain the Degrees, and the Numbers fet at every tenth Degree ; then divide one of thefe Circumferences into four very equal Parts, each of which will be 90 Degrees; and dividing each of thefe four Parts into 9 more, the Circumference will be divided into every tenth Degree. Again, each of thefe laft Parts being divided by 2 , and cach of thofe arifing into 5 equal Parts, the whole Circumference will be divided into 360 Degrees. This being done, you mult draw the Lines of thefe Divifions upon their convenient Arcs, by means of a Ruler moving about the Center. Afterwards Numbers muft be fet to every tenth Degree, beginning from the Fiducial Line, which is that whereon the two fixed Sights or Telefcope is faftened.
A Theodolite thus divided is of much greater Ufe than thofe whofe Limbs are not divided, for it may ferve exactly to take the Plots of Places, and meafure inacceflible Diftances by Trigonomerry.

Plate XI

The Figures B reprefent the Sights which are placed upon different Inftruments ; that to which is placed the Eye, hath a long ftrait Slit, which ought to be very perpendicular, made with a fine Saw ; and that which is turned towards the Object, hath a fquare Hole, fo large, that the adjacent Parts of a diftant Object may be perceived thro it: And along the middie of this Hole is ftrained a very fine Gut, in order to vertically cut Objects, when they are perceived thro the Slit of the other Sight. But that the Eye may be indifferently placed at any one of the two Sights at pleafure, fo that Objects may be as well perceived thro the Sights on one Side the Inftrument, on which they are placed, as on the other; there is made in each Sight a fquare Hole and a Slit, the Hole in one Sight being below the Slit, and in the other Sight above it, as the little Figures fhew. Thefe Sights ought to be exactly placed on the Extremes, and in the fiducial Line, as well of Inftruments as Indexes, and are faftened in little fquare Holes with Nuts underneath, or elfe by means of Screws, according as the Place they are faftened on requires.

The little Figure C reprefents the aforefaid Cylinder, or Pivot, with its Nut, for joining the Index to the Theodolite; thofe of Semicircles, and other Inftruments, are made in the fame manner, only they are rivetted underneath.

The Figure D reprefents the Ball and Socket for fupporting the Inftrument, and is compofed of a Brafs Ball inclofed between two Shells of the fame Metal, which are made very round, with Balls of tempered Steel cut in manner of a File. Thefe Shells are locked more or lef's by means of a Screw, that fo they may prefs the Ball inclofed between then according to neceffity. One of thefe Shells is foldered to the Socket G, which is a turned Brafs Feril, in which the Foot of the Inftrument is put. Balls and Sockets are made of different Bigneffes, according to the Bignefles of Inftruments, and are faftened to the Inftruments with Screws, in a Plate rivetted to the Top of the Ball.

Coiffruction of the Feet for fupporting of Inftruments:

We have already mentioned the fimple Feer for fupporting Surveying-Crofles, which are to be forced into the Ground ; but thofe whofe Defcription we are now going to give, are not to be forced into the Ground, but are opened or fhut according as the Inequality of the Ground, the Inftrument is to be ufed upon, requires.

The Foot E is a triangular Plate, in whofe Middle is a Piece b, which is to go into the Socket G.

Underneath the aforefaid Plate are faftened three Ferils, or Sockets, moveable by means of Joints, for receiving three round Staves of fuch a Length, that the Obferver's Eye, when the Inftrument is ufing, may commodioufly view Objects thro the Telefcope, or Sights. The Extremities of thefe Staves are furnifhed with Ferils and Iron Points, in order to keep the Inftrument firm when it is ufing.

The Foot F confifts of four Staves, about two Foot long, whereof that in thic middle, called the Shank, hath its 'Top rounded, that fo it may go into the Socket; the reft of this Staff is cut in Figure of a Triangle, that fo the three Faces thereof may receive upon them three other Staves, faftened by means of three Screws (all of a piece) and fo many Nuts. Thefe three Staves are furnifhed with Ferils and Iron Points, being flat within fide, and have three Faces without.

When we have a mind to carry this Foot, we reunite all the Staves together, fo that they make, as it were, but one, and by this means are fhorter by about the half, than when the Foot is ufing.

We generally hang to the middle of each of thefe Feet a Thread and Plummet, in order to know the Station-Point.

U S E of the Theodolite.

To take the Map of a Country by this Inftrument, chufe two high Places, for Example, the Obfervatery, and the Salt-Petre Houfe, from whence the Country nigh Paris, a Map of which is to be made, may be feen; then mark round the Center of the upper Pafteboard the Name of the Place chofen for the firft Station, and having fixed it by means of the Point on the Limb of the Theodolite, put the Index upon it, which fufficiently forew down by means of the Nut and Screw.

Now having placed the Theodolite upon its Foot, planted at the Obfervatory, and given it a Situation nearly horizontal, fo that it may remain fteddy while the Index is moving, obferve thro the Sights the Sieeple of the Salt-Petre Houfe, and along the fiducial Line of the Index from the Center draw the Station-Line.
'Then turn the Index, and obferve fome remarkable Object thro' the Sights, as the Steeple of Vaugirard, towards which a Line muft be drawn upon the Pafteboard, from the Center, along the fiducial Line of the Index, and along this Line write the Name of the Place viewed thro the Sights.

Again, direct the Index towards fome other Object (as Mont-rouge) and draw a Line towards it from the Center, along the fiducial Line, and upon this Line write the Name of the

Flace obferred. Proceed in the fame manner with all the confiderable Places that can be feen from the Obfervatory.

Now having remored the Theodolite from its firt Station, having well obferved its Place, and tranfported it to fome other defigned Place, as to the Salt-Perre Houfe; meafure the exad Diftance between the two Stations upon level Ground, the Number of Toifes of which muft be fet down upon your Pafteboard, which muft now be turned, or taken from under the Index, that fo at every different Station, the upper Face of the Pafteboard, upon which the Index is, may be clean: then fet down about the Center of this new Pafteboard, the Name of the Piace of your fecond.Station, and upon the Bafe Line the Number of Toifes meafured, that fo you may remember this Line is the fame as that on the precedent Pafteboard. The Theodolite being placed here, difpofe it fo, that placing the fiducial Line of the Index upon the Station Line, you may difcover thro' the Sights, the Obfervatory, which was your firf Station.
The Inftrument remaining firm in this Situation, turn the Index, and fucceffively view thro' the Sights the former Objects obferved from the Obfervatory, and draw Lines, as before, upon the Pafteboard, along the Index, from the Center towards the Places view'd, and upon each Line write the correfpondent Name of the Place.

If all the Places you have a mind to fet down in your Map, cannot be feen from the two precedent Stations, you muft chufe a third Place from whence they may be obforved, and make as many new Stations, as are neceffary for perceiving each remarkable Object, from t wo Places fufficiently diftant from each other.
Now to reprefent this Map upon a Sheet of Paper, firft draw a right Line at pleafure upon it, for a common Bafe, which divide into the fame Number of equal Parts, as you have meafured Toifes upon the Ground. About one End of this Line, as a Center, defcribe circular Arcs equal to thofe drawn upon the firft Pafteboard, and upon the other Extreme, Arcs equal to thofe drawn upon the fecond Pafteboard, and produce the Lines forming the Arcs till they meet each other ; then the Points of Concourfe, will be the Points of Pofition of the Places obferved.

The aforefaid Places may be laid down upon the Paper eafier, by placing the Centers of the Pafteboards upon the Extremities of the common Bafe, and noting upon the Paper the Ends of the Lines drawn upon the Pafteboard, and then drawing Lines from the Stations thro' thofe Points till they interfect.
By means of this 'Theodolite may be had in Degrees, or Parts, all the Angles that the Places view'd thro the Sights or Telefcopes, make, with the Places whereat the Inftrument is placed.

What we have faid, is fufficient to fhew the Manner of ufing the Theodolite in taking the Pofition of Places, and making of Maps, becaule the Operations are the fame for all different Places; but for its Ufes, with regard to Trigonometry, they are the fame as thofe of the Semi-circle and Quadrant, of which we are going to treat.

C H A P. V.

Of the Confruction and Ufes of the Quadrant, and Geometrick 2uadrat.

Fig. G.

THE Figure G, reprefents a Quadrant and Geometrick Square, with its Index and Sights.
It is commonly made of Brafs, or other folid Matter, 12 or 15 Inches Radius, and an anfwerable Thicknefs. Its Circumference is firft divided into 90 Degrees, and every Degree into as many equal Parts as poffible, without Confufion, and in fuch manner, that the Divifions and Subdivifions may be juft, and very diftinctly marked upon the Limb of the Inftrument.
To do which, there mult firlt be 2 Arcs drawn nigh the Edge of the Quadrant, about 8 or 9 Lines diftant from each other; and after having divided them into Degrees, draw Diagonal Lines between them, from the firt Degree to the fecond, from the fecond to the third, and fo on to the laft.

After which, if you have a mind to fubdivide every Degree into 10 Minutes, there muft 5 other concentrick Arcs be defcribed from the Center of the Infrument, cutting all the aforefaid Diagonals ; but if every Degree is to be fubdivided into Minutes, there muft be 9 concentrick Arcs defcribed between thofe two firft drawn.
The Diftances between all thefe Arcs, muft not be all equal, becaufe the Extent of a De-' gree taken in the Breadth of the Limb, forms a kind of Trapezium, broader towards the oute ward Arc, and narrower towards the inward one; whence a mean Arc dividing every De-

Chap. 5. of the Quadrant and Geometrick Quadrat. IO9

Gree into 2 equal Parts, mult be nigher the inward Arc than the outward one, and the others in proportion.

To make thefe Subdivifions exactly, the Diagonals muft be Curve Lines, as B D C, de- Fig. Ho fcribed in making the Portion of a circular Arc pafs thro the Center B, the beginning of the ift Degree marked D, upon the inward Arc, and the End C of the fame Degree, on the outward Arc: which is eafy to do by Ufe 18. Lib. I. which fhows how to make a Circle pals thro, 3 Points given, by which means the Point F, the Center of the Diagonal Curve, paffing thro' the firft Degree, will be found.

Afterwards one of thefe Diagonal Curves muft be divided into equal Parts, and from the Center of the Inftrument, there muft be drawn as many concentrick Arcs, as each Degree is to have equal Parts.

The Reafon of this Operation is, that the Diagonal Curve being divided into equal Parts ${ }_{3}$ if from the Center of the Inftrument there are drawn right Lines thro all the Points of Divifion of that Arc, there will be had (per Prop.27. Lib. 3. Eucl.) as many equal Angles in the Center, becaufe they will be all in the Circumference of the fame Circle, and ftand upon equal Arcs.

But fince it is troublefome to find the Centers of 90 Arcs, each paffing thro 3 Points; and fince it is manifeft, that all the Centers of thefe Arcs ought to be placed in the Circumference of a Circle whofe Center is the Point B ; there is no more to do but draw a Circle from the Center B, with the Diftance BF, and divide its Circumference into 360 equal Parts; upon every of which, fetting one Foot of your Compaffes, you may defcribe with the fame Extent F B, all the Arcs between the Circles A C, DE, and then the circular Arcs, which are Diagonals, will likewife divide the Circumferences, upon the Limb of the Inftrument, into Degrees. Note, Becaufe the Figure is too little, it is divided but into every 5 th Degree.

Diagonal Curves may alfo be drawn without transferring the Foot of your Compaffes from one Degree to another, upon the aforefaid Arc, in fixing the Foot of your Compaffes in only one Point, as F, and letring the Inftrument be gradually turned about the Center of a large Circle, whofe Limb is already divided into Degrees, by means of a Rule ftrongly faftened upon the Inftrument, and reaching to the Divifions of the large Circle.

Ingenious Workmen may fhorten their Work by adjufting a fine Steel Ruler, according to the Curvature of the firf Diagonal, which being drawn, by this means they may draw all the others. If Diagonal right Lines are to be drawn from one Degree to the other, the Lengths of the Radii of each of the Circumferences cutting the Diagonals, may be found by Trigonometry, an Example of which is as follows:

Suppofe a Quadrant be 6 Inches Radius, which is the fmalleft accuftomed to be divided by Diagonals. Suppofe alfo you have a Scale of 1000 equal Parts, and that the Diftance from the inward Arc to the outward one, is 9 Lines, anfwering to 125 of fuch Parts, whereof the Radius is 1000; whence, by Calculation, I find that the right-lined Diagonal, drawn from one Degree to that which follows it, is I2 6 of the fame Parts; and that the Radius of the inward Arc, which is 5 Inches, 3 Lines, contains 875 of them.

The obtufe Angle made by the Radius and the Diagonal, is 172 Deg. 2 Min. and afterwards calculating the Lengths of the Radii of the Circumferences cutting the Diagonals, and dividing them into every 10 Minutes, I find that the Radius of 10 Min. is 894 of the fame equal Parts, inftead of 896 which it would have contained, if the Diftance between the inward and outward Arc had been divided into 6 equal Parts. The Radius of 20 Minutes ought to contain 913 of them, inftead of 917 ; the Radius of 30 Minutes ought to contain 933 of them, inftead of 938 ; the Radius of 40 Minutes ought to contain 954 of them, inflead of 959. Lafty, the Radius of 50 Minutes ought to contain 977, inftead of 980 , which it muft, if the aforefaid Diftance be divided into 6 equal Parts.

The greateft Error, which is about 5 Parts, anfwers to about $\frac{T}{8}$ of a Line, which may caufe an Error of 2 Minutes; but this Error diminifhes in proportion as the Radius of the Quadrant augments in refpect of the Diagonals, fo that the Error will be lefs by half, if the Radius of the Quadrant be one Foot, and the Diftance of the inward and outward Arcs is but 9 Lines.

What we have faid as to the Divifions of the Quadrant, may likewife be applied to Theodolites, Circles, Semi-circles, or any other Portions of Circles to be divided into Minutes.

As to the Geometrick Square, each Side of it is divided into 100 equal Parts, beginning at the Ends, that fo the Number 100 may end at the Angle of 45 Degrees. Thefe Divifions are diftinguifh'd by little Lines from 5 to 5, and by Numbers from to to 10 ; all thofe Divifions being produced from a kind of Lattice, both ways containing 10000 fmall and equal Squares.

This Quadrant is furnifhed with two immoveable Sights, faftened to one of its Semi-diameters, and with a Thread and Plummet fixed to the Center, as likewife a moveable Index, with two other Sights, faftened to the Center, with a Headed-Rivet. The Sights are nearly like thofe belonging to the Theodolite.

Inftead of immoveable Sights, there is fometimes faftened to one of the Radius's of the Quadrant a Telefcope, and then the if Point of Divifion of the Circumference may be
found in the manner as is explained hêreafeer in the Aftronomical Quadrant: for this Quadrant is deligned only to take the Heights and Diftance of Places on Earth.

Upon the under Surface of this Qieadrant, is a Ball and Socket faftened with; Screws, by meanis of which is maty be put into any Pofition fit for Ufe.

This Inftrument hazy be put in Uie in different Situations; for firf, it may be fo difpofed that its Plane may be at right Angles with the Horizon, for obferving Heights and Depths, which may yet be done two different ivays, viz. in ufing the fixed Sights, and the Thread and Plummer, and then neither of its Sides will be found parallel to the Horizon; or elfe by keeping the Sights fafferfed to the Index moveable, and then one of the Semi-diameters of the Quadrant will always be parallel to the Horizon, and the other perpendicular: which may be done by means of a Plummet fufpended in the Center, and then the fixed Sights are ufelefs.

Finally, the Quadrant may be placed fo as its Plane may be parallel to the Horizon, for obferving hörizontal Diftances with the Index and immoveable Sights, and then the Thread, with its Plummet, is not in ufe.

Ufes of the Quadrant, with two fixed Sigbts and a Plummet.

U S E I. To take the Height or Depth of any Objelt in Degrees.

As fuppofe the Height of a Star or Tower is to be taken in Degrees; place the Quadrant vertically, then place your Eye under that fixed Sight next the Circumference of the Quadrant, and direct it fo, that the vifual Rays paffing through the Holes of the Sights, may teind to the Point of the Object propofed: (as to the Sun, it is fufficient that its Rays pafs thifo the aforefaid inles) then the Arc of the Circumference contained between the Thread and its Pluminet, and the Semi-diameter on which the Sights are faftened, will fhow the Complement of the Star's Height above the Horizon, or its Diftance from the Zenith : Whence the Arc contained between the Thread, and the other Semi-diameter towards the Object, fhows its Height above the Horizoik. The fame Arc likewife determines the Quantity of the Aingle made by the vifual Ray, and a horizontal Line, parallel to the Bafe of the Tower.

But to obferve Depths, as thofe of Wells or Ditches, the Eye muft be placed over that Siglit, which is next the Center of the Quadrant.

The whole Operation confifts in calculating Triangles by the Rule of Three, formed in the Porportion of the Sines of Angles, to the Sines of their oppofite Sides, according to the Rules of right-lined Trigonometry, of which we are now going to give fome Examples.

USE II. Let it be requirced to find the Height of the Tower A B, whofe Bafe is acceffite.

Having planted the Foot of your lifitrument in the Point \mathbf{C}, look at the Top of the Tower thro thie fixed Sights; then the Thread of the Plummet freely playing, will fix itfelf Upön the Number of Degrees, determining tlie Quantity of the Angle made at the Center of the Quadiant, by the vilaal Ray, "and the horizontal Line, parallel to the Bafe of the Tower, accounting the Degrees contained between the Thread and the Semi-diameter next to the Tower.
Now Tuppofe the Thread fixes upon 35 Deg. 35 Min. and having exacly meafured the level Diftance from the Foot of the Tower, with a Chain, to the Place of Obfervation, you will find it 47 Feet ; then there will be 3 things given, to wit, the Side BC, and the Angles of the Triangle A BC: for fince Walls are always fuppofed to be built upright, the Angle B 'is a right Angle, or 90 Deg. and confequently the 2 acute Angles A and C, are together equal to $\geqslant 0$ Degrees, becaufe the three Angles of any right-lined 'Triangle, are equal to 180 Degrees, or 2 right Angles,

Now the Angle obferved, is 35 Deg. 35 Min. Whence the Angle A is 54 Deg. ${ }^{5}$ Min. therefore you may form this Analogy, As the Sine of 54 Deg. 25 Min. is to 47 Feet, fo is the Sine of.35 Deg. 35 Min. to a fourth Term, which will be found $33 \frac{7}{2}$ Feet; to which adding 5 Feet, the Height of the Obferver's Eye, and the Height of the propofed Tower will be found $38 \frac{7}{3}$ Feer.

U SE EIII. Let it be required to find the 'Height of the inacceffille Tower DE.

This, being done, all the Angles of the Triangle DF G will be known, as alfo the Side FG meafured; by which means it will be eafy to find the Side DF, and afterwards the Side E D, 'by making the following 'Ahalogies.

Chap.5. of the Quadrant and Geometrick Quadrat.

The Angle EF D being found 34 Deg. its Complement DFG to 180 Deg. will be 146 Deg. and the Angle G having been found 20 Deg. it follows that the Angle FDG is is Deg. therefore fay, As the Sine of ${ }_{4} 4$ Deg. is to 54 Feet, fo is the Sine of 20 Deg. to a fourth Term, which will be 76 Feet, and about $\frac{8}{3}$, for the Side D F: then fay, As Radius is to the Hypothenufe F D, fo is the Sine of the Angle DF E, to the Side ED, which will be found $42 \frac{2}{3}$ Fert ; to which adding 5 Feet, the Height of the Center of the Inftrument above the Ground, and there will be had $47 \frac{2}{3}$ Feet, for the Height of the Tower propofed.

Thefe Calculations are much better made with Logarithms, than by common Numbers, becaufe they may be done by only the help of Addition and Subftraction, as is more fully explained in Books of Trigonometry.

Thefe Propofitions, and others the like, may be alfo geometrically folved, by making Triangles fimilar to thofe formed upon the Ground.

As to folve the prefent Queftion, make a Scale of ro Toifes, that is, draw the right Line A B fo long, that the Divifion of it may be exact; and then divide it into so equal Parts, and fubdivide one of thefe Parts into 6 more, to have a Toife divided into Feet.

Then draw the indeterminate Line E G, and make with a Line of Chords, or Protractor, an Angle at the Point G of 20 Degrees, and draw the indeterminate Line G D. Lay off 9 Toifes, or 54 Feet, from G to F; then make at the Point F an Angle of 34 Degrees, and draw the Line F D , cutting the Line G D in fome Point as D, from which let fall the Perpendicular D E, which will reprefent the Height of the propofed Tower, and meafuring it with the Scale, you will find it to contain 47 Feet, 8 Inches. All the other Sides of thele Triangles may likewife be meafured with the fame Scale.

U SE IV. To find the Breadth of a Ditch, or Well, whofe Depth may be meafured.

Let it be propofed to meafure the Breadth of the Ditch C D, which may be approached. Fig. 4.
Place the Quadrant upon the Brink in the Point A, fo that you may fee thro' the Sights the Bottom of the Ditch, at the Point D ; then find the Angle made by the Thread upon the Limb, which fuppofe is σ_{3} Degrees, and meafure the Depth A C, from the Center of the Quadrant, which fuppofe 25 Feet; then make a fimilar right-angled Triangle, one of whofe acute Angles is 63 Degrees, (and confequently the other will be 27 Degrees) and the leaft Side is 25 Parts of fome Scale. Latty, meafure with the fame Scale the Side CD, which will be about 49 ; therefore the Breadth of the Ditch is 49 Feet.

U S E of the Geometrick Quadrat.

The Quadrant being vertically placed, and the Sights directed towards the Top of the Fig. G_{0} Tower propofed to be meafured; if the Thread of the Plummet cuts the Side of the Quadrat, whereon is writ right Shadows, the Diftance from the Bafe of the Tower, to the Point of Station, is lefs than the Tower's Height : if the Thread falls upon the Diagonal of the Square, the Diftance is equal to the Height ; but if the Thread falls upon the Side of the Square, whereon is writ verfed Shadorus, the Diftance of the Tower from you, is greater than its Height.

Now having meafured the Diftance from the Foot of the Tower, its Height may be found by the Rule of Three, in having 3 Terms known, but their Difpofition is not always the fame; for when the Thread cuts the Side, denoted right Shadow, the firft Term of the Rule of Three, ought to be that part of the Side cut by the Thread, the fecond Term will be the whole Side of the Square, and the third, the Diftance meafured.

But when the Thread cuts the other Side of the Square, the firft Term of the Rule of Three, mult be the whole Side of the Square; the fecond Term, the Parts of that Side cut by the Thread; and the third, the Diftance meafured.

Suppofe, for Example, that looking to the Top of a Tower, the Thread of the Piummet cuts the Side of right Shadows in the Point 40, and that the Diftance meafured is 20 Toifes: I order the Rule of Three in the following manner; [40. 100. 20.

Muitiplying 20 by 100 , and dividing the Product 2000 by 40, there will be found the fourth Term 50 , which fhews the Height of the Tower to be 50 Toifes.

But if the Thread of the Plummet falls on the other Side of the Square, as, for Example, upon the Point 60, and the Diftance meafured is 35 Toifes; difpofe the three finf Terms of the Rule of Three thus, [roo. 60.35.

Multiply 35 by 60 , and the Product 2100 being divided by 100 , will give 21 for the Height of the Tower.

USE of the Quadrat without Calculation.

All the aforefaid Operations, with many others, may be made without Calculation, as we fhall make manifeft by fome Examples.

USE I. Let us fuppofe (as we have already done) that the Thread falls upon 40 on the Side of right Shadows, and that the Diftance meafured is 20 'Toifes; feek amongtt the little Fig. G. Squares for that Perpendicular to the Side, which is 20 Parts from the Thread, and that Perpendicular will cut the Side of the Square next to the Center in the Point 50, which will be the Height of the propofed Tower in Toifes.

USE II. But if the Thread cuts the Side of verfed Shadows in the Point 60, and the Diftance is 35 Toifes, count upon the Side of the Quadrant, from the Center, 35 Parts; count alfo the Divifions of the Perpendicular from that Point 35 to the Thread, which will be 21 , the Height of the propofed Tower in Toifes.

Note, In all Cafes the Height of the Center of the Inftrument above the Ground, muft be added.

U S E III. To take an inacceffble Height with the Quadrat.

To do which, there muft be made two Stations, whofe Diftance muft be meafured, and then there will be three Cafes.

C A S E I. When the right Sbadow is cuit in botb Stations by the Thread.

Let us fuppofe, for Example, that at the firt Obfervation the Side of right Shadows is cut in the Point 30 , and the Inftrument being removed 20 'Toifes to a fecond Station, the Side of right Shadows is cut in the Point 70 ; then note the Pofition of the Thread in thefe two Stations, by drawing a Line upon the Lattice with a Pencil, from the Center to the aforefaid Point 30, and another to the Point 70. Seek between thefe two Lines a Portion of a Parallel, which may have as many Parts as the Diftance meafured has Toifes, which in this Example muft be 20 : then the faid Parallel being continued, will meet the Number 50 , counting from the Center, whence the Height of the Tower obferved, will be 50 Toifes. You will likewife by the fame means find that the Diftance from the Bafe of the Tower, to the firf Station, is 15° Toifes, becaufe there is 15 Parts contained upon the Parallel between the Number 50, and the Line drawn with the Pencil to the Number 30.

Inftead of drawing Lines with a Pencil, two Threads faftened to the Center will do, one of which may be the Thread of the Plummet.

C A S E II. When the Side of verfed Shadows is cut at both Stations by the Thread.

Suppofe, in the firt Station, that the Thread cuts the Side of verfed Shadows in the Point 80, and that being removed is Toifes to another Station, the Thread falls upon the Number 50 on the fame Side. Mark with a Pencil upon the Lattice, the two different Pofitions of the Thread in both Stations, and find between thefe two Lines, a Portion of a Parallel containing as many Parts as the Diftance meafured contains Toifes, which, in this Example, is 15 Toifes: to thefe 15 Parts add 25, which is the Continuation of the fame Parallel to the Side of the Square next to the Center, and the Sum makes 40; whence the Diftance of the Tower, from the fecond Station, is 40 Toifes: and to find its Height, feek the Number 40 upon the Side of the Square next the Center, and count from that Number to the firf Line drawn on the Lattice with the Pencil, the Parts of the Parallel, which in this Example will be found 20 ; therefore the Height of the Tower is 20 Toifes, by always adding the Height of the Quadrant.
$C A S E$ III. If in one Station the Thread falls upon the Diagonal of the Square, and in the other it cuts the Side of right Shadows, you muft proceed in the fame manner as when the Thread at both Stations falls upon the Side of right Shadows.

But when the Thread falls along the Diagonal in one Station, and upon the Side of verfed Shadows in the other, you mutt proceed in the fame manner, as when the Thread cuts, at both Stations, the Side of verfed Shadows.

The Reafon of all this is, becaufe there is always made upon the Lattice a little Triangle fimilar to a great one, made upon the Ground, altho diverlly pofited. The Line made by the Thread and Plummet alwoys reprefents the Vifual Ray; the two other Sides of the little Triangle, which make a right Angle, reprefent the Height of the Tower and its Diftance ; and when the Thread cuts the Side of right Shadows, the Height is reprefented by the Divifions of the Sides of the Lattice, which is perpendicular to the Side of the Quadrat ; but when the Thread cuts the Side of verfed Shadows, the Diftance is reprefented by the Divifions of the Side diftant from the Center, and the Height by the Perpendicular anfwering to the Number of Divifions of the fame Side.

USE IV. To find the Depth of a Ditch or Well.

The Breadth of the Ditch (or Well) muft firtt be meafured, and afterwards you muft place the Quadrant upon the Brink, and look thro the two Sights, till you fee the oppofite Point, where the Surface of the Water touches the Side of the Ditch; then the Thread will cut the Parallel, anfwering to the Feet or Toifes of the Ditch's Breadth ; and that Perpendicular, at which the Parallel ends, will determine the Depth, from which muft be fubftracted the Height of the Iuftrument above the Brink of the Ditch.

U SE of the Quadrant in taking of Heigbts and Diftances, by means of an Index and its Sights.

Place the Quadrant fo that its Plane may be at right Angles with the Plane of the Horizon, and one of its Sides parallel thereto, which will be done when the Plummet, freely hanging, falls along the other Side of the Quadrant.

In

Chap. 5. of the Quadrant and Geometrick Quadrat. II 3

In this Situation the two fixed Sights are of no Ufe, unlefs they are ufed to obferve the Diltance between two Stars, and then the Quadrant muft be inclined, by direeting the immoveable Sights towards one Star, and the moveable ones towards the other; and the Number of Degrees, comprehended between then, will be the Diftance of the Stars in Degrees.

If it is ufed to obferve an Height, the Center of the Inftrument muft be above the Eye; but if a Depth is to be obferved, the Eye mult be above the Center of the Inftrument.

U SE I. To take an Height, as that of a Tower, whofe Bafe is acceffble.
Having placed the Quadrant, as already fhewn, turn the Index, fo that you may fee the Top of the Tower thro' the two Sights ; and the Arc of the Limb of the Quadrant, between that Side of it parallel to the Horizon, and the Index, will be the Height of the Tower in Degrees. If afterwards the Diftance from the Foot of the Tower, to the Place where the Inftrument ftands, be exactly meafured, there will be three things given in the Triangle to be meafured; namely, the Bafe, and the two Angles made at its Ends, one of which will be always a right Angle, becaufe the Tower is fuppofed to be built upright, and the other the Angle before obferved ; whence the other Sides of the Triangle may be found by the Rules of right-lined Trigonometry, or elfe without Calculation, by drawing a little Triangle fimilar to the great one, whofe Bafe is the Ground, and Perpendicular the Height of the Tower ; or otherwife by the Geometrick Square, in obferving, that in that Pofition of the Quadrant, the Side of right Shadows ought always to be parallel to the Horizon, and the Side of verfed Shadows perpendicular thereto.

U S E II. To find the Height of a Tower, whether accefflle or inacceffile, by menns of the Quadrat.
In the aforementioned Pofition of the Quadrant, there are always formed, in the Quadrat, little fimilar Triangles, whofe homologous Sides are parallel and fimilarly pofited to thofe of the great ones formed upon the Ground ; by which meains the Operations are rendered more fimple and eafy than in the other Situation of the Quadrant ; as we come now to explain, by making three different Suppofitions, according to the different Cafes that may happen.
C ASE I. Let us fuppofe, for Example, that having obferved the Height of a Tower, whofe Bafe is acceffible, thro' the Sights of the Index, the Index cuts the Side of right Shadows in the Point 40, and the Diftance to the Bafe of the Tower is 20 Toifes; feek among the Parallels to the Horizon, from that which paffes thro' the Center to the Index, the Parallel of 20 , (becaufe 20 'Toifes is the Diftance fuppofed) and you will find that it terminates at the Number 50 , on the perpendicular Side of the Square, reckoning from the Center; whence the Height of the Tower is 50 Toifes above the Center of the Inftrument.

C ASE II. Suppofe, in another Obfervation, that the Index cuts the Side of verfed Shadows in the Point 60, and the Diftance meafured is 35 Toifes; count from the Center of the Quadrant upon the Side parallel to the Horizon 35, and from this Point, reckoning the Parts of the Perpendicular, to the Interfection of the Index, and you will find 21; whence the Height of the Tower is 21 Toifes.
C A S E III. Laflly, Suppofe the Bafe of the'Tower to be inacceffible, and that there muft be made two Stations (as we have faid before); the Height of it may be found without any Diftinetion of right or verfed Shadows : for having meafured the Diftance between the two Stations, and drawn two Lines in the Quadrat, fhewing the Situation of the Index in thofe two Stations, find between thofe two Lines a Portion of a Parallel to the Horizon, which fhall have as many Parts, as the Diftance meafured contains Toifes: then if you continue that to the perpendicular Side of the Square diftant from the Center, you will there find a Number expreffing the Height of the Tower, and the Continuation of that Parallel to this Number, will flow the Diftance to the Bafe of the Tower.

Note, In this Situation of the Quadrant, horizontal Diftances are always reprefented in the Quadrat by Lines parallel to the Horizon, and Heights are always reprefented by Lines perpendicular to the Horizon, which renders (as we have already faid) Operations more eafy.
It does not happen fo in that other vertical Pofition of the Quadrant, when the fixed Sights are ufed ; for if in obferving the Height of an inacceffible Tower, the Thread of the Plummet in one Station falls upon the Side of right Shadows, and in the other Station, on the Side of verfed Shadows, the Diftance between the two Lines drawn with a Pencil on the Lattice, croffes the Squares of the Lattice by their Diagonals, which will not have common Meafures with the Sides; whence it cannot be ufed to find the Height of the propofed Tower.

U S E of the Quadrant in meafuring of Horizontal Diftances.

Altho a Quadrant is not fo proper to meafure horizontal Diftances, as a Semi-circle or whole Circle, becaufe by it obtufe Angles cannot well be taken, yet we fhall here give fome Ufes of it by means of the Quadrat. Place the Quadrant upon its Foot nighly parallel to the Horizon; for there is no Neceffity of its Plane being perfectly level, becaufe fometimes it muft be inclined to perceive Objects thro' the Sights.
Then put the Foot of the Infrument in the Line to be meafured, and make two Obfervations in the following manner, not ufing the Plummet, but the four Sights.

Suppofe, for Example, the perpendicular Diftance $A B$ is to be meafured ; plant feveral Staffs in the Line ACD, and the Quadrant in the Point A, in fuch mataner that the two fixed Sights may be in the Line A C, and the Point B may be feen thro' the two moveable Sights, placed at right Angles with the Line A C: then remove the Quadrant, planting a Staff in its place, and meafure from A towards C, any Length; as, for Example, is Toifes: at the End of which, having placed the Inftrument, fo that the two fixed Sights may be in the Line A C, move the Index till you fee the Point B thro' its Sights, and you will have upon the Lattice a little Triangle, fimilar to the great one made upon the Ground; therefore feek amongtt the Parallels cut by the Index, that which contains as many Parts as the Diftance meafured does Toifes; that is, in this Example, 18, which will terminate on the Side of the Quadrant, at a Number containing as many Parts as there are Toifes in the Line AB propoled to be meafured.

The Diftance A B may yet otherwife be found, whether perpendicular or not, without making a Station at right Angles with the Point A.

Suppofe, for Example, that the firt Station is made in the Point C, and the fecond in the Point D; draw upon the Lattice two right Lines with a Pencil, or otherwife, fhewing the two different Pofitions of the Index in both the Stations; and having meafured the Diftance of the Points C and D, which fuppofe 20 Toifes, feek between the two Lines drawn witn a Pencil, a Portion of a Parallel which is 20 Parts, and that will correfpond, upon the Semidiameter of the Geometrick Quadrat, to a Number, which, reckoned from the Center, will contain as many Parts as the right Line A. B doès Toifes.

You will likewife find the l.engths of the Diftances C B and D B, by the Divifions of the Inder; for there is upon the Lattice a little oblique-angled 'Triangle fimilar to the great one C D B upon the Ground.

C HAP P. VI. Of the Confruction and UJes of the Semi-circle.

Fig. I. \&K. 「THESE Inftruments which are alfo called Graphometers, are made of beaten or caft Brafs, from 7 Inches Diameter to 15 ; the Divifions of them are made in the fame manner as thofe of the Theodolite and Quadrant, before explained. The fimpleft of thefe Inftruments, is that of Fig. K; at the Ends of its Diameter, and in little fquare Holes made upon the fiducial Line, there is adjufted two fixed Sights, faftened with Nuts underneath, and upon its Center there is a moveable Index furnifhed with two other Sights, made in the fame manner as thofe before mentioned for the Theodolite, and which is fattened with a Screw. There is a Compafs placed in the Middle of its Surface, for finding the North Sides of Planes. There is alfo fixed underneath to its Center, a Ball and Socket, like that mentioned in the Conftruction of the Theodolite, and for the fame Ufe.

Note, 'Thefe'Inftuments ought to be well ftraightned with hammering; then they muft be fafhion'd with a rough File, and afterwards fmoothed with a Baftard-File, and a fine one. When they are filed enough, you muft fee whether they are not bent in filing; if they are, they ought to be well ftraightned upon a Stone, or very plain Piece of Marble; then they muft be rubbed over with Pumice-Stone and Water, to take away the Tracts of the File. To polifh Semi-circles well, as alfo any other Inftruments, you muft ufe German-Slate Stone, and very fine Charcoal, fo that it does not fcratch the Work: afterwards, to brighten them, you muft lay a little Tripoli, tempered in Oil, upon a Piece of Shamoy, and rub it over them.

The Semi-circle I, carries Telefcopes for feeing Objects at a good Diftance, and has the Degrees of its Limb divided into Minutes, by right-lined or curved Diagonals, as in the Quadrant before-mentioned.

There is one Telefcope placed underneath along the Diameter of the Semi-circle, whofe Ends are B B ; and another Telefcope adjufted to the Index of the Semi-circle. When the fiducial Line cuts the Middle of the Index, the Telefcope faftened to it muft be a little fhorter than the Index, to the end that the Degrees cut by the fiducial Line may be feen; but, the beft way is for the 'Telefcopes to be of equal Length, and then the fiducial Line, mult be drawn from the End C, paffing thro' the Center of the Semi-circle, and terminating in the oppofite End D. The two Ends of the Index are cut fo as to agree with the Degrees upon the Limb, as may be feen at the Places CF, G D, in fuch manner that the Line CFE G D, may be the fiducial Line of the Semi-circle.

Note, The Degrees on this Semi-circle do not begin and end at the Diameter, as in others, but at the Lines C F, G D, when the Telefcopes are fo placed over each other, that the vifual Rays agree. 'To make which, the little Frame carrying the crofs Hairs, muft be moved backwards or forwards by means of Screws. The Breadth from the Middle of the Tele-

Chap. 6.

fcope, to the Points F, G, is commonly about 5 Degrees; and this is the Rearon why the Diviifons begin further from the Diameter than they end, as may be feen per Figure.

Thefe Telefcopes have two or four Glaffes, and have a very fine Hair ftrained in the Focus of the Object-Glafs, ferving for a Sight.

Telefcopes with four Glafies fhew Objects in their true Situation, but thofe with two Glaffes invert them ; fo that that which is on the right Hand appears on the left, and that which is above appears below : but this does not at all linder the Truth of Operations, becaufe they always give the Point of Direction.

Thefe Telefcopes are made with Brafs Tubes foldered, and turned in a Cylindrick Form, as may be feen by the Figure L, which reprefents a Telefcope taken to pieces; the EyeGlafs, being that to which the Eye is applied to look at Objects, is at the End I. It is put in another litele Tube apart (likewife marked I) which is drawn out, or flid into the Telefcope, according to different Sights. This little Tube alfo fometimes carries the Hair in the Focus of the Glafs, ferving as a Sight ; but it is better for the Hair to be faften'd to a little Piece of Brafs (feen apart) on which there is very exactly drawn a fquare TraCt 2, upon which the Hairs are placed. The faid Piece is placed in a Groove made in a little Brafs Frame, foldered to the Tube of the Telefcope at the Place 2; the fmall Screw 5 is to move forwards or backwards, the little Piece carrying the Hairs; the Object-Glafs is placed at the other End of the 'Telefcope, next to the Objeet to be feen. It is alfo placed in the little Tube 3, which being put into the Tube of the Telefcope, muft be binded pretty much by it, that it may not eafily change its? liace when the Telefcope is adjufted. The Glafles are convex, which renders their Middle thicker than their Edges; but the Eye-Glafs mult have more Convexity than the Object-Glafs, to the end that Objects may appear greater than by the naked Eye.

The Focus of a Convex Glafs is that Place where the Rays, coming from a luminous or coloured Object, unite, after having paffed thro' the Glafs ; whence the Pitture of Objects, oppofite to the Glafs, are there very diftinctly reprefented. For example, the Point R, at the End of the Cone of the Figure H, is the Focus of the Glafs S, becaufe it is the Point where the Rays, entering at the other End N of the Tube, unite, after having paffed thro' the Glafs S.
The Telefcopes moft in Ufe (for Semi-circles) are thofe with two Glaffes, which are fo placed, that their Foci are common, and unite in the fame Point in the Tube of the Telefcope, in which Point the Hairs are placed; if the focal Length of the Object-Glafs is feven or eight times greater than that of the Eye-Glafs, the Object will appear feven or eight times greater than when the Foci of the two Glaffes are equal.

The Focus of the Eye-Glafs being common with that of the Object-Glafs, the coloured Rays, which falling upon the Surface of the Object-Glafs, and uniting in the Focus of the Glafs, afterwards continue their way diverging to the Eye-Glafs, and pafs thro ir; fo that placing the Eye behind it, Objects may be perceiv'd, whofe Pictures are reprefented in the. Focus: for it is the Object that fends forth its Species to the Eye, as may be yet very manifefly proved by the following Experiment.

Darken a Room, by fhutting the Window-Shutters, and make a round Hole in fome Shutter, whofe Window is expofed to a Place on which the Sun fhines: in which Hole place a Convex Glafs, and alfo a white Piece of Paper or Sheet in the Room, oppofite to the Hole, anid at the Glafs's focal Diftance from it ; then a very diftinct Reprefentation of all outward ObjeAts, oppofite to the Hole in the Shutter, will be painted upon the Paper in the Room in an inverted Situation; and this Picture is made by Rays of Light coming from the Objects without. The focal Diftance of the Glafs may be found, by moving the Paper backwards and forwards, till the Reprefentation of the Objects are diftincly perceived.

There is a Ball and Socket belonging to this Semi-circle, which, being well made, in the aforefaid manner, is the moft perfect that can be made:

The Infrunent M is a Protractor about 8 or io Inches Diameter, with its moveable In^{2} dex; we make them fometimes as large as Graphometers, and ufe them both in taking Angles in the Field to a Minute, and alfo plotting them upon Paper.

The Index of this Protractor turns about a circular Cavity, in the middle of which is a little Point, fhewing the Center of the Protractor. The Divifions of the Limb of this Protractor are made in the fame manner as thofe on the Limb of the Semicircle, and by the Method before explained.

USE I. To take the Plot of a propofed Field, as ABCDE; plant a Staff very up- Fig. 6 . right, at each Angle of the Field, and meafure exactly, with a Toife, one of its Sides, as A B, which fuppofe 50 Toifes, 2 Feet ; then make a Memorial, on which draw a Figure fomething like the Field propofed: This being done, place the Semi-circle, with its Foot, in the Place of the Staff A; fo that looking thro the fixed Sights of the Diameter, you may fee the Staff B. Afterwards, the Semi-circle remaining fixed in this Pofition, turn the Index, fo that you may fee thro' the Sights the Staff C. Note the Angle made by the fiducial Line with the Side A B, and write down, in your Memorial, the Quantity of the Angle B A C; afterwards' turn the Index fo, that you may fee the Staff D thro' the Sights, and write down
in your Memorial the Quantity of the Angle BAD: Again, turn the Index fo that you may fee thro' the Sights the Staff E, and fet down the Quantity of the Angle BAE; but every time you look thro' the Sights, Care muf be taken that the Saff B is in a right Line with the Sights of the Diameter.

This being done, remove the Semi-circle with its Foot, and having replanted the Siaff A, place the Semi-circle, with its Foot, in the Place of the Staff B, in fuch manner, that by looking thro' the fixed Sights of the Diameter, you may fee the Staff A; and the Semi-circle remaining fixed in this Situation, turn, as you have already done, the Index fo that you may fucceffively fee the Staffs C, D, E, and write down in the Memorial the Quantities of the Angles ABC, ABD, ABE.

Finally, Plot the Field exactly with a Semi-circle or Protractor, by laying down all the Angles, whofe Quantities are marked at the Ends of the Line A B, from whence may be drawn as many right Lines, and from their Interlections other Lines, which will form the Plot of the Field propofed. The Lengths of all thofe Sides which have not been meafured, may be found by a Scale of equal Parts, of which the Line AB is $50 \frac{3}{3}$, and the Area of the Field may be found by finding the Area of all the Triangles it may be reduced into.

Note, It is proper to meafure one of the longet Sides of the Field, for ufing it as a common Bafe, and making at both its Ends all the Obfervations neceflary for there forming the Angles of the Triangles required to be made; for if one of the fhorreft Lines be taken for a common Bafe to all the Triangles, the Angles formed by the Interfections of the vifual Rays in looking at the Staffs, will be too acute, and fo their Interfections very uncertain.

I The Meridian Line of Plans may be known by help of the Compafs, whofe Meridian is generally parallel to the Diameter of the Semi-circle: for fince the common Bafe of all the Triangles obferved, is parallel to the faid Diameter, you need but note the Angle which it makes with the Needle of the Compafs, and this may be eafily done by directing the fiducial Line parallel to the Needle; after which you may draw upon the Plot a little Card in its true Pofition.

U S E II. To find the Difance from the Steeple A, to the Tuwer C, they being fuppofed inacceffible.

Having chofen 2 Stations, from which the Steeple and Tower may be feen, and meafured their Diflance ferving as a Bafe, place the Semi-circle at one of them, as D, and the Staff in the other, as in the Point E, and turn it fo, that thro the fixed Sights of its Diameter, or thro' the ' Celefcope, you may efpy the Staff E: then move the Index fo, that thro' its Sight今 you may fee the Steeple A; and the Degrees of the Semi-circle between the Diameter and the Index, will give the Quantity of the Angle B DE, being in this Example 32 Deg. which note in your Memorial. Again; turn the Index till you fee the 'Tower C thro' the Sights or Telefoope, always keeping the Diameter in the Line DE; then the Degrees between the Diameter and Index, will fhow the Quantity of the Angle CDE, 123 Deg. which likewife note in the Memorial. Now having removed the Semi-circle from the Station D, and placed a Staff in its Place, meafure the Diftance from the Staff D to the Staff E, which fuppofe 32 Toifes, writing it in the Memorial: then put the Semi-circle in the Place of the Staff E, fo that the fixed Sights of the Diameter, or Telefcope, may be in the Line E D; and turn the Index, that the 'Tower C may be feen thro' its Sights, then the Degrees contained between the Diameter, and the Index, will give the Angle C E D, which in this Example is 26 Degrees. Finally, Turn the Index till you fee the Steeple A thro the Sights, and the Angle A E D will be 125 Degrees, which fet down in the Memorial, and by help of a Scale and Protractor, the Diftance A C may be known.

To folve the fame Problem trigonometrically; firft, We have found by Obfervation in the Triangle DAE, that the Angle A DE is 32 Degrees, and the Angle DEA 125 Degrees, whence the Angle D A E is 23 Degrees (becaufe the three Angles of any right-lined Triangle, are equal to 2 right Angles) and to find the Side A E, make this Analogy: As the Sine of 23 Degrees is to 32 Toifes, fo is the Sine of 32 Degrees to the Line A E, about 43 Toifes. Likewife you will find by Obfervation in the Triangle C D E, that the Angle C DE is 26 Degrees, and the Angle EDC 123 Degrees, whence the Angle DCE is 3 I Degrees ; and to find the Side C E, make this fecond Analogy: As the Sine of 3 I Degrees is to 32 Toifes, fo is the Sine of 123 Degrees, or its Complement 57, which is the fame, to CE 52 Toifes. Now to find the Diftance CA, examine the Triangle C A E, whofe two Sides C E, A E, with the included Angle A E C of 99 Degrees, are known, and confequently the Sum of the two unknown Angles are equal to 81 Degrees; and to find either of them, make again this Analogy: As the Sum of the two known Sides 95 Toifes, is to their Difference 9, fo is the Tangent of 40 Deg. 30 Min . half the Sum of the oppofite Angles, to the Tangent of half their Diftance, which anfwers to 4 Deg. 37 Min. and being added to 40 Deg. 30 Min . will give the greateft of the unknown Angles C A E, 45 Deg. 7 Min. and confequently the other Angle AC E, will be 35 Deg. 53 Min. Lafty, to find the Length C A, fay, As the Sine of 35 Deg. 53 Min . is to 43 Toifes, fo is the Sine of 99 Des. to the Diftance A C, 72 Toifes, 2 Feet.

USE III. To find the Height of the Tower A B, whofe Bafe cannot be approached becaufe of a Rivulet paffing by its Foot; chufe two Stations fome where upon level Ground, as in C and D, and place the Semi-circle vertically in the Point D, fo that its Dianneter may Fig. \&o be parallel to the Horizon, which you may do by means of a Thread and Plummer, hung on the Top of a Perpendicular drawn on the backfide of the Semi-circle : then turn the Index, in order to fee the Top of the 'Tower B thro' the Sights, and take the Quantity of the Angle B D A, which fuppofe 42 Degrees, noteing it down in your Memorial. Now having removed the Semi-circle, and placed it at the-other Station C, meafure the Diftance DC, which fuppofe 12 Toifes; and after having adjufted the Semi-circle, fo that its Diameter may be parallel to the Horizon, turn the Index till you fee the Top of the Tower B, and fet down the Quantity of the Angle B CD, which fuppofe 22 Degrees, in the Memorial ; then make a fimilar Figure by means of a Scale and Protractor, and the Height of the Tower A B will be found; which may likewife be found by Calculation in the following manner: The Angle B DA of 42 Degrees, gives the Angle B DC of 138 Degrees ; and fince the Angle C of 22 Degrees has been meafured, the third Angle of the Triangle CBD will be 20 Degrees. Now fay, As the Sine of 20 Degrees is to 12 Toifes, fo is the Sine of 22 Degrees, to the Line B D, about 13 . Toifes; but B D is the Hypothenufe of the rightangled Triangle B D A, all the Angles of which are known: therefore fay by a fecond Rule of Three, As Radius is to about ${ }_{13}$ Tcifes, fo is the Sine of 42 Degrees to the Height A B, 8 Toifes, and one Foor.

U SE IV. To take the Map of a Country.

Firf, chufe $=$ high Places, from whence a great Part of the Country may be feen, which let be fo remote from each other, as that their Difance may ferve as a common Bafe to feveral Triangles that muft be obferved for making of the Map; then meafure with a Chain the Diftance of thefe two Places. Thefe two Places being fuppofed A and B, diftant from each other 200 Toifes, place the Plane of the Semi-circle horizontally, with its Foot in the Point A, in fuch manner, that you may difcover the Point B thro' the fix'd Sights or Telefcope : the Inftrument remaining fix'd in this Situation, turn the Index, and fucceffively difccver Towers, Steeples, Mills, Trees, and other remarkable Things defired to be placed in the Map: examine the Angles which every of them make with the common Bafe, and fet them down together with their proper Names in the Memorial : As, for Example, the Angle B A I 14 Degrees, BA G 47, B A H 53, BAF68, B A E 83, B A D 107 ; and lafly, the Angle BAC 130 Degrees: which being done, and the Diftance of the two Stations A B fet down, place the Semi-circle in the Point B, for a fecond Station.

The Inftrument being fo placed that its Diameter may be in the Line B A, turn the Index; and obferve the Angles made by the Objects before feen from the Point A; as for Example, the Angle A B C 20 Degrees, ABF37, ABD 44, ABE 56, ABG 83 , ABH 96 , and the Angle A B I 133 Degrees, which note down in the Memorial.

If any Object view'd from the Point A, cannot be feen from the Point B, the Bafe muft be changed, and another Point fought, from whence it may be difcovered; for it is abfolutely neceflary for the fame Object to be feen at both Stations, becaufe its Pofition cannot be had but by the Interfection of two Lines drawn from the Ends of the Bafe, with which they form a Triangle.

Note, The Bare muft be pretty long, in proportion to the Triangles for which it ferves, and moreover very ftreight and level.
To make the Map, reduce all thofe 'Triangles obferved, to their juft Proportion, by means of a Scale and Protractor, in the manner as we have already given Directions, in the Ufe of the Theodolite.

KN M

C H A P. VII.

Of the Confruction and Ufe of the Compafs:

TH IS Inftrument is made of Brafs, Ivory, Wood, or any other folid Matter, from 2 to 6 Inches in Dianneter, being in figure of a Parallelopipedon, in the Middle of which is a round Box, at the Bottom of which is defcribed a Card (of which more in the Conftruction of the Sea-Compafs) whofe Circumference is divided into 360 Degrees. In the Center of this Card is fixed a well-pointed Brafs or Steel Pivot, whofe Ufe is to carry the touched Needle placed upon it, in Equilibrio, fo that it may freely turn. This Box is covered with a round Glafs, for hindring left the Air fhould any wife agitate the Needle.
One of the Ends of the Needie always turns towards the North Part of the World, but not exacty, it declining therefrom, and the other towards the South.

According to Obfervations made in OZtober, in the Year 1715, in the Royal Obfervatory, the Needle declined 2 Deg. 5 Min. Weftwardly.

Necales aie made of Pieces of Steel, the Length of the Diameter of the Box, having little Brafs Caps foldered to their Middle, hollowed into a conical Figure fo, that the Needle being put upon the Pivot, may move very freely upon it, and not fall off; they are nicely filed into different Figures, thofe which are large being like a Dart, and fimall ones have Rings towards one End, for knowing that End which refpects the North, as may be feen in the little Figures nigh the Compafs.

To touch a Needle well, having firf got a good Stone, begin your Touch near the Middie of the Needie, and preffing it pretty hard upon the Pole of the Stone, draw it flowly along to the End of the Needle, and lifting your Hand a good Diftance from the Stone, while you put the Needle forward again, begin a fecond Touch in the fame manner, and after that a third, which is enough, only take Care not to rub the Needle to and fro on the Stone, whereby the backward Rubs take away what Virtue the forward ones gave ; but lift it out of the Sphere of the Stone's Virtue, when you carry it forward again to begin a new Touch.

This admirable Property, by help of which great Sea-Voyages were firt undertaken, and vaft Nations both in the Eaft and Weft difcovered, was not known in Europe till about the Year 1260.

A Man by means of this Inftrument, and a Map, may likewife go to any propofed Place, at Land, without enquiring of any body the way; for he need but fet the Center of the Compafs, upon the Place of Departure, on the Map, and afterwards caufe the Needle to agree with the Meridian of this Place upon the Map: then if he notes the Angle that the Line leading to the Place makes with the Meridian, he need but in travelling keep that Angle with the Meridian, and that will direct him to the Place defired.

This Inftrument is alfo very ufful to People working in Quarries, and Mines under Ground; for having noted upon the Ground the Point direetly over that you have a mind to go to, you muft place the Compafs at the Entrance into the Quarry or Mine, and obferve the Angle made by the Needle with the Line of Direction: then when you are under Ground, you muft make a Trench, making an Angle with the Needle equal to the aforefaid Angle; by means of which you may come to the propofed Place under ground. There are feveral other Ufes of this Inftrument, the principal of which we are now going to fpeak.

USE I. To take the Declination of a Wall with the Compafs.

You muft remember that there are 4 Points, called Cardinal ones, viz. North, South, Eaft, and Weft, dividing the Horizon into 4 equal Parts, and when one of thefe Points are found, all the others may likewife : for it you have North before you, South will be behind, Eaft on the right hand, and Weft on the left.

A Wall built upon a Line tending from North to South, will be in the Plane of the Meridian; fo that one Side thereof will face the Eaft, and the other the Weft.

Another Wall, at right Angles with the former, that is, one built upon the Line of Eaft and Weft, will be parallel to the Prime Vertical, and will not decline at all, and one of its Sides will be directly South, and the other North.

But if a Wall is fuppofed to be built upon the Line DE, it is faid to decline as many Degrees as is contained in the Arc F; therefore if, for Example, that Arc be 40 Degrees, the Side of the Wall faceing towards the South, declines from the South towards the Eaft 40 Degrees, and the oppolite Side of the Wall will decline from the North towards the Weft 40 Degrees: fo that the Declination of a Wall, is no more than the Angle made by the Wall and the Prime Vertical. Another Wall parallel to the Line GH, will decline as many Degrees as is contained in the Arc C; therefore if that Arc be 30 Degrees, the Side of the Wall refpecting the South, will decline 30 Degrees from the South towards the Weft, and the other Side will decline 30 Degrees from the North to the Eaft.
In all Operations made with a Compafs, you muft take care of bringing it nigh Iron or Steel, and that there be none concealed ; for Iron or Steel entirely changes the Direction of the Needle.
I fuppofe here that the Pivot, upon which the Cap of the Needle is put, is in the Center of a Circle divided into 360 Degrees, or four Nineties, whofe firt Degree begins from the Meridian Line, and alfo that the Compafs be fquare, as that which is reprefented in the Figure.

Apply the Side of the Compafs where the North is marked, to the Side of the Wall ; then the Number of Degrees over which the Needle fixes, will be the Wall's Declination, and on that Side. If, for Example, the North Point of the Needle tends towards the Wall, it is a fign that tbat Side of the Wall may be fhone on by the Sun at Noon ; and if the Needle fixes over 30 Degrees, counting from the North towards the Eaft, the Declination is fo many Degrees from South towards the Eaft. If it fixes over 30 Degrees from the North towards the Weft, the Declination of the Needle will be fo many Degrees from the South towards the Weft.

But fince the Declination of the Needle is at Paris 12 Deg. 15 Min. N. W. for correcting that Defect, 12 Deg. 15 Min. muft always be added to the Degrees fhown by the Needle, when the Declination of the Wall is towards the Eaft ; and on the contrary, when the Declination is towards the Weft, the Decination of the Needle mult be fubfracted.

As fuppofing, as we have already done, that the Needle fixes over the 3oth Degree towards the Ealt, the Declination of the Wall will be 42 Deg. 15 Min. from the South towards the Eaft; but if the Needle fixes on the Weft-fide of the Wall, over the 30th Degree, the Declination will be 17 Deg. 45 Min. from the South towards the Wef.

If the South Point of the Needle tends towards the Wall, it is a Sign that the South is on the other Side of the Wall, and confequently that Side of the Wall, whofe Declination is to befound, will not be fhone upon by the Sun at Noon; whence its Declination will be from the North towards the Eaft or Weft, according as it faces towards thofe Parts of the World. This will be more fully explain'd in the Treatife of Dialling.

LU SE II. To take an Angle with the Compars.

Let the Angle DAE be propofed to be meafured; apply that Side of the Compafs, where Fig. n1, the North is marked, to one of the Lines forming the Angle, as A D: fo that the Needle may freely turn upon its Pivot, and when it refts, obferve what Number the North Point of the Needle flands over ; and finding it, for Example, 80 Degrees, the Declination of the faid Line will be fo many Degrees. Afterwards take, in the fame manner, the Declination of the Line A E, which fuppofe 215 Degrees: fubftraft 80 Degrees from 215 Degrees, there will remain I35, which fubfltratt from 180, and there will remain 45 Degrees, the Quantity of the Angle propofed to be meafured.

But if the Declination of the Line A D had been, for example, but 30 Degrees, and the Line AE 265 Degrees, the Difference of thofe two Declinations, which would be 235 Degrees, would be too great to fubftraet from 180 Degrees; whence in this Cafe 180 Degrees muft be taken from 235 Degrees, and the Remainder 55 Degrees, will be the Angle propofed.

When Angles are meafured with the Compals, there need not any regard be had to the Variation of the Needle, becaufe the Variation will always be the fame in all the different Pofitions of the Needle, provided at all times there be no Iron near it : and when the Compafs cannot be put nigh the Plane, by means of fome Impediment, it is fufficient to place it parallel, as the Figure fhows, and the Effect will be the fame.

USE III. To take the Plot of a Foreft, or Morafs.

Let it be required to take the Plot of the Morafs A B C D E, in which one may enter. Fig. res 'To make thefe kind of Operations, there mult be fattened two Sights to the Meridian Line of the Compafs; now plant long Staffs upright, fo that they may be in Lines parallel to the Sides encompafing the Morafs, and place the Compafs upon its Foot in a horizontal Pofition: then look at two of the Stafis thro the Sights, putting always the Eye to that which is on the South Side of the Compais; and having drawn a Figure upon Paper fomething reprefenting the Plot of the Morafs, write upon the correfpondent Line the Number of Degrees which the Needle, when fixed, fhows. At the fame time meafure the Length of each Side of the Morafs, and fet down their Lengths upon the correfpondent Lines of your Memorial. When you have gone round the Morafs, the Degrees denoted by the Needle, will ferve to form the Angles of the Figure, and the Length of each Line will determine the Plot of the Morafs propofed.

Let us fuppofe, for Example, that having placed the Compafs along the Side A B, or which is all one, along a Line parallel to that Side, and placing the Eye next to the South Sight of the two Sights, two Staffs fet up in that Line are efpied. If the Needle fixes on the 30 oth Degree towards the Eaft, fet down the Number 30 upon the Line AB in the Memorial, and alfo 50 Toifes, the Length of the Side A B: afterwards fet the Compafs, with its Foot, along the Side BC, or in the Diretion of the Staffs, putting always the Eye next the South Sight. If the Needle fixes on the rooth Degree, I write that Number on the Line BC, and at the fame time 70 Toifes, the Length of the Side BC: doing thus quite round the Morafs, you may fet down upon each correfpondent Line of the Memorial, the Numbers of Degrees and Toifes; by means of which, the Plot may be drawn in the following manner, by help of a Scale and Protractor.

Draw the Indefinite Line A B, of 50 equal Parts, reprefenting the so Toifes meafured ; make the exterior Angle at the Point B 70 Degrees, and draw the indefinite Line B C, on which lay off 70 Toifes from B to C. Make at the Point C an exterior Angle of 30 Degrees, and draw the indefinite Line CD, whofe Length let be 65 Toifes, conformable to the Length meafured. Make likewife at the Point D an exterior Angle of xio Degrees, and
 E, dran the line AE of $9+$ Toifes, and the Plot will be compleated.
Note, All the Angles of the Figure taken together, ought to make twice as many right Angles, wanting $=$, as the Figure has Sides: As, for Example, the Figure of this Ufe, having 5 Sides, all the Angles added together make 540 Degrees, or 6 times 90 , which may fence to prove Operations.

This Manner of taking Plots is expeditious enough, but it is very difficult to make Opewatous exact with a Compats, becaufe there may be Iron concealed nigh the Places whereat a body is obliged to place the Inftrument.

C H A P. VIII.

The Ufes of the aforefaid Infruments, applied to the Fortifications of Places.

FOrtification is the Art of putting a Place into fuch a State, that a fmall Body of Troops therein may advantagcoufly refift a confiderable Army.
The Maxims ferring as a Foundation to the Art of Fortification, are certain general Rules eftablifhed by Ingineers, founded upon Reafon and Experience.

The chief Inginecr having examined the Extent and Situation of the Place to be fortified, communicates his Defign in a Plan and Profil, as may be feen in Plate 13. to which he commonly adds a Difcourfe, orderly explaining the Materials imploy'd by the Undertakers: and having fearched the Ground in feveral Parts of the Place propofed, makes a Computation of each Toife of Work, by means of which the Ingineer may nighly eftimate the Charge of the whole Work, the Number of Workmen neceflary to perfect it, and alfo the Time it will be done in.

The Plan of a Fortification reprefents; by feveral Lines drawn horizontally, the Inclofureof a Place.

This Defign contains feveral Lines drawn parallel to one another ; but the firft and principal 'Tract, which ought to be marked by a Line more apparent than the others, reprefents the chief Inclofure of the Body of the Place between the Rampart and the Ditch; fo that by the Plan and its Sca!e, the Lengths and Breadths of all the Works compofing the Fortification may be known. (Fig. I.)
'The Profil reprefents the principal Tracts appearing upon a plane Surface vertically cutting and reparating all the Works thro' the Middle. 'There is commonly a larger Scale to draw it, than to draw a Plan, for better diftinguifhing their Breadths, Heights, or Depths, (as appears in Fig. 3.)

The Names of the chicf Lines, and principal Angles, forming the Plan.

Fig. 1 .
The Line $A B$, is call'd the exterior Side of the Polygon, and LM the interior Side thereof.

LG the Demi-gorge of the Baftion, of which E G is the Flank, A.E the Face, and AL the Capital.

GH is the Courtain, and AH the Line of Defence Razante.
The Figure A L G E reprefents a Demi-baftion.
The Angle A NB is the Angle of the Center.
The Angle K A B is the Angle of the Polygon.
The Angle I A E, made by the two Faces, is the flanquant Angle, or Angle of the Baftion.
The Angle A E G made by the Face and the Flank, is called the Angle de l'Epaule.
'The Angle E GH, made by the Flank and the Courtain, is called the Angle of the Flank.
"The Angle E G B, made by the Flank and the Line of Defence, is called the interior flanquant Angle.
The Angle E DF, made by the two Razantes interfecting one another towards the Middle of the Courtain, is called the exterior flanquant Angle, or Angle of the Tenaille.
The Angle EHG, made by the Courtain and Line of Defence Razante, is called the diminifh'd Angle, which is always equal to that made by the Face of the Baftion and the Bafe, or exterior Side.

Fundamental Maxims of Fortification.

The principal Maxims may be reduced to fix.
I. Every Side round about a Place, muft be flanked or defended with Flanks; for if there be any Side about a Piace not feen or defended by the Befieged, the Enemy may there lodge themfelves, and become Matters of the Place in a fhort time.

Chap. 8. of the Injtruments for Fortifications.

It follows from this Maxim, that the flanquant Angle, or the Angle made by the Faces of the Baftion, being too acute, is defective, becaufe its Point may eafily be blunted or brokea by the Cannon of the Beliegers, and afterwards Miners may there work fale in widening of the Breach.
It is alfo a like Fault to round the Points of Baftions, for the fame Reafon.
II. The Force, as much as poffible, muft be equally diftributed every where, for if there be any Side weaker than the reft, that will be it which the Enemy will attack; therefore it from the Nature of the Ground, one Side be weaker than the others, fome Work mult be there added to augment its Force, in multiplying its Defence.
III. The flanquant Parts muft be no further remote from thofe which flank them, than a Mufquet-fhot will do Execution : therefore the Line of Defence, or the Diftance from the Point of a Baftion to its neighbouring Baftions, ought not much to exceed 125 Toifes, which is the Diftance that a Mufquet, well charged, will do Execution.
IV. The Flanks of Baftions muft be large enough to contain at leaf 30 Soldiers in Front, and 4 or 5 Pieces of Cannon mounted on their Carriages, in order to defend well the Face of the Baftion attacked by the Enemy ; and fince the principal Defence arifes from Flanks, it is more proper for them to be perpendicular to the Line of Defence, than to have any other Situation. This Method was anfigned by Count Pagan, and has been follow'd by the ableft Ingmeers fince his Time, and paricularly by Monfieur Vauban, who, by his fingular Services, merited the Efteem of all warlike Nations, and able Ingineers of his' Time.
V. The Fortrefs mult not be commanded by any Side out of the reach of Fire-Arms, which are Mufquets and Cannon ; but on the contrary, it ought to command all Places round about.
VI. The Works nigheft the Center, muft be higheft, and command thofe Places more diftant, fo that when the Enemy endeavour to make themfelves Mafters of fome Outwork, they may be repulfed by thofe in the Body of the Place.

[^4]
The Corifruction and UJes: Book IV

To diaw the Profil of a Fortifed Place upon Paper.

Draw the indefinite Line O N, reprefenting the Level of the Country, and take 15 Toifes, which lay of from O to Q, for denoting the Bafe of the Rampart; then lay off 20 Toifes from Q to R, for the Breadth of the Ditch, over-againft one of the Faces of the Baftion, for it is wider oicr-againft the Courtain: lay off; Toifes from R to P, for the Breadth of the Corcr'd Way; and lanily, 20 or 30 'Toifes from P to N , for the Bafe of the Glacis. Note, the longer the Bafe of the Glais is made, the better will it be.

After having determined the Breadths or Thicknefles; the Heights above the Level of the Country, and Depths below, muft be as follows.

Take 3 Toifes trom your Scale, and raife from the Points O, Q, Perpendiculars of that Height, for raifing above the Level of the Country the Piatform of the Rampart, whereof OS is the interior Talud, or Slope, going up from the City to the Piatform of the Rampart ST; which Platform ought to be 6 or 7 Toifes bread, that fo Cainon may be commodiounty ufed thereon, as alfo the other neceflary Munitions for the Defence of the Place.

Note, The Rifing of the Rampart ought to be very ealy over-againft the Gorge of the Bafions, for Coaches to go eaffly there up and down it.

The Bafe of the Talud OZ, is made with new-dug Earth, equal to the Height all along the Courtains; as if the Height be 3 Toifes, the Bafe of the Slope muft be alfo 3 Toifes.

But at the Entry of the Bations, the Bafe mult be at leaft twice the Height; that is, if the Height of the Slope be 3 Toifes, the Bafe of it muft be at leaft 6 or 8 Toifes, for Coaches to go up it.

When the Rampart is formed, and the Earth fufficiently raifed upon it, which cannot be done but with Time and Precaution, in well ramming it every 2 Feet in Height, and laying Fafcines to keep it together; a Parapet is made upon the Earth of the Rampart, 6 Feet of interior Height, and 4 . Feet of exterior Height, (for the Top of the Earth to have a Declivity) to difcorer any thing beyond the Ditch, and being mounted upon the Banquette, the Cover'd Way may be feen, and defended in cafe of Need.

The Bafe of the Parapet X Y, ought to be about 4 Toifes broad, to the end that the Top thereof may be at leaft 20 Feet broad. At the Bottom of the interior Slope of the Parapet, there is made a little Bank 3 Foot wide, and a Foot and a half high, fo that the Parapet will be $4 \frac{5}{2}$ Feet above the Bank, which is fufficient for Soldiers to ufe their Fire-Arms on the Top thereof.

Care muft be taken to lay Beds of Fafcines every Foot in height, between the Earth of the Parapet ; and in order to keep the Earth of the faid Parapet from crumbling, it is covered with Grais-Turfs, cut with a Turfing-Iron, from fome neighbouring Common, about ${ }_{5} 5$ Inches long, and 10 broad.

Now to lay thefe Turfs, you muft place the firft Bed, or Row of them, very level all along the Diftance of feveral Toifes, and then lay the Turfs of the fecond Bed fo, that the Joints of the firt may be covered with them, and the Joints of the fecond likewife covered with the Joints of the third, ©r. that fo they may all make a good joining.

It is fufficient to give 2 Inches of Declivity to one Foot in height, for the interior Slope; and about 4 Inches to one Foot in height, for the exterior Slope of the Parapet. Note, There cught to be Gardiners to cut and lay the Turfs.

At the Foot of the exterior Slope of the Parapet and the Rampart, there is left a little Berm (marked Q,) about 4 Feet wide, for retaining the loofe Ground falling down from the Slope.

QB reprefents the inward Slope of the Ditch, which is 3 Toifes deep, and BK is the exterior Slope. If the Ground be brittle, they mult have more Slope given them, for hindring its falling to the Bottom of the Ditch. The Line K:P reprefents the Platform of the Cover'd Way, which mulk be 5 'Toifes broad. PA reprefents the Parapet of the Cover'd Way, with its Banquette at the Foot thereof. "The whole muft be 6 Feet high, for covering thofe which are on the Cover'd Way.

The fuperior Slope of the Glacis A N, ought to be made of fine Earth, the Stones in which, if there be any, mult be taken away with an Iron Rake, and buried at the Foot of the Glacis, fo that Cannon-Balls fhot from the Enemy upon the Cover'd Way, may enterthercin, without making the broken Pieces of the Stonesifly about upon the Cover'd Way.

To lay of the Plan of a Foxtifcation upon the Ground.

Let, for Example, the Plan of the firt Figure be propofed to be drawn upon the Ground.
Inflead of a Scale and Compaffes, there muft berufed Staff, the Toife, and Lines; therefore, after having well examined the Ground, and confidered where the Gates and Baftions muft be made, which are commonly in the Middfe of the Courtains, long Staffs muft firlt be placed, where the flanquant Angles of the Bartions are intended to be.

Now having planted a long Staff upright, in the Place fixed on for the Point of the Baftion, (marked A) meafure very exactly, with a Toife or Chain, 90 Toifes; at the End of which plant a Staff, (marked C): from the Point C continue that Line 90 Toifes more; at the End of which plant another Staff, which will be the Point of the Bation B. In the

Chap. 8. of the Infruments for Fortifications.

mean time you are meafuring with Chains or Lines, fome Workmen muft follow, and make a little Trench from Staft to Staff, before the Lines are taken away.

After which, a Perpendicular mult be drawn from the Staff C, to the Tract A C B.
To draw the faid Perpendicular, meafure two or three Toifes from C to A, where plant a Staff; meafure likewife from C towards B an equal Number of Toifes, at the end of which plant a fecond Staff: Take two Lines very equal, and having made Loops in the two ends of each of them, put thofe Loops about each of the Staffs, and holding the two other ends of the Lines in your Hands, fretch them till they join upon the Ground, and in their point of Junction plant a third Staff. Laftly, Faften a Lire tight to the Point C, and that third Staff, by which make a Tract, which will be perpendicular to the Line \& C B.

Meafure 30 Toifes from the Point C along the Tract, at the end of which plant another Staff very upright, which will flew the Point D of the Plan. Return to the Staff A, from which to the Staft D make a Tract ; along which from the Point A meafure 55 Toifes to wards D, for the Face of the Baftion A E ; plant a Staff in the Point E, for denoting the Angle de l'Epaule.

Go to the Point B, and there make the fame Operations for drawing the Face B F , and plant a Staff at the Angle de l'Epaule F.

Produce BF from D, towards G; and alfo A E from D towards H ; then meafure with the Scale of the Plan the Lines D G, D H, and lay off their Lengths on the Ground from D to G, and from G to H, where plant Staffs: After which it will be eafy to draw the Flanks E G, F H, and the Courtain G H.

By this means you will have one Front of a fortified Place, drawn on the Ground ; the others may be drawn in the fame manner by Staffs and Lines.

Note, It will not be improper to examine with a Semi-circle or Recipient-Angle, whether the Angles drawn upon the Ground are equal to thofe taken off of the Plan, and to rectify them before the Works are begun.

Care muft likewife from time to time be taken, that the 'Tracts are followed ; for without thefe Precautions, there will fometimes happen great Deformities.

Of the Conftruction of the Outworks.

Thie Outworks of a Fortification, are thofe Works made without the Ditch of a fortified Place, to cover it and augment its Defence.
The moft ordinary kinds of thefe Works, are the Ravelins or Half-moons, which are formed between the two Bantions upon the Flanquant Angle of the Counterfcarp, and before the Courtain, for covering the Gates and Bridges commonly made in the middle of the Courtains, as the Figures P P fhow.
'The Ravelins are compofed of two Faces furnifhed with one or two little Banks, and a good Parapet raifed on the fide next the Country ; and two Demigorges, without a Parapet, on the fide next to the Place, with an Entrance and Slope for mounting the great Ditch on the Platform of the Ravelin.

In each Ravelin there is built a Corps-de-Garde, to fhelter the Soldiers neceffary for its Defence, from the Injuries of Weather; but it is proper for the Corps-de-Garde to be built in form of a Redoubt, with Battlements all round, for the Soldiers, in cafe of being attacked, to retire in, and obtain fome Capitulation, before they lay down their Arnis.
To draw a Ravelin before a Courtain, open your Compaffes the length of the interior fide of the Polygon, and having fixed one of the Points in one of the ends of the Line, with the other Point defcribe an Arc without the Counterfcarp; likewife fet one Foot of the Compaffes in the other end of the interior fide, and with the other Point defcribe a fecond Arc, cutting the firft in a Point, which will be the Point or Flanquant Angle of the Ravelin : then lay a Ruler on the aforefaid Interfection, and upon each" of the ends of the interior fide of the Polygon, for drawing the Faces of the Ravelin, which will terminate to the Right and Left upon the edge of the Counterfcarp. The two Demigorges are drawn from the end of each Face, to the Rentrant Angle of the Counterfcarp.

But that the Flanquant Angle may not be too acute, its Capital R S nift be but about 40 Toifes; and proceed with the reft, as before.

Somerimes a fimilar Work is made before the Point of a Bafion; and fince its Gorge is built upon the edge of the Counterfcarp, which is commonly rounded over-againft the Point of the Baftions, this Work is called a Half-moon, (bccaufe its Gorge is in the form of an Arc): They are very often confounded, and the greateft part of the Soldiers give, without diftinction, the Name of Half-moons to Ravelins made before the Courtains.

The Defect of this Work is, that it is too diftant from the Flanks of the Baftions, for being fufficiently defended by them; therefore a Half-moon muft not be made before the Point of a Bation, unlefs at the fame time there are made other Out-works to the Right and Left before the adjacent Courtains, to defend it.
It is proper for thefe Works to be lined with Walls, as well as the Body of the Place; for when they are not, the Ground muft have fo great a flope, that it will be eafy to monnt the Works.

In the mean time the new-dug Earth the Works are made with, muft fettle at leaf a Year or two before the Walls are built, to the end that the Walls may not be chrown down by it after they are built.

Conftiuction of the Hornworks.

Fig. 3 .
Thefe kind of Works are commonly made before the Courtains, and becaufe the Expence in making them is greater than the Expence in making the Ravelins, they are not made without abfolute neceffity; they ferve to cover fome fide of the Place, weaker than the others; they likewife ferve to occupy an Height, which cannot be done by Perfons inclofed in the Body of the Place.

Now to draw a Hornwork, firf raife the Indefinite Perpendicular 1,2 , on the middle of the Courtain ; and to this Line draw two Parallels 3, 4, and 5, 6, from the Angles de l'Epaules. Thefe two Parallels, which are called the Whings of the Hornwork, ought to draw their defence from the Faces of the Baftions; whence their length ought not much to exceed 120 Toifes, counting from the Epaules. 'Thro' the ends of the Whings draw the Line 4, 6, which will be the exterior fide of the Hornwork, and is divided into two equal parts in the Point 7, by the Perpendicular 1,2 ; then take half that exterior fide in your Compaffes, and lay it of upon the fides, from 4 to 8, and from 6 to 9 ; draw the Lines 4, 9 , and 6,8, which interfecting one another in the Point 10, will form the Angle of the Tenaille, that repreferts a Work called the Simple Tenaille, which is common enough made before the Courtains, with a little Ravelin without the Ditch, between the two Saliant Angles, and over-againft the middle of the Rentrant Angle.

But to ftrengthen this Work, there is added thereto two Demi-baftions, and a Courtain between them ; which is better than two fimple Rentrant Angles.

To draw the Demibattions, bifect the Line 4, 10, in the Point II; and likewife the Line 10,6 , in the Point 12 ; then from the Points Is and 12 , draw to the middle of the Courtain of the Place, as at the Point 1 , the occult Lines 121, II1, by which means will be had the little Courtain 1314 of the Hornwork, the two Flanks III3, 1214, and the two Faces $114,126$.

The Sides of thefe Works, which are next to the Country, (as the Demi-baftions, the Courtain, and the Wings of the Hornwork are) ought to be furnifh'd with a good Parapet of fine Earth well rammed, 18 or 20 Feet thick, and 6 Feet high before, containing a Banquette, like that in the Body of a Place; obferving at all times, that the Parapets of the Works nigher the Center of the Place, muft be higher above the Level of the Country, than thofe Works more diftant ; to the end that when the Befiegers have made themfelves Mafters of fome Outwork, the Befieged, defending the Body of the Place, feeing them altogether uncover'd, may dinodge them therefrom.

Thefe Parapets ought to be fuftained by a Rampart, whofe Platform having a Banquette, is three or four Toifes wide; but when Earth is wanting, we mult be content to make feveral little Banks upon one another eighteen Inches high, and three or four Feet broad; and the Parapet ought to be about $4^{\frac{2}{4}}$ Feet above the higheft Bank, for covering the Soldiers: the top of the Parapet muft be en Glacis, gradually defcending towards the Country, fo that the Befieged may fee the Enemy.

The parts of thofe Works, which are next the Place, mult be without a Parapet, and only inclofed with a fingle Wall, or a Row of Palifadoes, to avoid the Surprizes of the Enemy. It is on this fide that a Gate mult be (for a Communication from the Works to the Body of the Place;) as alfo the Corps-de-Garde, for covering the Soldiers defigned for its defence.

All thefe Works ought to be environed with a Ditch 10 or 12 Toifes broad, communicating with the Ditch of the Body of the Place, and alfo as deep.

On the outfide of that Ditch is made a Cover'd Way five or fix Toifes broad, with a Pa rapet, and its Bank, commonly furnifhed with an enclofure of ftrong Palifadoes, drove 4 or 5 Feet into the Ground. 'The top of that Parapet muft be floped next to the Country, and if it can be produced 20 or 30 'Toifes it will be better: for a Slope (or Glacis) cannot be too long; becaufe, by means thereof, the Enemy cannot approach the Body of the Place, without being difcovered.

The Outworks of which we have fpoken, are the moft common ones: There are many other forts of them, which we fhall not mention, it requiring a great Volume.

How to menfure the Works of Fortifications.

The Ground of which the Ramparts and Parapets are formed, is generally taken out of the Ditches made about the Place; to know the quantity of which, meafure the Cavity of the Ditches, and reduce it to Cubic Toifes. As, for example, If the Ditch over-againft the Face of a Baftion, be so Toifes long, 20 broad, and 4 deep; multiply the Length by the Breadth, and the Product will be 1000 fquare Toifes, which multiply'd by 4 the Depth, and there will arife 4000 Cubic Toifes.

Note, 'That fince there is a neceffity to give the Ground a great flope, to keep it from crumbling to the bottom, the Ditch will be wider at the top than at the bottom; whence,
if a Ditch be 20 Feet broad in the middle of its Depth, at the top it muft at lealt be 22 Toifes broad, and 18 Toifes at the bottom: Thofe 22 Toifes added to 18 , make 40 , whofe half 20, is the mean Breadth to be ufed.

The Stone, or Brick-work, keepiing together the Earth, ought to have thicknefs proportionable to its height, and alfo about a Foot in Talud, the height of every Toife.

If, for example, a Wall be built to fuftain the Earth of the Rampart of a Place, and it is 6 Toifes high, the leaft thicknefs that can be given to that height, at the top, mult be 3 Feet, and at the bottom, juft above the Foundation, 9 Fret, becaufe of its Talud of x Foot every Toife in height: Now thefe two thickneffes 9 and 3 make i2, whofe half 6 Feet is the mean thicknefs of the Wall; and confequently, to line the Face of a Battion, so Toifes long, 6 Toifes high, and one Toife of mean thicknefs, there muft be 300 Cubic Toifes of Walling, excluding the Foundation, which cannot be determined without krtowing the Ground. Befides this, there are commonly made Counter-forts for futaining the Earth, and hindering its preffing too much againft the Walls. Thefe Countei-forts ought to be funk in firm Ground, and enter in the dug Earth, at leaft a Toife; the, are 7 or 8 Feet broad at the Root, that is, on the fide where they are faficned to the Wall, and 4 or 5 Feet at the end, going into the Earth of the Rampart, whica amounts to one Toife of Surface, in fuppofing (as we have already) that the Root is 7 Feet, and the end going into the Earth of the Rampart 5 Feet, which makes ${ }_{52}$ Feet, half of which being 6 , is the mean thicknefs; and fuppofing them 4 Toifes in height, one with another, eacil vail be 4 Cubic Toifes: and fince there ought to be 10 in the extent of $\mathbf{0}$ Toifes, the Sone or Brick-work of ro Counter-forts will be 40 Cubic Toifes: So thar there will be about 1000 Cubic Toifes to wall the two Faces, and the Flanks of a Bartion, and to wail a Courcain, 80 'Toifes in length, there muft be about 600 Cubic Toifes of Stone or Brick-work; whence the Walling for the whole Place may be eafily computed.

Note, It is better to make an Eftimation too great, than too little.
It remains that we fay fomething of the Carpenters Toife, required to conftruct Bridges and Gates, and other Works of the like Nature.

In meafuring of Timber, we reduce it to Solives:
A Solive is a Piece of Timber 12 Feet long, and 36 Inches in furface; that is; 6 Inches broad, and 6 thick, which makes 3 Cubic Feet of Timber, being the feventy fecond part of a Cubic Toife.
We fhall give here two Ways of Calculation, to the end that the one may prove the other.
'The firt is, to reduce the bignefs of the Piece of Timber into Inches, that is; the Inches of its breadth and thicknefs, and after having multiplied thefe two Quantities by one another, the Product muft be multiplied by the Toifes, Feet and Inches of its length, which laft Product being divided by 72, the Quotient will give the Number of Solives cone tained in the Piece of Timber.

The Reafon of this is, becaufe 72 Pieces, I Inch Bare, and a Toife long, make a Solive.
Suppofe, for example, a great Piece of Timber is to be reduced to Solives, whofe length is 2 Toifes, 4 Feet, 6 Inches, and 12 by 15 Inches Bafe; multiply 15 by 12, the Product is 180 fquare Inches, which again multiplied by 2 Toifes, 4 Feet, 6 Inches, and the Product 495 , divided by 12 , will give $6 \frac{7}{5}$ Solives.
The fecond Method is founded upon this, that a Solive contains 3 Cubic Feet.
As, for example, If a Piece of Timber (the fame as before) be 2 Toifes, 4 Feet, 6 Inches long, and Bafe be 12 by 15 Inches; multiplying 12 by 15 , the Product will be 180 fquare Inches; the i2th part of that Number, which is 15 , being confidered as Feet, makes z Toifes 3 Feet, which, multiplied by the length 2 Toifes, 4 Feet, 6 Inches, make 6 Solives, ${ }_{5}$ Feet, and 3 Inches: So that there wants but 9 Inches, or the eighth part of a Toife, to. make 7 Solives, as in the Calculation of the firf Method.

ADDITIONS of English INSTruments.

Of the Theodolite, Plain-Table, Circumferentor, and Surveying-Wheel.

C H A P. I.

Of the Theodolite.

Fig. B.

Fig. C

TH I S Theodolite confifts of a Brafs Circle, cut in form of the Figure B, ufually about 12 or 14 Inches in Diameter, whofe Limb is divided into 360 Degrees, and each Degree into as many Minutes either Diagonally, or otherwife, as the largenefs of the Inftrument will admit.
Underneath, at the Places $c c$ of this Circle, are fixed two little Pillars $d d$, for fupporting an Axis, upon which is fixed a Telefcope with a fquare Brafs Tube, having two Glaffes therein, for better perceiving Objects at a great diftance; whence this Telefcope may be yaifed or lowered, according as Objects be Horizontal or not. The ends of the aforefaid Pillars are joined by the Piece g g, upon the middle of which is folder'd a Socket with its Screw, for receiving the top of the Ball and Socket E. Upon and about the Center of the Circle B, muft the Index C move, which is a Circular Brafs Plate, having upon the middle thereof a Box and Needle, or Compafs, whofe Meridian Line anfwers to the Fiducial Line a a. At the Places $b b$ of the Index are fixed two little Pillars for fupporting an Axis, carrying a Telefcope in the middle thereof, whofe Line of Collimation mult be anfwerable to the Fiducial Line a a of the Index. This Telefcope hath a fquare Brafs Tube, and two Glaffes therein, and may be raifed or lowered, like that beforemention'd. At cach end of one of the Perpendicular fides of each Tube of the Telefcopes, are fixed four fmall Sights for viewing nigh Objects thorough them.
The ends of the Index a a are cut Circular, fo as to fit the Divifions upon the Limb of the Circle B, and when the faid Limb B is Diagonally divided, the Fiducial Line at one end of the Index fhews the Degrees and Minutes upon the Limb. But when the Limb is only divided into Degrees, and every 30 th Minute, we have a much better Contrivance for finding the Degrees, and every 2 Minutes upon the Limb, which is thus: Let the half Arc p a of one end of the Index contain exactly 8 Degrees of the Limb; then divide the faid half Arc into 15 equal Parts, at every five of which fet the Numbers $10,20,30$, beginning from the Fiducial Line or middle of the Index. Now each of thefe equal Parts will be 32 Minutes: Therefore if you have a mind to fet the Fiducial Line of the Index to any Number of Degrees, and every 2 Minutes upon the Limb; for example, to 40 Degrees to Minutes; move the Index fo, the Fiducial Line being between the 40th Degree, and the 40 th Degree and 30 Minutes, that the Line of Divifion, numbered io upon the Index, may exactly fall upon fome Line of Divifion of the Limb; and then the Fiducial Line will fhew 40 Degrees, Io Minutes.

Again: Suppofe the Fiducial Line being between the soth Degree and 30 Minutes, and the 5 Ift , then that Line of Divifion, of equal Parts on the Index, exactly falling upon fome Line of the Divifions of the Limb, will give the even Minutes above 50 Degrees 30° Minutes the Fiducial Line flands at. As fuppofe the 4 th Line of Divifion of the Index ftands exactly againft fome Line of Divifion of the Limb; then the Minutes above 40 Degrees 30 Mi nutes will be 8, that the Fiducial Line ftands at: Underfand the fame of others.
Fig. D. is the Brafs Ball and Socket in which goes the Head of the three-legg'd Staff E, for fupporting the Inftrument when ufing : Thefe three Legs are noveable by means of Joints, and may be taken fhorter by halfa: the Places a a a, by means of Screvw, for better conveniency of Carriage.

Thus have you the bef Theodolite, as now made in England, briefy defribed.
The Ufe thereof will be fufficiently undertood by what our Author fays of the Ufe of the Semi-circle, (which is but half a. Theodolite) and I in the Ufe of the Plain-Table, and Circumferentor.
Note, There are fome Theodolites that have no Telefcopes,but only 4 Perpendicular Sights; two being faftened upon the Limb, and two upon the ends of the Index. Note likewife, That the Index, and Box and Needle, or Compafs of the Theodolite, will ferve for a Citcumferentor.

C H A P. II.
 Of the Confruction and USe of the Plain-Table, and Circumferentor.

THE Table itfelf is a Parallelogram of Oak, or other Wood, about 15 Inches long, Fig. F. and Iz broad, confifing of two feveral Boards, round which are Ledges of the fame Wood ; the two oppofite of which being taken off, and the Spangle unskrewed from the bottom, the aforefaid two Boards may be taken afunder for eafe and conveniency of Carriage. For the binding of the two Boards and Ledges faft, when the Table is fet together, there is a Box Iointed-frame, about ${ }^{3}$. of an Inch broad, and of the fame thicknefs as the Boards, which may be folded together in 6 Pieces. This Frame is fo contrived, that it may be taken off and put on the Table at pleafure, and may go eafily on the Table, either fide being upwards. This Frame alfo is to faften a Sheet of Paper upon the Table, by forcing down the Frame, and fqueezing in all the edges of the Paper; fo that it lies firm and even upon the Table, that thereby the Plot of a Field, or other Inclofure, may conveniently be drawn upon it.

On both fides this Frame, near the inward edge, are Scales of Inches fubdivided into ro equal Parts, having their proper Figures fet to them. The Ufes of thefe Scales of Inches, are for ready drawing of Parallel Lines upon the Paper ; and alfo for fhifting your Paper, when one Sheet will not hold the whole Work.

Upon one fide of the faid Box Frame, are projected the 360 Degrees of a Circle from a Brafs Center-hole in the middle of the Table. Each of thefe Degrees are fubdivided into 30 Minutes; to every roth Degree is fet two Numbers, one expreffing the proper Number of Degrees, and the other the Complement of that Number of Degrees to 360 . This is done to avoid the trouble of Subftraction in taking of Angles.

On the other fide of this Frame, are projected the $\mathbf{1 8 0}$ Degrees of a Semi-circle from a Brafs Center-hole, in the middle of the Table's length, and about a fourth part of its breadth. Each of thefe Degrees are fubdivided into 30 Minutes; to every roth Degree is fet likewife, as on the other fide, two Numbers; one expreffing the proper Number of Degrees, and the other the Complement of that Number of Degrees to 180 , for the fame Reafon, as before.

The manner of projecting the Degrees on the aforefaid Frame, is, by having a large Circle divided into Degrees, and every 30 Minutes: For then placing either of the Brafs Centerholes on the Table, in the Center of that Circle fo divided, and laying a Ruler from that Center to the Degrees on the Limb of the Circle; where the edge of the Ruler cuts the Frame, make Marks for the Correfpondent Degrees on the Frame.

The Degrees thus inferted on the Frame, are of excellent ufe in wet or ftormy Weather, when you cannot keep a Sheet of Paper upon the Table. Alfo thefe Degrees will make the Plain-Table a Theodolite, or a Semi-circle, according as what fide of the Frame is uppermoff.

There is a Box, with a Needle and Card, cover'd with a Glafs, fixed to one of the long fides of the Table, by means of a Screw, that thereby it may be taken off. This Box and Needle is very ufeful for placing the Inftrument in the fame Pofition upon every remove.

There belongs to this Inftrument a Brafs Socket and Spangle, fcrewed with three Screws to the bottom of the Table, into which muft be put the Head of the three-legged Staff, which may be ferewed faft, by means of a Screw in the fide of the Socket.

There is alfo an Index belonging to the Table, which is a large Brafs Ruler, at leaft' 16 Inches long, and 2 Inches broad, and fo thick as to make it flrong and firm, having a floped Edge, called the Fiducial Edge, and two Sights fcrewed perpendicularly on it, of the fame height. They muft be fer on the Ruler perfectly at the fame diftance from the Fiducial Edge. Upon this Index it is ufual to have many Scales of equal Parts, as alfo Diagonals, and Lines of Chords.

SECTIONI.
 Of the Conjtrabtion of the Circumfercntor.

THIS Inftrument confifts of a Brafs Index and Circle, all of a piece; the Index is commonly made about 14 Inches long, an Inch and half broad, and of a convenient thicknefs. The Diameter of the aforenamed Circle is about 7 Inches. On this Circle is made a Card, whofe Meridian Line anfwers to the middle of the Breadth of the Index: That Card is divided into 360 Degrees. There is a Brafs Ring folder'd on the Circumference of the Circle, on which frews another Ring with a flat Glafs in it; fo that they make a kind of Box to contain the Needle fufpended upon the Pivot placed in the Center of the Circle.

There are alfo two Sights to fcrew on, or flide up and down the Index, like thofe beforenamed, belonging to the Index of the Plain-Table; as likewife a Spangle and Socket fcrew'd on to the back-fide of the Circle, for putting the Head of the Staff in.

SECTION II.

Of the USc of the Plain-Table and Circunferentor.
EUT firft, it is neceffary to know how to fet the Parts of the Plain-Table together, to make it fit for ufe.

When you would make your 'Table fit for ufe, lay the two Boards together, and alfo the Ledges at the ends in their due Places, according as they are marked. Then lay a Sheet of white Paper all over the Table, which mult be ftretch'd over the Boards, by putting on the Box Frame, which binds both the Paper to the Boards, and the Boards to one another : Then fcrew the Socket on the back-fide the Table, and alfo the Box and Needle in its due Place, the Meridian Line of the Card lying parallel to the Meridian or Dameter of the Table; which Diameter is a Right Line drawn upon the Table, from the beginning of the Degrees thro' the Center, and fo to the end of the Degrees. Then put the Socket upon the Head of the Staff, and there fcrew it : Alfo put the Sights upon the Index, and lay the Index on! the 'Table. So is your Inftrument prepared for ufe, as a Plain-Table, Theodolite, or Semicircle.

But Note, It is either a Theodolite, or Semi-circle, according as the Theodolite or Semi-circular fide of the Frame is upwards; for when you ufe your Inftrument as a PlainTable, you may place your Center in any part of the Table, which you judige moft proper for bringing on the Work you intend. But if you ufe your Inftrument as a Theodolite, the Index muft be turned about upon the Brafs Center-hole in the middle of the Table; and if for a Semi-circle, upon the other Brafs Center-hole, by means of a Pin or Needle placed therein.

If you have a mind to ufe this Inftrument, as a Circumferentor, you need only forew the Box and Needle to the Index, and both of them to the Head of the Staff, with a Brafs ScrewPin fitted for that purpofe : So that the Staff being fixed in any Place, the Index and Sights may turn about at pleafure, without moving the Staff.
U S E I. How to menfure the Duantity of any Angle in the Field, by the Plain-Table, confidered as a Theodolite, Semi-circle, and Circumferentor.

1. How to observe an Angle in the Field by the Plain-Table.

Plate 14.
Fig. I,

Plate XIII

Figure of any Angle or Angles that you obferve in the Field, in their true Pofitions, without any further trouble.

II. How to find the Quantity of an Angle in the Field, by the Plain-Table, confider'd as a Theodolite

 or Semi-circle.Let it firt be required to find the Quantity of the Angle E K G by the Plain-Table, as a Fig. iv 'Theodolite : Place your Infrument at K, with the Theodolite fide of the Frame upwards, laying the Index upon the Diameter thereof; then turn the whole Inftrument about (the Index ftill refting upon the Diameter) till thro the Sights you efpy the Mark at E : Then fcrewing the Inftrument faft there, turn the Index about upon the Theodolite Center-hole in the middle of the Table, till thro the Sights you efpy the Mark at G. Then note what Degrees on the Frame of the Table are cut by the Index, and thofe will be the Quantity of the Angle E K G fought.

You muft proceed in the fame manner for finding the Quantity of an Angle by the PlainTable as a Semi-circle ; only put the Semi-circle fide of the Frame upwards, and move the Index upon the other Center-hole.

III. How to obferve the Quantity of an Angle by the Circumferentor.

If it be required to find the Quantity of the former Angle E K G by the Circumferentor, Fig. xo Firft, place your Inftrument (as before) at K, with the Flower-de-luce in the Card towards you. Then direct your Sights to E, and obferve what Degrees are cut by the South-End of the Needle, which let be 296; then turning the Infrument about (the Flower-de-luce always towards you) direct the Sights to G, noting then alfo, what Degrees are cut by the SouthEnd of the Needle, which fuppofe 182. This done (always) fubftract the lefier from the greater, as in this Example 182 from 296, and the remainder is 114 Degrees; which is the true Quantity of the Angle E K G.
Again ; The Inftrument flanding at K , and the Sights being direCted to E , as before, fuppofe the South-End of the Needle had cut 79 Degrees; and then direting the Sights to G_{2} the fame end of the Needle had cut 325 Degrees. Now, if from 325 you fubftract 79, the remainder is 246 . But becaufe this remainder 246 is greater than 180 , you muft therefore fubfract 246 from 360, and there will remain 114, the true Quantity of the Angle fought.
This adding and fubfrasting for finding of Angles may feem tedious to fome. But here note, that for quick difpatch the Circumferentor is as good an Inftrument as any, for in going round a Field, or in furveying a whole Mannor, you are not to take notice of the Quantity of any Angle ; but only to obferve what Degrees the Needle cuts: as hereafter will be manifelt.

U S E II. How by the Plain-Table, to take the Plot of a Field at one Station zuithin the fame, from whence all the Angles of the fame Field may be feen.

Having enter'd upon the Field to furvey, your firft work mult be to fet up fome vifible Fig. 2, Mark at each Angle thereof; which being done, make choice of fome convenient Place about the middle of the Field, from whence all the Marks may be feen, and there place your Table covered with a Sheet of Paper, with the Needle hanging directly over the Meridian Line of the Card, (which you muft always have regard to, efpecially when you are to furvey many Fields together.) Then make a Mark about the middle of the Paper, to reprefent that part of the Field where the Table ftands; and laying the Index upon this Point, direct your Sights to the feveral Angles where you before placed Marks, and draw Lines by the fide of the Index upon the Paper. Then meafure the diftance of every of thefe Marks from your Table, and by your Scale fet the fame diffances upon the Lines drawn upon the Table, making fmall Marks with your Protracing-Pin, or Compafs-Point, at the end of every of them. Then Lines being drawn from the one to the other of thefe Points, will give you the exadt Plot of the Field ; all the Lines and Angles upon the Table being proportional to thofe of the Field.

Example ; Suppofe the Plot of the Field A B C DEF was to be taken. Having placed Marks in the feveral Angles thereof, make chcice of fome proper Place about the middle of the Field, as at L, from whence you may behold all the Marks before placed in the feveral Angles; and there place your Table. Thenturn your Inftrument about, till the Needle hang over the Meridian Line of the Card, denoted by the Line NS.

Your Table being thus placed witha Sheet of Paper thereon, make a Mark about the middie of your Table, which fhall reprefent the Place where your Table ftands. Then, applying yout Index to this Point, direet the Sights to the firt Mark at A, and the Index refting there, draw a Line by the fide thereof to the Point L. Then with your Chain meafure the diftance from L, the Place where your Table flands, to A, the firf Mark, which fuppofe 8 Chains, 10 Links. Then take 8 Chains 10 Links from any Scale, and fet that diftance upon the Line from L to A .
Then direating the Sights to B, draw a Line by the fide of the Index, as before, and meafure the diftance from jour Table at L , to the Mark at B , which fuppofe 8 Chains 75

Links.

Links. This diftauce taken from your Scale, and apply'd to your 'Table from L to C, whil give the Point C , reprefenting the third Mark.

Then direct the Sights to the third Mark C, and draw a Line by the fide of the Index, meafuring the diftance from L to C , which fuppofe 10 Chains 65 Links. This diftance being taken from your Scale, and apply'd to your Table from L to C, will give you the Point C, reprefenting the third Mark.

In this manner you muft deal with the reft of the Marks at D, E, and F , and more, if the Field had confifted of more Sides and Angles.

Laftly; When you have made Obfervations of all the Marks round the Field, and found the Points A BCDE and F upon your Table, you muft draw Lines from one Point to another, till you conclude where you firf begun. As, draw a Line from A to B, from B to C, from C to D, from D to E, from E to F, and from F to A, where you begun; then will A BCDEF, be the exact Figure of your Field, and the Line N S the Meridian.

Note, Our Chains are commonly 4 Poles in Length, and are divided into one hundred equal Parts, called Links, at every tenth of which are Brafs Diftinctions numbering them.

U S E III. To take the Plot of a Wood, Park, or other large Champain Plain, by the Plain-Table, in meafuring round about the fame.

Suppofe A B C D E F G to be a large Wood, whofe Plot you defire to take upon the Plain-Table.
I. Having put a Sheet of Paper upon the Table, place your Inftrument at the Angle A, and direct your Sights to the next Angle at B, and by the fide thercof draw a Line upon your Table, as the Line A B. Then meafure by the Hedge-fide from the Angle A to the Angle B, which fuppofe 12 Chains 5 Links. Then from your Scale take 12 Chains 5 Links, and lay oft upon your Table from A to B. Then turn the Index about, and direct the Sights to G, and draw the Line A G upon the 'Table. But at prefent you need not meafure the diftance.
II. Remove your Inftrument from A, and fet up a Mark where it laft ftood, and place your Inftrument at the fecond Angle B. Then laying the Index upon the Line A B, turn the whole Inftrument about, till thro the Sights you fee the Mark fet up at A, and there fcrew the Inftrument. Then laying the Index upon the Point B, direct your Sights to the Angle C, and draw the Line B C upon your Table. Then meafuring the diftance B C 4 Chains 45 Links, take that diftance from your Scale, and fet it upon your Table from B to C.
III. Remove your Inftrument from B, and fet up a Mark in the room of it, and place your Inftrument at C, laying the Index upon the Line $C B$; and turn the whole Inftrument about, till thro the Sights you efpy the Mark fet up at B, and there faften the Inftrument. 'Then laying the Index on the Point C, direat the Sights to \mathbf{D}, and draw upon the Table the Line C D. Then meafure from C to D 8 Chains 85 Links, and fet that diftance upon your Table from C to D .
IV. Remove the Inftrument to D, (placing a Mark at C, where it laft ftood) and lay the Index upon the Line D C, turning the whole Inftrument about, till thro the Sights you fee the Mark at C, and there faften the Inftrument. Then lay the Index on the Point D, and direct the Sights to E, and draw the Line D E. Then with your Chain meafure the diftance DE ${ }_{13}$ Chains 4 Links, which lay off on the Table from \mathbf{D} tn E .
V. Remove your Inftrument to E, (placing a Mark at D, where it laft ftood) and laying the Index upon the Line D E, turn the whole Inftrument about, till thro the Sights you fee the Mark at D, and there faften the Inftrument. Then lay the Index on the Point E, and direct the Sights to F, and draw the Line EF. Then meafure the diftance EF 7 Chains 70 Links, which take from your Scale, and lay off from E to F.
VI. Remove your Inftrument to F, placing a Mark at E, (where it laft food) and lay the Index upon the Line E F, turning the Inftrument about, till you fee the Mark fet up at E, and there faften the Inftrument. Then laying the Index on the Point F, direct the Sights to G, and draw the Line F G upon the Table, which Line FG will cut the Line A G in the Point G. Then meafure the diftance FG 5 Chains 67 Links, and lay it off from F to G.
VII. Remove your Inftrument to G, (fetting a Mark where it laft ftood) and lay the Index upon the Line FG, turning the whole Inftrument about, till thro the Sights you fee the Mark at F, and there faften the Inftrument. Then laying the Index upon the Point G, dirett the Sights to A, (your firft Mark) and draw the Line G A, which, if you have truly wrought, will pafs directly thro the Point A, where you firf began.

In this manner may you take the Plot of any Champain Plain, be it never fo large. And here note, that very often Hedges are of fuch a thicknefs, that you cannot come near the Sides or Angles of the Field, either to place your Inftrument, or meafure the Lines. Therefore in fuch Cafes you muft place your Inftrument, and meafure your Lines parallel to the Side thereof; and then your Work will be the fame as if you meafured the Hedge itfelf.

Chap. 2. of the Plain-Table, and Circumferentor.

NOT'E alfo, That in thus going about a Field, you may much help your felf by the Needle. For looking what Degree of the Card the Needle curs at one Station, if you remove your Inftrument to the next Station, and with your Sights look to the Mark where the Inftrument laft food, you will find the Needle to cut the fame Degree àgain, which will give you no finall Satisfaction in the profecution of your Work. And tho there be a hundred or more Sides, the Needle will ftill cut the fame Degree at all of thiem, except you have committed fome former Error: therefore at every Station have an Eye to the Needlc.

Of Shifting of Paper.

In taking the Plot of a Field by the Plain-Table, and going about the fame, as before di- Fig. a, rected, it may fo fall out, if the Field be very large, and when you are to take many Inclofures togethcr, that the Slieet of Paper upon the Table will not hold all the Work. But you mult be forced to take of that Shieet, and put another clean Sheet in the room thereof: and, in Plotting of a Mannor or Lordfhip, many Sheets may be thus changed, which we call Shifting of Paper. The Mainer of performing thereof is as follews.

Suppofe in going about to take the Piot A B C D EF G, as before directed, that you having made choice of the Angle at A for the Place of the beginining, and proceeded from thence to B, and from B to C, and from C to D, when you come to the Angle at D, and are to draw D E, you want roon to draw the fame upoin the Table. Do thus:
Firft, thro the Point D draw the Line D O, which is almoft fo much of the Line D E, as the 'Table will contain. Then near the edge of the Table H M, draw a Line parallel to H M, by means of the lnches and Subdivifions on the oppofite fides of the Frame, as PQ, and another Lirre at Right Angles to that thro the Point O, as $O N$. This being done, mark this Sheet of Paper with the Figure (i) about the middle thereof, for the firt Sheet. Then taking this Sheet off your Table, pur another clean Sheet thereon, and draw upon it Fig. s. a Line parallel to the contrary edge of the Table, as the Line R S. Then taking your firft Sheet of Paper, lay it upon the Table fo, that the Line PQ may exactly lie upon the Line R S, to the beft advantage, as at the Point O (Fig. 5.) Then with the Point of your Compaffes draw fo much of the Lite O D uipon the clean Sheet of Paper as the Table will hold. Having thus done, proceed with your Work upon the ne;w Sheet, beginning at the Point O; and fo going forward with your Work, as in all Refpeits has before been directed; as from O to E, from E to F, from F to G, and from G to A, (by this direation) fhifting your Paper as often as you have occiafion.

U S E IV. Huw to take the Plot of any Wood, Park, \&c. by going about the Same, and making ObServattoins at every Aingle thereff, by the Circumferentor
Suppofe A. BCDEFGHK is a large Field, or other Inclofure, to be Plotted by Fig.6. the Circumferentor.
I. Placing.your Inftrument at A, (the Flower-de-luce being towards you) direct the Sights to B, the South-end of the Needle curting 191 Degrees, and the Ditch, Wall, or Hedge, containing io Chains 75 Links. The Degreescut, and the Line meafured, mult be noted down in your Field-Eook.
2. Place your Inftrument at B, and direat the Sights to C, the South-end of the Needle cutting 279 Degrees, and the Line BC containing 6 Chains 83 Links; which note down in your Field-Book.
3. Place the Infrument at C, and direct the Sights to D, the Needle cutting 216 Deg. 30 Min. and the Line C D containing 7 Chains 82 Links.
4. Place the Inflrument at D , and direct the Sights to E , the Needle cutting 327 Degrees, and the Line D E containing 9 Chains 96 Links.
5. Place the Inftrument at E, and direct the Sights to F, the Needle cutting 12 Deg. 30 Min. and the Line F E 9 Chains 71 Links.
6. Place the Inflrument at F, and direct the Sights to G, the Needle cutting 342 Deg. 30 Min. and the Line F G being 7 Chains 54 Links.
7. Place the Inftrument at G, and direct the Sights to H, the Needle cutting 98 Deg. 30 Min . and the Line $\mathrm{G} \mathrm{H}^{\prime}$ containing 7 Chains 52 Links.
8. Place the Infrument at H, and direet the Sights to K, the Needle cutting 71 Deg. and the Line H K containing 7 Chains 78 Links:
9. Place the Inftrument at K, and direet the Sights to A, (where you began) the Needle cutring 161 Deg. 30 Min. and the Line K A containing 8 Chains 22 Links.
Having gone round the Field in this manner, and collected the Degrees cut, and the Lines meafured, in the Field-Book, you will find them to fland as follows, by which you may protrait and draw your Field, as prefently I fhall fhew.

	Degrees.	Minutes.	Chains.	Iinks.
A	191	00	10	75
D	297	00	6	83
C	216	30	7	82
D	325	00	6	96
E	12	30	9	71
F	324	30	7	54
G	98	30	7	54
H	71	00	7	78
K	161	30	8	22

In going about a Field in this manner, you may perceive a wonderful quick Difpatch; for you are only to take notice of the Degrees cut once at every Angle, and not to ufe any Back-Sights, that is, to look thro the Sights to the Station you laft went from. But to ufe Back-Sigits with the Circumferentor, is beft to confirm your Work : For when you fand at any Angle of a Field, and direct your Sights to the next, and obferve what Degrees the South-end of the Needle cuts; if you remove your Inftrument from this Angle to the next, and look to the Mark or Angle where it laft ftood, the Needle will there alfo cut the fame Degrees as before.

So the Inftrument being placed at A, if you direct the Sights to B, you will find the Needle to cut 19 I Degrees ; then removing your Inftrument to B, if you direct the Sights to A, the Needle will then alfo cut 191 Degrees.
Notwithfanding the quick Difpatch this Inftrument makes, one half of the Work will almoft be faved; if, inftead of placing the Inftrument at every Angle, you place it but at every other: Angle. An Inftance of which take in the aforegoing Example.

1. Placing the Inftrument at A, and directing the Sights to B, you find the Needle to cut 19 I Degrees. Then,
2. Placing the Inftrument at B, direating the Sights to C, you find the Needle to cut 279 Degrees. And,
3. Placing the Inftrument at \mathbf{C}, and directing the Sights to \mathbf{D}, you find the Needle to cut 216 Degrees.
Now, having placed your Infrument at A, and noted down the Degrees cut by the Needle, which was 191, you need not go to the Angle B at all, but go next to the Angle C, and there place your Inftrument ; and directing your Sights backwards to B, you will find the Needle to cut 279 Degrees, which are the fame as were before cut when the Inftrument was placed at B: fo that the Labour of placing the Inftrument at B is wholly faved. Then (the Inftrument fill ftanding at C) direat the Sights to D, and the Needle will cut 216 Degrees, as before, which note in your Field-Book. This done, remove your Inftrument to E , and obferve according to the laft direations, and you will find the Work to be the fame as before. Then remove the Inftrument from E to G, from G to K, and fo to every Fecond Angle.
Fig. \%. Inow procced, to fhew the Manner of Protracting the former Obfervations.
According to the largenefs of your Plot provide a Sheet of Paper, as L M N O, upon which draw the Line L M, and parallel thereto draw divers other Lines quite thro the whole Paper, as the pricked Lines, in the Figure, drawn between L M and N O. Thefe Parallels thus drawn, reprefent Meridians. Upon one or other of thefe Lines, or parallel to one of them, muft the Diameter of your Protrator be always laid.
I. Your Paper being thus prepar'd, affign any Point upon any of the Meridians, as A, upon which place the Center of the Protractor, laying the Diameter thereof upon the Meridian Line drawn upon the Paper. Then look in your Field-Book what Degrees the Needle cuts at A, which was 191 Degrees. Now, becaufe the Degrees were above 180, you mult therefore lay the Semi-circle of the Protractor downwards, and keeping it there, make a Mark with the Protracting-Pin againf 191 Degrees; thro which Point, from A, draw the Line A B , containing 10 Chains 75 Links.
4. Lay the Center of the Protractor on the Point B, with the Diameter in the fame Pofition as béfore directed, (which always obferre.) And becaufe the Degrees cut at B were more than 180, viz. 279, therefore the Semi-circle of the Protrattor muft lie downwards; and fo holding it, make a Mark againft the 279 Degrees, and thro it draw the Line B C, containing 6 Chains 83 Links.
5. Place the Center of the Protractor on the Point C. Then the Degrees cut by the Needle at the Obfervation in C, being above 180, namely, 216 Degrees 30 Minutes, the Semi-circle of the Protractor muft lie downwards. Then making a Mark againft 216 Deg . 30 Min. thro it draw the Line CD, containing 7 Chains 82 Links.
6. Lay the Center of the Protrator upon the Point D; the Degrees cut by the Needle at that Angle being 325 : which being above 180, lay the Semi-circle downward; and againft 325 Degrees make a Mark, thro which Point, and the Angle D, draw the Line D E, containing 6 Chains 96 Links.
7. Remore

Chap. 3. of the Surveying-Wheel.

5. Remove your Protractor to E. And becaufe the Degrees cut by the Needle at this Angle were lefs than 180, namely, I2 Degrees 30 Min. therefore lay the Semi-circle of the Protractor upwards, and make a Mark againft 12 Degrees 30 Minutes, thro' which draw the Line EF, containing 9 Chains 71 Links.
6. Lay the Center of the Protractor upon the Point F; and becaufe the Degrees to be protracted are above 180, viz. $3 \dagger^{2}$ Degrees 30 Minutes, lay the Semi-circle of the Protractor downwards, and make a Mark againft 34^{2} Degrees 30 Minutes, drawing the Line FG, containng 7 Chains 54 Links.
And in this Manner muft you protract all the other Angles, G, H, and K, and more, if the Field had confifted of more Angles.

C H A P. III. Of the Conftruction and USe of the Surveying-Wheel.

TH I S Infrument confifts of a wooden Wheel, fhoe'd with Iron, to prevent its wear- Fig. \&, ing, exactly two Feet feven Inches and a half in Diameter, that fo its Circumference may be eight Feet three Inches, or half a Pole.
At the end of the Axie-tree of this Wheel, on the Left fide thereof, is, at Right Angles to thie Axle-tree, a little Star, about three fourths of an Inch Diameter, having eight Tecth. Now the Ufe of this Star is fuch, that when the Wheel moves round, the faid Star's Teeth, by falling at Right Angles into the Teeth of another Star of eight Teeth, fixed at one end of an Iron $\operatorname{Rod}(Q)$ caufes the Iron Rod to move once round in the fame time the Wheel hath moved once round. Therefore every time you have drove the Wheel half a Pole, the Iron Rod goes once round.

This Iron Rod, lying along a Groove in the fide of the Body of the Inftrument, hath on the other end a fquare hole, in which goes the fquare end b of the little Cylinder P. This Cylinder is faftened underneath the upper Plate H, of a Movement, covered with a Glafs, placed in the Body of the Inflrument at B, yet fo, that Eig. 9 p it may be moveable about its Axis, having the end a cut into a fingle threaded perpetual Screw, which falling into the Teeth of the Wheel A, being thirty two in Number, when you drive the Intrument forwards, caufes the Wheel A to go once round ar the end of each 16th Pole. The Pinion B hath fix Teeth, which falling into the Teeth of the Wheel C, whofe Number is fixty, caufes that to move once round at the end of each 160th Pole, or half Mile. This Wheel carries round a Hand, once in 160 Poles, over the Divifions of an Amnlar Plate, fixed upon the Plate H, whofe outmof Limb is divided into 160 equal Parts, each tenth of which is numbered, and fhews how many Poles the Inftrument is drove.

Again ; the Pinion D, which is fixed to the fame Arbre as the Wheel C is, hath twenty Teerih, which by their falling into the Teeth of the Wheel E, which hath forty T'eeth, caufes the faid Wheel E to go round once in 320 Poles, or one Mile; and the Pinion F, of twelve Teeth, falling into the Teeth of the Wheel G, whofe Number is 72 , caufes the Wheel G to go once round in 12 Miles. This Wheel G carries another leffer Hand once round in 12 Miles, over the Divifions of the innermoft Limb of the aforefaid Annular Plate, which is divided into twelve equal Parts for Miles, and each Mile fubdivided into halves and quarters, (that is, into eight equal Parts, for Furlongs) with Roman Charąers numbering the Miles.

The Ufe of this Inftrument is fuch, that by driving the Wheel before you, the Number of Niles, Poles, or both, you have gone, is eafily fhewn by the two Hands. And fo this Inftrument, together with a Theodolite or Circumferentor, for taking of Bearings, is of excellent Ufe in Plotting of Roads, Rivers, ©ic. For having placed your Wheel and Circumferentor at the beginning of the Road you defign to plot, which call your firft Station, caufe fome Perfon to go as far along the Road as you find it ftraight; and then take a Bearing to him, which fet down. This being done, drive the Wheel before you to the Place where the Man ftaads, which call the fecond Station, and note, by the Hands of the DialPlate, the diftance from the firf Station to the fecond, which fet down. Again, having placed your Circumferentor at the fecond Station, caufe the Man to go along the Road till he comes to another Bend therein. And from the fecond Station take a Bearing to the Man at the third, which fet down. Then drive the Wheel from the fecond Station to the third, and note the diftance, which fet down. And in this Manner proceed till you come to your Journey's end. 'Then in Plotting the Road, you mult obferve the fame Directions, as are given in Plotting the Example of Úfe IV. of the laft Chapter.

B O O K V.

> Of the Congtruction and UJes of Levels, for conducting of Water; as alfo of Inftruments for Gunnery.

C H A P. I.
 Of the Conftruction and UJes of different Levels.

Plate 15.

Fig. B.

Fig. C.

Conftruction of a Water Level.

 HE firft of thefe Inftruments is a Water Level, compofed of a round Tube of Brafs, or other folid Matter, about 3 Feet long, and 12 or 15 Lines Diameter, whofe ends are turned up at Right Angles, for receiving two Glafs Tubes, 3 or 4 Inches long, faftened on them with Wax or Maftick. At the middle and underneath this Tube, is fixed a Ferril, for placing it upon its Foot.
There is as much common or coloured Water poured into one end of it, as that it may appear in the Glafs Tubes.

This Level, altho very fimple, is very commodious for Levelling fmall Diftances.
It is founded upon this, that Water always naturally places itfelf level; and therefore the height of the Water in the two Glafs Tubes will be always the fame, in refpect to the Center of the Earth.

The Air Level B, is a very ftraight Glafs Tube, every where of the fame thicknefs, of an indetermined Length, and Thicknefs in proportion; being filled to a drop with Spirit of Wine, or other Liquor, not fubject to freeze. The ends of the Tube are hermetically fealed, that is, the end through which the Spirit of Wine is poured muft afterwards be clofed, by heating it with the Flame of a Lamp, blown thro a little Brafs 'Tube, to make the hear the greater; and then when the Glafs is become foft, the end muft be clofed up.

When this Inftrument is perfectly Level, the Bubble of Air will fix itfelf juft in the middle, and when it is not Level, the Bubble of Air will rife to the top.

Conftrution of an Air Level.

This Inftrument is compofed of an Air Level \mathbf{r}, about 8 Inches long, and 7 or 8 Lines in Diameter, fet in a Brafs Tube 2; which is left open in the middle for feeing the Bubble of Air at the top.
It is carried upon a very ffrong ftraight Rule, about a Foor long, at the ends of which are placed two Sights exafly of the fame height, and like that of Number 3, which has a fquare hole therein, having two Filets of Brafs very finely filed, croffing one moother at Right Angles, in the middle of which Filets is drilled a little hole. There is faften'd a little thin Piece of Brafs to this Sight, with a fmall Headed-Rivet, to ftop the faid Square opening,

when there is occafon, and having a little hole drilled thro it, anfwering to that which is in the middle of the Filets. The Brafs T'ube is faftened upon the Rule, by means of two Screws, one of which marked 4, ferves to raife or deprefs the 'Tube at pleafure, for placing it level, and making it agree with the Sights.

The top of the Ball and Socket is riveted to a little Rule, that fprings, one of whofe ends is faftened with two Screws to the great Rule, and at the other end there is a Screw 5, Cerving to raife or deprefs the whole Intrument when it is nearly level.

The Manner of adjufting this Level is eafy, for you need bur place it upon its Foot, fo that the Bubble of Air may be exactly in the middle of the Tube; then fhutting the Sight next to the Eye, and opening the other, the Point of the Object which is cut by the horizontal Filet is level with the Eye ; and to know whether the Air Level agrees well with the Sights, you muft turn the Inftrument quite about, and thut the Sight which before was opened, and open the other. 'Then looking through the little hole, if the fame Point of the Object before obferved be cut by the horizontal Filet, it is a fign the Level is juft ; but if there be found any difference, the Tube muft be raifed or depreffed by means of the Screw 4, till the Sights agree with the Level ; that is, that looking at an Object, the Bubble of Air being in the middle, and afterwards turning the Inftrument about, the fame Object may be feen.
The Level D is a little Glafs Tube inclofed within a Brafs Tube, faftened upon a Rule Fig. D. perfectly equal in thicknefs, and ferves to know whether a Plane be level, or not.

Confruition of a Telefcope Air Level.

This Level is like the Lcvel C, but inftead of Sights, it carries a Telefcope to difcover Fig. E, Objefts at a good diftance. This Telefcope is in a little Brafs Tube, about is Inches long, faftened upon the fame Rule as the Level, which ought to be of a good thicknefs, and very ftraight.

At the cnd of the Tube of the Telefcope, marked r , enters the little Tube I , carrying the Eye Glafs, and a human Hair horizontally placed in the Focus of the Object Glafs 2. This little Tube may be drawn out or pufhed into the great one, for adjufting the Telefcope to different Sights.

At the other end of the Telefcope is placed the Objea Glafs, whofe Conftruction is the fame as that before mentioned, belonging to the Semi-circle.

The whole Body of the Telefcope is faftened to the Rule, as well as the Level, with Screws, upon two little fquare Plates, foldered towards the ends of each Tube, which ought to be perfectly equal in thicknefs.

The Screw 3, is for raifing or lowering, the little Fork carrying the human Hair, and making it agree with the Bubble of Air, when the Inftrument is level ; and the Screw 4, is for making the Bubble of Air agree with the Telefcope.

Underneath the Rule there is a Brafs Plate with Springs, having a Ball and Socket faftned thereto.

The Level F , is in form of a Square, having its two Branches of equal length ; at the Fig. F. junction of which there is made a litcle hole, from which hangs a Thread and Plummet, playing upon a Perpendicular Lime, in the middle of the Quadrant, often divided into go Degrecs. Its Ufe is very eafy, for the ends of the Branches being placed upon a Plane, we may know that the Plane is level when the Thread plays upon the Perpendicular in the middle of the Quadrant.

Conftruction of a Telefcope Plumb-Level.

This Inftrument is compofed of two Branches, joined together at Right Angles; whereof Fig. G. that carrying the Thread and Plummet, is about a Foot and a half, or two Foot long.

This 'Thread is hung towards the top of the Branch, at the Point 2. The middle of the Branch, where the Thread paffes, is hollow, that fo it may not touch in any Place but towards the bottom, at the Place 3, where there is a little Blade of Silver, on which is drawn a Line perpendicular to the Telefcope.

The faid Cavity is covered by two Pieces of Brafs, making as it were a kind of Cafe, left the Wind fhould agirate the Thread ; for which. reafon there is alfo a Glafs covering the Silver Blade, to the end that we may fee when the Thread and Plummet play upon the Perpendicular. The Telefcope x , is faftened to the other Branch, which is about two Feet long, and is made like the other Telefcopes of which we have already fpoken. All the Exactnefs of this Inftrument confifts in having the Telefcope at Right Angles with the Perpendicular.

This Inftrument has a Ball and Socket faftened behind the aforefaid Branch, for placing it upon its Foot.

There are fome of thefe fort of Levels made of Brafs or Iron, whofe Telefcope and the Cavity, in which is included the Thread carrying the Plummet, is about $400^{\circ} 5$ Feet long, in order to level great Diftances at ouce.

The Telefcope is about I Inch and ahalf Diameter, and the Cafe in which the Thread, carrying the Plummet, is inclofed, is about 3 Inches wide, and half an Inch thick. This Cafe is faftened
with Screws in the middle, to the Telefonpe; fo that they may be at Right Angies with one another: And at the two ends of the Telefcopes are adjuted two broad Circies, in which the Telefcope exactly turns; which Circles, being flat underneath, are faftened to a flrong Iron Rule.

This Level is fupported by two Fect almoff like that of Figure E, Plate 12, fafened with Screws to the Extremities of the Iron Rule. Alfo there are two Openings, covered with Glaffes, inclofed in little Brafs Frames, which open, that fo the Thread and Miummer may be hung to the top of the Cafe, and play upon two little Silver Blades, in a Line drawn on them perpendicular to the Telefcope. Thefe Blades are placed againft the Openings of the Cafe, and the Telefofpe is like that before fpoken of, in fpeaking of the Seni-circle.

All the Exactnefs of this Inftrument confifts in having the Telefcope at Right Angles to the Perpendiculars drawn upon the Silver Blades.

To prove this Level, you muft place it upon its Foot, in fuch manner that the Thread may exactly play upon the Perpendicular, and note fome Object cut by the Hair in the Focus of the Telefcope. 'Then taking off the Thread and Plummet, turn the Inftrunent upfide down, and hanging the Thread and Plummet to the Hook at the bottom of the Cafe, which will now be uppermof, look thro the Telefcope at the aforefaid Objeft, and if the Thread exaetly plays upon the Perpendicular, it is a fign the Inftrument is exact ; but if it does not, you mult remove the little Hook to the Right-hand or Left, till you make the Thread fall upon the Perpendicular, both before you have turned the Infrument upfide down, and afterwards. You may likewife raife or lower the Telefcope, by means of a Screw. Note, Ingenious Workmen may cafily fupply what I have omitted in this brief Defcription.
The Inftrument H is a little fimple Level, founded on the fame Principle as the three precedont ones; the Figure thereot is fufficient to fhew its Conftruction and Ufe.
The Leavel I. places itfelf, and is compofed of a pretty thick Brafs Rule, about one Foot long, and an lach broad, having two Sights of the fame height placed ar the ends of the Rule, and in the middle there is a kind of Beam (almoft like thofe of common Scales) for freely fufpending the Level.

At the bottom of the faid Rule is fcrew'd on a Piece of Brafs, likewife carrying a pretty heavy Bail of Brafs. All the Exactnefs of this Inftrument confifts in a perfect Equilibrium; to know which, it is eafy : for holding the Inftrument fufpended by its Ring, and having efpied fome Object thro the Sights, you need but turn the Inftrument about, and obferve whecher the aforefaid Objeet appears of the fame height thro the Sights; and if it does, the Intrunent is perfeetly in equilibrio: but if the Object appears a little higher or lower, you may remedy it by removing the Piece of Brafs carrying the Ball till it be exactly in the middle of the Point of Sufpenfion, and then it mult be fixed with a Screw, becaufe, by experieite, the Inftrument was found to be level.

Confruction of a Leviel of Mr. Hugens's.

Fig. K.
The principal part of this Infrument, is a Telefcope $a, 15$ or 18 Inches long, being in form of a Cylinder, and going thro a Ferril, in which it is faftened by the middle. This Ferrill has two flat Branches $b b$, one above and the other below, each about a fourth part of the Telefcope in length. At the ends of each of thefe two Branches are faftened little moving Pieces, which carry two Rings, by one of which the Telefcope is fufpended to a Hook, at the end of the Screw 3; and by the other a pretty heavy Weight is fufpended, in order to keep the Telefcope in equilibrio. This Weight hangs in the Box 5, which is alnoft filled with Liofeed Oil, Oil of Wallnuts, or any thing elfe that will not coagulate, for more aptly fettling the Ballances of the Weight and Telefcope.
This Inftrument carries fometimes two Telefcopes clofe and very parallel to each other, the Eye Glais of one being on one fide, and the Eye Glafs of the other on the oppofite fide, that fo ore may fee on both fides, without turning the Level. If the Tube of the Telefcope being fufpended, be not found level, as it will often happen, put a Ferril or Ring 4 upon it, which may be fid along the 'Tube, for placing it level, and keeping it fo. And this muft be, if there be two Telefcopes.
There is a human Hair horizontally frained and faftened to a little Fork in the Focus of the Objeft Glafs of each Telefcope, which may be raifed or lower'd, by menns of a little Screw, as has been already mentioned.

For proving this Level, havirg fufpended it by one of the Branches, obferve fome diftant Object through the Telefcope, with the Weight not hung on, and very exactly mark the Point of the Object cut by the Hair of the Teiefcope: Now hanging the Weight on, if the horizental Hair anfsers to the fame Point of the faid Object, it is a fign the Center of Gravity of the Telefope and Weight, is precifely in a Right Line joining the two Points of Sutpeniion, which contimued would pafs thro' the Center of the Earth.
But if it otherwife happens, you muft remedy it, by fliding the litte Ring backwards or forvartis. Having thus adjufted the 'Telefcope, that the fame Point of an Object be feen, as well before the Weight is hung on, as afterwards, you muft turn it upfide down, by fufpending it to the Branch that was lowermoft, and harging theWeight upon the other. Then if the Hair in the Telefcope cuts the aforefaid Point of the Object, it is manifelt, that that

Chap. 2. of luffruments for Levelling.

Point of the Object is in the horizontal Plane, with the Center of the Tube of the rele. fcope : but if the Hair does not cut that Point of the Object, it muft be raifed or lowered by means of the Screw till it does. Note, You muft every now and then prove this Inftruneent, for fear leaf fome Alteration has happen'd thereto.

The Hook on which this Inftrument is hung, is fixed to a flat wooden Crofs, at the Ends of each Arm of which, there is a Hook ferving to keep the Telefcope from too much Agitation, when the Inftrument is uling, and for keeping it fteady when it is carrying, in lowering the Telefcope by means of the Screw 3, which carries it.

There is applied to the faid flat Crofs, another hollowed Crofs faftened with Hooks, which ferves as a Cafe for the Inftrument. But note, the two Ends of the Crofs are left open, that fo the Telefcope being covered from Wind and Rain, may be always in a Conditiou to ufe.

The Foot fupporting the Inftrument, is a round Brafs Plate fomething concave, to which is faftened three Brafs Ferrils, moveable by means of Joints, wherein are Staves of a convenient Length put. The Box at the Bottom of the Level is placed upon this Plate, and may be any ways turned; fo that the Weight, which ought to be Brafs, may have a free Motion in the Box, which mult be fhut by means of a Screw, that fo the Oil may be preferved in Journeys.

Conftruction of anotber Lervel.

This Inftrument is a Level almoft like that whofe Defeription we have laft given, but it is Fig. I, eafier to carry from place to place.

Number I. Is the Cafe in which the Telefcope is enclofed.
2. Is a kind of Stirrup, where the Screw, ferving for the Point of Sufpenfion, paffes; at the End of which is a Hook, upon which the Ring, at the End of the Plate carrying the Telefcope, is hung.
3. Are the Screws above and below for fixing the Telefcope, when the Infrument is carrying.
4. Are the Hooks for keeping the Cafe fhut.
5. Is one End of the Telefcope.
6. Is the End of the Plate whereon a great Brafs Ball is hung, ferving to keep the Telefcope level.

There are thrèe Ferrils 8, well fixed to the Bottom of the Stirrup, ferving as a Foot to fupport the whole Inftrument. Note, 'There are fomerimes put two Telefcopes on this Level, as well as in that other of which we have laft foken.
"

C H A P. II.

Of the $\mathrm{V}_{\text {es }}$ of the aforefaid Infruments in Levelling.

IEvelling is an Operation fhowing the Height of one Place in reípect to another. One Place is faid to be higher than another, when it is more diftant from the Center of the Earth. A Line equally diffant from the Center of the Earth, in all its Points, is called the Line of true Level; whence, becaufe the Earch is round, that Line mult be a Curve, and make a part of the Earth's Circumference, as the Line BCF G, all the Points of which are Fig. i, equally diftant from the Center A of the Earth : but the Line of Sight, which che Operations of Levels give, is a right Line perpendicular to the Semi-diameter of the Earth A B, raifed above the true Level, denoted by the Curvature of the Earth, in proportion as it is more extended ; for which Reafon, the Operations which we fhall give, are but of the apparent Level, which muft be corrected to have the true Level, when the Line of Sight exceeds 50 Toifes.

The following Table, in which are denoted the Corrections of the Points of apparent Level, for reducing them to the true Level, was calculated by help of the Semi-diameter of the Earth, whofe Length may be known by meafuring one Degree of its Circumference. The Gentlemen of the Academy of Sciences, have found by very exact Obfervations, that orie Degree of the Circumference of a great Circle of the Earth, as the Meridian, contains 57060 Toifes; and giving 25 Leagues to a Degree, a League will be $2282 \frac{2}{50}$ Toifes.

Now the whole Circunference of the Earth will be gooo of the fame Leagues, and its Diameter 2865 of them ; from whence all Places on the Superficies of the Earth, will be diftant from its Center $1432 \frac{3}{2}$ Leagues.
The Line A B reprefents the Semi-diameter of the Earth, under the Feet of the Obferver. The right Line B D E, reprefents the vifual Ray, whofe Points D and E are in the apparent Level of the Point B. This Line of apparent Level, ferves for determining a Line of true Level, which is done by taking from the Points of the Line of apparent Level, the Height they are above the true Level in refpect to a certain Point, as B ; for it plainly appears from the Figure, that all the Points $\operatorname{D}, \mathrm{E}$, of the apparent Level, are farther diffant from the

Center of the Earth, than the Point B ; and to find the Difierence, you need but confider the right-angled Triangle A B D, whofe two Sides A B, B D, being known, the Hypothenufe A D, may be found: from which fubftracting the Radius A C, the Remainder C D will fhow the Height of the Point D of apparent Level, above the Point of true Level.
ATABLE Shereing the Corrections of the Points of apparcnt Level, for reducing them to the true Level, every 50 Toifes.

Diftances of	Correetions.	
the Points of apparent Level.	Inches.	Lines.
50 Toifes.	-.	\bigcirc
100	-.	$1^{\frac{1}{3}}$
150	o.	3
200	-.	$5^{\frac{1}{3}}$
250	-.	$8 \frac{1}{3}$
300	1.	\bigcirc
350	1.	$4{ }^{\frac{1}{3}}$
400	I.	$9^{\frac{1}{3}}$
450	2.	3
500	2.	9
550	3.	6
600	4.	\bigcirc
650	4.	8
700	5.	4
750	6.	3
800	7.	1
850	7.	$\mathrm{If}^{\frac{1}{2}}$
900	8.	11
1950	10.	。
000	1 ¢.	-

The Rule ferving to calculate this Table, is to divide the Square of the Diftance by the Diameter of the Earth, which is $6,538,69+$ Toifes; for which Reafon the Corrections are to one another, as the Squares of the Diftances. Altho the Foundation of this Calculution be not frictly Geometrical, yet it is nigh enough the Trutb for Pratice.

If the Points of apparent Level fhould be taken inftead of the Points of true Level, a body would err in conducting the Water of a Source, which let be, for Example, at the Point B; for this Source will not run along the Line BDE, but will remain in the Point B; for if it fhould run along the Line BE, it would run higher than it is, which is imponfible, becaufe it cannot be endued with any other Figure but a circular one, equally diftant from the Center of the Earth. On the contrary, a Source in D will have a great Defcent down to the Point B; but it cannot run further, becaufe it muft be elevated higher than the Source, if it continues its way in the fame right Line, which cannot be done, unlefs it be forced by fome Machine.

How to reElify Levels.

Fig.2.
To reatify Levels, as, for Example, the Air Level, you muft plant two Staffs, as A B, about 50 Toifes diftant from each other, becaufe of the Roundnefs of the Earth; (take care of exceeding that Diftance) then efpying from the Station A, the Point B, the Level being placed horizontally, and the Bubble of Air being in the Middle of the Tube, you muft raife or lower a Piece of Pafteboard upon the Staff B, in the Middle of which is drawn a black horizontal Line, till the vifual Ray of the Obferver's Eye meets the faid Line; after which mult be faftened another Piece of Pafteboard to the Staff A, the Middle of which let be the Height of the Eye, when the Piece of Pafteboard B was feen: then removing the Level to the Siaff B, place it to the Height of the Center of the Pafteboard, and the Level being horizontally pofited for obferving the Piece of Pafteboard A, if then the vifual Ray cuts the Middle of the Piece of Pafteboard, it is a fign the Level is very juft; but if the vifual Ray falls above or below, as in the Point C, you muft, by always keeping the Eye at the fame Height, lower the 'Telefcope or the Sight, till the Middle of the vifual Ray falls upon the Middle of the Difference, as in D ; and the Telefcope thus remaining, the Tube of the Level muft be adjufted till the Bubble of Air fixes in the Middle, which may be done by means of the Screw 4.

Again; return to the Staff A, and place the Level the Height of the Point D, for looking. at the Piece of Pafteboard B ; and if the vifual Ray falls upon the Middle of the Piece of Pafteboard, it is a fign the Telefcope agrees with the Level : if not, the fame Operations mult be repeated, until the vifual Rays fall upon the Centers of the two Pieces of Pafteboard.

Another way to rectify Levels.

Knowing two Points diftant from each other, and perfectly level, place the End of the Telefcope carrying the Eye-Glafs to the exact Height of one of thofe two Points, the Bubble of Air being fixed in the Middle of its Tube; then by looking thro it, if it happens that
the Hair of the Telefcope cuts the fecond Point, it is a fign the Level is juft ; but if the Hair falls above or below the Point of Level, you muft, in always keeping the Eye at the fame height, raife or lower the end of the Level where the Objeet Glafs is, until the Vifual Ray of the Telefcope falls upon the exact Point of Level; and leaving it thus, raife or deprefs the 'Tube carrying the Level, fo that the Bubble of Air may remain in the middle.

What we have faid concernung the Rect:fication of this Level, may ferve likewife for the Reaification of others, the difference is only to change the Plummets and the Hairs of the Telefcopes, according to their Conffructions.

The Manner of Levelling.

To find, for Example, the height of the Point A on the top of a Mountain, above the Fig. 3_{0} Point B at its foot, place the Level about the middle diftance between the two Points, as in D, and plant Stafis in A and B. Alfo let there be Perfons inftructed with Signals, for raifing or lowering upon the faid Staffs firt Sticks, at the ends of which are faftened pieces of Puffe-Board: The Level being placed upon its foct, look towards the Staff A E, añd caule one of the Perfons to raife or lower tne Pafte-Board, until the upper edge or middle appears in the vifual Ray; then meafure exactly the perpendicular Height of the Point A above the Point E, which, in this Example, fuppofe 6 Feet 4 Incies, which fet down in a Memorial. Then turn the Level horizontally, fo that it may always be at the fame height, for the Eye Glafs of the Telefcope to be next to the Eye ; but if it be a Sight Level, there is no neceffity of turning it about, and caufe the Perfon at tine Staff B to raife or lower the piece of Patte-Board, until the upper edge of it be feen, as at C, which fuppofe 16 Feet 6 Inches, which fet down in the Memorial above the other Number of the firl Station; whence to know the height of the Point A above the Point B, take 6 Feet 4 Inches from 16 Feet 2 Inches, and the remainder will be 10 Feet 2 Inches, for the heighth of A above B.

Note, If the Point D, where the Obferver is placed, be in the middle between the Point A and the Poist B, there is no neceffity of regarding the height of the apparent Level above the true Level, becaufe thofe two Points being equally diftant from the Eye of the Obferver, the vifual Ray will be equally raifed above the true Level, and confequently there needs no Correction to give the height of the Point A above the Point B.

Another Example of Levelling.

It is reaired to know, whether there be a fufficient Defcent for conducting of Water Fig. 4. from the Source A to the Vafe B of a Fountain. Now becaufe the diftance from the Point A to B is great, there are feveral Operations required to be made. Having chofen a proper height for placing the Level, as at the Point I, plant a Pole in the Point A near the Source, on which flide up and down another, carrying the piece of Pafte-Board L; meafure the diftance from A to I, which fuppofe 1000 Toifes. Then the Level being adjufted in the Point K, let fomebody move the Pafte-Board L up or down, until you can efpy it thro the Telefcope or Sights of the Level, and meafure the height A. L, which fuppofe 2 Toifes, I Foot, 5 Inches. But becaufe the diftaice $\mathrm{A} I$ is rooo Toifes, according to the aforementioned Table, you muff fubftract ir Inches, and the height A L will confequently be but 2 Toifes 6 Inches, which note down in the Memorial.

Now furn the Level about, fo that the Object Glafs of the Telefcope may be next to the Pole planted in the Point H , and the Level beng adjufted, caufe fome Perfon to move the piece nf Pafte-Bnard G up and down, until the upper edge of it may be efpied thro the Telefcope; meafure the height H G, which fuppofe 3 Toifes, 4 Feet, 2 Inches; meafure likewife the Dittance of the Points I, H, which fuppofe 650 Toifes; for which diftance, according to the Table, you muff fubftract 4 Inches 8 Lines from the height H G, which confequently will then be but 3 Toifes, 3 Feet, 9 Inches, 4 Lines, which fet down in the Memorial.

This being done, remove the Level to fome other Eminence, from whence the Pole H G may be difcovered, and the Angle of the Houfe D, the Ground about which is level with the Vare B of the Fountain.
The Level being adjufted in the Point E, look at the Staff H, and the vifual Ray will give the Point F; meafure the height H F, which fuppofe in Feet 6 Inches; like wife meafure the diftance HE , which fuppofe 500 'Toifes, for which diftance the Table gives 2 Inches 9 Lines of abatement, which being taken from the height H F , and there will remain 1 I Feet, 3 Inches, 3 Lines, which fet down in the Memorial. Lafty, Having turned the Level for looking at the Angle of the Houfe D, meafure the height of the Point D, where the Vifual Ray terminates above the Ground, which fuppofe 8 Feet 3 Inches. Meafure alfo the diftance from the Point D, to the faid Houfe, which is 450 Toifes, for which diftance the Table gives $2^{\text {I Inches }} 3$ Lines of abatement $;$ which being taken from the faid height, there will remain 8 Feet 9 Lines, which fet down in the Memorial.

How to fet down all the different Heiglts in the Mimorial.

Having found proper Places (as we have already fuppofed) for placing the Level between two Points, you muft write on the Memorial, in two different Columns, the obferved Heights; namely, under the firft Column thofe obferved by looking thro the Telefcope, when the Ese was next to the Source A; and under the fecond Column, thofe oblerved when the Eye was next to the Vafe B of the Fountain, in the following manner.

Firlt Column.

Second Column.

Firft Height	Toifes.		ches.	Lines.	Second Height	Toifes.		Inclues.	Line
Correfted	,			-	Fourth Height		3	9	4
'Third Height	1	5	3	3		I	2	-	9
	3	5	9	3		4	5	10	I

Having added together the Heights of the firt Column, and afterwards thofe of the fecond, fubltract the firft Additions from the fecond.

Toifes.	Feet.	Inches.	Lines.
4	5	10	1
3	5	9	3
1	0	0	10

Whence the Height of the Source A above the Vafe B is I Toife and 10 Lines.
If the Diftance be required, you need. but add all the Diftances meafured together; namely,

The Firft of	1000 Toifes
The Second	
650	
The Third	500
The Fourth	450

The whole Diftance 2600 Toifes
Laftly, Dividing the Defcent by the Toifes of the Diftance, there will be for every 100 'Toifes, about 2 Inches 9 Lines of Defzent, nighly.

C H A P. III.

Of the Conftrution and USe of a Gauge for Meafuring of Water.

Fig. M. THIS Gauge ferves to know the Quantity of Water which a Source furnimes, and is commonly a Rectangular Parallelopepidon of Brafs well folder'd, about a Foot long, 8 Inches broad, and as many in height, more or lefs, according to the Quantity of Water to be meafured, having feveral round holes very exactly drilled in it, an Inch in Diameter, and others for half an Inch of Water to pafs thro ; and alfo others for a quarter of an Inch of Water to pafs thro them. All of which ought to be drilled fo as their Centers may be at the fame height. The upper Extremes of the Inch-holes muft be within two Lines of the top of the Gauge; and the holes are Itopped with little fquare Brafs Plates, adjufted in the Grooves 1 , 2, and 3: There is a Brafs Partition, croffing the Veffel at the place 4, fixed about an Inch from the bottom, and drilled with feveral holes, for the Water to pafs more freely. This Partition is made to receive the fhock of the Water falling from the Source into the Gauge, and hindering it from making of Waves, fo that it may more naturally run out thro the holes.

Note, The holes which give a Cylindric Inch of Water, ought to be exactly 12 Lines in Diameter ; that giving half an Inch ought to be $8 \frac{1}{2}$ Lines, and that giving a quarter of an Inch muft be exactly 6 Lines. This may be eafily found by Calculation.

To ufe this Inftrument, it muft be placed fo as its bottom may be parallel to the Horizon, and then let the Water of the Source run thro a Pipe into the Gauge, (as per Figure) and when it wants about a Line of the top, open one of the holes (for Example) of an Inch. 'Then if the Water always keeps the fame height in the Gauge, it is manifeft that there runs as much into it as goes out of it, and fo the Source will furnifh an Inch of Water.

But if the Water in the Gauge rifes, there muft be another hole opened, either of ani Inch, half an Inch, or a quarter of an Inch; fo that the Water may keep to the fame heighe in the Gauge, that is, to a Line above the holes of an Inch; and then the number of Holes opened will give the Quancity of Water furnifhed by the Source.

The litrle Veffel recerving the Water running out of the Gauge, is to fhew how much Fig. Nos Water the Source furnifhes in a determinate fpace of 'Time : For having a Pendulum which fwings Seconds, note how many Seconds there will be in the time that this Veffel, fet under the hole giving an Inch of Water, is filling; and exaetly meafuring the Quantity of Water it contains, you may have the Quantity of Water the Source furnifhes in an Hour.

There has feveral very exact Experiments been made upon this Subject: from whence it has been found, that a Source giving one Inch of Water, will fill It Pints of Paris, in a Minute.
It follows from hence, that an Inch of Water gives in an Hour 8 Paris Muids, and in 24 Hours, 72 Muids.
If, for Example, a Cubic Veffel be placed under the Gauge, containing a Cubic Foor; and if the Water runs thro the hole giving an Inch of Water, that Veffel will be filled in two Minutes and a half: From whence it follows, that it gives 14 Pirts in a Minute, becaufe it furnifhed 35 Pints in two Minutes and a half.

By this means we may know the Inches of Water a Spring or Running-Stream gives: As if, for Example, the Spring gives 7 Pints of Water in a Second ; then it is faid to furnifh an Inch of Water: If it fhould give 2 I Pints, then it is faid to furnifh 3 Inches of Water; and fo of ochers.

To meafure the Ruming-Water of an Aquedutt or River, which cannot be received in a Gauge, you mulh put a Ball of Wax upon the Water, made fo heavy with fome other Matter, as that there may be but a fmall part of the Ball above the Surface of the Water, that fo the Wind can have no power on it. And after having meafured a Length of 15 or 20 Feet of the Aqueduct, you may know by a Pendulum in what time the Ball of Wax will be carried that diftance; and afterwards multiplying the Breadth of the Aqueduct or River by the leight of the Water, and that Product by the fpace which the Ball of Wax has moved, this laft Product will give all the Water paffed, in the noted time, thro the Section of the River. Example; Suppofe in an Aqueduct two Feet wide, and one Foot deep, a Ball of Wax moves, in 20 Seconds, 30 Feet, which will be one Foot and a half in a Second: But becaufe the Water moves fwifter at the Top than the Botton, you mult take but 20 Feet, which will be one Foot in a Second; the Product of one Foot deep, by 2 Feet broad is 2 Feet, which multiply'd by 20, the Length, gives 40 Cubic Feer, or 40 times 35 Pints of Water, which makes 1400 Pints in 20 Seconds; and if 20 Seconds give 1400 Pints, 60 Seconds will give 4200 Pints; and dividing 4200 by 14 , which is the Number of Pints an Inch of Water gives, in a Minute or 60 Seconds, the Quotient 300 will be the Number of Inches which the Water of the Aqueduef furnifles.
Mr. Mariotte, who has learnedly wrote about the Motion of Water, is of opinion that Springs are nothing but Rain Water, which paffing thro the Earth, meets with Haffock or Clay, which it cannot penetrate; and therefore is obliged to run along the Sides, and fo form a Spring. For fupporting this Hypothefis, he brings the following Experiment.
Having fet a Cubic Veffel about a Foot high in a proper piace to catch Rain-Water for feveral Years, he obferved that the Water arofe in the Veffel each Year, one with another, 18 Inches; but he thought it better to make it but 15 Inches: whence a Toife will receive in a Year 45 Cubic Feet of Water; for multiplying 36 Feet by 15 Inches, the Product will be 45 Cubic Feet.

The fame Author likewife computes the Extent of Ground which fupplies the River Seine with Water ; and has found that the Seine is not the fixth part as big as it might be. He has again obferved, that it has but ro Inches of Defcent in 1000 Toifes over-againft the Invalids. He faith likewife, that, according to this fuppofition, the greateft Spring of Montmartre, when it is moft abounding, doth not furnifh over and above Water, fince the Ground overwhelming it ought to fend Water thereto. Whence he concludes, that there is a great deal of Water loft in the Earth.

To know the Shock Water produces, Experience has fhown that Water accelerates its Motion, according to the odd Numbers $1,3,5,7, \mathcal{V}_{4}$. that is, if in a fourth part of a Second it defcends one Foot in a Pipe, it will defcend 3 Feet in the next fourth of a Second.

The Quantities of Water fpouting out thro equal holes made at the Bottoms of Refervatories, of different heights, are to each other in the fubduplicate Ratio of the heights. The following Table fhe ws the different Expences of Water at different heights.

A Talle of the Expence of Water in a Minute，the Diameter of the Aju－ tage being three Lines in different Heights of a Refervatory．				A Table of the Expence of Water thro different Aju－ tages at the fame Herght of the Refervatory．				A Table of the Hight of Yets at different Hights of Re－ Servatories．					
葂	Feet 6 9 9 12 18 25 30 40 52	Pints． 9 11 14 14 16 19 21 24 28	告	砣	Lines． 1 2 3 4 4 5 6 7 8	Pints 1 6 14 25 39 56 76 110	s	－		20 30 40 50 60	Pints． 5 10 21 33 45 58 72 86	Inche 1 4 4 0 4 4 0 4	－

You may fee by this Table，that an Ajutage，double another in Diameter，will expend four times the Water as that other will．Example；that of three Lines will expend in a Minure 14 Pints，and that of 6 Lines will expend 56 Pints．Note，The Ajutages muft not be made Conical，but Cylindrical．

C H A P．IV．

Of the Confruction and USes of Inftruments for Gunnery．

Conftruction of the Callipers．

Fizo． 0.

TH IS Inftrument is made of two Branches of Brafs，about fix or 7 Inches long when fhut，each Branch being four Lines broad，and three in thicknefs．The Motion of the Head thereof is like that of the Head of a two－Foot Rule，and the ends of the Branches are bent inwards，and furnifhed with Steel at the Extremes．
There is a kind of Tongue faftened to one of the Branches，whofe Motion is like that of the Head，for raifing or lowering it，that fo its end，which ought to be very thin，may be put into Notches made in the other Branch，on the infide of which are marked the Diameters anfwerable to the Weights of Iron Bullets，in this manner：Having gotten a Rule，on which are denoted the Divifions of the Weights，and the Bcres of Pieces（the Method of dividing of which will be fhown in fpeaking of the next Inftrument）open the Callipers，fo that the inward ends may anfwer to the diftance of each Point of the Divifions fhewing the weights of Bullets：And then make a Notch at each opening with a triangular File，that fo the end of the Tongue entering into each of thefe Notches，may fix the opening of the Branches exactly to each Number of the Weights of Bullets．We commonly make Notches for the Diameters of Bullets weighing from one fourth of a Pound to 48 Pounds， and fometimes to 6_{4} Pounds．And then Lines mult be drawn upon the furface of this Branch againft the Notches，upon which muft be fet the Correfpondent Numbers denoting the Pounds．
The Ufe of this Inftrument is eafy，for you need but apply the two ends of the Branches to the Diameter of the Bullet to be meafured；and then the Tongue being put in a conve－ nient Notch，will fhow the weight of the Bullet．
There ought always to be a certain Proportion obferved in the breadth of the Points of this Inftrument ；fo that making an Angle（as the Figure fhews）at each opening，the infide may give the weight of Bullets，and the outfide the Bores of Pieces；that is，that applying the outward ends of thofe Points to the Diameter of the Mouthis of Cannon，the Tongue， being placed in the proper Notch，may fhow the weights of Bullets proper for them．

Confrubtion of the Gunners Square．

Fig．Po
This Square ferves to elevate or lower Cannons or Mortars，according to the Places they are to be levelled at，and is made of Brafs，one Branch of which is about a Foot long， 8 Lines broad，and one Line in thicknefs ；the other Branch is 4 Inches long，and of the fame Length and Breadth as the former．Between thefe Branches there is a Quadrant divided into 90 Deg．beginning from the flortef Branch，furnifhed with a Thread and Plummet．

The

Chap. 4. of Inftruments for Gumnery.
The Ule of this Inftrument is eafy, for there is no more to do but to place the longeft Branch in the Mouth of the Cannon or Mortar, and elevate or lower it, till the 'Thread cuts the Degrees neceffary to hit a propofed Object.

There are likewife very often denoted, upon one of the Surfaces of the Iongef Branch, the Divifion of Diameters and Weights of Iron Bullets, as alfo the Bores of Pieces.

The making of this Divifion is founded upon one or two Experiments, in examining, with all poffible Exactnefs, the Diameter of a Bullet, whofe Weight is very exactly known. For Example, having found that a Bullet, weighing four Pounds, is three Inches in Diameter, it will be eafy to make a Table of the Weights and Diameters of any other Bullets; becaufe, per Prop. 18. lib. 12. Eucc. Bullets are to one another as the Cubes of their Diameters; from whence it follows, that the Dameters are as the Cube Roots of Numbers, expreffing their Weights.

Now having found, by Experience, that a Bullet, weighing four Pounds, is three Inches in Diameter ; if the Diameter of a Bullet weighing 32 Pounds be required, fay, by the Rule of Three, As 4 is to 32 , fo is 27 , the Cube of 3 , to a fourth Number, which will be 216 ; whofe Cube Root, 6 Inches, will be the Diameter of a Bullet weighing 32 Pounds.

Or otherwife, feek the Cube Root of thefe two Numbers 4 and 32, or 1 and 8, which are in the fame Proportions, and you will find I is to 2 , as 3 is to 6 , which is the fame as before.

But fince all Numbers have not exact Roots, the Table of homologous Sides of fimilar Solids (in the Treatife of the Sector) may be ufed. If now, by help of that Table, the Diameter of an Iron Bullet, weighing 64 Pounds, be required, form a Rule of Three, whofe firlt Term is 397, the Side of the fourth Solid; the fecond 3 Inches, or 36 Lines, the Diameter of the Bullet weighing four Pounds; and the third 'Term 1000, which is the Side of the 64th Solid : the Rule being finifhed, you will have $90 \frac{3}{4}$ Lines for the Diameter of a Bullet weighing 64 Pounds. Afterwards to facilitate the Operations of other Rules of Three, always take, for the firf Term, the Number rooo, for the fecond $90 \frac{3}{4}$ Lines, and for the third the Number found in the Table, over againft the Number expreffing the Weight of the Bullet. As to find the Diameter of a Bullet weighing 24 Pounds, fay, As 1000 is to $90 \frac{3}{4}$ Lines, fo is 721 , to 65 Lines, which is 5 Inches and 5 Lines for the Diameter fought. By this Method the following Table is calculated.

'A TABLE, containing the Weigbts and Dianeeters of Iron Bullets, and the Bores of the mioff connunon Pieces ufod in the Artillery.

Weights of Bullets. Pounds.

Bores of Pieces. Inches. Lines.

$\frac{1}{4}$		-	$\begin{aligned} & \mathbf{I} \\ & \mathbf{I} \end{aligned}$	$-$	$\begin{aligned} & 3 \\ & 6 \\ & \hline \end{aligned}$
1			1	-	II $\frac{6}{8}$
2			2	-	$5^{\frac{3}{4}}$
3		-	2	-	10
4	-	-	3	-	$1 \frac{1}{4}$
5			3	-	$4 \frac{1}{4}$
6	-	-	3	-	$6 \frac{7}{8}$
7	-		3	-	$9^{\frac{1}{8}}$
8	-	-	3	-	$11 \frac{1}{8}$
9	-		4	-	$1 \frac{1}{4}$
10			4	-	$2 \stackrel{3}{4}$
12			4	-	$5^{\frac{3}{4}}$
16			4	-	$11 \frac{1}{2}$
18			5	-	$1 \frac{2}{3}$
20			5	-	4
24	-		5	-	8
27			5		$10 \frac{2}{3}$
30	-	\cdots	6	-	$1 \frac{1}{3}$
33	-	-	6	-	$3 \frac{1}{2}$
36			6	-	5 等
40			6	-	8
48			7		$1{ }^{\frac{3}{4}}$
50		-	7		$2{ }_{4}^{3}$
64			7		$10 \frac{1}{4}$

Of the Curved-Pointed Compafles.
Thefe Compaffes do not at all differ in Conftruction from the others, of which we have Fig. Q . already fpoken, excepting only that the Points may be taken off, and curved ones put on, which
which ferve to take the Diameters of Bullets, and then to find their Weights, by applying the Diameters on the Divifions of the before-mentioned Rule. But when you would know the Bores of Pieces, the curse Points munt be taken off, and the ftrait ones put on, witit which the Diameters of the Moutls of Cannon muft be taken, and aftervar is they muft be applied to the Line of the Bores of Pieces, which is alfo fet down upon the aforelaid Rule ; by which means the Weights of the Bullets, proper for the propofed Cannon, may be found.

Confruction of an Inftrument to level Cannon and Mortars.

Fig. R.

Fig. $\mathrm{S}_{\text {。 }}$

Fig. T.

Fig. V.

This Inftrument is made of a Triangular Brafs Plate, about four Incheshigh, at the Bottom of which is a Portion of a Circle, divided into 45. Degrees; which Number is fufficient for the higheft Elevation of Cannon or Mortars, and for giving Shot the greatelt Range, as hereafter will be explained. There is a Piece of Brafs fcrewed on the Center of this Portion of a Circle, by which ineans it may be fixed or movable, according to Neceffity.

The End of this Piece of Prafs mult be made fo, as to ferve for a Plummet and Index, in order to fhew the Degrees of diffcrent Elevations of Pieces of Arrillery. This Inftrument hath alfo a Brafs Foot to fet upon Camnon or Mortars, fo that when the Pieces of Cannon or Mortar are horizontal, the whole Inftrument will be perpendicular.

The Ufe of this Inftrument is very eafy; for place the Foot thereof upon the Piece to be elevated, in fuch manner that the Point of the Plummet may fall upon a convenable Degree, and this is what we call levelling of a Piece.

Of the Artillery Foot-Level.

The Inftrument S is called a Foot-Level, and we have already fpoken of its Conftraefion: but when it is ufed in Gunnery, the Tongue, ferving to keep it at right Angles, is divided into 90 Degrees, or rather into twice 45 Degrees from the middle. The 'Thread, carrying the Plummer, is hung in the Center of the aforefaid Divifion, and the two Ends of the Branches are hollowed, fo that the Plummet may fall perpendicular upon tie middle of the Tongue, when the Inftrument is placed level.

To ufe it, place the two Ends upon the Piecc of Artillery, which may be raifed to a propofed Height;' by nicans of the Plummer, whofe Thread will give the Degrees.

Upon the Surface of the Branches of this Square, which opens quite ftrait like a Rule, are fet down the Weights and Diameters of Bullets, and alfo the Bores of Pieces, as we have before explained in fpeaking of the Gunner's Square.

The Intrument T is likewife for levelling Pieces of Artillery, being almoft like R, except only the Piece, on which are the Divifions of Degrees, is movable, by means of a round Rivet: that is, the Portion of the Circle (or Limb) may be turned up and adjufted to the Branch, fo that the Infrument takes up lefs room, and is eafier put in a Cafe. The Figure thereof is enough to ftrew its Conftruction, and its Ufes arc the fame as thofe of the precedent Infrument.

Explanation of the Efferts of Cannon and Mortars.

The Figure V reprefents a Mortar upon its Carriage, elevated and difpofed for throwing a Bomb into a Citadel, and the Curve-Line reprefents the Path of the Bomb thro the Air, from the Mouth of the Piece to its Fall. This Curve, according to Geometricians, is a Parabolic Line, becaufe the Properties of the Parabola agree with it ; for the Motion of the Bomb is compofed of two Motions, one of which is equal and uniform, which the Fire of the Powder gives it, and the other is an uniform accelerate Motion, communicated to it by its proper Gravity. There arifes, from the Compofition of thefe two Forces, the fame Proportion, as there is between the Portions of the Axis and the Ordinates of a Parabola; as is very well demonftrated by M. Blondel, in his Book, entitled, T'be Art of throwing Bombs.

Malus, an Englifo Engineer, was the firt that put Bombs in practice in France, in the Year 1634. all his Knowledge was purely cxperimental ; he did not, in the leaft, know the Nature of the Curve they defcribe in their Paffage thro the Air, nor their Ranges, according to different Elevations of Mortars, which he could not level but tentively, by the Eftimamation he made of the Diftance of the Place he would throw the Bomb to ; according to which he gave his Piece a greater or lefs Elevation, feeing whether the firft Ranges were juft or not, in order to lower his Mortar, if the Range was too little; or raife it, if it was too great; ufing, for that effect, a Square and Plummet, almof like that of which we have already fpoken.

The greateft Part of Officers, which have ferved the Batteries of Mortars fincc Maltus's time, have ufed his Elevations; they know, by Experience, nearly the Elevation of a Mortar to throw a Bomb to a given Diftance, and augment or diminifh this Elevation in proportion, as the Bomb is found to fall beyond or thort of the Diftance of the Place it is required to be thrown in.

Yei there arc certain Rules, founded upon Geometry, for finding the different Ranges, not only of Bombs, but likewife of Cannon, in all the forts of Elevations; for the Line, deforibed in the Air by a Bullet fhot from a Cannon, is alfo a Parabola in all Projections, not only oblique ones, but right ones, as the Figure W fhews.

Chap. 4. of Inftruments for Gummery.

A Bullet going out of a Piece, will never proceed in a ftraight Line towards the Place it is levelled at, but will rife up from its Line of Direction the moment after it is out of the Mouth of the Piece. For the Grains of Powder nigheft the Breech, taking fire firft, prefs forward, by their precipitated Motion, not only the Bullet, but likewife thofe Grains of Powder which follow the Bullet along the Bottom of the Piece; where fuccefively taking fire, they frike as it were the Bullet underneath, which, becaufe of a neceffary Vent, has not the fame Diameter as the Diameter of the Bore: and fo infenfibly raife the Bullet towards the upper Edge of the Mouth of the Piece, againft which it fo rubs in going out, that Pieces very much ufed, and whofe Metal is foft, are obferved to have a confiderable Canal there, gradually dug by the Friction of Bullets.'Thus the Bullet going from the Cannon, as from the Point E, raifes icfelf to the Vertex of the Parabola G, after which it defcends by a mixed Motion towards B.

Ranges, made from an Eleration of 45 Deg. are the greatelt, and thofe made from Elevations equally diftant from 45 Deg. are equal : that is, a Piece of Cannon, or a Mortar, levell'd to the 40 th Deg. will throw a Bullet, or Bomb, the fame diftance, as when they are elevated to the 5oth Degree; and as many at 30 as 60 , and fo of others, as appears in Fig. X.

The firft who reafoned well upon this Matter, was Galilaus, chief Ingineer to the Great Duke of Tufcany, and after him Torricellius his Succeffor.

They have fhewn, that to find the different Ranges of a Piece of Artillery in all Elevations, we muft, before all things, make a very exact Experiment in firing off a Piece of Cannon or Mortar, at an Angle well known, and meafuring the Range made, with all the exactnefs poffible : for by one Experiment well made, we may come to the Knowledge of all the others, in the following manner.

To find the Range of a Piece at any other Elevation required, fay, As the Sine of double the Angle under which the Experiment was made, is to the Sine of double the Angle of an Elevation propofed, fo is the Range known by Experiment, to another.

As fuppofe, it is found by Experiment that the Range of a Piece elevated to 30 Deg. is 1000 Toifes: to find the Range of the fame Piece with the fame Charge, when it is elevated to 45 Deg. you mult take the Sine of 60 Degrees, the double of 30 , and make it the firft Term of the Rule of Three; the fecond Term muft be the Sine of 90 , double 45; and the third the given Range 1000: Then the fourth Term of the Rule will be found II55, the Range of the Piece at 45 Degrees of Elevation.

If the Angle of Elevation propofed be greater than 45 Deg. there is no need of doubling it for having the Sine as the Rule directs; but inftead of that, you muft take the Sine of donble its Complement to 90 Degrees: As, fuppofe the Elevation of a Piece be 50 Degrees, the Sine of 80 Degrees, the double of 40 Deg. muft be taken.

But if a determinate Diftance to which a Shot is to be caft, is given, (provided that Diftance be not greater than the greateft Range at 45 Deg. of Elevation) and the Angle of Elevation to produce the propofed Effect be required ; as fuppofe the Elevation of a Cannon or Mortar is required to caft a Shot 800 Toifes; the Range found by Experiment muft be the firf Term in the Rule of 'Three, as for Example 1000 Toifes; the propofed Diftance : 800 Toifes, muft be the fecond Term ; and the Sine of 60 Degrees, the third Term. 'The fourcli Term being found, is the Sine of 43 Deg. 52 Min. whofe half 21 Deg. 56 Min. is the Angle of Elevation the Piece muft have, to produce the propofed Effect ; and if 21 Deg. 56 Min. be taken from 90 Deg. you will have 68 Deg. 4 Min . for the other Elevation of the Piece, with which alfo the fame Effect will be produced.
For greater Facility, and avoiding the trouble of finding the Sines of double the Angles of propofed Elevations, Galilaus and Torricellius have made the following Table, in which the Sines of the Angles fought are immediately feen.

A T A B LE of Sines for the Ranges of Bombs.

$\begin{gathered} \text { Degrees. } \\ 90 \end{gathered}$	Degrees.	Ranges.	Degrees. 0	Degrees.	Ranges.
89	1	349	66	${ }^{2} 4$	7431
88	2	698	65	25	7660
87	3	10.45	64	26	7880
86	4	1392	63	27	8390
85	5	1736	62	28	8290
84	6	2709	61	29	8480
83	7	2419	60	30	8660
82	8	2556	59	31	8829
81	9	3090	58	32	8988
80	10	3420	57	33	9135
79	1	3746	56	34	9272
78	12	4067	55	35	9397
77	13	4384	54	36	9511
76	14	4695	53	37	9613
75	15	5000	52	38	9703
74	16	5299	51	39	978 I
73	17	5592	50	40	98.48
72	18	5870	49	41	9903
71	19	6157	4^{8}	42	9945
70	20	6428	47	43	9976
69	21	6691	46	44	9994
68	22	6947	45	45	10000
67	23	7193			

The Ufe of this Table is thus: Suppofe it be known by experience, that a Mortar elevated is Degrees, charged with three Pounds of Powder, throws a Bomb at the diftance of 350 Toifes, and it is required with the fame Charge to caft a Bomb roo Toifes further; feek in the Table the Number anfwering to is Degrees, and you will find 5000 . Then form a Rule of Three, by faying, As 350 is to 450 , fo is 5000 to a fourth Number, which will be 6428 . Find this Number, or the nigheft approaching to it, in the Table, and you will find it next to 20 Deg. or 70 Deg. which will produce the required Effect, and fo of others.

Of the Confruction and Ufe of the Englifh Callipers.

Fig. Y.

THESE Callipers or Gunners Compaffes, confift of two long thin Pieces of Brafs, join'd together by a Rivet in fuch a manner, that one may move quite round the other. The Head or End of one of thefe Pieces is cut Circular, and the Head of the other Semicircular, the Center of which being the Center of the Rivet. The length of each of thofe Pieces from the Center of the Rivet is fix Inches ; fo that when the Callipers are quite opened, they are a Foot long.

One half of the Circumference of the Circular Head, is divided into every 2 Degrees, every tenth of which are numbered. And on part of the other half, beginning from the Diameter of the Semi-circle, when the Points of the Callipers are clofe together, are Divifions from ito ro, each of which are likewife fubdivided into four parts. The Ufe of thefe Divifions and Subdivifions, is, that when you have taken the Diameter of any round thing, as a Cannon-Ball, not exceeding 10 Inches, the Diameter of the Semi-circle will, amongft thofe Divifions, give the Length of that Diameter taken between the Points of the Calippers in Inches and 4 th Parts.

From this Ufe, it is manifeft how the aforefaid Divifions for Inches may be eafily made: For, firft, fet the Points of the Callipers together, and then make a Mark for the beginning of the Divifions; then open the Points one fourth of an Inch, and where the Diameter of the Semi-circle cuts the Circumference, make a Mark for one fourth of an Inclı. Then open the Points half an Inch, and where the Diameter of the Semi-circle cuts the Circumference, make another Mark for half an Inch. In this manner proceed for all the other Subdivifions and Divifions to Ten.

of the Englifh Callipers.

Upon one of the Branches, on the fame fide the Callipers, are, Firf, half a Foot or fix Inches each, fubdivided into ten Parts: Secondly, a Scale of unequal Divifions beginning at two, and ending at ten, each of which are fubdivided into four Parts. The Conftruction of this Scale of Lines will be very evident, when its Ufe is fhown, which is thus: If you have a mind to find how many Inches, under 10 , the Diameter of any Concave, as the Diameter of the Bore of any Piece of Ordnance is in length, you muft open the Branches of the Callipers, fo that the two Points may be outwards; then taking the Diameter between the faid Points, fee what Divifion or Subdivifion, the outward Edge of the Branch with the Semicircular Head, cuts on the aforefaid Scale of Lines, and that will be the Number of Inches, or Parts, the Diameter of the Bore of the Piece is in length. Therefore the Divifions on this Scale may be made in the fame manner as I have before directed, in fhowing how to make the Divifions for finding the Diameters of round Convex Bodies.

Thirdly, The two other Scales of Lines on the fame Face of the fame Branch, fhew when the Diameter of the Bore of a Piece of Cannon is taken with the Points of the Callipers outward, the Name of the Piece, whether Iron or Brafs, that is, the Weight of the Bullets they carry, or fuch and fuch a Pounder, from 42 Pounds to I. The Conftruction of thefe Scales are from experimental Tables in Gunnery.

On the other Branch, the fame fide of the Callipers, is, Firf, fix Inches, every of which is fubdivided into 10 Parts. Secondly, a Table fhewing the Weight of a Cubic Foot of Gold, Quick-filver, Lead, Silver, Copper, Iron, Tin, Purbec-Stone, Chryftal, Brimftone, Water, Wax, Oil and dry Wood.

On the other fide of the Callipers, is a Line of Chords to about three Inches Radius, and Fig. Z. a Line of Lines on both Branches, the fame as on the Sector.

There is alfo a Table of the Names of the following Species of Ordnance, viz. a Falconet, a Falcon, a Three-Pounder, a Minion, a Sacker, a Six-Pounder, an Eight-Pounder, a Demiculverin, a Twelve-Pounder, a Whole-Culverin, a Twenty-four-Pounder, a Demi-Cannon, Baftard-Cannon, and a Whole-Cannon. Under thefe are the Quantities of Powder neceffary for each of their Proofs, and alfo for their Service.

Upon the fame Face is a Hand graved, and a Right Line drawn from the Finger towards the Center of the Rivet. Which Right Line fhews, by cutting certain Divifions made on the Circle, the Weight of Iron-fhot, when the Diameters is taken with the Points of the Callipers, if they are of the following Weights, riz. $42,32,24,18,12,9,6,4,3,2,1,1 \frac{7}{2}$, I, Pounds. Thefe Figures are not all fet to the Divifions on the Circumference, for avoiding Confufion. The aforefaid Divifions on the Circumference may be thus made: Firft, When the Points of the Callipers are clofe, continue the Line drawn from the Finger on the Limb, to reprefent the beginning of the Divifions. Now becaufe from experience it is found, that an Iron Ball or Globe weighing one Pound is 1.8 of an Inch, open the Callipers, fo that the diftance between the two Points may be 1.8 of an Inch; and then, where the Line drawn from the Finger cuts the Circumference, make a Mark for the Divifion I. Again, to find where the Divifion 1.5 muft be, fay, As I is to the Cube of 1.8 , fo is 1.5 to the Cube of the Diameter of an Iron Ball weighing 1.5 Pounds, whofe Root extracted will give 2.23 Inches. Therefore open the Points of the Callipers, fo that they may be 2.23 Inches diftant from each other; and then, where the Line drawn from the Finger cuts the Circumference, make a Mark for the Divifion $\frac{1}{2}$. The Reafon of this is, becaufe the Weights of Homogeneous Bodies, are to each other as their Magnitudes; and the Magnitudes of Globes and Spheres, are to each other as the Cubes of their Diameters.
Proceed in the aforefaid manner, in always making I the firt Term of the Rule of Three, and the Cube of r .8 the fecond, $\mathcal{*} c$. and all the Divifions will be had.
Upon the Circle or Head, on the fame fide of the Callipers, are graved feveral Geometrical Figures, with Numbers fet thereto. There is a Cube whofe fide is fuppofed to be i Foot or 12 Inches, and a Pyramid of the fame Bafe and Altitude over it: On the fide of the Cube is grav'd 470 , lignifying that a Cubic Foot of Iron weighs 470 Pounds; and on the Pyramid is graved $156^{\frac{3}{3}}$, fignifying that the Weight of it is fo many Pounds.

The next is a Sphere, fuppofed to be infcribed in a Cube of the fame Dimenfions, as the former Cube, in which is writ $246 \frac{\pi}{4}$, which is the Weight of that Sphere of Iron. The next is a Cylinder, the Diameter and Altitude of which is equal to the fide of the aforefaid Cube, and a Cone over it, of the fame Bafe and Altitude; there is fet to the Cylinder 369 ${ }^{3} \frac{3}{4}$, fignifying, that a Cylinder of Iron of that Bignefs, weighs $369_{T_{7}}^{3,}$, and to the Cone $I_{1} I_{i}-7,7$, dignifying, that a Cone of Iron of that Bignefs weighs $12 \mathrm{I} \div \div$ Pounds.

The next is a Cube infcribed in a Sphere of the fame Dimenfions as the aforefaid Sphere. There is fet to it the Number $90^{\frac{1}{4}}$, fignifying, that a Cube of Iron infcribed in the faid Sphere, weighs $90 \frac{1}{4}$ Pounds.

The next is a Circle infcribed in a Square, and a Square in that Circle, and again a Circle in the latter Square. There is fet thereto the Numbers 28, 11,22 and I4, fignifying, that if the Area of the outward Square is 28, the Area of its infcribed Circle is 22, and the Area of the Square infcribed in the Circle 14, and the Area of the Circle infcribed in the latter Square I I.

The next and laft, is a Circle croffed with two Diameters at Right Angles, having in it the Numbers 7,22, 113 and 355 ; the two former of which reprefent the Proportion of the Diameter of a Circle to its Circumference ; and the two latter alfo the Proportion of the Diameter to the Circumference. But fomething nearer the Truth.

I have already, as it were, fhewn the Ufes of this Inftrument; but only of the Degrees on the Head, which is to take the Quantity of an Angle, the manner of doing which is eafy: For if the Angle be an inward Angle, as the Corner of a Room, ©c. apply the two outward Edges of the Branches to the Walls or Planes forming the Angles, and then the Degrees cut by the Diameter of the Semi-circle, will fhew the Quantity of the Angle fought. But if the Angle be an outward Angle, as the Corner of a Houfe, σ c. you muft open the Branches till the two Points of the Callipers are outwards; and then apply the ftraight Edges of the Branches to the Planes, or Walls, and the Degrees cut by the Diameter of the Semi-circle, will be the Quantity of the Angle fought, reckoning from 180 towards the Right Hand.

Plate XV

B O O K VI.

Of the Conftruction and USes of Aftronomical Inftruments.

> Tiken from the Afronomical Tables of M. de la Hire, and the Obfervations of the Academy of. Sciences.

C H A P. I.

Of the Conftruction and Ufes of the Aftronomical Quadrant.

HE Quadrants ufed by Aftronomers for Celeftial Obfervations, are ufually three Feet, or three Feet and a half (of Paris) Radius, that fo they may be eafily managed and carried from Place to Place. Their Limbs are divided into Degrees and Minutes, that fo Obfervations made with them may be very exact.
This Infrument is compofed of feveral pretty thick Iron or Brafs Rules, Plate 16. whofe Breadths ought to be parallel to its Plane. There are moreover other Fig. Is Iron or Brafs Rulcs, fo adjufted and joined behind the former ones, that their Breadths are perpendicular to the Plane of the Quadrant. Thefe Rules are joined together by Screws, by means of which the whole Conjunction of the Infrument is made, which ought to be very ftrait every way, firm, and pretty weighty. The Limb is likewife frengethen'd with a curved Brafs, or Iron Ruler. There is a thick frong circular Blade placed in the Center, ferving for the Ules hereafter mentioned ; which circular Blade and the Limb muft be raifed fomething higher than the Plane of the Infrument, both of which muft be covered with wellpolifhed thin Pieces of Brafs. But you mult take great care that the Surfaces of thefe Pieces of Brafs be both in the fame Plane.
The aforefaid circular Iron Blade in the Center muft have a round Hole in the middile thereof, about $\frac{1}{3}$ of an Inch in Diameter, in which is placed a well-turned Brafs Cylinder, raifed fomething above the central thin Piece of Brafs.

This Cylinder, which is reprefented in Figure 2, hath the Point of a very fine Needle ad- Fig. 2: jufted in the Center of its Bafe, which is fupported in going into a little Hole in. the Center of the Bafe, and by lying along a femicircular Cavity, and is kept therein by means of a little Spring prcffing againft it ; fo that when the Needle is taken away, and we have a mind to put it there again, it may exactly be placed in the little Hole in the Center of the faid Cy linder. This little Hole ought to be no bigger than a Hair, but it mult be fomething deep, that fo the Point of the Needle may go far enough into it, that at the fhaking of the Quadrant it may not come out. At the Point of this Needle is hung a Hair, by means of a Ring made with the fame Hair big enough, for fear left the Knot of the Ring fhould touch the central Plate, and the Motion of the Hair be difturbed. Note, The Bafe of the central Cylinder A, reprefented in this Figure, muft be fuch, that the Ring of the Hair, hung there is a Plummet hung to the End of the Hair, of about half an Ounce in weight.

The Conftruction of this central Cylinder ought to be fuch, that it may be taken away and preferved, and another placed inftead thereof, of the fame Thicknefs therewith, but fomething longer; which coming out beyond the central Blade, fuftains the Rule of the Inftrument, in fuch manner as we are going to explain.

There is moreover, at the central Brafs Blade, which covers the Iron one, a plane Ring A, turning about the Center, but not touching the central Cylinder; in fuch manner, that the outward Surface thereof is even with the Surface of the faid Brafs Blade. Upon this Ring is faftened, with two Screws, a flat 'Tube M, which moves freely along with the Hair and Plummet, which it covers, and fo preferves it from the Wind when the Inftrument is ufing.

This Tube carries a Glafs, placed againft the Divifions of the Limb of the Quadrant, in order to fee what Point of Divifion the Hair falls upon. Behind and nigh to the Center of Gravity of the Quadrant, is firmly fixed, with three or four Screws, to the Rules of the Inftrument, the Iron Cylinder I, whofe Length is 8 Inches, and Diameter of its Bafe two Inches. This Cylinder being perpendicular to the Plane of the Quadrant, may be called its Axis.

Now becaufe the principal Ufe of this Inftrument is for taking the Altitudes of the Sun or Stars, it muft be fo ordered, that its Plane may be eafily placed in a vertical Situation; therefore an Iron Ruler M N mult be prepared, whofe Thicknefs is three Lines, Length eight Inches, and Breadth one Inch, or thereabouts. On one Side of this Ruler are adjufted two Iron Rings Z Z, open a-top with Ears, each of which has a Screw to draw the Ears clofer together, which have a Spring. The Bignefs of thefe Rings is nearly equal to the Thicknefs of the Cylinder I, or Axis of the Quadrant, which being put thro them, is made faft with the Screws ; fo that the Axis and Quadrant, which it is fixed to, may remain firm in any Pofition the Quadrant is put into.

On the other Side of the faid Ruler M N is foldered an Iron Cylinder O , of fuch a Length and Breadth, as to go into the Tube Q, of which we are going to fpeak.
Now when the Inftrument is to be placed fo, that its Plane may be horizontal, for ufing an Index or moveable Arm to take the Diftances of Stars or Places upon Earth, the Cylinder I. muit be put into the Tube Q, by which means the Quadrant may be eafily turned to what part you pleafe.

The Foot, or Support of the whole Inttrument, is commonly compofed of an Iron Tube Q; whofe upper Part is capable of containing the Cylinder \mathbf{O}, and its lower Part goes thro the middle of an Iron Crofs, and is faftened in it by four Iron Arms, at the four Ends of which Crofs are four great Screws, to raife or lower the Quadrant, and put it in a convenient Situation. But Monfieur de la Hire propofes a Triangular Support in his Tables, which is compofed of an Iron or Brafs Tube, big enough to contain the Cylinder O, faftened with two Screws to three Iron Rulers R S, bent towards their Tops, and of a pretty good Thicknefs, which are adjufted and well fixed to a Tee or double Square T X Y. The Screw V, in the middle of the Tube Q , is for fixing the Cylinder O , according to Ne ceffity.

Now when the Meridian Altitudes of Stars are to be obferved, the Ruler T Y ought to be placed in the Meridian Line, and of the three Screws 'T X Y, which fuftain the weight of the whole Inftrument ; that which is in X ferves to lower the Plane of the Inftrument, till it anfwers to the Plane of the Meridian, according as the Obferver would have it ; and the other two are for raifing or lowering the Inftrument by little and little, until the PlumbLine falls upon the requifite Altitude. But it often happens in turning the Screws that are in ' T and Y , that the Quadrant difplaces itfelf from its true Pofition; whence, if the Defect be fome Minutes, this may be remedied, by hanging a moveable Weight to the Backfide of the Branches of the Inftrument, which may alter the Center of Gravity, as likewife change the Inclination of the Quadrant ; for the Rulers compofing the Foot are not entirely free from Elafticity. Now the nigher to the Foot the Place of Sufpenfion of the Weight is, the lefs Force will it have to fhake the Inftrument. Note, The Height of the Foot is commonly four Feet and a half, or thereabouts, and the fame Ufe is equally made of the four Branch Support.

The Divifions on the Limb of this Quadrant ought to be made with great Care, that fo Obfervations may thereby be exactly taken. Each Degree is divided into 60 Minutes, by means of 1 i concentrick Circles, and 6 Diagonal right Lines, as in Figure 6 may be feen. Thefe Diagonal Diftances are equal between themfelves, but thofe of the Concentrick Circles are unequal ; yet this Inequality is not fenfible, if the Radius of the Quadrant be three Feet, and the Diftance between the two outmoft Concentrick Circles be one Inch; for if the Arc A E, of the outmoft Circle be 10 Minutes, and there are drawn, from the Center C of the Quadrant, the Radii A D C, E BC, meeting the inner Concentrick Circle in the Points D, B, the Arc D B will be likewife 10 Minutes. Note, Figure 6 is fuppofed to be put upon the Limb of the Inftrument, Figure I.

Chap. I. of the Afronomical Quadrant.

But if the Right-lined Diagonals A B, D E, are drawn interfecting each other in the Point F ; I fay F is the middle Point of Divifion thro which the middle Circle ought to pafs: For the Arcs A E, B D, which may be taken for ftrait Lines, are to each other, as A.F is to FB: for it is evident, that $C A$ is to $C B$, as the Divifions of the Bafe A B of the Rightlined Triangle ACB ; but fince C A is to CB as AE is to DB, therefore $A E$ is to $D B$, as the Divilions of the Bafe A B made by a Radius, bifecting the Angle A C B : and confequently the Point F, before found in the Right-lined Diagonal A B, will be the middle Point of the Divifions.

Now let us fuppofe, that A C is to C B, as 36 Inches is to 35 ; then $A B$ is to $A F$, as 71 is to 36 . Therefore if the breadth of one Inch, or 12 Iines, which is the fuppofed meafure of $A B$, is divided into 71 equal Parts, the part A F will be 36 of then, which will be greater by half, or about $T^{\frac{2}{2}}$ of a Line, than half of $A B$, which is but $35 \frac{1}{2}$. This Difference is of no confequence, and may, without any fenfible Error, be neglected in the Divifion of the middle ; and much more in the other Divifions, where it is lefs.

Inftead of making Right-lined Diagonals, we may make them Portions of Circles paffing thro the Center of the Inftrument, and the firft and laft Point of the fame Diagonal; then we need but divide the firf Circular Portion into ten equal Parts, and the exact Points will be had thro which the eleven Concentrick Circles muft pafs.

The Radius of this firf Portion may be eafly found; and then if a thin Ruler be bent into the Curvature thereof, all the other Portions may be drawn by means of it, as we liave already mentioned in Cpeaking of the Divifions of Quadrants, Semicircles, $\mathcal{G}^{\mathcal{G}}$ c.

Note, It will be proper to leave, at the Bottom of the Limb, the Points that were made for drawing every ioth Minute ; for thefe will be a means to take the Correfpondent Altitudes of the Sun, Morning and Evening, much exa\&ter than can be done by the Diagonals, becaufe of the Eftimation thereby avoided. Moreover, there may be fome fault in the Diagonals which there cannot be in the Points, if care be taken in making them : for it is difficult enough to draw the Diagonals exactly thro thofe Points they fhould pafs. For which reafon, if a Micrometer be joined to the fixed Telefcope of the Inftrument, the Diagonals need not be ufed, and the aforefaid Points will be fufficient; fince the Micrometer will give, by means of a moveable Hair, the Interval between the neareft of one of the aforefaid Points, at every Ioth Minute, and the Plummet. And this is done by raifing or lowering the moveable Hair above or below the horizontal Hair, 10 Minutes of a Degree, or a litthe more. The Chevalier de Louville, of the Academy of Sciences, hath fatisfactorily ufed a Quadrant for his Obfervations, conftructed in this manner.

We now come to fpeak of 'Telefcopes, and the Manner of finding the firf Point of the Divifions of the Limb of the Quadrant.

Thefe Telefcopes have each two Glaffes, one of which is the Object-Glafs, placed towards the vifible Object, and near to the Center of the Quadrant; and the other is the Eye-Glafs, placed at the ouher end of the Telefcope, next to the Eye of the Obferver.

The Object-Glafs is firmly faftened in an Iron Frame, which is fix'd with Screws about the Center of the Inftrument. Near the Eye-Glafs are placed two fine Hairs, croffing each other at Right Angles, in an Iron Frame, to which they are faftened with Wax upon a little piece of Brafs ; fo that the one is perpendicular to the Plane of the Inftrument, and the other parallel thereto.

The Eye-Glafs muft be placed in a Tube, that fo it may be moved backwards or forwards, according to different Sights; and the diftance between the Object-Glafs and Crofshairs, muft be the faid Glafs's Focal Length ; that is, the Crofs-hairs muft be placed in the Focus of the Object-Glafs. Thefe Telefcopes muft be fo difpofed, that the Surfaces of the Lenfes (as Planes) and the Planes in which are the Crofs-hairs, be parallel to each other, and perpendicular to Right Lines drawn thro the Centers of the Lenfes, and the Points wherein the Hairs crofs each other. Thefe Telefcopes are adjufted behind the Quadrant, that fo the divided Brafs-Limb may not be incumbered by them.

Between the Frames fuftaining the Glaftes, is a Brafs or Iron Tube, compofed of two Parts, one of which is inchafed in the other, that fo they may eafily be taken from between the Frames, by means of Ferrils keeping them together.

The Convex Eye-Lens mult be brought nearer, or removed further from the Crofs-hairs, according to the diverfe Conftitutions of Obfervators Eyes; that fo diftant Objects may be diftinctly perceived, as likewife the Crofs-hairs. This Eye-Glafs is placed in another little moveable 'Tube, the greatelt part of which lies concealed in another 'Tube, as may be feen in Fig. 7.

When the Eye-Glafs wants cleanfing, or the Crofs-hairs are broken or diforder'd, and others to be put in their place, the beforementioned Brafs or Iron Tube muft be taken from between the Frames.

But the Conftruction of the Eye-Glafs will be much more convenient, if, inftead of a Frame Fig. $7 \cdot$ only, you ufe a little fquare Box, about four Lines in thicknefs, whofe two oppofite Sides, which are parallel to the Limb of the Quadrant, have Grooves along them, in which may move a little Plate of a mean thicknefs, drilled thro the middle with a round hole of a convenient bignefs.

Upan the Surface of this Plate, reprefented by the Figure a, are continued out two Diameters of the aforefaid hole, croffing each other at Right Angles, one of which is parallel to the Limb, and the other perpendicular thereto, upon which are placed the Crofs-hairs. This Plate is very ufful for moving the faid Crofs-hairs, ftrained at Right Angles a-crofs the middle of the hole, backwards or forwards, according to neceffity. And when the Hairs are placed as they fhould be, the aforefaid Plate is fixed to the Box with Wax, which ought to be furnifhed with a fliding Cover, for keeping the Crofs-hairs from Accidents.

The infide of the Tube ought to be blackened with the Smoke of Rofin, in order to preferve the Eye from too ftrong Rays which come from a luminous Object, that fo the appearance thereof may be more perfect. Note, Inftead of having Crofs-hairs in the beforementioned Box, a little piece of plain Glafs may be ufed, having two fine Lines drawn upon it at Right Angles with the Point of a Diamond.

The Telefcope being prepared and placed in a convenient Situation parallel to the Radius, or fice of the Quadrant ; the next thing to be done, is to find the firt Point of the Divifions of the Limb of the Quadrant, which is 90 Degrees diftant from the Line of Collimation or Sight of the Telefcope, or a Line parallel to it, paffing thro the Center of the Quadrant. But, Firt, it will be necelfary to fay fomething concerning this Line of Collimation, or Sight, about which M. de la Hive fays, he had formerly a long Controverfy, with very celebrated and great Aftronomers, who, for want of duly confidering Dioptricks, maintained, that it is impofible to find a fettled and conftant Line of Collimation in thefe kind of 'Telefcopes.

It is now manifelt, that all the Rays proceeding from any one Point of an Object, after having paffed thro the Glafs Lens, will all concur in one and the fame Point, which is called the Focus, provided that the Diftance of the Radiating Point from the Lens be greater than the Semidiameter of either of the Convexities of the Lens, which here we fuppofe equal ; that befides, among the Rays coming from a Radiating Point, and falling upon the anterior Surface of the Glaifs, that which concurs with a Line paffing thro the Centers of the Convexities, will fuffer no Refraction at its going in or coming out of the Glafs; therefore the Points of Objeets that are in that Right Line, are reprefented in the fame Line, which is called the Axis of the Optick Tube, and the Point of the Axis which is in the middle of the Glafs's thicknefs, is called the Center of the Lens.

If the Right Live paffing thro the Center of the Lens, and the Point where the Hairs crofs one another, agrees with the Axis of the faid Optick Tube, it will be the Line of Collimation of the Telefcope; and an Object very diftant, placed in the Axis produced, will appear in the fame Point where the Hairs crofs one another: juft as in common Indexes, where we take for the Line of Sight, the Right Line, that paffing thro the flits of the Sights, tends to the Object. But altho it almof never happens in the Pofition of Telefcopes, which we have eflablimed, that the Right Line tending from the Object to the Point wherein the Hairs crofs, and whereat the Object is reprefented, coincides with the Optick Axis; neverthelefs we fhall not defift finding that Line of Collimation tending from the Object to its Picture, reprefented in the Point wherein the Hairs crofs each other; which may be done in the foliowing manner.
Fig.s.
Let X V be a Glafs Lens, its Axis A C B, and its Center C; let F be the Point wherein the Hairs crofs one another without the Axis A C B. If from the Point F, which by Conftruction is at the Focal Diftance from the Lens, Rays pafs thro the Glafs, they will fuffer a Refraction at their entrance into the Glafs, and a fecond Refration at their going out thereof; after which, they will continue their way parallel to one another. Now there is one of thefe Rays, namely, FE, which coming from the Point F, after the firf Refraction in the Point E, paffes thro the Center C ; for after a fecond Refraction at its going out of the Glafs in the Point D , it will continue its way from D to O , parallel to FE , according to Dioptrick Rules. But all the Rays feparated at their going out of the Glafs may be taken as parallel, if they tend to a very diftant Point O, therefore they are alfo parallel to the Ray F E O, which is produced from the Object direfly to the Point O; and it is this Right Line F E O, which we call the Line of Collimation, in the aforefaid Pofition of Telefcopes, and it will always remain the fame, if the Situation of the Glaffes be not changed, that is, if the Lens and the Crofs-hairs are in the fame Pofition and Diftance. The Object C being in one of the extreme Points of the Right Line F E O, will be reprefented in the Point F.

Note, The Diflance between the principal Ray O D, falling from the Point O of the Object upon the Lens, and its refracted Ray E F, is always leffer than the thicknefs of the faid Lens D E, which is infenfible, and of no importance, in the Diftance of a very diftant Object, and the Diftance of the parallel Rays O D, O EF, will be fo much the lefs, as the Lens is more directly turned towards the Pofition of the Crofs-hairs.
We come now to fhew how to find the firf Point of the Divifions of the Limb of the Quadrant, which is thus: Having fixed the Plane of the Quadrant in a vertical Pofition, by means of the Plumb-Line CD, direct the Telefcope towards a very diftant vifible Point, nigh to the Senfible Horizon, in refpect of the Place where the Telefcope of the Infrument is placed; which may be firt known by marking the Point B upon the Limb, in the Radius C B, parallel to the Axis of the Tube, which may be nearly done; and by taking the Point D, diftant from the Point B90 Degrees: for when the Plumb-Line falls upon the Point D,

Chap. I.

the Object appearing in the Point wherein the Hairs crofs one another, will be nigh to the Horizon ; for the Senfible Horizon muft be at Right Angles with the Plumb-Line C D. But fince we are not yet certain whether the Telefcope be perfectly Horizontal, the Inftrument muft be turned upfide down, fo that the Point D may be above, and the Center below; but it is neceffary in this Tranfpofition, that the Line of Collimation be at the fame height as it was in the firlt Pofition. Having again directed the Telefcope towards the Point firtt ob ferved, fo that it may appear in the Point wherein the Hairs crofs, and having adjufted the Cylinder in the Center of the Inftrument, faften the Plumb-Line with Wax upon the Limb in the Point D; and if it exactly falls upon the Center C , it is certain that the Line of Collimation is horizontal. For this Line of Collimation will remain the fame in both Situations of the Quadrant, and produced with the Vertical Line CD, the Point D will be the beginning of the Divifions of the Limb.

But if, after having turned the Inftrument upfide down, the Plumb-Line, fufpended at the Point D , does not precifely fall upon the Center C , you muft move it till it does pafs thro it, not any wife changing the Pofition of the Quadrant, nor the Glaffes of the Telefcope; and then the Point E , upon which the Plumb-Line falls, muft be marked in the circular Arc D E, defcribed about the Center C, paffing thro the Point D.
Now, I fay, if the Arc D E be bifected in the Point O, this Point will be the firl Point of the Divifions of the Limb, and the Radius CO will be at Right Angles with the Line of Collimation. This Operation is very manifett, for the Line of Collimation, or the Radius C B, parallel to it, will not be changed in either of the Pofitions of the Quadrant, if the Angle BC D, in the natural Situation of the Inftrument, be greater than a Right Angle; that is, if the Point of an Object the Telefcope is directed to, be under the Horizon, it is manifef that the Vertical Line CD produced, anfwering to the Plumb-Line, makes with the Line of Collimation an Angle lefs than a right one, viz. the Complement of the Angle BCD, which is equal to the Angle BCE; therefore the Angle BCO, which is a Mean between that which is greater than a right one, and that lefler, made by the Radius C O, and the Line of Collimation, will be a right Angle ; which was to be proved.
We may yet otherwife have the firf Point of the Divifions of the Limb, by knowing a Point perfectly level wish the Eye ; then placing the Telefcope in that Point, and that place of the Limb upon which the Plumb-Line plays, will give the firft Point of Divifion.

The Proof of this Operation is juftified, if (the Plumb-Line paffing thro the Poinc O) a very diftant Object appears in the Point wherein the Hairs crofs one another. For having inverted the Inftrument, and the Telefcope being always directed towards the fame Object, the Plumb-Line will pais thro the Points O and C, otherwife there will be fome Error in the Obfervations.

Being well affured of the firft Point of the Divifions of the Limb, you muft draw about the Center C two Portions of Circles, an Inch diftance from each other, between which the Divifions of the Limb are to be included; to do which, you muft ufe a Beam-Compafs, whofe Points are very fine, one of which, next to the end, moves backwards or forwards, by help of a Screw and Nut, which is adjufted to the end of the Branch of the Compafs.

Then one of the Points of the Compafs being placed in O, the firf Point of the Divifions of the Limb, and the other being diftant therefrom the length of the Radius of one of the faid Concentrick Arcs, make a Mark upon the correfpondent Concentrick Arc, which exactly divide into two equal parts, one of which being laid off beyond the Mark, will give the Point B; and fo the Quadrant O B will be divided into three equal Parts, each being 30 Degrees.

Thefe Parts being each divided into three more, and each of thefe laft into two ; and,' finally, each of the Parts arifing into five more equal ones; the Quadrant will be divided into 90 Degrees, each of which being again divided into fix equal Parts, every roth Minute will be had.

The outward and inward Concentrick Arcs of the Limb being very exactly divided, as we have directed, very fine Lines muft diagonally be drawn thereon ; that is, from the firt Point of Divifion of the inward Arc, to the fecond Point of Divifion of the outward Arc ; and fo on from one Divifion in the inward Arc to the next enfuing Divifion of the outward Arc, as appears in Fig. 6. This being done, the diftance between the outward and inward Arcs muft be divided into to equal Parts, thro each Point of Divifion of which, muft nine Concentrick Arcs be drawn about the Center of the Quadrant C, which will divide the Diagonals into ten Parts; and fo the Limb of the Inftrument will be divided into Degrees and Minutes. Great care ought to be taken, that fo the Divifions may be very exactly drawn equal ; and that they may be as exact as poffible, very good and fine Compaffes exqui-fitely to draw the Lines and Circles muft be ufed ; and in making the feveral Divifions, we ufe fine Spring Compaffes, whofe Points are as fine as a Needle, and a good dividing Knife. Note, The Divifions of the Limb of the Quadrant for certain Ufes, are continued about $;$ Dee grees beyond the Point \mathbf{O}.

After this Inftrument hath been carried jin a Coach or on Horfeback, éc. care ought to be taken to prove it, for fear left the Glafies of the Telefcope fhould have been diforder'd, or the Crofs-hairs removed, which often happens. Likewife when the Tube of the Telefcope, if the Inftrument be not convey'd as aforefaid, is expofed to the Heat of the Sun, the Crofshairs are too much ftretched, and afterwards when the Sun is abfent, they relax and become flack, and fo are not very fit to be ufed: yet neverthelefs, if you think the Crofs-hairs have not been moved, there is no neceffity of proving the Telefcope, becaufe the Object-Glafs remains immoveable, and always the fame; and the Crofs-hairs, which by the moiture of the Air are flacken'd, will often become tight again in fine Weather.

NOTE, If a Telefcope be placed to an Inftrument already divided, it is very difficult to make it agree with the Divifions of the Limb ; therefore having proved it, according to the Directions before given, we fhall find how much greater or leiter than a Right Angle the Telefcope makes, with a Radius paffing thro the firft Point of the Divifions of the Limb, and this Difference mult be regarded in all Obfervations made with the Infrument: For if the Angle be greater than a Right one, all Altitudes obferved will be greater than the true ones by the quantity of the faid Difference; and contrariwife, if the atorenamed Angle be leffer than a Right Angle, the true Altitudes will be greater than the obferved ones. Notwithftanding this, the Crofs-hairs may be fo placed, that the Line of Collimation of the Telefcope may make a Right Angle with the Radius paffing thro the firt Point of Divifion of the Quadrant, in applying the Crofs-hairs on a moveable Plate, as we have mentioned in the Conftrution. But becaufe in conveying this Inftrument to diftant piaces, the Proof thereof muft be often made; and fince the Method already laid down is fubject to great Inconveniencies, as well on account of the difficulty of inverting the Inftrument, fo that the Tube of the Telefcope may be at the fame height, as becaule of the different Refractions of the Atmorphere near the Horizon, at different Hours of the Day ; as likewife becaufe of the Agitation and Undulation of the Air, and other the like Obttacles: Therefore we fhall here fhew two other ways of rectifying thefe Infruments, that fo any one may chufe that whicin appears mof convenient for him.

Now the firt of thefe Methods is this : You muft chufe fome Place from whence a diftant Objeft may be perceived diffinctly, at leaft 1000 Toifes, and whofe Elevation above the Horizon does not exceed the Number of Degrees of the Limb of the Quadrant continued out beyond the beginning of the Divifions. Now after you have obferved the Altitude of the faid Object, as it appears by the Degrees of the Limb, a Pail brum-fult Water, or fome broad-mouth'd Veffel, mult be placed before, and as nigh to the Quadrant as poffible, which muft be raifed or lower'd until the faid Object be perceived thro the Telefcope upon the Surface of the Water, as in a Looking-Glafs; which will not be difficult to do ; provided the Surface of the Water be not difurbed by the Wind ; whence the Depreffion of the faid Object will be had in Degrees by Reflexion, and it will appear in an ereet Situation, becaufe the Telefcope is compofed of two Convex Glaffes, which reprefent Objects inverted. But by Reflexion inverted Objects appear erect, and erect Objects inverted.

But you ought to obferve, that when the Angle made by the Line of Collimation, and the Radius paffing thro the firf Point of the Divifions of the Limb, is greater than a right one, the Depreffion of the aforefaid Object will appear as an Altitude ; that is, when you look thro the Telefcope at the Image of the Object in the Surface of the Water, the Piumb-Line of the Quadrant will fall on the left Side of the firf Point O of the Divifions of the Limb, and not on the Divifions continued out beyond the Point O. And contrarivife, in other Cafes, when the Angle the Line of Collimation makes with the Radiu paffing thro the firft Point of the Divifions of the Limb, is leffer than a right one, the Altitude of the Object will appear by the Divifions of the Limb, as tho it was depreffed ; that is, when you look at the aforefaid Object thro the Telefcope, the Plumb-Line of the Quadrant will fail upon the Divifions of the Limb continued out beyond the Point O. But in all Cafes, without regarding the Degrees of Altitude or Depreffion, denoted by the Plumb-Line, when the Object and its Image, in the Surface of the Water, is efpied thro the Telefcope, the exact middle Point between the two places whereon the Plumb-Line falls ar both Obfervations on the Limb, is vertical, and anfwers to the Zenith with refpect to the Line of Collination of the Telefcope.

Now having found the Error of the Inftrument, that is, the difference between the firft Point of the Divifions of the Limb, and the faid middle Point anfwering to the Zenith, you muft try to place the Crofs-hairs in their true Pofition, if you can conveniently; but if not, regard muft be had to the Error in all Obfervations, whether of Elevation, or Depreffion.

But note, if the Object be near, and elevated fome Minutes above the Horizon, the true Error of the Infrument may be found in the following manner.

We have three things given in a Triangle, one of which is the known Diftance between the Place of Obfervation and the Object ; the other the Diftance between the middle of the Te lefcope, and the Point of the Surface of the Water, upon which a reflected Ray falls; and the laft, the Angle included between thofe two Sides ; that is, the Arc of the Limb contained between the two places of the Limb upon which the Plumb-Line falls in, obferving, as aforefaid, the Object and its Image on the Surface of the Water thro the Telefcope : I fay, we
have the faid two Sides and included Angle given, to find the Angle oppofite to the leffer Side. This being done, if the Arc of the Limb included between the two places whereon the Plumb-Line falls, in obferving, as aforefaid, be diminifhed, on the Side of the Limb produced, by the Quantity of the Angle found, the middle of the remaining Arc will be the true vertical Point. Note, To find the Diftance between the middle of the Tube of the Telefcope, and the Point of the Surface of the Water upon which the refletted Rays fall, you may ufe a Rod or Thread prolonged from the faid Tube to the Surface of the Water.
The other way (which is very fimple, but yet not eafy) of proving whether the Line of Collimation of the fixed Telefcope be right, is thus : We fuppofe in this Method, that the Limb of the Quadrant is continued out, and divided into forse few Degrees beyond 90. Now in fome ferene fill Night, we take the Meridian Altitude of fome Star near the Zenith, having firt turned the divided Face of the Limb of the Quadrant towards the Eaft. This being done, within a Night or two after, we again obferve' the Altitude of the fame Star, the divided Face of the Limb being Weftward. Then the middle of the Arc of the Limb between the Altitudes at each Obfervation, will be the Point of 90 Deg. that is, a Point thro which a Radius of the Quadrant pafles, parallel to the Line of Collination of the Telefcope. Note, This Method is very ufeful for proving the Pofition of Telefcopes, which ate adjufted not only to Quadrants, but principally to Sextants, Oetants, © cr. for by means thereof may be found which of the Radii of the feveral Inftruments are parallel to the Lines of Collimation of the Telefcope.

We fhall hereafter flew the Manner of taking the Altitudes of Celeftial Bodies; as likewife how to obferve them thro Telefcopes.

> Of the Index, or moveable Arm of the Quadrant.

I fhall conclude this Chapter in faying fomething concerning the Conftruction and Ufe offig. 9. this Index, which is no more than a moveable Alidade, with a Telefcope adjufted thereto, which produces the fame effect as the Alidades of other Inftruments do ; that is, to make any Angle at pleafure with the Telefcope fixed to the Quadrant. The principal part of this Index is an Iron or Brafs Ruler, drill'd at one end, and is fo adjufted to the Central Cylinder, of which we have aiready fpoken, that it has a circular Motion only.
Upon this Ruler are faftened two Iron or Brafs Frames, in one of which, viz. that which is next to the Center of the Inftrument, the Object-Glafs is placed; and in the other, the Eye-Glafs and Crofs-hairs, which together make up a Telefcope, alike in every thing to the other fixed 'Telefcope of the Quadrant.

At the end of the Index joining to the Limb, is a little Opening about the bignefs of a Degree of the Limb, thro the middle of which is frained a Hair, which is continued to the Center of the Quadrant. But becaufe in ufing the Index the faid Hair is fubject to divers Inconftancies of the Air, it is better to ufe a thin piece of clear Horn, or a flat Glafs, adjufted to the aforefaid little Opening in a Frame, having a Right Line drawn upon that Surface thereof next to the Limb, fo that it tends to the Center of the Inftrument. Note, The Frame is faftened in the little Opening by means of Screws.

Now the Index being faftened to the Center before it is ufed, the Telefcope muft be proved, that fo it may be known whether the fixed Telefcope agrees therewith. To do which, having placed the Plane of the Intrument horizontally, and direeted the fixed Telefcope to fome Point of a vifible Object, diftant at leaft 500 Toifes; afterwards the moveable Telefcope mult be pointed to the fame Object, that fo one of the Crofs-hairs, viz. that which is perpendicular to the Plane of the Quadrant, may appear upon the aforefaid Point of the Object : for it matters not whether the Interfection of the Hairs appear thereon, or the perpendicular Hair only. Then, if the Line drawn upon the Horn or Glafs on the Index falls upon the goth Degree of the Limb of the Quadrant, the Telefcopes agree : if not, either the Horn or Glafs muft be removed till the Line drawn thereon falls upon the goth Degree of the Divifions of the Limb, and then it muft be faftened to the Index; or elfe regard muft be had, in all Obfervations, to the difference between the firf Point of the Divifions of the Limb, and the Line drawn upon the faid piece of Horn or Glafs.

C H A P. II.

Of the Confruction and USe of the Micrometer.

THE Micrometer is an Inftrument of great Ufe in Aftronomy, and principally in meafuring the Fig. 9. apparent Diameters of the Planets, and taking fmall Diftances not exceeding a Degree, or Degree and a half. This Inftrument is compofed of two rectangular Brafs Frames, one of which, viz. ABCD, is commonly $2^{\frac{T}{2}} \frac{1}{2}$ Inches long, and ${ }^{\frac{\pi}{2}} \frac{1}{2}$ broad, having the Sides

AB and C D, divided into equal Parts, about four Lines diftant from each other, (for this is according to the Turas of the Screw, as fhall be hereafter explain'd) but in fich mamer, that the Lines drawn thro each Divifion be perpendicular to the Sides AB and CD, and having human Hairs frain'd from Divifion to Divifion, faftened with Wax to the places $2,2, \dot{\sigma} c$.

The other Frame EF G H, whofe Length EF is one Inch and a half, is fo adjufted to the forner Frame, that the Sides E F and G H of the one, may move along the Sides A B and CD of the other, without being feparated therefrom; which is done by means of Dove-tail Grooves. The Face of this fecond Frame next to the divided Face of the former, is likewife furnifn'd with a Hair, ftrain'd at the place 4; fo that when the Frame is moring, the faid Hair may be alvays parailel to the Hairs on the other Frame. The Screw I, whofe Cylinder is about four or five Lines in Diameter, goes thro, and turns in the Side B D of cne of the Frames, which for this purpofe is made thicker than the other Sides. The end of this Screws is cut fo as to go thorow a round hole made in the Side FH of the leffer Frame, which for this purpofe is likewife made thicker than the other Sides; there is alfo a little Pin K put thro a hole made in the end of the Screw, that fo the lefier Frame can no ways move, but in turning the Screw to the right or left, according as you would have the Frame move forwards or backwards. M N is a circular Plate about an Inclı in Diameter, faftened with two Screws to the Side B D of the Frame. This Plate is commonly divided into 20 or 60 equal Parts, which ferve to reckon the Revolutions and Parts of the Screw, by means of the Index M, which is adjufted under the Neck of the faid Screw, and turns with it. Now the Divifions of the Sides of the Frame A B C D, are made according to the Breadth of the Threads of the Screw ; for if, for example, the Divifions are defired to be io Turns of the Screw diftant from each other, turn the faid Screw ten times abour, and note how far the Frame hath moved: if it has moved four Lines, the Divifions muft be four Lines diftant from each other ; and fo of others.
Now becaufe Hairs are fubject to divers Accidents by Heat, and otherwife, therefore M.de In Hive propofes a very thin and fmooth piece of Glafs to be ufed inftead of them, adjufted in Grooves made in the Sides of the Frame, and having very fine parallel Lines drawn thereon, which produce the fame effiet as the parallel Hairs. All the dificulty confifts in chufing a very fine and well polifhed Piece of Glafs, and draving the Lines extremely nice; for the Defaults will grofly appear, when the faid Lines are perceived in a Telefcope.

Note, Thefe Lines muft be very lightly drawn upon the Glafs with a fmall Diamond, whofe Point is very fine.

This Inftrument is joined to a Telefcope, by means of the prominent Pieces L, L, which nide in a kind of parallelogramick Tin-Box, at the two Sides of which are two Circular Openings, wherein are folder'd two flort 'Tubes; that on one Side being to receive the'Tube carrying the Eye-Glafs ; and that on the other Side, the Tube carrying the ObjeEt-Glafs, fo that the Micrometer may be in the Focus of the faid Object-Glafs.

Ufe of the Micrometer.

In order to ufe this Inftrument, a lively Reprefentation of Objects appearing thro the Telefcope muft be made in the Point whereat the parallel Hairs are placed ; therefore if the Object-Glafs be placed at its Focal Diftance from the Micrometer, more or lefs, according to the Nature and Conftitution of the Eyes of the Obfervator, the Objefts and the parallel Hairs will appear diftinctly in the faid Focus.

If then the Focal Length of the Object-Glafs be meafured in Lines or 12th Parts of Inches, or, which is all one, the Diftance from the Center of the Object-Glafs to the parallel Hairs of the Micrometer, be meafured, this Diftance is to the Length of four Lines, which is the Interval between two fixed parallel Hairs nigheft each other, as Radius is to the Tangent of the Angle, fubtended by the two neareft parallel Hairs. This is evident from Dioptricks : for the Diftance between the Object and the Obfervator's Eye, is fuppofed to be fo great, that the Focal Length of the Object-Glafs, compared therewith, is of no confequence; fo that the Rays proceeding from the Points of the Object directly pafs thro the Center of the Object-Glafs in the fame manner, as tho the Obfervator's Eye was placed in the faid Object-Glafs. This may be fhewn by Experience thus:

Draw two black Lines parallel upon a very fmooth and white Board, whofe Interval let be fuch, that at the Diftance of 200 or 300 Toifes, they may be met with or embraced by two parallel Hairs of the Micrometer. This being done, remove the Table in a convenient place (there being no Wind Airring) fo far from the Telefcpoe, until the Lines drawn thereon, which muft be perpendicular to a Right Line drawn from the Table to the Micrometer, be catched by two fixed parallel Threads of the Micrometer ; and then the Diftance between the Table and the Object-Glafs will have the fame proportion to the Diftance between the Lines on the Table, as Radius is to the Tangent of the Angle fubtended by two Hairs of the Micrometer.

Now move the Frame E F G H, by means of the Screw, till its Hair exacly agrees with one of the parallel Hairs of the other Frame ; and when this is done, obferve the Situation of the Index of the Screw ; then turn the Screw until the faid Hair of the Frame E F G H

Chap. 2.

agrees with the next nearelt fixed Hair of the other Frame; or, whici is the fame thing, move the Frame E F G H the Length of four Lines, or one third of an Inch, which may be eafily known by means of the Object-Glafs, which magnifies Objects, and count the Revolutions and Parts of the Screw, compleated in moving the faid Frame that Length. Finally, make a Table, fhewing how many Revolutions, and parts of a Revolution of the faid Screw, are anfwerable to every Minute and Second, by having the Angle fubtended by the two black Lines on the Board given, and taking the Revolutions proportional to the Angles; that is, if a certain Number of Revolutions give a certain Angie, half this Number will give half the Angle, \mathcal{E}_{c}. And this Proportion is exact enough in thefe fmall Angles.
Now the manner of taking the apparent Diameters of the Planets, is thus: Having directed the Telefcope, and its Micrometer, towards a Planet, difpofe the Hairs, by the Motion of the Telefcope, in fuch a manner, that one of the fixed parallel Hairs do juft touch one edge of the Pianet, and turn the Screw till the moveable Hair juft touches the oppofite edge of the faid Planet. Then, by means of the Table, you will know how many Minutes or Seconds correfpond to the Number of Revolutions or Parts, reckoning from the Point of the Plate over which the Index ftood when the fixed Hair touched one edge of the Planet, to the Point it flands over when the moveable Hair touches the oppofite edge ; and confequently, the apparent Diameter of the faid Planet will be had. And in this manner may fmall Angles on Earth be taken, which may be eafier done than thofe of the Celeftial Bodies, becaufe of their Immobility.

This Method is convenient enough for meafuring the apparent Diameters of the Planets, if the Body of any one of them, moves between the parailel Hairs. Yee it ought to be obferved, that the Sun and Moon's Diameters appear very unequal upon the account of Refraction ; for in fmall Elevations above the Horizon, by the fpace of 30 Minutes, the vertical Diameters appear fomething leffer than they really are in the Horizon, and the horizontal Diameters cannot be found, unlefs with much trouble, and feveral repeated Obfervations; as likewife the Difance between two Saars, or the Horns of the Moon, becaufe of their Diurnal Motions, which appear thro the Telefcope very fivift.

If two Stars of different Altitudes pafs by the Meridian at different times, the Difference of their Altitudes will be the Difference of their Diftances from the Equator towards either of the Poles, which is called their D:fference of Declination; and by their Difference of Time in coming to the Meridian, the Difference of their Diftance from a determinate Point of the Equator, that is, the firf Degree of Aries will be had; and this is their Difference of Right Afcenfion.

If the two Stars are diftant from each other, we have time enough, in the Interval of their Paflage by the Meridian and Micrometer, to finifh the Operations regarding the firf, before proceeding to thofe of the fecond ; but if they be very near each other, it is extremely difficult to make both the Obfervations at the fame time, that fo the two Stars may be precifely catched in the Meridian. But M. de la Hire fhews how to remedy this Inconveniency, by only ufing the common Micrometer: for the Obfervation of the Paffage of Stars between, or upon the Hairs of the Micrometer, will give, by eafy Confequences, their Difference of Right Afcenfion and Declination, without eren fuppofing a Meridian known or drawn.

But if the Difference of Declination and Right Afcenfion of two Stars that cannot be taken in between the Hairs of the Micrometer be required, this may be found in the following manner.

We adjuft a Crofs-hair to the Micrometer, cutting the parallel ones at Right Angles, Fig. 100 which we fatten with Wax to the middle of the Sides A C and BD. Then the Telefoope, and its Micrometer, being fixed in a convenient Pofition, fo that the Stars may fucceffively pafs by the parallel Hairs, as the Stars A and S, in Figure 1o ; we obferve, by a fecond Pendulum Clock, the time wherein the firf Star A touches the Point in which the aforementioned Crofs-hair A S croffes fome one of the parallel Hairs, as A d. The Micrometer being difpofed for this Obfervation, which is not difficult to do, reckon the Seconds of time elapfed between the Obfervations made in the Point A, and the arrival of the faid Star to the Point B, being the concourfe of another parallel Hair B D. We likewife obferve the Time wherein the other Star S meess the Crofs-hair at the Point S, and then at the Point D of the parallel Hair B D. Note, It is the fame thing if the Star S firt meets the parallel Hair in D, and afterwards the Crofs-hair in S.
Now as the Number of Seconds the Star A is moving thorow the fpace AB, is to the Number of Seconds the Star S is moving thorow the fpace S D; fo is the Difance A. C, known in Minutes and Seconds of a Degree in the Micrometer, to the Diffance CS, in Minutes and Seconds of a Degree. But the Horary Seconds of the Motion thorow the fpace A B, muft be converted into Minutes and Seconds of a great Circle, by the Rule of Proportion.
Having firt converted the Seconds of the time of the faid Motion from A to B , which may be here efteemed as a Right Line, or an Arc of a great Circle, into Minutes and Seconds of a Circle, in allowing is Minutes of a Circle to every Minute of an Hour, and
the fame for Seconds: We fay, by the Rule of Proportion, As Radius is to the Sine Complement of the Stars known Declination, fo is the Number of Seconds in the Arc A. 3 alfo known, to the Number of Seconds of the fame kind contained in the Arc C A, as an Arc of a great Circle.

Moreorer, in the Right-angled Triangle C A B, the Sides C A, and A B being given, as likewife the Right Angle at C, we find the Angle $C A B$; and fuppofing $C P R$ perpendicular to the Line $A B, A B$ will be to $C A$ as $C A$ is to $A P$.

But in the Right-angled Triangle C A P, we have (befides the Right Angle) the Angle A, as likewife the Side C A given; therefore as Radius is to C A, to is the Sime of the Angle CAP, to C P. And as the Number of horary Seconds of the Motion from A to B, is the horary Seconds in the Motion from S to D, fo is C P to C R. Then taking $C R$ from $C P$, or elfe adding them together, according as $A B$ or $S D$ is next to the Point C, and we flatl have the Quantity of PR in parts of a great Circle, which will be the Difference of the two Stars Declinations. We have no regard here to the Difierence of Motion thorow the fraces A B and SD, caufed by the difference of Declination, becaufe it is of no confequence in the Difference of Declinations, as they are obferyed by the Micrometer.

Finally, As A B is to A P, fo is the Number of horary Seconds of the obferved Motion of the Star A thorow the fpace AB, to the Number of Seconds of the Motion of the faid Star thorow the fpace A P. Wherefore the time when the Star A comes to P, will be known. But as the Number of Horary Seconds of the Motion thorow the Space A B is to the Number of Horary Seconds of the Motion thorow the Space S D ; fo is the Number of Horary Seconds of the Motion thorow the Space A. P, to the Number of Horary Seconds of the Motion thorow S R.

Morcover: 'The Time when the Star S is in S is known, to which if the 'T'ime of the Motion thorow S R be added, when A and S are on the fame fide the Point C, on fubAtracted if otherwife, and the time when the Star is in R will be had.' Now the difference of Time between the arrivals of the Stars in P and R, that is, the difference of the Times wherein they come to the Meridian, will be the difierence of their Right Aicenfions, which by the Rule of Proportion may be reduced into Degrees and Minutes. Note, We have no regard here to the proper Motion of the Stars.

From hence it is cafy to know how, inftead of the parallel Hair A B, to ufe another parallel one, paffing thro A, or any other, as alfo a moveable Parallel, provided that they form Similar 'Triangles, as will be eafily conceiv'd by what hath been already faid.

The aforefaid Operation may yet be done by another Method. For the parallel Hairs of the Micrometer being fo difpofed, that the firt of the Stars may move upon one of them; and if the time wherein the faid Star crofles the Crofs-hair of the Micrometer be obferved, and if moreover the time wherein the other Star croffes the faid Crofs-hair be obferved, and at the fame time the moveable parallel Hair be adjufted to the fecond Star, no ways altering the Micrometer ; we fhall have, by means of the Diftance between that parallel Hair, the firlt Star moved upon, and the moveable parallel Hair, the Difance between two parallel Circles, to the Equator, paffing thro the places of the faid Stars, which is their Difierence of Declination. And if moreover, the Difierence of the Times between the pafiges of each of the Stars by the Crofs-hair of the Micrometer be converted into Mintites and Seconds of a Degree, the faid Stars afcenfonal Difference will be lad. This rieeds no Example.

But if this be required between fome Star, and the Sun or Moon; as for Example, Mercury moving under the Sun's Disk; place the Micrometer fo, that the Limb of the Sun may move along one of the parallel Hairs, and obferve the times when the Sun's antecedent and confequent Limbs, and the Center of Mercury, touch the Crofs-hair ; then the Difierence of Mercury's Declination, and the Sun's Limb, by means of the moveable Inair, will be had, the Micrometer remaining fixed. And if to the time of the Obfervation of the Sun's antecedent Limb, half the time elapfed between the Paflages of the antecedent and confequent Limb be added, we fhall have the time of the Paffage of the Sun's Center by the Crofs-hair of the Micrometer ; and by this means the difference of the times between the Paflage of the Sun's Center and Mercury over the Crofs-hair, that is, by the Meridian, will be obtained. And this Difference of time being converted into Degrees and Minutes, will give their afcenfonal Difference.

Moreover, fince the Sun's Center is in the Ecliptick, if in the fame time as the faid Center palfes over the Crofs-hair, (the Sun's true place being otherwife known) you feek in Tables, the Angle of the Ecliptick with the Meridian, you will likewife have the Ancle that
Fig. If. the Ecliptick makes with the Sun's Parallel, as in Fig. ir. the Angle O C R, of the Ecliptick O C B, and of the Parallel to the Equator R C. Let P C be the Meridian, Neicury in M, the Center of the Sun in $C, M R$ parallel to $P C$, and $C R$ the difference of Right Afcenfion between the Center of the Sun C, and Mercury in M. Now the Minutes of the Difference of the Right Afcenfion C R in the Parallel, being, reduced to Minutes of a great Circle, fay, As Radius is to the Sine Complement of the Sun's or Mercury's Declination; fo is the Number of Seconds of the Difference of Right Afcenfion, to the Number of

Seconds CR, as the Arc of a great Circle. Then in the Triangle CRT, Ripht-angled at R, we have the Side $C R$ (now found); as allo the Angle R C T, viz, the Diference between the Right Angle, and the Angle made by the Ecliptick and Meridian; whence the Hypothenufe C T, and the Side R T may be found. And if R T be taken from MR, which is the difference of Declination of Mercury in M, and the Center of tie Sun in C , there will remain $\mathrm{T} M$. Again, as $\mathrm{C} T$ is to TR , fo is TM to TO ; MO will be the Latitude of Mercury ar the time of Obfervation: And adding TO to the Side C T, we fhall have C O, the difference of Longitude between Mercury and the Sun's Center. Therefore the Sun's Longitude being known, that of Mercury's may alfo be found.

If moreover, two or three Hours after the firt Obfervation of Mercury in Bi, the difecrence of Declination and Right Afcenfion thereof be again obferved, when he is come to N, we fhall find, as before, N Q the Laticude of Meriutry, and C Q the difference of Lougitude of him and the Sun's Center C ; whence the place of the apparent Node of Locrexay will be had. But note, the Point of Concourfe A, in the Right Line M N, wist the Ecliptick CB, is not the place of the faid Node, with regard to the Pcint C, becaufe between the Obfervations made in the Points M and N , the Sun by its proper Motion is moved a fow Minutes forwards, according to the Succeffion of Signs, which notwithfanding we have not regarded in the Obfervations. Therefore fay, As the difierence of the Latudes MO and $N Q$, to $O Q$, minus the proper Motion of the Sun, betucen the Obfervations made in M and N ; fo is M O to the Diftance O A , whence the true D tance from the Sun's Coures C to Mercury's Node A will be had. Note, The proper Moticib of the Sun Letwe an the Obfervations muft be taken from $O Q$, becaufe during that time the ary is Retcograde; but if its Motion had been direct, the Sun's Motion muft have been added to O Q.
In the Obfervations of Mercury's Paffage under the Sun's Disk, we have had no ree and to the proper Motion of the Sun, as being of fmall conlequence; but if it is requird to be brought into Confideration, C O and C Q muft be diminithed by fo much of the Sun's proper Motion, as is performed in the Interval of time between the Paffage of the Sun's Center and Mercury, by the Meridian.
By the fame Method, the Diftances of Planets from each other, or from fixed Stars near the Ecliptick, may be obferved; neverthelefs, excepting fome Minutes, not only upon the account of the proper Motions of the Stars, but alfo becaufe of their Difance from the Ecliptick or too great Latitude. Note, This fecond Method for finding the Difference of Declination and Right Afcenfion is not exacter than the former, altho it is perform'd with lefs Calculation : for it is fo difficult to difpofe the Hairs of the Micrometer according to the Parallel of the Diurnal Motion, that it cannot be done, but by feveral uncertain trials.
M. de la Hire hath alfo invented another Micrometer, whofe Confruction is eafy; for it Fig. 12. is only a pair of proportional Compafies, whofe Legs on one Side, are, for example, ten times longer than thofe on the other Side. The fhorteft Legs of thefe Compaffes mult be put thro a flit made in the Tube of the Telefcope, and placed fo in the Focus of the ObjectGlafs, that the two Points, which ought to be very fine, may be apply'd to all Objeets reprefented in the faid Focus. Then if the Angle fubtended by the Diftance of two Objeats in the Focus of the Object-Glafs be required to be found by means of thefe Compafles, you muft fhut or open the two fhorteft Legs till their Points juft touch the Reprefentations of the Objects; and keeping the Compaffes to this opening, if the longent Legs be apply'd to the Divifions of a Scale, the Minutes and Seconds contained in the Angle fubtended by the Diftance of the aforefaid Objeets will be had. The Manner of dividing the faid Scale, is the fame as that for finding the Diftances of the parallel Hairs of the other Micrometer, in faying by the Rule of Proportion, As the Number of Lines contain'd in the Focal Length of the Object-Glafs, is to one Line ; fo is Radius to the Tangent of the Angle fubtended by one Line in the Focus: therefore if the longeft Legs be ten times longer than the others, ten Lines on the Scale will meafure the faid Angle fubtended by one Line, which being known, it will be eafy to divide the Scale for Minutes and Seconds.
This Micrometer may be ufed for taking the apparent Diameters of the Planets; as alfo to take the Diftances of fixed Stars which are near each other, and meafure finall Diftances on Earth.

C H A P. III.

Of making Celeftial Obfervations.

OBfervations of the Sun, Stars, ©'c. made in the Day-time with long Telefcopes, are eafy, becaufe the Crofs-hairs in the Focus of the Object-Glafs may then be diftinetly perceived; but in the Night the faid Crofs-hairs mult be enlightened with a Link, or

Candle, that fo one may fee them with the Stars, thro the Telefcope : and this is done two ways.

Firft, We enlighten the Object-Glafs of the Telefcope, in obliquely bringing a Candle near to it, that fo its Smoke or Body do not hinder the Progrels of the Rays coming from the Star. But if the Object-Glafs be fomething deep in the 'Tube, it cannot fufficiently be enlightened, without the Candle's being very near it, and this hinders the Sight of the Star ; and if the Telefcope is above fix Feet long, it will be difficult fufficiently to enlighten the Object-Glafs, that fo the crofs Hairs be diftinctly perceived.
Secondly, We make a fufficient opening in the Tube of the Telefcope near the Focus of the Object-Glafs, thro which we enlighten with a Candle the crofs Hairs placed in the Focus.

But this Method is fubject to feveral Inconveniencies, for the Light being fo near the Obfervator's Eyes, he is often incommoded thereby. And moreover, fince the crofs Hairs are by that opening uncovered and expofed to the Air, they lofe their Situation, become flack, or may be broken.

Befides this, the faid fecond Method is liable to an Inconveniency for which it ought to be entirely neglected; and that is, that it is fubject to an Error, which is, that according to the Pofition of the Light illuminating the crofs Hairs, the faid Hairs win appear in different Situations: becaufe, for example, when the Horizontal Hair is enlightened above, we perceive a luminous Line, which may be taken for the faid Hair, and which appears at its upper Superficies. And contrariwife, when the faid Hair is enlightened underneath, the luminous Line will appear at its lower Superficies, the Hair not being moved; and this Error will be the Diameter of the Hair, which often amounts to more than fix Seconds. Eut M. de la Hire hath found a Remedy for this Inconveniency. For he often found, in Obfervations made in Moonfhine Nights, in Weather a little foggy, that the crofs Hairs were difinctly percenved; whereas, when the Hearens were ferene, they could fcarcely be feen : whence he bethought himfelf to cover that End of the Tube next to the Object-Glals with a Piece of Gawze, or very fine white filken Crape ; which fucceeded fo wenl, that a Link placed at a good diftance from the Telefcope fo enlightened the Crape, that the crofs Hairs diftinctly appeared, and the Sight of the Stars was no way obfcured.

Solar Obfervations cannot be made without placing a fmoked Glafs between the Tclefcope and the Eye, which may thus be prepared. 'Take two equal and well polifhed round Pieces of flat Glafs, upon the Surface of one of which, all round its Limb, glew a Pafteboard Ring; then put the other Piece of Glafs into the Smoke of a Link, taking it feveral times out, and putting it in again, for fear left the Heat of the Link fhould break it, until the Smoke be fo thick thereon, that the Link can fcarcely be feen thro it: but the Smoke mult not be all over it of the fame Thicknefs, that fo that Place thereof may be chofen anfwering to the Sun's Splendor. This being done, this Glafs thus blackened, muft be glewed to the before mentioned Pafteboard Ring, with its blacken'd Side next to the other Glafs, that fo the Smoke may not be rubbed off.

Note, When the Sun's Altitude is obferved thro a Telefoope, confifting of but two Glaffes, its upper Limb will appear as tho it were the lower one.

There are two principal kinds of Obfervations of Stars, the one being when they are in the Meridian, and the other when they are in Vertical Circles.

If the Pofition of the Meridian be known, and then the Plane of the Quadrant be placed in the Meridian Circle, by means of the plumb Line fufpended at the Center, the Meridian Altitudes of Stars may be eafily taken, which are the principal Operations, ferving as a Foundation to the whole Art of Aftronomy. The Meridian Altitude of a Star may likewife be had by means of a Pendulum Clock, if the exact Time of the Star's Paffage by the Meridian be known. Now it muft be obferved, that Stars have the fame Altitude during a Minute before and after their Paffage by the Meridian, if they be not in or near the Zenith; but if they be, their Altitudes mult be taken every Minute, when they are near the Meridian, which we fuppofe already known, and then their greateft or leaft Altitudes will be the Meridian Altitudes fought.

As to the Obfervations made without the Meridian in Vertical Circles, the Pofition of a given Vertical Circle muft be known, or found by the following Method.

Firf, The Quadrant and its Telefcope remaining in the fame Situation wherein it was when the Altitude of a Star, together with the Time of its Paffage by the Interfection of the crofs Hairs in the Focus of the Object-Glafs, was taken, we oblerve the Time when the Sun, or fome fixed Star, whofe Latitude and Longitude is known, arrives to the Vertical Hair in the Telefcope; and from thence the Pofition of the faid Vertical Circle will be had, and alfo the obferved Star's true Place.

But if the Sun, or fome other Star, does not pafs by the Mouth of the Tube of the Telefoope, and if a Meridian Line be otherwife well drawn upon a Floor, or very level Ground, in the Place of Obfervation, you muft fufpend a Plumb-Line to fome fixed Place, about three or four Toifes diftant from the Quadrant, under which upon the Floor mult a Mark be made in a right Line with the Plumb-Line. This being done, you muft pur 2 thin Piece of Brafs, or Pafteboard, very near the Object-Glafs; in the middle of which there

Chap. 3. Of making Celestial Obfervations.

is a fma!! Slit vertically placed, and paffing thro the Center of the Circular Figure of the Object-Glafs. Now by means of this Slit, the beforementioned Plumb-Line may be perceived thro the Telefcope, which before could not be feen, becaule of its Nearneis thereto. Then the Plumb-Line muft be removed and fufpended, fo that it be perceived in a right Line with the vertical Hair in the Focus of the Object-Glafs, and a Point marked on the Floor directly under it. And if a right Line be drawn thro this Point, and that marked under the Plumb-Line before it was removed, the faid Line will meet the Mer dian drawn upon the Floor; and fo we fhall have the Pofition of the vertical Circle the obferved Star is in, with refpect to the Meridian, the Angle whereof may be meafured in alluming known Lengths upon the two Lines from the Point of Concourie; for if thro the Extremities of thefe known Lengths, a Line or Bafe be drawn, we fhall have a Triangle, whofe three Sides being known, the Angle at the Vertex may be found, which will be the Angle made by the Vertical Circle and Meridian.

The Manner of taking the Meridian Altitudes of Stars.

It is very difficult to place the Plane of the Quadrant in the Meridian exactly enough to take the Meridian Altitude of a Sar; for unlefs there be a convenient Place and a Wall, where the Quadrant may be firmly faftened in the Plane of the Meridian, which is very difficult to do, we fhall not have the true Pofition of the Meridian, proper to obferve all the Stars, as we have mentioned already. Therefore it will be much eafier, and principally in Journeys, to ufe a portable Quadrant, by means of which the Alticude of a Star mult be obferved a little before its Paflage over the Meridian, every Minute, if pofibie, until its greateft or leaft Altitude be had. Now, tho by this means we have not the true Pofition of the Meridian, yet we have the apparent Meridian Altitude of the Star.

Altho this Method is very good, and free from any fenfible Error, yet if a Star paffes by the Meridian near the Zenith, we canot have its Meridian Altitude, by repeated Obfervations every Minute, unlefs by chance; becaufe in every Minute of an Hour the Altitude augments about fifteen Minutes of a Degree : and in thefe kind of Obfervations, the inconvenient Situation of the Obfervator, the Variation of the Star's Azimuth feveral Degrees in a little time, the Alteration that the Inftrument muft have, and the Difficulty in well replacing it vertically again, hinders our making of Obfervations oftner than in every fourth Minute of an Hour; during which 'Time the Difference in the Star's Altitude will be one Degree. Therefore in thefe Cafes it will be better to have the true Pofition of the Meridian, or the exact Time a Star palies by the Meridian, in order to place the Inftrument in the faid Me ridian, or move it fo that one may obferve the Altitude of the Star the moment it paffes by the Meridian.

Of Refrations.

The Meridian Altitudes of two fixed Stars, which are equal, or a fmall matter different, the one being North, and the other South, being obferved, aad alfo their Declination otherwife given; to find the Refraction anfwering to the Degrees of Altitude of the faid Stars, and the true Height of the Pole, or Equator, above the Place of Obfervation.

Having found the apparent Meridian Altitude of fome Star near the Pole (by the aforegoing Directions) if the Complement of the faid Star's Declination be added thereto, or taken therefrom, we fhall have the apparent Height of the Pole. After the fame manner may alfo the apparent Height of the Equator be found, by means of the Meridian Altitude of fome Star near the Equator, in adding or fubftracting its Declination.

Then thefe Heights of the Pole and Equator being added together, their Sum will always be greater than a Quadrant ; but 90 Degrees being taken from this Sum, the Remainder will be double the Refraction of either of the Stars obferved at the fame height : and therefore taking the faid Refraction from the faid apparent Height of the Pole, or Equator, we flall have their true Altitude.

Example.

Let the Meridian Altitude of a Star obferved below the North Pole, be 30 deg. 15 min, and the Complement of its Declination 5 deg. whence the apparent Height of the Pole will be 35 deg. 15 min . Alfo let the apparent Meridian Altitude of fome other Star, obferved near the Equator, be 30 deg. 40 min . and its Declination 40 deg. 9 min . whence the apparent Height of the Equator will be 54 deg. 49 min . Therefore the Sum of the Heights of the Pole and Equator thus found, will be 90 deg. 4 min . from which fubitracting 90 deg. and there remains 4 min . which is double the Refraction at 30 deg .28 min . of Altitude, which is about the middle between the Heights found: therefore at the Altitude of 30 deg. Is min. the Refraction will be fomething above 2 min . viz. 2 min . I fec. and at the Altitude of 30 deg . 40 min . the Refraction will be 1 min . 59 fec .

Lafty, If 2 min . I fec. be taken from the apparent Height of the Pole 35 min . 15 fec . the Remainder 35 deg .12 min . 59 fec . will be the true Height of the Pole; and fo the true Height of the Equator will be 54 deg. 47 min . I fec. as being the Complement of the Height of the Pole to 90 deg.

Note, The Refraction and Height of the Pole found according to this way, will be for much the more exact, as the Altitude of the Stars is greater; for if the Difterence of the Altitudes of each Star fhould be even 2 deg. when their Altitudes are above 30 deg. We may by this Method have the Refraction, and the true Height of the Pole, becaule in this Cafe the Difference of Refraction in Altitudes differing two Degrees, is not fenible.

Another Way of obferving Refractions.

The Quantity of Refraction may alfo be found by the Obfervations of one Star only, whofe Meridian Altitude is 90 deg. or a little lefs; for the Height of the Pole or Equator above the Place of Oblervation being otherwife known, we thall have the Star's true Declination, by its Meridian Altitude ; becaufe Refractions near the Zenith are infenfible.

Now if we oblerve by a Pendulum the exact 'Times when the faid Star comes to every Degree of Altitude, as alfo the Time of its Paffage by the Meridian, which may be known by the equal Altitudes of the Star being Eaft and Weft, we have three things given in a fpierical 'Triangle, viz. the Diftance between the Pole and Zenith, the Complement of the Star's Declination, and the Angle comprehended by the aforefaid Arcs; namely, the Difference of mean Time between the Palfage of the Star by the Meridian and its Place, converted into Degrees and Minutes; to which mult be added the convenable proportional Pars of the mean Motion of the Sun in the Proportion of 59 min .8 fec. per Day: therefore the true Arc of the Vertical Circle between the Zenith and the true Place of the Star may be found.

But the apparent Arc of the Altitude of the Star is had by Obfervation, and the Difference of thefe Arcs will be the Quantity of Refraction at the Height of the Star. By a like Calculation the Refraftion of every Degree of Altitude may be found.

The fame may be done by means of the Sun, or any other Star, provided its Declination be known, to the end that at the time of Obfervation the true Diftance of the Sun or Star from the Zenith may be found.

The Refractions of Stars being known, it will then be eafy to find the Height of the Pole; for haring obferved the Meridian Altitude of the Polar Star, as well above as below the Pole, the fame Day, and having diminifhed each Altitude by its proper Refraction, half of the Difference of the corrected Altitudes, added to the leffer Altitude corrected, or fubftratted from the greater Altitude thus corrected, will give the true Height of the Pole.
M. de la Hire has obferved with great Care for feveral Years the Meridian Altitudes of fixed Stars, and principally of Sirizs, and Lucida Lyra, with Aftronomical Quadrants very well diviced, and very good Telefcopes at different Hours of the Day and Night, and at difierent Seafons of the Year; and he affures us, that he never found any Difference in their Altitudes, but what proceeded from their proper Motion.

And becaufe Sirius comes to about the 26th Degree of the Meridian, we might doubt whether in the leffer Altitudes the Refractions in the Winter would be greater than thofe in the Summer; hence he alfo obferved, with the late M. Picard, the leffer Meridian Altitudes of the Star Capella, which is about $4^{\frac{1}{2}}$ Degrees at feveral different Times of the Year.

Having compared thefe different Obfervations together, and made the neceffary Reductions, becaufe of the proper Motion of that Star, there was fcarcely found one Minute of Difierence, that could proceed from any other Caufe but Refraction. Therefore he made but one Table of the Refraction of the Sun, Moon, and the Stars, for all Times of the Year, conformable to the Obfervations that he made from them.

Notwithftanding this, one would think that Refractions nigh the Horizon are fubject to diters Inconftancies, according to the Conftitution of the Air, and the Nature of high or low Grounds, as M. de la Hire has often found; for obferving the Meridian Altitudes of Stars at the Foot of a Mountain, which feemed to be even with the top of it, they appeared to him a little higher, than if he had obferved them at the top: But if the Obfervations of others may be depended upon, Refractions are greater, even in Summer, in the frozen Zones, than in the temperate Zones,

How to find the Time of the Equin : and Solfice by Obfervation.

Having found the Height of the Equator, the Refraction and the Sun's Parallax at the fame Altitude, it will not afterwards be difficule to find the Time in which the Center of the Sun is in the Equator; for if from the apparent Meridian Altitude of the Center of the Sun, the fame Day as it comes to the Equinox, be taken the convenient Refraction, and then the Parallax be added thereto, the true Meridian Altitude of the Sun's Center will be had. Now the Difference of this Altitude, and the Height of the Equinoctial, will fhew the 'Time of the true Equinox before or after Noon: and if the Sum of the Seconds of that Difference be divided by 59, the Quotient will fhew the Hours and Fractions which muft be added or fubftracted from the true Hour of Noon, to have the Time of the true Equinox.

The Hours of the Quotient muft be added to the time of Noon, if the Meridian Altitude of the Sun be leffer than the height of the Equator about the time of the vernal Equi-

Chap. 3. Of making Celeftial Obfervations.

nox ; but they muft be fubftrafted, if it be found greater. You muft proceed contrariwife, when the Sun is near the autumnal Equinox.

Example. The rrue Height 41 deg. 10 min. of the Equator being given, and having obferved the true Meridian Altitude 41 deg. 5 min .15 fec . of the Sun, found by the apparent Altitude of its upper or lower Limb, corrected by its Semidiameter, Refraction, and Parallax, and the Difference will be 4 min .45 fec . or 285 Seconds, which being divided by 59 , the Quotient will be $4 \frac{49}{5}$; that is, 4 Hours 48 Minutes, which mult be added to Noon, if the Sun be in the vernal Equinox, and confequently the time of the Equinox will happen 4 Hours 48 Minutes after Noon. But if the Sun was in the autumnal Equinox, the time of the faid Equinox would happen 4 Hours 48 Minutes before Noon, that is, at 12 Minutes paft Seven in the Morning.

As to the Solftices, there is much more Difficulty in determining them than the Equinoxes, for one Obfervation only is not fufficient; becaufe about this time the Difference between the Meridian Altitudes in one Day, and the next fucceeding Day, is almolt infenfible.

Now the exact Meridian Altitude of the Sun muft be taken, 12 or 15 Days before the Solltice, and as many after, that fo one may find the fame Meridian Altitude by little and little; to the end that by the proportional Parts of the alteration of the Sun's Meridian Altitude, we may more exactly find the time wherein the Sun is found at the fame Altitude, before and after the Solftice, being in the fame Parallel to the Equator.

Now having found the time elapfed between both the Situations of the Sun, you muft take half of it, and feek in the Tables the true place of the Sun at thefe three times. This being done, the Difference of the extreme Places of the Sun muft be added to the mean Place, in order to have the mean Place with Comparifon to the Extremes; but if the mean Place found by Calculation, does not agree with the mean Place found by Comparifon, you muft take the Difference, and add to the mean 'Time, the Time anfwering to that Difference, if the mean Time found by Calculation be leffer; but contrariwife, it muft be fubftracted if it be greater, in order to have the Time of the Solftice.

Example. The latt Day of May, the apparent Meridian Altitude of the Sun was found at the Royal Obfervatory, 64 deg. 47 min .25 fec. and the 22 d Day of $7 u n e$ following, the apparent Meridian Altitude was found 64 deg. 28 min . 15 fec. from whence we know, by having the Difference of Declination at thofe times, that the Sun came to the Parallel of the firft Obfervation, the 22 d of \mathcal{F} une, at 4 Hours 12 Minutes in the Morning; and confequently the mean Time between the Obfervations, was on the 22 d of Fune, at 2 Hours 6 Minutes in the Morning.

Now by Tables, the true place of the Sun at the time of the firf Obfervation, was 2 Signs 18 deg. 58 min .23 fec. and at the time of the laft it was 3 Signs, I I deg. 4 min. 52 fec. and in the middle time 3 Signs, 1 min . 56 fec. But the Difference of the two extreme Places is 22 deg. 6 min . 29 fec. half of which is 11 deg. 3 min . 15 fec. which added to the mean Place, makes 3 Signs, I min. 38 fec. which is the mean Place with comparifon to the Extremes. Again, The Difference between the mean Place, by calculation 3 Signs, 1 min .56 fec. and the mean Place by Comparifon, is 18 Seconds, which anfwers to 7 min . 18 fec. of Time, which muft be taken from the mean 'Time, becaufe the mean Place by Calculation is greater than the mean Place by Comparifon. Therefore the Time of the Solftice was the IIth of June, at I Hour, 58 min . I 8 fec. in the Morning.

Note, The Error of a few Seconds, in the obferved Altitude of the Sun, will caufe an alteration of an Hour in the true time of the Solftice; as in the propofed Example, ro Seconds, or thereabouts, in Altitude, will caufe an Error of an Hour; whence the true Time of the Solftice cannot be had but with Inftruments well divided, and feveral very exa\& Obfervations.

Obfervations made in the Royal Obfervatory at Paris, about the Time of the Solftice for finding the Height of the Pole, and the Sun's greateft Declination or Obliquity of the Ecliptick.

Deg. Min. Sec.

At the time of the Winter Solftice, the apparent Meridian Altitude of the
pper Limb of the Sun
Refraction to be fubftracted
Parallax to be added
True Altitude of the Sun's upper Limb
Semidiameter of the Sun
True Meridian Aititude of the Sun's Center
Then the true Diftance of the Tropicks is
The half, which is the greatef Decination of the Sun, is
The Height of the Equator above the Obfervatory
Its Complement, which is the Height of the Pole

By divers Obfervations of the greatelt and lealt apparent Meridian Altitudes of the Polar Star, which is in the end of the Tail of the Little ?'car, it is concluded that the apparent Altitude of the Pole, as M. Picard has denoted it in his Book of tie Dimenfinos of the Earth, between St. Fames's and St. Nartin's Gates (about S. Yaques de la Bouclerie, at Paris) is 48 deg. 52 min. 20 fic.

Deg. Min. Sec.
The Reduction being made according to the Diftance of the Placcs, the ? apparent Height of the Pole at the Rojal Oblervaicry will be _-_ $\}_{48} 5$ I 02

The Consenabie Refraction to that Height ——oo or on 0_{4}

For which let us take
And conlequently the Height of the Equator wili be _-_ $\quad 415000$
The true or apparent Time in whiblo a Planet or fixed Star pafles by the Meridian, being given, to find the Difference of Right Afcenfion between the fixed Star, or Planet, and the Sun.
The given Time from Noon to or from the time of the Paflage of the Star or Planet by the Meridian, muft be converted into Degrees, and what is required will be anfwered.

Example. Jupiter paffed by the Meridian at 10 Hours, 23 min . 15 fec. in the Morning, whofe Difance in time from Noon, which is I Hour, 36 min . 45 fec. being converted into Degrees of the Equator, will give 24 deg. II min. Is fec. for the Difference of Right Afcenfion between the Sun and $\mathcal{F} u p i t e r$, in that moment the Center of $\mathcal{F u p i t e r}$ pafled by the Meridian.

In this, and the following Problem, we have propofed the true or apparent Time, and not the mean 'Time ; becaufe the true Time is eafier to know by Obfervations of the Sun, than the mean Time. We fhall explain what is meant by mean Time, as likewife true or apparent Time, in the next Chapter.
The true Time letwicen the Paffages of two fuxed Stars by the Meridian being given, or elfe of a fixed Star and a Planet, to find their Afcenficnal Difference.
The given Time between their Paffages by the Meridian muft be converted into Degrees of the Equator, and the Right Afcenfion of the true Motion of the Sun anfwering to that time, muft be added thereto; then the Sum will be the Afcenfional Difference fought.
Example. Suppofe between the Paffages of the Great Dog, called Sirius, by the Meridian, and the Heart of the Lion named Regulus, there is elapfed 3 Hours, 20 min. of time, and the Right Afcenfion of the true Motion of the Sun, let be 7 min .35 fec .

Whence converting 3 Hours, 20 min . into Degrees of the Equator, and there will be had 50 deg. to which adding 7 min .35 fec. and the Sum 50 deg. 7 min .35 fec. will be the Afcenfinal Difierence between Sirius and Regulus.

You muft proceed thus for the Afcenfional Difference of a fixed Star and a Planet, or of two Planets; yet note, if the proper Motion of the Planet or Planets be confiderable between both their Paflages by the Meridian, regard muft be had thereto.

How to obferve Ecliples.

Amongt the Obfervations of Eclipfes, we have the Beginning, the End, and the'Total Emerfron, which may exactly enough be eftimated by the naked Eye, without Telefcopes, except the Beginning and the End of Eclipfes of the Moon, where an Error of one or two Minutes may be made, becaufe it is difficult certainly to determine the Extremity of the Shadow. But the Quantity of the Eclipfe, that is, the eclipfed Portion of the Sun and Moon's Disk, which is meafured by Digits, or the 12th parts of the Sun and Moon's Diameter, and Minutes, or the 6oth parts of Digits, cannot be well known without a Telefcope joined to fome Inftrument. For an Eftimation made with the naked Eye is very fubje\&t to Error, as it is eafy to fee in Hifory of ancient Eclipfes, altho they were oblerved by very able Aftronomers.

The Aftronomers who firft ufed 'Telefcopes furnifhed with but two Glaffes, namely, a Convex Object-Glafs, and a Concave Eye-Glafs, in the Obfervations of Eclipfes, obferved thofe of the Sun in the following manner. They caufed a hole to be made in the Windowfhutter of a Room, which Room in the Day-time, when the Shutters were fhut, was darkened thereby; thro which hole they put the Tube of a Telefcope, in fuch manner, that the Rays of the Sun, pafing thorow the Tube, night be received upon a white

Chap. 3. Of making Celestial Obfervations.
piece of Paper, or a Table-Cloth, upon which was firf defcribed a Circle of a convenable bignefs, with five other Concentric Circles, equally diftant from one another, which, with the Center, divided a Diameter of the outward Circle into 12 equal Parts. Then having adjufted the Table-Cloth perpendicular to the Situation of the Tube of the Telefcope, the luminous Image of the Sun was cart upon the Table-Cloth, which would ftill be greater according as the 'Table-Cloth was more diftant from the Eye-Glafs of the Telefcope; whence by moving the Tube forwards and backwards, they found a place where the Image of the Sun appeared exactly equal to the outward Circle, and at that Diftance they fixed the Table-Cloth, with the Tube of the Telefcope, which compofed the Intrument for the faid Obfervation. Afterwards they moved the 'Tube according to the Sun's Motion, to the end that the luminous Limb of its Disk might every where touch the outward Circle defcribed upon the Table-Cloth, by which means the Quantity of the eclipfed Portion was feen, and its greateft Obfcurity meafured by the Concentric Circles; they denoted the Hour of every Phafe, by a Second Pendulum Clock, rectified and prepared for that purpofe. The fame Method is till obferved by many Aftronomers, who ufe allo a Circular Reticulum, made with fix Concentric Circles upon very fine Paper, which muft be oiled, to render the Sun's Image more fenfible. The greateft of the Circles ought exactly to contain the Image of the Sun in the Focus of the Object-Glafs of a Telefcope of 40 or 60 Feet ; the fix Circles are equally diftant, and divide the Diameter of the Sun in twelve equal Digits. When the Paper is placed in the Focus of a great Telefcope, the enlightened part of the Sun will very diffinctly be feen ; then the Eye-Glafs is not ufed.

There are others who ufe a Teleicope furnifhed with two Convex-Glaffes, from whence the fame effect follows. But altho the Ute of a Telefcope in this manner be very proper to obferve Eclipfes of the Sun, yet it is not fit to obferve Eclipfes of the Moon, becaufe its Light is not ftrong enough. Laftly, Others place a Micrometcr in the common Focus of the Convex Lenfes. Befides the Quantity of the Phafes of the Eclipfes of the Sun and Moon, (eafily known by the faid Micrometer) we may have the Diameters of the Luminaries, and the proportion of the Earth's Diameter to the Moon's, as well by the obfcure Portion of its Disk, as by the duminous Portion and the Diftance between its Horns.
The Method of obferving eclipfes by means of the Micrometer will be much better, if the Divifions to which the parallel Hairs are applyed be made fo, that fix Intervals of the Hairs, may contain the Diameter of the Sun or Moon. For the moveable Hair pofited in the middle of the Diffance between the immoveable ones, (which is not difficult to do) will fhew the Digits of the Eclipfe.

The fame Telefcope and Micrometer may ferve for all the other Obfervations, and to meafure Eclipfes ; as, to obferve the Paffage of the Earth's Shadow over the Spots of the Moon, in Lunar Eclipfes.

There yet remains one confiderable Difficulty, and that is, to make a new Divifion of the Micrometer ferving as a common Reticulum for all Obfervations; for it fcarcely happens in an Age in two Eclipfes, that the apparent Diameters of the Sun and Moon are the fame.

Therefore M. de la Hire has invented a new Reticulum, which having all the Ufes of the Micrometer, may ferve to obferve all Eclipfes, it being adapted to all apparent Diameters of the Sun and Moon, and its Divifions are firm and folid enough to refift all the Vicififtudes of the Air, altho they are as fine as Hairs.

The Conftruction and Ufe of this Reticulum is thus: Firft, Take two Objęt Lenfes of Telefcopes of the fame Focus, or nighly the fame, which join together. As for example, The Focus of two Lenfes together of eight Feet, which is the fit length of a Telefcope for obferving Eclipfes, unlefs the Beginning and the End of Solar ones, which require a longer Telefcope exactly to determine them.
Secondly, We find from Tables, that the greatef Diameter of the Moon at the Altitude of 90 deg. is 34 min . 6 fec. To which adding 10 fec. and there will arife 34 min. 16 fec. Therefore fay, As Radius is to the Tangent of 17 min .8 fec. (the half of 34 min . 16 fec.) fo is 8 Feet, or the focal Length of the two Lenfes to the parts of a Foot, which doubled will fubtend an Angle of 34 min . 16 fec . in the Focus of the Telefcope, and this will be the Diameter of the faid Circular Reticulum.
Thirdly, Upon a very flat, clear, and well polifhed piece of Glafs, defrribe lightly with the point of a Diamond, faftened to one of the Legs of a pair of Compaffes, fix Concentric Circles, equally diftant from each other. The Semidiameter of the greateft and laft let be equal to the fourth Term before found. Likewife draw two Diameters to the greateft Circle at Right Angles. The flat piece of Glafs being thus prepared and put into the Tube, of which we have before fpoken, and in the Focus of the Telefcope, will be a very proper Reticulum for obferving Solar and Lunar Eclipfes, and it will divide all the apparent Diameters into twelve equal Parts or Digits, as we are now going to explain.
It is manifelt from Dioptricks, that all Rays coning from Points of a diftant Object, after their Refration by two Convex Lenfes, either join'd or fomething diftant from each other, will be painted in the common Focus of the faid Lenfes, which will appear fo much the greater, according as the Lenfes be diftant from one another ; fo that they will appear the
fmalleft when the Lenfes are joined together. Therefore if the Object-Giafies ufed in this Confruction, be each put into a Tube, and one of thefe Tubes illides within the other; then the faid Lenfes being thus joined, the Image of a diftant Object, whofe Rays fall upon the Lenfes under an Angle of 34 min. 16 fec. will exceed the Moon's greatelt apparent Diameter by 10 fec. Therefore in moving the Lenfes by little and little, fuch a Pofition may be found, wherein the Diameter of the greatelt Circle on the Reticulum pofited in the Focus, will anfwer to an Angle of 34 min. 16 fec. For the Image of an Object perceived under a lefs Angle, may be equal to the Image of the fame Object perceived under a greater Angle, according to the different Lengths of the Foci. But the Reticulum is in a leparate Tube, and fo it may be removed at a diftance at pleafure from the Object-Glaffes. We now proceed to lay down two different Ways of finding the Pofitions of the Lenfes and Reticulum, proper to receive the different Diameters of the Sun and Moon.
Firft, In a very level and proper Place for making Obfervations with Glaffes, place a Board, with a Sheet of Paper thereon, directly expofed to the Tube's Length, having two black Lines drawn upon it parallel to each other, and at fuch a Diftance from each other, that it fubtends an Angle of 34 min .6 fec. So that the Diftance of the faid two Lines, reprefented in the Focus of the Object-Glafies, may likewife fubtend an Angle of 34 mina. 6 fec. And this may be found in reafoning thus, (as we have already done tor the Micrometer) As Radius is to the Tangent of 17 min . 3 fec. fo is the Diftance from the Tube of the Object-Glaffes to the Board, to half of the Diftance that the parallel Lines on the Paper muft be at. And thus we fhall find by Experience the Place of each Object-Glafs, and the Reticulum in the common Focus, in fuch manner that the Reprefentation of the two black Lines on the Paper, embaraffes entirely the Diameter of the greateft Circle of the faid Reticulum. Now we fet down 34 min . 6 fec. upon the Tubes, in each Pofition of the Lenfes and their Foci, or the Reticulum, that fo the Lenfes and Reticulum may be adjufted to their exact Diftance, every time an Angle of 34 deg .6 min . is made ufe of.
Again, Let the faid Board and white Paper be placed further from the Tube, in fuch manner, that the Diftance between the parallel Lines on the Paper fubtend, or is the Bafe of an Angle of 33 min . for example, whofe Vertex is at the Lenfes of the Telefcope: which may be done, in laying, As the Tangent of 16 min .30 fec . is to Radius; fo is half the Interval of the parallel Lines on the Paper, to the Diftance of the Board from the Lenfes. Now in this Pofition of the Telefcope and Board, the Pofition of the Lenfes and Reticulum between themfelves muft be found ; fo that the Reprefentation of the parallel Lines, which appear very diftinctly in the Focus of the Lenfes, occupies the whole Diameter of the greatef Circle on the Reticulum. This being done, the Number 33 min . muft be made upon the Tubes, in the Places wherein each of the Lenfes and Reticulum ought to be. Proceed in this manner for the Angles of 32 min .31 min .30 min . and 29 min .

If the Diftances, denoted upon the Tubes between the different Pofitions of the Lenfes and the Reticulum, anfivering to a Minute, be divided into 60 equal Parts, we fhall have their Pofitions for every Second ; and by this means the fame Circle of the Reticulum may be accommodated to all the different apparent Diameters of the Sun and Moon, and the Diameter of the greateft Circle being divided into 12 equal Parts, it will ferve to meafure the Quantities of all folar and lunar Eclipfes.

The fecond Method taken from Opticks, being not founded upon fo great a Number of Experiments as the former, may perhaps appear eafier to fome Perfons; for the Foci of both the Lenfes being known, fay, As the Sum of the focal Lengths of the Lenfes (whether they be equal or not) lefs the Diftance between the Lenfes, is to the focal Length of the outward Lenfes, lefs the Diftance between the Lenfes; fo is this fame Term, to a fourth which being taken from the focal Length of the outward Lens, there renains the Diftance from the outward Lens, to the common Focus of the Lenfes, which is the Place of the Reticulum.
'The Pofition of the common Focus of the Lenfes may alfo be known by this Method; when they be joined, in ufing the aforefaid Analogy, without having any regard to the Diftance between the Lenfes, which is computed from the Places of the Lenfes Centers; therefore in fuppofing feveral different Diftances between the Obje\&t-Lenfes, the Lengrh of their Foci will be had, that is, the Plase of the Reticulum, correfpondent to each Diftance.

Again, fay, As the known focal Length is to the Semidiameter of the Reticulum, be it what it will; fo is Radius, to the Tangent of the Angle anfwering to the Semidiamerer of the Reticulum. By this Method we may likewife have the Magnitude of the faid ReticuYum, in faying, As Radius is to the Tangent of an Angle of 17 min .3 fec. fo is the focal Length of the Lenfes, to the Semidiameter of the outward concentrick Circle. Having thus found the Minutes and Seconds fubtended by the Diamerer of the greatef Circle of the Reticulum, according to the different Intervals of the Lenfes, they muft be wrote upon each Tube of the Lenfes and Reticulum, and the Diftances between the Terms found, divided into Seconds, as is mentioned in the former Method. And thus may the Pofitions of the Lenfes and Reticulum be foon found, which fhall contain the apparent Diameters of the Sun or Moon, according as they appear. If it be found very difficult to draw exactly the concentrick:
concentrick Circles upon the Piece of Glafs, you need but draw thirteen right Lines thereon with the Point of a Diamond, equally diftant and parallel to each other, with another right Line perpendicular to them; but the Length of this Perpendicular between the two extreme Parallels, muft be equal to the Diameter of the Reticulum, found in the manner aforefaid. This Reticulum may be ufed inftead of one compofed of Hairs.
A plain thin Piece of Glafs, having Lines drawn thereon with a very fine Point of a Diamond, may likewife be ufed in an Aftronomical Telefcope, Éc. for if it be adjufted in its $^{\text {a }}$ proper Frame, in the manner as is directed in the Micrometer, the Lines drawn thereon may be ufed inftead of the parallel Hairs. I am of opinion, that the aforefaid Reticula are very ufeful in practical Aftronomy, they not being fubject to the Inconftancies of the Air, of being gnaw'd by Infects, or to the Motions of the Inftrument, which the Hairs are.

There are thofe who prefer Hairs, to Lines drawn upon a piece of Glafs, whofe Surface may caufe fome Obfcurity to the Objects, or if it be not very flat, there may fome Error arife ; but if they have a mind to avoid thefe Difficulties, which are of no confequence, as we know by Experience, they may ufe ftraight Glafs-Threads, infead of Hairs: for fome of thefe may be procured as fine as Hairs, and of Strength enough to refift the Inconftancies of the Air.

Altho the Phafes or Appearances of the Eclipfes of the Moon, apply'd by Aftronomers to Aftronomical and Geographical Ufes, may be obferved much eafier and exacter by our Reticulum, than by the antient Methods; yet it muft be acknowledged, that the Immerfions into, and Emerfions of the Moon's Spots out of the Earth's Shadow, may more conveniently be obferved, becaufe of their great Number, than the Phafes, and that there is lefs Preparation in ufing a Telefcope, which need be only fix Feet in length : and in order for this, a Map of the Moon's Disk, when it is at the full, mult be procured, wherein are denoted the proper Names of the Spots, and principal Places appearing on its Disk. This may be found in the reformed Afronomy of R.P. Ricioli, \&c.

There are great Advantages arifing from Obfervations of Eclipfes, for if the exact Time of the Beginning of an Eclipfe of the Moon, of its total Immerfion in the Shadow, of its Emerfion and its End, as likewife of the Paffage of the Earth's Shadow by the Spots on its Surface, be obferved, we fhall have the Differenee of Longitude of the two Places wherein the Obfervations are made; this is known to all Aftronomers. But fince Lunar Eclipfes feldom happen, fo as that the Difference of Longitude may thereby be concluded, the Eclipfes of 'Jupiter's Satellites may be obferved inftead of them; but principally of the firt, whofe Motion about Fupiter being very fwift, one may make feveral Obfervations thereof during the fpace of one Year ; and from thence the Difference of Longitude of the two Places, wherein the faid Obfervations are made, may be had.

Neverthelefs you muft take notice, that Lunar Eclipfes may much eafier be obferved; than the Eclipfes of Yupiter's Satellites, which cannot be eafily and exactly done without a Telefcope of twelve Feer in length; whereas the Phafes of the Beginning or End, or of the Immerfion and Emerfion of Lunar Eclipfes, may be obferved without a Telefcope, and the Immerfions and Emerfions of its Spots with one of an indifferent length.
M. Cafini, a very excellent Aftronomer of the Academy of Sciences, publifhed in the Year 1693, exact Tables of the Motions of Fupiter's Satellites; therefore in comparing the 'Times of the Immerfion or Emerfion of Gupiter's firft Satellite, found by the Tables fitted for the Obfervatory (at Paris) with the Obfervations thereof made in any other Place, we fhall have, by the Difference of Time, the Difference of Longitude of the Obfervatory, and the Place wherein the Obfervations were made: which may be confirmed in obferving the fame Phenomena in both Places.

It is proper here to inform Obfervators of one Cafe, which often hinders an exat Obfervation of 'fupiter's Satellites; which is, that in a ferene Night, we often find the Light of Jupiter and its Satellites, obferved thro the Telefcope, to diminifh by little and little, fo that it is impoffible to determine exactly the true Times of the Immerfion and Emerfion of the Satellites. Now the Caufe of this Accident proceeds from the Object-Glafs of the Telefcope, which is covered over with Dew, and thereby a great Number of Rays of Light, coming from Jupiter and its Satellites, is hinder'd from coming thro the ObjectGlafs. to the Eye. A very fure Remedy for this, is, to make a Tube of blotting Paper; that is, a Tabe about two Feet long, and big enough to go about the End of the Tube of the Telefcope next to the Object-Glafs, muft be made, in rolling two or three Sheets of finking Paper upon each orher. This Tube being adjufted about the Tube of the Telefcope, will fuck in, or drink up the Dew, and hinder its coming to the Object-Glafs; and by this Means we may make our Obfervations conveniently.

C H A P. IV.

Of the Conftruction and USe of an Inftrument perwing the Eclipfes of the Sun and Moon, the Montbs and Lunar Years, as alfo the Epacts.

Fig. 13. \prod_{T} HIS Infrument was invented by M. de la Hire, and is compofed of three round Plates of Brafs, or Pieces of Pafteboard, and an Index which turns about a common Center upon the Face of the upper Plate, which is the leaft. There are two circular Bands, the one blue, and the other white, in which are made little round Holes; the outward of which fhews the New Moons, and the Image of the Sun; and the inward ones, the Full Moons, and the Image of the Moon. The Limb of this Plate is divided into 12 lunar Months, each containing 29 Days, 12 Hours, 44 Minutes; but in fuch manner, that the End of the 12th Month, which makes the Beginning of the fecond lunar Year, may furpafs the firft New Moon by the quantity of 4 of 179 Divifions, denoted upon the middle Plate.
Upon the Limb of this Plate is faftned an Index, one of whofe Sides, which is in the fiducial Line, makes part of a right Line, tending to the Center of the Inftrument; which Line alfo paffes thro the middle of one of the outward Holes, fhewing the firf New Moon of the lunar Year. Note, The Diameter of the Holes is equal to the Extent of about 4 Degrees.

The Limb of the fecond Plate is divided into 179 equal Parts, ferving for fo many lunar Years, each of which is 354 Days, and about 9 Hours. The firlt Year begins at the Number 179, at which the laft ends.

The Years accomplifhed are each denoted by their Numbers $1,2,3,4, \mathcal{E}_{c}$. at every fourth Divifion, and which make four times a Revolution to compleat the Number 179, as may be feen in the Figure of this Plate. Each of the lunar Years comprehend four of the aforefaid Divifions: So that in this Figure they anticipate one upon the other four of the faid 179 Divifions of the Limb.

Upon the Limb of the fame Plate, under the Holes of the firft, there is a fpace coloured black, anfwering to the outward Holes, and which fhews the Eclipfes of the Sun, and another red Space, anfwering to the innermoft Hotes, fhewing the Eclipfes of the Moon. The Quantity of each Colour appearing through the Holes, fhows the Bignefs of the Eclipfe. The middle of the two Colours, which is the middle of the Moon's Node, anfwers on one fide to the Divifion marked $4 \frac{2}{3}$ of a Degree; and on the other fide it anfwers to the oppofite Number.

The Figure of the coloured Space is fhown upon this fecond Plate, and its Amplitude or Extent fhews the Limits of Eclipfes.

The third and greateft Plate, which is underneath the orhers, contains the Days and Months of common Years. The Divifions begin at the firt Day of March, to the end that' a Day may be added to the Month of February, when the Year is Biffextile. The Days of the Year are defcribed in form of a Spiral, and the Month of February goes out beyond the Month of March, becaufe the lunar Year is fhorter than the folar one; fo that the isth Hour of the roth Day of February anfwers to the Beginning of March: But after having reckoned the laft Day of February, you muft go back again to have the firft of March. There are thirty Days marked before the Month of March, which ferve to find the Epactis.

Note, That the Days, as they are here taken, are not accompliflied purfuant to the Ufe of Aftronomers, but as they are vulgarly reckoned, beginning one a Minute, and ending at the Minute of the following Day. Therefore every time that the firl Day, or any other of a Month is fpoken of, we underftand the Space of that Day marked in the Divifions; for we here reckon the current Days according to valgar Ufe.
In the middle of the upper Plate are wrote the Epochs, fhowing the Beginning of the lunar Years, with refpect to the folar Years, according to the Gregorian Calendar, and for the Meridian of Paris. The Beginning of the firlt Year, which muft be denoted by o , and anfwers to the Divifion 179, happened in the Year 1680 at Paris, the 29th of February at - $44 \frac{1}{2}$ Hours: The End of the firf lunar Year, being the Beginning of the fecond, anfwers to the Divifion marked 1, which happened at Paris in the Year 1681, the 27th of February, at $23 \frac{1}{2}$ Hours, in counting fucceffively 24 Hours from one Minute to the other. And left there fhould be an Error in comparing the Divifions of the Limb of the fecond Plate with the Divifions of the Epochs of lunar Years anfivering them, we have put the fame Numbers to them both.

We have fet down fucceffively the Epochs of all the iunar Years, from the Year 1700 to the Year 1750 , to the end that the Ufe of this Inftrument may more eafily ferve to make each of the aforefaid folar and lunar Years agree together. As to the other Years of our Cycle of 179 Years, it will be ealy to render it compleat, in adding 354 Days, 8 Hours, $48 \frac{2}{3}$ Minutes for each lunar Year.
The Index extending it felf from the Center of the Inftrument to the Limb of the greatef Plate, ferves to compare the Divifions of one Plate with thofe of the two orhers. And if this fnftrument be apply'd to a Clock, a perfect and accomplifhed Inftrument in all its Parts will be had.

The Table of Epochs, which is fitted for the Meridian of Paris, may eafily be reduced to other Meridians; if for the Places eattward of Paris, the Time of the Difference of Meridians be added; and for Places weftward, the Time of the Difference of Meridians be fubftraEied.

It is proper to place the Table of Epochs in the middle of the upper Plate, to the end that it may be feen with the Inftrument.

How to make the Divifions upon the Plates.

The Circle of the greateft Plate is fo divided, that 368 deg. 2 min .42 fec. may comprehend 354 Days, and fomething lefs than 9 Hours; from whence it is manifeft, that the Circle muft contain 346 Days, 15 Hours, which may without fenfible Error be taken for $\frac{2}{3}$ of a Day. Now to divide a Circle into $346 \frac{2}{3}$ equal Parts, reduce the whole into third Parts, which in this Example make 1040 ; then feek the greatef Multiple of 3 lefs than 1040, which may be halved. Such a Number will be found in a double Geometrical Progreffion, whofe firft Term is 3 ; as for example, $3,6,12,24,48,96,192,384,768$.

Now the gth Number of this Progreffion is the Number fought. Then fubftract 768 from 1040, there will remain 272, and find how many Degrees, Minutes and Seconds this remaining Number makes; by faying, as 1040 is to 360 deg. fo is 272 to 94 deg. 9 min . 23 Sec

Therefore take an Angle of 94 deg. 9 min .23 fec. from the faid Circle, and divide the remaining part of the Circle always into half, after having made 8 Subdivifions, you will come to the Number 3, which will be the Arc of one Day; by which likewife dividing the Arc of 94 deg. 9 min .23 fec. the whole Circle will be found divided into $346 \frac{2}{3}$ Days ; for there will be 256 Days in the greateft Arc, and $90 \frac{2}{3}$ Days in the other. Each of thefe Spaces anfwer to 1 deg. 2 min . 18 fec . as may be feen in dividing 360 by $346 \frac{2}{3}$, and ten Days make to deg. 23 min . And thus a Table may be made, ferving to divide the Plate.

Thofe Days are afterwards diftributed to each of the Months of the Year, according to the Number correfponding to them, in beginning at the Month of March, and continuing on to the rsth Hour of the Ioth of February, which anfwers to the beginning of March, and the other Days of the Month of February go on farther above March.

The Circle of the Second Plate muft be divided into 179 equal Parts; to do which, feek the greatelt Number which may be continually bifected to Unity, and be contained exactly in 179: you will find 128 to be this Number, which take from 179, and there remains 51. Now find what part of the Circumference of the Circle the faid Remainder makes; in faying, As 179 Parts is to 360 deg. fo is 5 I Parts to 102 deg. 34 min . I I fec.

Therefore having taken from the Circle an Arc of 102 deg. 34 min . in fec. divide the remaining part of the Circle always into half; and after having made feven Subdivifions, you will come to Unity : whence this part of the Circle will be divided into 128 equal Parts; and then the remaining 5 I Parts may be divided, by help of the laft opening of the Compafies. Wherefore the whole Circumference will be found divided into 179 equal Parts, every of which anfwers to 2 deg. 40 fec. as may be feen in dividing 360 by 179.

Laftly, To divide the Circle of the upper Plate, take one fourth of its Circumference, and add to it one of the 179 Parts or Divifions of the Limb of the middle Plate; the Compafles opened to the extent of the Quadrant thus augmented, being turned four times over, will divide the Circle in the manner as it ought to be: for in fubdiving every of the Quarters into three equal Parts, one will have twelve Spaces for the twelve Lunar Months, in fuch manner, that the end of the 12 th Month, which makes the beginning of the Lunar Year, exceeds the firft New Moon by 4 of the 179 Divifions, marked upon the middle Plate.

Ufe of this Inftrument.

A Lunar Year being propofed, to find the Days of the Solar Year correfponding to it, in which the New and Full Moons, together with the Eclipfes, ought to happen.

For example; Let the $24^{t h}$ Lunar Year of the Table of Epochs be propofed, which anfiwers to the Divifion 24 of the middle Plate. Fix the Fiducial Line of the Index on the upper Plate, over the Divifion marked 24, in the middle Plate, wherein the beginning of the 25 th Lunar Year is; and feeing by-the Table of Epochr, that that beginning falls upon the 14th Day of June, of the Year 1703, at 9 Hours, 52 Minutes, turn the two upper

X x
Platés

Pates together, in the Pofition they are in, till the Fiducial Line of the Index, faftened to the upper Plate, anfwers to the ioth Hour, or thereabouts, of the I 1 th of Yune, denoted upon the undermoft Plate; at which time, the firt New Moon of the propoled Lunar Year happens: for then the Fiducial Line paffes thro the middie of the hole of the firl New Moon of the faid Lunar Year.
Afterwards, withour changing the Situation of the three Plates, extend a Thread from the Center of the Inftrument, or the moveable Index, making it pafs thro the middle of the hole of the firft Fuil Moon; and the Fiducial Line will anfwer to the beginning of the 29th Day of Gune, at 4 hours and a quarter; which is the time that that Full Moon was totally Eclipfed, as appears by the red Colour quite filling the hole, fhowing the Full Moon.
By the fame means we may know, that at the time of the Fu!l Moon, which happencd about the third Hour in the Morning, of the $14^{t h}$ of $\mathcal{F u l l y}^{\prime}$, there was a partial Eclipfe of the Sun.
If we proceed farther, the Eclipfes may be known which happened in the Month of December, in the Year 1703, and towards the beginning of the following Year. But becaufe the 10 th 'New Moon goes out beyond the $28 t h$ day of February, having brought the Index to the $=8$ th day of February, move the two upper Plates backwards, conjointly with the Index (in the Pofturc they are found in) until the Fiducial Line happens over the bcgianing of March; whence moving the Index over all the holes of the Now and Full Moons, and the laft Plate will fhew the times in which the Eclipfes ought to happen.
But becaufe the 13 th New Moon is the firlt of the fucceeding Lunar Year, which anfiwers to the Number 25 of the Divifions of the middle Plate, leave the two undermof Plates in the pofure they are found, and move forwards the upper Plate till the Fiducial Line meets with the Number 25 of the middle Plate, at which Point it will fhew upon the greateft Plate, the firl New Moon of the 26 thb Lunar Year, according to the order of our Epoch, which happencd the 2d Day of Yune, 18 hours 40 minutes of the Year 1704; and afterwards moving the Index over the middle of the holes of the New and Full Moons, it will fhew upon the laft Plate the Days they happened on, as well as the Eclipfes to the end of February: after which, the fame Operation muft be made for the preceding Year, that is, that after having come to the laft Day of February, you muft proceed backwards to the firt Day of March.

We might likewife find the begimings of all the Lunar Years without ufing the Table of Epochs; but fince it is not poffible to adjuft the Plates and the Index fo exactly one uporn another, as that fome Error may not happen, which will augnent iffelf from Year to Year, the faid Table of Epochs will ferve to rectify the Ufe of this Inftrument.
In placing the Fiducial Line of the Index upon the Moon's Age, between the Days of the Lunar Months, deinoted upon the Limb of the upper Plate, the correfpondent Days of the common Months will be fhewn, and the Hours nearly, upon the Limb of the lower Plate.

Note, That the Calculations of the Table of Epochs are madc for the mean Time of the Full Moons, which fuppofes the Motions of the Sun and Moon always equable; from whence there will bc found fome Difference between the apparent Times of the New Moons, Full Moons and Eclipfes, as they appear from the Earth, and the times found by that Table.

The proper Morions of the Sun and Moon, as well as thofe of the other Planets, appear to us fometimes fwift, and fometimes flow; which apparent Inequality in part proceeds from their Orbits being not concentric with the Earth, and in part from hence, that the equal Arcs of the Ecliptick, which are oblique to the Equator, do not always pafs thro the Meridian with the equal Parts of the Equator. Aftronomers, for the eafe of Calculation, have ficted a Motion which they call mean or equable, in fuppofing the Planets to defrribe equal Arcs of their Orbits, in equal Times. That Time which they call true or apparent, is the meafure of true or apparent Motion, and mean Time is the meafure of mean Motion. They have likewvife invented Rules for reducing mean 'Time to true or apparent Time, and contrariwife, for reducing true or apparent Time to mean Time.
To find by Calculation whether there will bappen an Eclipfe at the time of the New or Full Moon.
For an Eclipfe of the Sun, multiply by 7361, the Number of Lunar Months accomplifhed from that which begun the 8th of Fanaary, 1701 , according to the Gregorian Calendar, to that which you examine, and add to the Product the Number 33890 ; then divide the Sum by 43200 ; and after the Divifion, without having regard to the Quotient, examine the Renainder, or the difference between the Divifor and the Remainder: for if either of them be lefs than 4060, there will happen an Eclipfe of the Sun.

But to find an Eclipfe of the Moon, likewife multiply by 7361, the Number of Lunar Months, accomplifhed from that which begun the 8th of Gamuary, 1701, to the New Moon preceding thc Full Moon examined; add to the Product 37326, and divide , the Sum by 43200 . The Divifion being made, if the Remainder, or the difference between the Remainder and the Divifor be lefs than 2800 , there will be an Eclipfe of the Moon.

Chap. 5. of a Second Pendulum-Clock.
Note, An Eclipfe of the Sun or Moon will be fo muci the greater, as the Remainder or Difference is leffer; and concrariwife.

Example of an Eclipfe of the Sinn.

It is required to find, whether at the New Moon of the 22d of May, in the Year 1705, there happened an Eclipfe of the Sun.
From the 8th of Fanuary, 1701, to the 22d of May, 1705, there was accomplifhed 54 Lunations. Multiply, according to the Rule, the Number 54 by 7361, and add to the Product 33890: the Sum being divided by 43200, there will remain 42584 , which is greater than 4060 ; and the Difference between the Remainder 4258 , and the Divifor 43200 , is 616 , which is lefs than 4060 : therefore there was then an Eclipfe of the Sun.

Example of an Eclipse of the Moon.

It is required to find whether the Full Moon of the 27 th of April, in the Year 1706, was eclipfed.
From the 8th of Ganuary, in the Year i70r, to the New Moon preceding the Full Moon in queltion, there were 65 Lunar Months accomplifhed; therefore having multiplied, according to the Rule, the Number 65 by 7361 , and added to the Product 37326 , the Sum will be 515791 ; which being divided by 43200 , without having any regard to the Quotient, the Remainder will be 4059 I , greater than 2800 . 'The Difference between the Divifor and the Remainder is 609, which is lefs than 2800 ; therefore there was an Eclipfe of the Moon the 27th day of April, 1706.

C H A P. V.

The Defoription of a Second Pendulum Clock for Aftronomical Obfervations.

THE Figure here adjoined, Shews the Compofition of a Second Pendulum Clock, Plate 17: whofe two Plates A A and B B, are about half a Foot long, and two Inches and a Fig. I. half broad, having four little Pillars at the four Corners, that fo they may be an Inch and a half diftant from each other. Thefe Plates ferve to fuftain the Axes of the principal Wheels, the firft of which being the loweft, and figured C C, hath 8o 'Teeth. The Axis of this Wheel hath a little Pulley, having feveral Iron Points D D round about the fame, in order to hold the Cord to which the Weights are hung, in the manner as we fhall explain by and by. The Wheel C C, being turned by the Weight, likewife turns the Pinion \mathbf{E} of eight Teeth, and fo moves the Wheel F , which is faftened to the Axis of the Pinion E; this Wheel hath forty-eight Teeth, which falling into the Teeth of the Pinion G, whofe Number is eight, moves the Wheel H , (made in figure of a Crown) confifting of fortyeight Teeth. Again, The Teeth of this laft Wheel fall into the Teeth of the Pinion I, whofe Number is twenty-four, and the Axis thereof being upright, carries the Wheel K of 15 Teeth, which are made in Figure of a Saw: Over this Wheel is a crofs Axis, having two Palats L L, fuftained by the Tenons N, Q and P, which are faftened to the Plate B B. It mutt be obferved, that as to the Tenons N and Q, the lower part Q appearing, hath a great hole drilled therein, that the Axis L M may pafs thro it ; this part Q, which is faftened to the lower part of the Tenon N , likewife holds the Wheel \mathbf{K}, and the Pinion I . There is a great Opening in the Plate B B, in order for the Axis and the Palats to go out beyond it. One end of this Axis (as I have already mentioned) goes into the Tenon P, and fc moves eafier than if it was futtained by the Plate $\mathrm{B} B$, and then go out beyond the faid Plate, which it muft neceffarily do, that fo the little Stern S, fixed thereto, may freely vibrate with the faid Axis, and the 'Teeth of the Wheel K alternately meet the Palars L L, as in common Clocks.

The lower part of the little Stern S is bent, and a flit made therein, thro which goes an Iron-Rod, ferving as a Pendulum, having the Lead X at the end thereof. This Rod is faftened in V to a very thin piece of Brals or Steel, which vibrates between two Cycloidal Cheeks T T, (one of which is feen in Fig. r, and both in Fig. 2.) of which more hereafter.

It is eafy to perceive in what manner this Clock goes by the force of the Wheels carried round by the Weight : for the Motion is continued by the Pendulum V X, when the faid Pendulum is fet a going ; becaufe the little Stern S, altho very light, being in motion, not only goes with the Pendulum, but likewife by its Vibrations ftill affilts the Motion fome fmall matter, and fo renders it perpetual, which otherwife by Friction and the Air's refiftance, would come to nothing. But becaufe the Property of the Pendulum is to move equably always, provided its length be the fame, the faid Pendulum will caufe the

Wheel K to go neither too faft nor too flow, (as happens to Clocks not having Peudulums) every Tooth is obliged to move equably; therefore the other Wheeis, and the Hands of the D:al-plate, are neceffarily conftrained to perform their Revolutions equably, Whence if there thould be fome Default in the Conftruction of the Clock, or if the Axes of the Wheeis do not more freely on account of the Intemperance of the Air, prozided the Clock does not ftand ftill; we have nothing to fear from thefe Inequalities, for the Cluck will aiways go true.

As to the Hands for fhewing the Hours, Minutes, and Seconds, we difpofe them in the following manner. The third Plate Y Y is parallel to the two precedent ones, and is three Lines diftant from A A. We defcribe a Circle about the Center a, which is the middle of the Axis, carrying the Wheel \mathbf{C}, continued out beyond the Plate $\Lambda \mathrm{A}$. This Circle is divided into I2 equal Parts, for the Hours. We likewife defcribe another Circle about the faid Center, and divide it into 60 equal Parts, for the Minutes in an Hour. W'e place the Wheel b upon the Axis R, continued out beyond the Plate A A, faftened to a little Tube, going out beyond the Plate Y Y to e. This Tube is put about the Axis R, and turns about with it, in fuch manner neverthelefs, that it may be turned only when there is neceffity. We place the Hand fhewing the Minutes in e, which makes one Revolution in an Hour. The beformentioned Wheel b noves the Wheel b, having the fame Number of Teeth as that, viz. 30 ; and the Teeth of the Wheel f falls into the Teeth of the Pinion b, whofe Number is 6 , and they have a little Axis common to them, which is partly fuftained by the Tenon d. This Pinion moves round the Wheel f, having 77^{2} Teeth, faftened to a little'Tube g, which is put about the Tube carrying the Wheel b. "Now the Hand Chewing the Hours muft be placed upon the Extremity of the 'Tube g, and will be fhorter than that denoting the Minutes. But that one may not be deceived in reckoning of Seconds we piace a round flate $m m$ upon the Extremity of the Axis of the Wheel H , divided in to 60 equal Parts, and make an opening Z in the Plate Y, in the upper part of which Open= ing is a fmall Point 0, which, as the faid Plate turns about, fhews the Seconds. The Dif= pclition of the Hands and Circles will be eafier feen in Figure 3, which reprefents the Outide of the Clock.

Now having fooken of the Difpofition of the Wheels, the next thing is to determine the Length of the Pendulum, which muft be fuch, that every of its Vibrations be made in a Second of Time. This Length muft be 3 Feet $8 \frac{1}{2}$ Lines (of Paris) from the Point of Sufperfion, which is the Center of the Cycloidal Cheeks, to the Center of the Weight X .

We now proceed to fay fomething concerning the Times of the Revolutions of the Whee's and the Hands, in order to confirm what we have already faid of the Number of Teeth.' Now one Revolution of the Wheel C C, makes ten Revolutions of the Wheel F, fiaty of the Wheel H , and one hundred and twenty of the upper Wheel K , which having 15 Teeth, and alternately pufhing the Palats L L, makes thirty Vibrations, which are fo many goings and comings of the Pendulum V X. Whence 120 Revolutions of the Wheel $1 K$, is equal to 3600 Viberations of the Pendulum, which are the Seconds contained in one Hour; and fo the Wheel C makes one Revolution in an Hour, and the Hand efaftened thereto, fhews the Minutes; and becaufe the Wheel b makes its Revolution in the fame tince, (viz. an Hour) the Wheel b hath the fame Number of Teeth as b, and the Pinion on the fame Axis hath fix Teeth; and fince the Number of Teeth of the Wheel f is twelve times greater, the faid Wheel will go round once in 12 Hours, as likewife the Hand g faftened thereto. Finally, Becaufe the Wheel H is making fixty Revolutions in the fame tine the Wheel C C is making one, therefore the circular Plate Z, having the Seconds deno= ted thereon, will move once Round in a Minute; and fo every 60 th part of the faid Plate will flew one Second.

The Weight X, at the end of the Pendulum, maft weigh about 3 Pounds, and be of Lead covered with Brafs. Regard muft not only be had to its Weight, but likewife to its Figure, which is of confequence, becaufe the leaft Refiftance of the Air is prejudicial thereto ; whence we make it in form of a Convex Cylinder, whofe ends are pointed, as ap= pears in Figure 3. Wherein the Pendulum is reprefented, tho the Weights at the end of the Pendulums made for thefe Clocks ufed at Sea are in the Figure X , in form of a Lens, this Figure being found more proper than the other.

In the fame Figure may likewife be feen the manner of the Difpofition of the Weight b, in order to fo move the Clock, that it may not ftand ftill while the Weight b is drawing up; and this is done by means of a Cord, one end of which muft firft be faftened to a piece of Iron fixed to the Plate A A, (of Figure r.) and then it mult be put about the Pulley 8 , of the Weight b; afterwards over the Pulley d, (which hath Iron Points round it in figure of the Teeth of a Saw, for hindering, left the Weight b fhould pull the Cord down all at once) then about the Pulley f of the Weight g, and laft of all the other end of the faic Cord muft be fixed to fome proper Place. Things being thus difpofed, it is manifeft thas half of the Weight 6 moves the Wheels round, and that the Motion of the Clock doth not ceafe, when the Cord c is pulled with one's Hand in order to draw the Weight b up. Note, The Weight g is for fuftaining the Weight b, and need not be near fo big.

Chap. 5. of a Second Pendulum-Clock.
The Weight of b cannot be certainly determined by Reafoning, but the lefs it is the better, provided it be Yufficient to make the Clock go. 'They weigh generally about fix Pounds in the beft kind of thefe Clocks that have yet been made, whereof the Diameter of the Pulley D is one Inch, the Weight of the Pendulum X three Pounds, and its Length three Feet $8 \div$ Lines. Note, If this Clock be at the height of a Man above the Ground, it will go 30 Hours.

We now proceed to thew the manner of making the Cycloidal Cheeks between which the Fig. 4. Pendulum fwings, and in which the whole Exactnefs of the Clock confifts. In order to do which, defcribe the Circle AFBK, whofe Diameter A B let be equal to half of the Length of the Pendulum; affume the equal Parts of the Circumference AC,CD, DE, EF and A G, GH, HI, IK, and draw the Lines GC, HD, IE and KF, from one Divifion to the other, which Lines will be parallel. Now make the Line L M equal to the Arc A F, which divide into the fame Number of equal Parts as A F, and affume one of thefe Parts, which lay off upon the Line C G, from C to N, and G to O. Again, Lay off two of the faid equal Parts of the Line LM, upon the Line D H, from D to P, and from H to Q. Moreover, Affune three of the faid equal Parts upon the Line LM, which lay off upon IE from E to R, and I to S. And finally, Affume four of the faid Parts (which is the whole Length of the Line $L M$) and lay off upon $K F$, from F to T, and K to V; and fo of other Parts, if there had been more of them affumed upon the Periphery of the Circle A F B K. Now if the Points N, P, R, T, as alfo O, Q, S, V, be joined, we thall have the Figure of the Cycloidal Cheeks, (between which the Pendulum fwings) which muft be afterwards cut out in Brafs. To draw the Line L M equal to the Arc A F, affume the two Semi-Chords of the Arc A F; which lay off upon the Line X V, from X to Y; this being done, take the whole Chord of the Arc A. F, and lay off from X to Z, and divide Z Y into three equal Parts; one of which being laid off from Z to V, and the Line $X V$ will be nearly the Length of the Arc A. F.

The Ufe of this Inftrument fufficiently appears from what hath been already faid.
The principal Inftruments that an Aftronomer ought to have, befides a good Quadrant; and Pendulum Clock, is a Telefcope feven or eight Foot long, having a Micrometer adjufted thereto, for obferving the Digits of Solar and Lunar Eclipfes, as likewife another of 15 or 16 Foot, for the Oblervation of Jupiter's Satellites; and, if poffible, a Parallactick Inftrument to tak: the Parallaxes of the Stars.

A D DIT IONS of Englifb Inftruments.

Of Globes, Spheres, the Aftronomical Quadrant, a Micrometer, and Gunter's Quadrant.

C HAP. I.
 Of the Geobes.

SECTION I.

OF Globes there are two kinds, viz. Celeftial and Terreftrial. The firt is a Re-Fig. $9 . \& \sigma_{0}$ prefentation of the Heavens, upon the Convex Surface of a material Sphere, containing all the known Stars, after the manner that Aftronomers, for the eafier knowing them, have divided them into Conftellations, or Figures of Men, Beafts, Fowls, Fifhes, ${ }^{E} \mathcal{E}_{c}$. according to the refemblance they fancied each felect Number of Stars formed. The other is the Terreftrial Globe, which is the Image of the Earth, on the Convex Surface of a material Sphere, exhibiting all the Kingdoms, Countries, Illands, and other Places fituated upon it, in the fame Order, Figure, Dimenfions, Situation, and Proportion, refpecting one another as on the Earth itfelf.
There are ten eminent Circles upon the Globe, fix of which are called greater, and the four other lefer Cricles.

A lefier Circle is that which is parailel to a greater, as the Tropicks and Polar Circles are to the Equator, and as the Circles of Altitude are to the Horizon.

The great Circles are,

I. The Horizon, which is a bread wooden Circle encompaffing the Giobe about, having two Notches, one in the North, the other in the South part thereof, for the Brazen Me ridian to ftand, or move round in, when the Globe is to be fet to a particular Latitude.

There are ufually reckoned two Horizons: Firf, The Vifible or Senflle Horizon, which may be conceived to be made by fome great Plane, or the Surface of the Sea; and which divides the Heavens into two Hemifpheres, the one above, the other (apparently) below the Level of the Earth.

This Circle determinates the Rifing and Setting of the Sun, Moon, or Stars, in any particular Latitude : for when any one of them comes juft to the Eaftern edge of the Hovizon, then we fay it Rifes; and when it doth fo at the Weftern edge, we fay it Sets. And from hence alfo is the Altitude of the Sun or Stars reckoned, which is their height in Degrees above the Horizon.

Secondly, The other Horizon is called the Real or Rational Horizon, and is a Circle encompaffing the Earth exactly in the middle, and whofe Poles are the Zenitb and Nadir, that is, two Points in its Axis, each 90 deg. diftant from its Plane, (as the Poles of all Circles are) the one exactly over our Heads, and the other directly under our Feet. This is the Circle that the wooden Horizon on the Globe reprefents.
On which Broad Horizon feveral Circles are drawn, the innermoft of which is the Number of Degrees of the Twelve Signs of the Zodiack, viz. 30 to each Siga: for the ancient Aftronomers obferved the Sun in his (apparent). Annual Courfe, always to deferibe onie and the fance Line in the Heavens, and never to deviate from this TraEt or Path to the Nortls or South, as all the other Planets did, more or lefs: and becaufe they found the Sun to fhift as it were backwards, thro all the Parts of this Circle, fo that in one whole Year's Courfe he would Rife, Culminate, and Set, with every Point of it ; they difinguifhed the fixed Stars that appeared, in or near this Circle, into 12 Confellations or Divifions, which they called Signs, and denoted them with certain Characters ; and becaufe they are moft of them ufually drawn in the form of Animals, they called this Circle by the Name of Zoo diack, which lignifies an Animal, and the very middle Line of it the Eciiptick; and fince every Circle is divided into 360 Degrees, a twelfth part of this Number will be 30 , the Degrees in each Sigu.
Next to this you have the Names of thofe Signs; next to this the Days of thle Months, according to the Fulian Account, or Old Stile, with the Calender; and then another Caw lender, according to the Foreign Account or New Stile.
And without thefe, is a Circle divided into thirty two equal Parts, which make the 32 Winds or Points of the Mariners Compafs, with the Names annexed.

The Ufes of this Circle in the Globe are,

r. To determine the Rifing and Setting of the Sun, Moon, or Stars, and to fhew the time of it, by help of the Hour Circle and Index ; as fhall be fhewn hereafter.
2. To limit the Increafe and Decreafe of the Day and Night : for when the Sun rifes due Eaft, and fets Weft, the Days are equal.

But when he Rifes and Sets to the North of the Eaft and Weft, the Days are longer than the Nights; 'and contrariwife, the Nights are longer than the Days, when the Sun Rifes and Sets to the Southwards of the Eaft and Weft Points of the Horizon.
3. To fhow the Sun's Amplitude, or the Amplitude of a Star; and alfo on what Point of the Compafs, it Rifes and Sets.
II. The next Circle, is the Meridian, which is reprefented by the brazen Frame or Circle, in which the Globe hangs and turns. This is divided into four Nineties or 360 Degrees, beginning at the Equinoctial.

This Circle is called the Meridian, becaufe when the Sun comes to the South part of it, it is Meridies, Mid-day, or High-noon ; and then the Sun hath its greatef Altitude for thar Day, which therefore is called the Meridian Altitude. The Plane of this Circle is perpendicular to the Horizon, and paffeth thro the South and North Parts thereof, thro the Zenith and Nadir, and thro the Poles of the World. In it each way from the Equinoctial or the Celefial Globe, is accounted the North or South Declination of the Sun or Stars; and on the Terrefrial, the Latitude of a Place North or South, which is equal to the elevation or height of the Pole above the Horizon : Becaufe the Diftance from the Zenith to the Horizon, being the fame as that between the Equinoctial and the Poles, if from each you imagine the Dio ftance from the Pole to the Zenith to be taken away, the Latitude will remain equal to the Pole's Alritude.

There are two Points of this Circle, each 90 Degrees diftant from the Equinoctial, which are called the Poles of the World, the upper one the North Pole, and the under one the South Pole. A. Diameter contiaued thro both the Poles in either Globe and the Center,
is called the Axis of the Earth or Heavens, on which they are fuppored to turn about.

The Meridians are various, and change according to the Longitude of Places; for as foon as ever a Man moves but one Degree, or but a Point to the Eait or Welt, he is under a New Meridian : But there is or fhould be one fixed, which is called the firft Meridian.

And this on fome Globes, paffes thro one of the Azores Iflands: but the Freinch place the firf Meridian at Fero, one of the Canary Iflands.

The Poles of the Meridian are the Eaft and Weft Points of the Horizon. On the Teireffrial Globe, are ufually drawn 24 Meridians, one thro every 15 Degrees of the Equator, or every ${ }_{15}$ Degrees of Longitude.

The Ufes of the Meridian Circle are,

Firf, To fet the Globe to any particular Latitude, by a proper Elevation of the Pole above the Horizon of that Place. And, Secondly, To fhew the Sun or Stars Declination, Right Afcenfion, and greateft Altitude; of which more hereafter.
III. The next great Circle, is the Equinoctial Circle, as it is called on the Celeftial, and the Equator, on the Terreftrial Globe. This is a great Circle whofe Poles are the Poles of theWorld: it divides the Globe into two equal Parts or Hemifpheres as to North and South; it paffes thro the Eaft and Weft Points of the Horizon, and at the Meridian is always as much raifed above the Horizon,as is the Complement of the Latitude of any particular Place. Whenever the Sun comes to this Circle, it makes equal Days and Nights all round the Globe, becaufe it then Rifes due Eaft, and Sets due Weft, which it doth at no other time of the Year. All Stars alfo which are under this Circle, or which have no Declination, do always Rife due Eaft, and Set full Wert.

All People living under this Circle (which by Navigators is called the Line) have their Days and Nights conftantly equal. And when the Sun is in the Equinoctial, he will be at Noon in their Zenith, or directly over their Heads, and fo their erect Bodies can caft no Shadow.

From this Circle both ways, the Sun, or Stars Declination on the Celeftial, or Latitude of all Places on the Terreftrial Glube, is accounted on the Meridian: and fuch leffer Circles as run thro each Degree of Latitude or Declination parallel to the Equinoctial, are called Pa rallels of Latitude or Declination.

Through every 15 Degrees of this Equinoctial, the Hour-Circles are drawn at Right Angles to it on the Celeftial Globe, and all pafs thro the Poles of the World, dividing the Equinoctial into 24 equal Parts.

And the Equator on the Terreftrial Globe, is divided by the Meridians into 36 equal Parts ; which Meridians are equivalent to the Hour-Circles on the other Globe.
IV. The Zodiack is another great Circle of the Globe, dividing the Globe into two equal Parts (as do all great Circles) : When the Points of Aries and Libra are brought to the Horizon, it will cut that and the Equinoctial obliquely, making with the former an Angie equal to 23 Degrees 30 Minutes, which is the Sun's greatef Declination. This Circle is accounted by Aftronomers as a kind of broad one, and is like a Belt or Girdle : Through the middle of it is drawn a Line called the Ecliptick, or Via Solis, the Way of the Sun; becaufe the Sun never deviates from it, in its amnual Courfe.

This Circle is marked with the Characters of the T welve Signs, and on it is found out the Sun's place, which is under what Star or Degree of any of the Twelve Zodiacal Confellations, he appears to be in at Noon. By this are determined the four Quarters of the Year, according as the Ecliptick is divided into four equal Parts; and accordingly as the Sun goes on here, he has more or lefs Declination.

Alfo from this Circle the Latitude of the Planets and fixed Stars are accounted from the Ecliptick towards the Poles.
The Poles of this Circle are 23 Degrees, 30 Minutes diftant from the Poles of the World, or of the Equinoctial ; and by their Motion round the Poles of the World, are the Polar Circles defribed.
V. If you imagine two great Circles both paffing thro the Poles of the World, and alfo one of them thro the Equino\&ial Points Aries and Libra, and the other thro che Solfititial Points, Cancer and Capricorn: 'Thefe are called the two Colures, the one the EquinoEtial, and the other the Solfitial Colure. Thefe will divide the Ecliptick into four equal Parts, which are denominated according to the Points they pafs thro, called the four Cardinal Points, and are the firt Points of Aries, Libra, Cancer and Capricorn.

Thefe are all the great Circles.
VI. If you fuppofe two Circles drawn parallel to the Equinoctial at 23 Degrees 30 Minutes, reckoned on the Meridian, thefe are called the Tropicks, becaule the Sun appears, when in them, to turn backward from his former Courfe; the

[^5]one the 'Tropick of Cancer, the other the Tropick of Capricorn, becaufe they are under thefe Signs.
VII. If two other Circles are fuppofed to be drawn thro 23 Degrees 30 Minutes, reckoned in the Meridian from the Polar Points, thefe are called the Polar Circles: The Northern is the Artick, and the Southern the Antartick Circle, becaufe oppofite to the former.

Thefe are the four leffer Circles.
And thefe on the Terreftrial Globe, the Ancients fuppofed to divide the Earth into five Zones, viz. two Frigid, two Temperate, and the Torrid Zone.

Befides thefe ten Circles already defcribed, there are fome other neceffary Circles to be known, which are barely imaginary, and only fuppofed to be drawn upon the Globe.
I. Meridians or Hour-Circles, which are great Circles all meeting in the Poles of the World, and croffing the Equinoctial at right Angles; thefe are fupply'd by the brazen meridian Hour-Circle and Index.
2. Azimuths or Vertical Circles, which likewife are great Circles of the Sphere, and meet in the Zenith and Nadir, as the Meridians and Hour-Circles do in the Poles; thefe cut the Horizon at right Angles, and on thefe is reckon'd the Sun's Altitude, when he is not in the Meridian. They are reprefented by the Quadrant of Altitude, by and by fpoken of, which being fixed at the Zenith, is moveable about the Globe thro all the Points of the Compafs.
3. There are alfo Circles of Longitude of the Stars and Planets, which are great Circles paffing thro the Poles of the Ecliptick, and in that Line determining the Stars or Planets Place or Longitude, reckoned from the firft Point of Aries.
4. Almacanters, or Parallels of Altitude, are Circles having their Poles in the Zenith, and are always drawn parallel to the Horizon. Thefe are lefler Circles of the Sphere, diminifhing as they go further and further from the Horizon. In refpect of the Stars, there are alfo Circles fuppofed to be Parallels of Latitude, which are Parallels to the Ecliptick, and have their Poles the fame as that of the Ecliptick.
5. Parallels of Declination of the Sun or Stars, are leffer Circles, whofe Poles are the Poles of the World, and are all drawn parallel to the Equinoctial, either North or South; and thefe (when drawn on the Terreftial Globe) are called Parallels of Latitude.
VIII. There are belonging to Globes a Quadrant of Altitude, and Semicircle of Pofition: The firt is a thin pliable piece of Brafs, whercon is graduated 90 Degrees anfwerable to thofe of the Equator, a fourth part of which it reprefents; with a Nut and Screw, to faften it to any part of the brazen Meridian as occafion requires. There is or fhould be likewife a Compars belonging to a Globe, that fo it may be fet North and South.
The Semicircle of Pofition is a narrow Plate of Brafs, infcribed with 180 Degrees, and anfwerable to juft half the Equator.

Laftly, 'The Brafs Circle, faftened at right Angles on the brazen Meridian, and the Index put on the Axis, is called the Index and Hour-Circle.

S E C T O N II:

Haring now defcribed the Circles of the Globes, I proceed to their Conftruetion.

The Body of the Globe is compofed of an $\dot{A} x l_{e-T}$ ree, two Paper-Caps fewed together, a Compofition of Plaifter laid over them, and laft of all globical Papers or Gores (of which more by and by) ftuck or glewed on the Plaifter.

The Axle-Tree is a piece ofWood which runs thro the middle of the Globe, turned fometimes of an equal Thicknefs, but ofner fmaller in the Middle than at the Ends; where two pieces of thick hardened Wire are Atruck in, which is the Axis, that appears without the Globe, on which it turns within the brazen Meridian.
The Paper-Caps inclofe this Axle-Tree, and are made in the following manner. You mußt have a Ball of Wood turned round, about a quarter of an Inch lefs in Diameter, than the Size you intend to make your Globe of, with two Pieces of Wire fluck into it, diametrically oppofite to each other, for Conveniency of turning in a Frame, which may be made of two Pieces of Stick fixed upright in a Board, with Notches on the Tops to lay the Wire in. Round this wooden Ball you muft pafte wafte Paper, both brown and white, till you judge it to be of the Thicknefs of Pafteboard; and before it be quite dry, cut it in the middle, fo that it may come off in two Hemifpheres: to prevent the Paper from fticking, let the Ball at firit making be thick painted, and every time before you pafte Paper on it, greafe or oil it a little.

The Holes at the Tops of the Caps, occafoned by the Axis on which the Ball turned, are very convenient for the $A x$ is of the Globe to go thro in covering of it. Then having faftened the Top of the Caps with fmall Nails to each end of the wooden Axle-Tree, few. them clofe together in the middle with ftrong 'Twine.

That the Caps may meet exactly, obferve two things: iff, That the Axletree be juft in the Diameter of the Ball. 2dly, That before you take the Caps off the Ball, you make Scores a-crofs the parting all round, about an Inch afunder, whereby to bore the Holes for fewing them even together, and leave a Mark to direat how to join them again in the fame Points: for inflance, make a Crofs over any one of the Scores in the upper Cap, and another Crofs upon the fame Score in the under Cap; and when you clofe them, bring the two Croffes together, by which means the Caps in fewing will come as clofe together as before they were parted. This Care muft be taken, that there may be no Openings between; in which cafe, Paper muft be cramb'd in to ftop up the Gaps: but whether there be any Gaps or no, there mult be Paper pafted all over its fewing, to prevent any of the Plaitter from falling in.
The Plaifter is made with Glue, diffolved over the Fire in Water and Whitening mixed up thick, with fome Hemp fhred fmall ; the Ufe of which is to bind the Plaifter, and keep it from cracking (as Hair is put into Mortar for the fame end:) a Handful will ferve two or three Gallons of Stuff. There is no neceffity for mixing the whole over the Fire, except the Vhitening runs into Lumps not eafily to be broken with the Hand.
For laying on this Plaifter over the Caps in a globular Form, you muft have a Steel Semicircle exactly half the Circumference you intend the Globe to have, fixed flat-ways in a level Table made for that purpofe, with a Notch at each end for the Axis (which muft nicely fit it) to turn in, and two Buttons to cover it, to prevent the Axis from being forced out of the Notches, when the Globe is clogg'd with Pdaifter, and fo requires fome Violence to turn it.
Then fixing your Paper-Sphere within this Semicircle, lay Plaifter on it with your Hands, turning the Globe eafily round, till it be covered fo as to fill the Semicircle : But before it comes to touch the Semicircle in all its Parts, and be equally fmooth all round, it will require a great many Layings on of the Plaifer, letting it dry between every fuch Application.

The fecond or third time of laying on Stuff, it will begin to touch the Semicircle in fome parts, and to appear round; the fourth time it will touch in more parts, and look rounder; till at laft it will touch in all parts, and become perfectly round and fmooth, like a Ball of polifhed Marble.
The next thing to be done is to poife the Globe ; for it generally happens, by reafon of the Plaifter lying thicker in one place than in another, that fome fide weighs fill downwards. To remedy this, a Hole muft be cut in that part, and a convenient Quantity of Shot put in, in a Bag, to bring it to a due Ballance with the reft; after which the Place muft be ftopped up with a Cork, and coveeed again with Plaifter. The Bag that holds the Shot may be glewed or fewed to the Cap within, or faftened to the Cork: fometimes after one part is ballanced, the Weight will incline to another; in which cafe the fame Remedy muft be apply'd again, as often as there will be necefficy.

This done, by help of another Semicircle, divided into 18 equal Parts, draw the Equator and Parallels of Latitude, placing a Black-lead Pencil at the Graduation, and turning the Globe againft the Point of it to make a Line. Then divide the Equator with a pair of Compaffes into fo many parts as there are globical Papers or Gores to lay on, and draw Lines thro each from Pole to Pole by the fide of the Semicircle. Within each of thefe Spaces fo marked out, you have only to lay one of the Gores, which (being cut out fo exatt, as neither to lap over, nor leave a Vacancy between them) by the Affiftance of the Lines drawn upon the Plaifter, may be fitted, fo as to fall in with each other with the greateft Exactnefs. In applying the Gores, you may ufe a good binding Pafte, but Mouth Glue is better.

S E C T I O N III.

Conffruction of the Circles of the Globe on the Globical Papers or Gores.

As 7 is to 22, fo is the Diameter of a Globe to the Circumference of any one of its greatef Circles. The Diameter of the Globe is ufually given, from whence it often happens that the Circumference confifts of odd Numbers and Parts. Whereas if the Circumference was given in even Numbers, as Inches, it might more eafily be divided into Parts. For example, if the Circumference was 36 Inches, each io Degrees of Longitude on the Equator will be one Inch; if the Circumference be 54, each 10 Degrees will be one Inch and a half; if 72 , every 10 Degrees of Longitude will be two Inches.

The Diameter of a Globe being given, fuppofe 24 Inches, to find the Circumference, fay, As 7 is to 22 , fo is 24 to 75.43 Inches, the Length of the Circumference fought.

The Length of each Gore, from the North Pole to the South Pole, will be exactly half the Circumference of the Globe, which is 37.7 I Inches, and the Length from the Equator to either Pole will be $\frac{4}{4}$, viz. 18.86 Inches.

If each of the Globical Papers contain in their greateft Breadth 30 Degrees of the Equator, 12 of them will cover the Globe, and by Dividing the Circumference $75.4 ;$ by 12, the Quotient will give 6.28 Inehes for the Breadth of the Gore.

If 18 of the Gores go to cover the Globe, the Breadth of each will be 20 Degrees of the Equator, or 4.19 Inches.

If 24, each will contain 15 Degrees of the Equator, or 3.14 Inches of the Circumference.

If 36 , each Paper will contain 10 Degrees of the Circumference, or 2.09 Inches.
It the Globe be fo large as to take up 360 Papers, that is, one to every Degree of Longitude, then will the Breadth of each Gore be 23 parts of an Inch.

Again, If the Circumference of a Globe be given, fuppofe 72 Inches, divide it by 2 (for the Length of the Gores from Pole to Pole) and the Quotient will be 36 Inches; and confequently half that Length, of the Diftance from the Equator to either Pole, will be 18 Inches: as the Diftance from N. to S. taken from a fuppofed Scale of Inches, is 36 Inches, or one half of the Circumference of the Globe; and the Diftance from C to N or $\mathrm{S}, 18$ Inches, or $\frac{1}{4}$ of the Circumference.

If each Gore contains 30 Degrees of the Equator in Breadth, or $\frac{1}{12}$ of the Circumference, it will take up 6 Inches thereof as I K.

If 18 of the Gores go to cover a Globe of the aforefaid Circumference, each will contain 20 Degrees in Longitude of the Equator, or 4 Inches, as L M.

If your Papers be $\frac{1}{2} \frac{1}{4}$ of the Circumference, each will contain 15 Degrees of the Equator, or 3 Inches, as ab.
If they, be $\frac{1}{3}$ of the Circumference, each will contain 10 Degrees of the Equator, or 2 Inches, as c d.

If there be 72 Papers for covering the Globe, each will contain 5 Degrees of the Equator, or I Inch, that is \square^{\prime} of the Circumference.

If, laftly, the Globe requires 360 Papers, each will contain 1 Degree, or $\frac{1}{5}$ of an Inch.
This being premifed, I now proceed to give the Manner of drawing the Circles of the Globes upon the aforefaid Gores.
Fig. 7.
Draw the Diameter W E, and crofs it with another at right Angles to it, as N S. From the Scale of Inches fet off from C to N, and to S, (the North and South Poles) 18 Inches, or $\frac{1}{4}$ of the Circumference, which divide into 9 equal parts, each of which likewife fubdivide into 10 more (for the 90 Degrees of North and South Latitude) upon C, as a Center ; defcribe the Circle NE, S W, and divide each Quadrant into 90 Degrees, numbering each roth Degree with Figures from the Equator towards the Poles, as 10, 20, 30, 出c. Thus the three Points are found, thro which the parallel Circles to the Equator mult be drawn; viz. two of them are in the Quadrants $N E, N W$, and $S E, S W$, and the third is in the Diameter N S.

To find the Centers of any of the faid Parallels, fuppofe of the Parallel of 60 Degrees, fet one Foot of your Compaffes in the Point 60 , or F, of the Quadrant NE, and extend the other to the Point 60, or D, in the Diameter NS ; then defcribe the little Arcs A, B, and removing the Foot of your Compaffes to the Point D, defcribe two other Arcs, cutting thofe before defcribed, and thro the Points of Interfection draw a right Line, which will cut the Diameter C.N, produced in the Point G, the Center of the 6oth Parallel. Having thus found the Centers of all the Parallels, and drawn them in the Northern Hemifphere, transfer the central Points in the Line C N continued, into the Line C S continued alfo, and draw the Parallels of the Southern Hemifphere. Note, That whether the polar Papers extend to the 8oth or 7oth Parallel, thofe Circles in the meridional Papers, or thofe that encompafs the Body of the Globe, mult be defcribed as is here ordered; but in the polar Papers the Pole muft be the Center, as you fee in the Figure, where one Point of the Compafles being fet in the South Pole S, and the other extended to the 80 oth or 70 th Degree of Latitude in the Diameter, Arikes thofe Parallels in the polar Papers. See more concerning the polar Papers hereafter:

Then becaufe the polar Circles and Tropicks are but Parallels 23 deg . 30 min . diftant from the Poles and Equator; at thofe Diftances defcribe double Lines, reprefenting fuch Circles, to diftinguifh them from other Parallels.

To diaw the Meridians.

Having chofen one of the Propertions beforementioned for the Breadth of each Paper on the Equator, fuppofe $\frac{1}{2}$ of the Equator, which is the common Proportion in globical Papers, and the greatelt Breadth that can be allowed them, let the Globe be of what Magnitude foever: then becaufe $\frac{1}{2}=$ of the Equator contains 30 Degrees, which in the Gores for a Globe of 7,2 Inches Circumference, are fix Inches in Breadth; from a Scale of Inches take three I'nches between your Compaffes, and lay them off on the Diameter W C E, from C to K, and from C to I, the Length from I to K being fix Inches, or 30 Degrees of the Equator, into which it muft be divided, and numbered at each 5 th or 10 oth Degree, with thaDegrees of Longitude.

Chap. I.

Now becaufe a fingle Degrec cannot be well divided into Parts in fo fmali a Projection, and feeing that any Number of Degrees of Longitude in any Parallel has the fame Proportion to one Degree in that Parallel, as the fame Number of Degrees of Longitude under the Equator has to one Degree of Longitude ; therefore take 15 Degrees of the Equator, uiz. IC or I K, in your Compaffes, and having divided it feparately, as you would a fingle Degree, into 60 equal Parts, look in the following Table what Proportion a Degree (or 15 Degrees) in each 5 th or 10 th Parallel of Latitude, hath to a Degree (or 15 Degrees) on the Equator. For example, in the firft Column of the Table towards the Left-Hand, are the Degrees of Latitude; over againtt the roth Degree, I find 59 Miles in the fecond Column, and oo Minutes, or Fractions of a Mile, in the third Column, which fignifies that a Degree (or 15 Degrees) in the 10 th Parallel of Latitude, contains but 59 Miles 00 Mi nutes of a Degres' (or 15 Degrees of the Equator) which Length I take from the Scale IC or CK between my. Compafles, and fet off on each fide the Meridian, or Diameter N S, on the roth Parallel.

Again, in the Parallel of 20 Degrees, I find a Degree to contain 56 Miles 24 Minutes, or parts of a Mile, of a Degree in the Equator, and transfer that Length from the aforefaid Scale upon the 20 th Parallel ; the like is to be underftood of all the reft, and thofe Points being found and joined, will form the Meridians on the Gores. The fame Directions muft be followed in all other Proportions for the Breadth of the Gores; in chufing of which, obferve, that as it is manifeft from the Figure of the Globe, that a Paper fo large as $\bar{T}^{\top} \frac{\mathrm{T}}{3}$ of the Circumference of the Globe, cannot lie upon its Convexity, without crumbling, lapping over, or tearing, in the Application; therefore it will be better to ufe fome leffer Proportion, as LM, $a b$, or $c d$: for note, the narrower they are, the more exactly they will fit the Globe. Note alfo, in drawing the Parallels from 10 to 30 Degrees of Latitude, right Lines will do well enough.

A TABLE Jlowing in what Proportion the Degrees of Longitude decreafe in the Parallels of Latitude.

Lat.Mil.Min. 060 60	Lat.Mil.Min. 13 13 18 8	Lat.Mil.Min. 255424		Lat.Mil.Min. 493920		Lat.Mil.Min. ${ }_{\text {7 }}$
15956	145812	2654	384716	$5038 \quad 32$	$\begin{array}{llll}6 & 2 & 28 & 8\end{array}$	$\begin{array}{llll}73 & 13 & 32 \\ 74 & 16 & 32\end{array}$
25954	1558	275328	394636	513744	632712	751532
35952	165740	$2853 \quad 0$	4046 0	52370	642616	761432
45950	175720	295228	414516	53368	652520	771332
55946	18574	305156	$1 \begin{aligned} & 424436\end{aligned}$	543526	66 2424	781232
65940	1956.44	315124	434352	553424	$\begin{array}{llllll}67 & 23 & 28\end{array}$	79 In 28
75937	205624	325052	44438	5633.32	$68 \quad 2232$	801024
85924	2156 -	335020	454224	573240	692132	81920
95910	225536	344944	464140	583148	702032	82820
10590	235512	35.49 .8	47.418	59310	711932	83720
:1. 5852	24.544^{8}	$364^{8 .} 32$	4^{8} 40 8	6030 0	721832	$84612:$
125840						$\begin{array}{lll}85 & 5 & 12 \\ 86 & 4 & 12\end{array}$
						$87 \quad 312$
						$88,24$.
						8914
						90 -

The exaEZ Geometrical Way of drawing the Parallels and Meridians on the Gores.
Becaufe in the Method before laid down, the true Centers of the Parallels are not exact- Plate 18. ly in thofe Points found as there directed; nor the Points in them the Points by which the Fig. I. Meridians muft pafs : therefore, I think it proper here to exhibit the Geometrical Manner of drawing them truly.
Suppofe S B to be the Semidiameter of the Globe, with which defcribe the Quadrant BI, and continue out the Semidiameter SI, both ways. Make SA equal to \div of the Circumference; the Point A of which, will be the Pole of the Gore. Then divide the Quadrant BI into 90 equal Parts or Degrees, to every of which draw the Tangents $i 80, k 70,160$, $m \varsigma 0$, \&c. until they meet the Radius S I continued. Again, having divided the Line A S (equal to $\frac{1}{4}$ of the Circumference of the Globe) into go equal Parts, (I have only divided it into 9) and numbred them as per Figure; take the Length of the Tangent $i 80$ between your Compaffes, and fetting one Foot in the Point 80 of the Line AS, the other will fall upon the Point a in the faid Line continued out beyond 'A, which will be the Center of the 8 oth Parallel paffing thro the Point 80 in the Line A. S.

Moreover, to find the Center of the 70 th Parallel, take the Tangent $k 70$ between your Compaffes, and fetting one Foot in the Point 70 of the Line A S, the other will fall on the Point b in the Line A. S continued, which will be the Center of the $70 t b$ Parallel, paffing thro the Point 80 in the Line AS.

In like manner, to find the Center of the 60 th Parallel, take the Tangent $l 60$ between your Compafies, and fer it off from the Point 60 in the Line AS, and you will have the Center c for the 60 th Parallel, paffing thro the Point 60 . Proceed thus for finding the Centers $d, e, f, g, \mathcal{O}_{c} c$. of the Parallels $50,40,30,20, \mathcal{G}_{c}$. about each of which Centers refpective Arcs being drawn, the Parallels will be had.

The Reafon of this Operation for finding the Centers of the Parallels, is this; If a Sphere or Globe hath revolved upon a Plane, in fuch manner that every Point of the Periphery of fome leffer Circle of it, has touched the faid Plane, and the Point which in the beginning of the Motion was contiguous to the Plane, became to be contiguous to it again; then the Points on the Plane, that were contiguous to the Points of the Periphery of the aforefaid leffer Circle, will be in the Circumference of a Circle, whofe Center will be the Vertex of a right Cone, lying on the aforefaid Plane, the Bafe of which will be the faid Circle; and confequently the Vertex will be determined in the Plane, by continuing a right Line raifed on the Circle's Center perpendicularly till it cuts the aforefaid Plane.

How: to draw the Meridians.

Having drawn the Sines $10 \mathrm{p}, 20 \mathrm{q}, 30 \mathrm{r}, 40 \mathrm{~s}, \mathrm{E}_{\mathrm{c}}$. divide the Radius BS into 360 equal Parts, or make a Diagonal Scale of that Length, whereby 360 may be taken off. Then having affumed SC for half the Breadth of the Gore, fuppofe $\frac{1}{48}$ of the Circumference of the Equator, take $\mathrm{S} x$ (the Sine Complement of 80 deg .) between your Compaffes, and applying this Extent on the Radius B S, or the Diagonal Scale, fee how many of thofe Parts that the Diameter is divided into, that Extent takes up. Then take $\frac{T}{4 T}$ of thofe Parts, and with the Quotient as fo many Degrees make the Arc ro L off, which will give the Point L in the Parallel of 10 Degrees, thro which the Meridian muft pafs.

Again, take $\mathrm{S} w$ between your Compaffes, and fee how many of the Parts that the Radius BS is divided into, it contains; then take $-\frac{1}{8}$ of thofe Parts, and with the Quotient, as fo many Degrees, make the Arc 20 M off, which will give another Point M, thro which the fame Meridian muft pals in the $20 t h$ Parallel.

In like manner, to find the Point N in the Parallel of 30 Degrees, thro which the Meridian muft pafs, take $S u$ (the Sine Complement of 60 Degrees) in your Compaffes, and fee how many of the Parts that the Radius B S is divided into, it contains; then taking $\frac{1}{4}$; of thofe Parts, with the Quotient as fo many Degrees, make the Arc 30 N off.

Proceeding in this manner, you may find other Points in the other Parallels, thro which the Meridian muft pafs. Which Points being afterwards joined, the quarter of the Meridian A NC will be drawn; and therefore one quarter of the Gore; and confequently the other three Quarters of the Gore will be eafily limited.

Method of ordering the Circumpolar Papers.

The Circumpolar Papers were formerly not cut out by themfelves, till Artifts found it hard to make the Poles, or Points of the Gores, fall nicely in the North and South Poles; whence, to help that Inconveniency, they made Circular Papers ferve to cover the Superficies of the Globe between the Polar Circles, the Parallels on which Papers are all Concentric Circles, and the Meridians Right Lines : yet finding fill fo big Papers not to fit the Globe's Convexity, but wrinkle about the edges, they have extended them from the Poles only to the Parallels of 70 Degrees. But neither will it do yet, becaufe the Longitude decreafes difproportionally, the further off the Poles. If the Diameter of a Polar Paper extends to ro Degrees from the Pole only, that Paper will lie flat upon the Globe's Convexity, without any fenfible fretching or contracting: But if it extend to or beyond the 70 oth Parallel, you mult take another Courfe.

Suppofe A P B to be half of a Gore, 12 of which will cover a Globe. About the Point \mathbf{P} with an extent to the 70 th Parallel, defcribe a Circle, which from the Points G or F, divide into 12 equal Parts; or which is the fame, continue every other Meridian in the Parallel 80 to the Parallel 70, and by the aforementioned Table fet off on each Side thefe 12 Meridians, the true Longitude of each 10 Degrees in the Parallel of 80 ; or, which will fave that trouble, transfer the Diftance from C to G, or from G to D upon the Pa rallel of 70 Deg. in the Polar Paper, for that is the extent of 10 Degrees in that Parallel ; and, as is manifeft from the Figure, there will lie between each twelfth part of the Circumference F G, a narrow flip of Paper which muft be cut out, and then the Paper being laid upon the Globe, the Parts will naturally clofe : whereas, for want of this care taken, we commonly fee the Polar Papers wrap over and wrinkle; befides, the Points of the Meridians on the Polar Papers feldom meet thofe of the Meridians of the Gores, except now and then by chance.

From this one rough Draught you may transfer the reft of the Gores that are to make up the Surface of the Globe; by which the trouble of projecting a New Scheme for every

Gore will be avoided. Obferve to do it with great care, for a fmall Error will, when the Gores are all joined, appear very fenfible. Then becaufe the Gores in all make 12, you may divide your Projections upon three Sheets of large Paper, allowing four Gores to each Sheer.

Draw an Eaft and Weft Diameter thro every Sheet, in each of which fet off the Diftance Fig. 2. from I to K, of Fig. 7.1 Plate 17. with your Compafles four times, iwithout fhifting the Points. In the middle of each erect Perpendiculars, and transfer 70 Degrees thereon (allowing the Polar Papers to include 20 Degrees from the Poles) Northwards and Southwards from the Center, which is the Interfection of the Equator with the ffreight Meridians or Perpendiculars, for Northern and Southern Latitude.
From the aforefaid Semi-gore, take the Diftance between the Point of each rotb Parallel in the Perpendiculars, and in the Meridians A C, B D, and in the fair Draught defcribe Arcs to the Right and Left, upon the Points in the Perpendiculars.
Then placing one foot of your Compaffes in the Point A or B , extend the other to the Point of the Meridians and Parallels Interfection ; and as you go along, transfer the Diftances upon the Copies from the correfpondent Points of the Equator into the Arcs, and the Places where they cut will be the Points thro which the Meridians and Parallels, nuft be drawn. And that Meridian, among all the Papers which is pitched upon for the firt, let be divided equally from the Equator to G, and then in the Polar Papers to the Poles, into Degrees or Minutes, numbering each roth or 5 th Degree, with the Degrees of Latitude, minding to draw three Lines to diftinguifh it from other Meridians. The fame mult be obferved in defcribing the Ecliptick or Equator; on which laft every 5 th or roth Degree, till you come to 180 Degrees, mult be figured Eaftward and Weftward from the firl Meridian.
When all the Papers are finifhed fo far as relates to the Meridians and Parallels, you muft next draw the Ecliptick; and becaufe that Circle interfects the Meridians in fuch and fuch Parallets of Declination, and the Meridians cut the Equator in the Degrees of Right Afcenfion ; therefore by help of a Table of the Declination of thofe Points of the Ecliptick that cut the Meridian, and the Right Afcenfion of the fame Points, find the Declination over-againft the Right Afcenfion, which fhews thro what parts of the Meridians the Ecliptick Arcs muft pafs; and draw Right Lines thro the Points of Interfection, which Lines will form the Ecliptick on the Globe.

A TABLE of Rigbt Afcenfion and Declination of every 15 Degrees of the Signs.

	Deg.	Deg.	Min.	Deg.	Min.
Aries	15	13	48	5	56
Taurus	\bigcirc	27		11	30
Taurus	15	42		16	23
Gemini	\bigcirc	57	48	20	12
Gemini	15	73		22	39
Cancer	\bigcirc	90	$\bigcirc 0$	23	30
Cancer	15	106	17	22	39
Leo	0	122	12	20	12
Leo	15	137	29	16	23
Virgo	-	152		11	30
$V i r g o$	15	166	2	5	56

Seek the Right Afcenfion as Longitude, and the Declination as Latitude, and where they interfect is the refpective Point of the Ecliptick.

Proceed next to infert the Stars on the Gores for the Celeffial Globe, and Places on thofe for the Terreftrial Globe, by help of moft approved Aftronomical and Geographical Tables and Maps, according to their refpective Longitude and Latitude, which may eafily be effeted by finding the Meridian and Parallel of the Star or Place; and the Point where they interfeat each other, will be the exact Situation thereof.

The Rhumb Lines (which always make the fame Angles with the Parallels they are drawn thro) may be infribed by Wright's Card, or Loxodromick Tables, found in fome Books of Navigation, as thofe in Newhouffe. Trade Winds are beft defrribed from Dr. Halley in the Pbilofophical Tranfactions: the Conftellations may be drawn by a Celeftial Globe.

Your Projectures of the Heaven and Earth being finifhed, you may either apply them to a particular Pair of Globes, or have them engraved in Copper-Plates.

C H A P. II.

Of Aftronomical and Geograpbical Definitions, and the USes of the Globes.

BEfore I lay down the Ufes of the Globe, it will be proper to exhibit the following Definitions, neceffary to be known in order to underftand their Ufes.
Definition I. The Latitude of any Place, is an Arc of the Meridian of that Place, intercepted between the Zenith and the Equator; and this is the fame as an Arc of the Meridian intercepted between the Pole and the Horizon; and therefore the Latitude of any Place is often exprefled by the Pole's' Height, or Elevation of the Pole : the Reafon of which is, that from the Equator to the Pole, there always being the Diftance of 90 Degrees, and from the Zenith to the Horizon the fame Number, and each of thefe 90 containing within it the Diftance between the Zenith and the Pole; that Diftance therefore being taken away from both, muft leave the Diftance from the Zenith to the Equator equal to the Diflance between the Pole and the Horizon, or the Elevation of the Pole above the Horizon.
Definition II. Latitude of a Star or Planet, is an Arc of a great Circle reckoned on the Quadrant of Altitude, laid through the Star and Pole of the Ecliptick, from the Ecliptick towards its Pole.

Definition III. Longitude of a Place is an Arc of the Equator intercepted between the Meridian ; or it is more properly the Difference, either Eaft or Weft, between the Meridians of any two Places, accounted on the Equator.

Definition IV. Longitude of a Star, is an Arc of the Ecliptick, accounted from the beginning of Aries to the Place where the Star's Circle of Longitude croffeth the Ecliptick; fo that it is much the fame as the Star's Place in the Ecliptick, accounted from the beginning of Avies.

Definition V. Amplitude of the Sun or of a Star, is an Arc of the Horizon intercepted between the true Eaft or Weft Points of it, and that Point upon which the Sun or Star rifes or fets.

Definition VI. Right Afcenfion of the Sun, or of a Star, is that part of the Equinoctial reckoned from the begimning of Aries, which? rifeth or fetteth with the Sun or Star in a Right Sphere : but in an Oblique Sphere it is that part of a Degree of the Equinoctial, which comes to the Meridian with it, (as before) reckoned from the beginning of Aries.

Dejruition VII. A right or direct Sphere, is when the Poles are in the Horizon, and the Equator in the Zenith: the Confequence of being under fuch a Pofition of the Heavens as this (which is the cafe of thofe who live directly under the Line) is, that the Inhabitants have uo Latitude nor Elevation of the Pole; they can nearly fee both the Poles of the Wirid. All the Stars in the Heaven do once in twenty-four Hours rife, culminate, and fet with them ; the Sun always rifes and defcends at Right Angles with the Horizon, which is the Reafon they have always equal Days and Nights, becaufe the Horizon doth exactly bifect the Circle of the Sun's Diurnal Revolution.
Definition VIII. A Parallel Sphere, is where the Poles are in the Zenith and Nadir, and the Equinoctial in the Horizon; which is the Cafe of fuch Perfons, if any fuch there be, who live direatly under the North or South Poles.
And the Confequences of fuch a Pofition are, that the Parallels of the Sun's Declination will alfo be Parallels of his Altitude, or Almacanters to them. The Inhabitants can fee orily fuch Stars as are on their fide the Equinoctial ; and they muit have fix Months Day, and fix Months continual Night every Year ; and the Sun can never be higher with them than 23 Degrees, 30 Minutes, (which is not fo high as it is with us on February the 10th.)

Definition IX. An oblique Sphere, is where the Pole is elerated to any Number of Degrees lefs than 90 : and confequently the Axis of the Globe can never be at Right Angles to, nor in the Horizon ; and the Equator and Parallels of Declination, will all cut the Horizon obliquely, from whence it takes its Name.

Oblique Afrenfion of the Sun or Stars, is that Part or Degree of the Equinocial reckoned from the beginning of Aries, which rifes and fets with them in an oblique Sphere.

Afcenfional Difference, is the Difference between the right and oblique Afcenfion, when the leficr is fubftracted from the greater.

On the Tierreftrial Globe.

Deffinition X. A Space upon the Surface of the Earth, reckoned between two Parallels to .the Equator, wherein the Increafe of the longet Day is a quarter of an Hour, is by fome Writers called a Parallel.

Definiticin XI. And the Space contained between two fuch Parallels, is called a Climate : Thele Climates begin at the Equator ; and when we go North or South, till the Day becomes half an Hour longer than it was before, they fay we are come into the firf Climate; when the Days are an Hour longer than they are under the Equator, we are come to the Second Climate, \&゙c. thefe Climates are counted in Number 24, reckoned each ways from the Poles.

The Inhabitants of the Earth are divided into three forts, as to the falling of their Shadow's.

Definition XII. Amphifcii, who are thofe which inhabit the Torrid Zone, or live between the Equator and Tropicks, and confequently have the Sun twice a Year in their Zenith ; at which time they are $A f c i i$, i. e. have no Shadows, the Sun being vertical to them : thefe have their Shadows caft to the Southward, when the Sun is in the Northern Signs, and to the Northward when the Sun is in the Southern Signs reckoned in refpect of them.

Definition XIII. Heterofcii, who are thofe whofe Shadows fall but one way, as is the Cafe of all fuch as live between the Tropicks and Polar Circles; for their Shadows at Noon are always to the Northward in North Latitude, and to the Southward in South "Latitude.

Definition XIV. Perifii, are fuch Perfons that inhabit thofe Places of the Earth that lie between the Polar Circles and the Poles, and therefore have their Shadows falling all manner of ways, becaufe the Sun at fome time of the Year goes clear round about them. The Inhabitants of the Earth, in refpect of one another, are allo divided into three Sorts.

Perixcei, who are fuch as inhabiting the fame Parallel (not a great Circle) are yet direztly oppofite to one another, the one being Eaft or Weft from the other exactly i 80 Degrees, which is their Difference of Longitude. Now thefe have the fame Latitude and Length of Days and Nights, but exactiy at contrary 'Times; for when the Sun rifeth to one, it fets to the other.

Anteci, who are Inhabitants of fuch Places, as being under a Semi-circle of the fame Meridian, do lie at equal Diftance from the Equator, one towards the North, and the other towards the South. Now thefe have the fame Degree of Latitude, but towards contrary Parts, the one North and the other South; and therefore mut have the Seafons of the Year direaly at contrary Times one to the other.

Antipedes, who are fuch as dwell under the fame Meridian, but in two oppofite and equidiftant Parallels, and in the two oppofite Points of thofe two Parallels; fo that they go Feet againt Feet, and are diftant from each other an intire Diameter of the Earth, or 180 Degrees of a great Circle. Thefe have the fame Degree of Latitude, but the one South, the other North, and accounted from the Equator a quite contrary way; and therefore thefe will have all things, as Day and Night, Summer and Winter, directly contrary to one another.

U S E I. To find the Latitude of any Place.

Bring the Place to the Brafs Meridian, and the Degrees of that Circle, intercepted between the Place and the Equinoctial, are the Latitude of that Place either North or South.

Then to fit the Globe fo that the wooden Horizon fhall reprefent the Horizon of that Place, elevate the Pole as many Degrees above the wooden Horizon, as are contain'd in the Latitude of that Place, and it is done ; for then will that Place be in the Zenith.

If after this you rectify the Globe to any particular time, you may by the Index know the time of Sun-rifing and Setting with the Inhabitants of that Place, and confequently the prefent Length of their Day and Night, erc.

U SE II. To find the Longitude of a Place.

Bring the Places feverally to the Brafs Meridian, and then the Number of Degrees of the Equinoctial, which are between the Meridians of each Place, are their Difference of Longitude either Eaft or Weft.

But if you reckon it from any Place where a firf Meridian is fuppofed to be placed, you muft bring the firf Meridian to the Brazen one on the Globe ; and then turn the Globe about till the other Place come thither alfo: reckon the Number of Degrees of the Equinoctial intercepted between the firft Meridian, and the proper one of the Place, and that is the Longitude of that Place, either Eaft or Weft.

U S E III. To find what Places of the Earth the Sun is Vertical to, at any time affigned.

Bring the Sun's Place found in the Ecliptick on the Terreftrial Globe to the brazen Meridian, and note what Degree of the Meridian it cuts; then by turning the Globe round about, you will fee what Places of the Earth are in that Parallel of Declination (for they will all come fucceffively to that Degree of the brazen Meridian) ; and thofe are the Places and Parts of the Earth to which the Sun will be Vertical that Day, whofe Inhabitants will then be Afcii ; that is, their erect Bodies at Noon will caft no Shadow.

Of the Celeftial Globe.

US E IV. To find the Sim's place in the Ecliptick in any given Day of the Month, by means of the Circle of Signs on the wooden Horizon.
Seek the Day of the Month upon the Horizon, obferving the Difference between the Fulian and Gregorian Calendars; and then againft the faid Day you will find, in the Circle of Signs, the Sign and Degree the Sun is in the faid Day. This being done, find the fame Sign and Degree upon the Ecliptick on the Superficies of the Globe, and the Sun's place will be had. Note, If the Sun's place be required more exactly, you muft confult an Ephemeris for the given Year, or elfe calculate it from Aftronomical Tables.

U S E V. The Sun's Place for any Dry being given, to find bis Declination.

Bring the Sun's Place for that Day to the Meridian, and then the Degrees of the Meridian, reckoned from the Equinoctial either North or South to the faid Place, fhew the Sun's Declination for that Day at Noon, either North or South, according to the time of the Year, viz. from March the 10th to September the I2th, North; and from thence to March again, South.

U S E VI. To find the Sun's Amplitude either Rijing or Seting.

Having rectified the Globe to the Latitude of the Place, that is, moved the brazen Me ridian till the Degree of Latitude thereon be cut by the Plane of the wooden Horizon, bring the Sun's Place to the faid Horizon either on the Eaft or Weft fide, and the Degrees of the Horizon, reckoned from the Eaft Point, either North or South, give the Amplitude fought, and at the fame time you have in the Circle of Rhumbs the Point that the Sun rifes or fets upon.

U S E VII. To find the Sun's Right Afcenfion.

Bring the Sun's Place to the brazen Meridian, and the Degrees intercepted between the beginning of Aries, and that Degree of the Equinotial which comes to the Meridian with the Sun, is the Right Afcenfion; which if you would have in time, you muft reckon every 15 Degrees for one Hour, and every Degree four Minutes.

Note, The Reafon of bringing the Sun's place to the Meridian in this Ufe, is to fave the trouble of putting the Globe into the Pofition of a Right Sphere : for properly Right Afcenfion is that Degree of the Equinoctial, which rifes with the Sun in a Right Sphere. But fince the Equator is always at Right Angles to the Meridian, if you bring the Sun's place thither, it muft in the Equinoctial cut his Right Afcenfion.

U S E VIII. To find the Sun's Oblique Afcenfion.

Having rectified the Globe to the Latitude, bring the Sun's Place to the Eaft-fide the Horizon, and the Number of Degrees intercepted between that Degree of the Equinoctial, which is now come to the Horizon and the beginning of Aries, is the Oblique Afcenfion. Now the leffer of thefe two Afcenfions being taken from the greater, the Remainder is the afcenfional Difference; which therefore is the Difference in Degrees between the Right or Oblique Afcenfion, or the Space between the Sun's Rifing or Setting, and the Hour of fix. Wherefore the afcenfional Difference being converted into Time, will give the time of the Sun's Rifing and Setting before or after fix.

U SE IX. To find the time of the Sun's Rifing or Setting in any given Latitude.
Having firft brought his Place to the Meridian, and the Hour-Index to twelve at Noon, bring his Place afterwards to the Horizon, either on the Eaft or Weft-fide thereof ; then the Hour-Index will either fhew the time of his Rifing and Setting accordingly. Now the time of the Sun's Setting being doubled, gives the Length of the Day ; and the time of his Rifing doubled, gives the Length of the Night.

USE EX. To find the Sun's Meridian Altitude, or Depreffon at Midnight, in any given Latitude.

Bring his Place to the Meridian above the Horizon, for his Noon Altitude, which will Thew the Degrees thereof, reckoning from the Horizon; and to find his midnight Depreffion below the North Point of the Horizon, the Point in the Ecliptick oppofite to the Sun's prefent Place, muft be brought to the South part of the Meridian above the Horizon, and the Degrees there intercepted between that Point and the Horizon, are his midnighe Depreffion.

U S E XI. To find the Sin's Altitude at any time of the Day given.

Rectify the Globe, that is, bring the Sun's Place to the Meridian, and fet the HourIndex to twelve, and raife the Pole to the Latitude of the Place above the Horizon. 'This being done, fit the Quadrant of Altitude, that is, fcrew the Quadrant of Altitude to
the Zenith, or in our Latitude fcrew it fo that the divided Edge cut 51 deg. 32 mis. on the Meridian reckoned from the Equinoctial. Then turn the Globe about till the Index thews the given time, and flay the Globe there ; after which, bring the Quadrant of Alutude to cut the Sun's Place in the Ecliptick, and then that Place or Degree of the Ecliptick will fhew the Sun's Altitude on the Quadrant of Altitude.

U S E XII. To find the Sun's Altitude, and at what Hour be is due Eaft or Wogt.
Rectify the Globe, and fit the Quadrant of Altitude. Then bring the Quadrant to cut the true Eaft Point, and turn the Globe about till the Sun's Place in the Ecliperck cu:s the divided Edge of the Quadrant of Altitude ; for then that Place will fhew the Alritude, and the Index the Hour.

U S E XIII. The Sun's Azimutth, or when be is on any Point of the Compals being given; to find his Altitude and the Hour of the Day.
Set the Quadrant of Altitude to the Azimuth given,' and curn the Globe abour till his Place in the Ecliptick touches the divided Edse of the Quadrant ; fo thail that Place give the Altitude on the Quadrant, and the Hour-Index the' 'lime of the Day.

USE XIV. To find the Declination, and Right Ajeenfon of any Ster.

Bring the Star to the brazen Meridian, and then the Degrees intercepted between the Equinoctial and the Point of the Meridian cut by the Star, gives its Veclinan ms. And the Meridian cuts, and fhews its Right Afcenfion on the Equinoctial, reckoning trom tie beginning of Aries.

U S E XV. To find the Longitude and Latituide of any Star.

Bring the Soltititial Colure to the brazen Meridian, and thice fix the Globe; then will the Pole of the Ecliptick be juft under 23 deg . 30 min . reckoning from the Pole above the N th Point of the Horizon, and upon the fame Meridian; there ferew the Quadrant of Altitude, and then bring its graduated Edge to the Star affigned, and there itay it: fo will the Star cuts its proper Latitude on the Quadrant, reckoned from the Ecliprick; and the Quadrant will cut the Ecliptick in the Star's Longitude, or its Diftance from the firf Point of Aries.

U S E XVI. To find the time of any Star's rifing, fetting, or culminating, that is, being on the Meridian.

Rectify the Globe, and Hour-Index, and bring the Star to the Eaft or Weft part of the Horizon, or to the brazen Meridian, and the Index will fhew accordingly the time of the Star's rifing, fetting or culminating, or of its being on the Meridian.
US E XVII. To know, at any time affigned, whbat Stars are rifing or Setting, which are oin the Meridian, and how bigh they are above the Horizon; on what Azimuth or Point of the Compafs they are ; by wbbich menns the real Stars in the Heaven may eafily be known by their proper Namis, and rightly diftinguifled from one anotber.
Rectify the Globe, and fit the Quadrant of Altitude, and fet the Globe, by means of the Compafs, due North and South ; then turn the Globe and Hour-Index to the Hour of the Night affigned; fo will the Globe, thus fixed, reprefent the Face or Appearance of the Heavens for that time : whereby you may readily fee what Stars are in or near the Horizon; what are on or near the Meridian ; which are to the North, or which to the South, \mathcal{E}_{c}. and the Quadrant of Altitude being laid over any particular Star, will fhew its Altitude and Azimuth, or on what Point of the Compass it is, whereby any Star may eafily be known ; efpecially if you have a Quadrant to take the Altitude of any real Star fuppofed to be known by the Globe, to fee whether it agrees with that Star which is its Reprefentative on the Globe or not.

U S E XVIII. The Sun's Place given, as alfo a Star's Altitude, to find the Hour of the Night.
Reatify the Globe, and fit the Quadrant of Altitude ; then move the Globe backwards or forwards, till the Quadrant cuts the Star in its given Altitude: for then the Hour-Index will thew the Hour of the Night. And thus may the Hour of the Night be known by a Star's Azimuth, or its Azimuth by its Altitude.

U SE XIX. To find the Difance between any two Stars..
If the Stars lie both under the fame Meridian, bring them to the brazen Meridian, and the Degrees of the faid Meridian comprehended between them, are their Diftaince,
If they are both in the Equinoctial, or have both the fame Declination, that is, are both in the fame Parallel, then bring them one after another to the brazen Meridian, and the Degrees of the Equinoctial intercepted between them, when thus brought to the Meridian feverally, are their Diftance.

If the Stars are neither under the fame Meridian or Parallel, then either lay the Quadrant of Altitude from one to the other (if it will reach) and that will fhew the Diftance between them in Degrees; or elfe take the Diftance with Compaffes, and apply that to the Equinoctial, or to the Meridian.

This Method of Proceeding will alfo fhew the Diftance of any two Places on the Terreftrial Globe in Degrees. Wherefore to find how far any Place on the Globe is from another, you need only take the Diftanice between them on the Globe with a Pair of Compaffes, and applying the Compaffes to the Equator at the beginning of Aries, or at the firft Meridian, you will there find the Degrees of their Diftance, which multiply'd by 70 , and that will be their Diftance in Miles.

C H A P. III.

Of Spheres.

SECTIONI.
Of the Ptolcmaick Sphere.

Fig. 3.

THE third Figure of Plate 18, reprefents a Ptolemaick Arnillary Sphere, made of Brafs, or Wood, confifting of the fame Circles that have been defcribed in Chapter I. aforegoing, and having a round Ball fixed in the middle thereof, upon the Axis of the World, reprefenting the Earth. Upon the Surface of this Ball are drawn Meridians, Parallels, $\mathcal{V}_{\text {c. }}$ as likewife as many Kingdoms, Countries, Seas, \mathcal{U}_{c}. with their Names, as can conveniently be depitted thereon. This Sphere revolves about the faid Axis, between the Meridian, and by this means not only fhews the Sun's diurnal and annual Courfe, \mathcal{E}_{c}. about the Earth, according to the Ptolemaick Hypothefis, which fuppofes the Earth to be at reft, and the Sun to move about the fame; but likewife by it any Problem relating to the Sun, may be folved, that can be done by the Globes. And this any one that knows the Ufe of the Globes may likewife do.

S ECTION II.

Of the common Copernican Sphere.

Fig. 4.
This Sphere ftands upon four brafs or wooden Feet, upon each of which are fixed the four ends of a brafs or wooden Crofs, upon which Crofs is faftened a large hollow brafs or wooden Circle, whofe Center is exactly over the Center of the Crofs. Upon the upper Plane of this Circle are the Calenders, and Circle of Signs defcribed, the fame as on the Horizon of the Globes. Clofe within the infide of this Circle is fitted a flat moveable Rundle, whofe Center is common with the Center of the Crofs. 'The outmoft Limb of this Rundle is divided into 24 equal Parts, reprefenting the 24 Hours of Day and Night, numbered from the Index (of which more hereafter) towards the Right-hand with Numerical Letters from I to XII, and then beginning again with I, II, $\dot{\sigma} c$. to XII again.

There is a round Wheel fixed upon the Crofs, under the faid Rundle, whofe Convex Side is cut into a certain Number of Teeth. Thro the Rundle, the Wheel on the Crofs, and the Crofsitfelf, is fitted a perpendicular Axis, about which the Rundle moves. This reprefents part of the Axis of the Ecliptick, and at the top thereof is placed a little Golden Ball, reprefenting the Sun.

On the under fide of the moveable Rundle moves another Wheel, whofe Convex Side is cut into Teeth, and as the Rundle is turned about upon its Center, this Wheel is alfo turned about upon its Center, by the falling in of the Teeth on that Wheel fixed on the Crofs. Likewife near the outmoft Limb of the Rundle is fitted another Wheel, into which is fitted a Pedeftal, holding up a Sphere of feveral Parts, having a Terreftrial Globe inclofed therein, as thall be fhewn hereafter. The outmof Limb of this Wheel is likewife cut into Teeth, fitted into the Teeth of the fixed Wheel ; and fo as the Rundle moves round, this Wheel is carried about, and with it likewife the Earth, and all the Circles faftened upon she aforefaid Pedeftal.

On one fide of this Rundle is faftened a little round Pin to turn about the Rundle by, and near this Pin, is an Index upon the Rundle, reaching to the outward Limb of the great hollow Circle, and fo at once may be applied to the Day of the Month in both Calenders, and alfo to the Degree of the Ecliptick the Sun is in that Day at Noon. Note, This Index is called the Index of the moveable Rundle. On each fide of the Crofs is placed a Pillar, fupporting a broad Circle, reprefenting the Zodiack, with the Ecliptick in the mid-
dle thereof, as in the Ptolemaick Sphere. Note, This is called the Zodiack, in the Ufe of the Sphere.

Upon the aforefaid Pedeftal are faftened two Circles cutting each other at Right Angles, reprefenting the two Colures fo placed, that the Points wherein they interfect each other fand directly upwards and downwards, and reprefent the Poles of the Ecliptick, the uppermoft being the North, and the other the South. One of thefe Colures, viz. the Solftitial, hath a fmall Hour-Circle placed thereon, at the extremity of the Axis of the Earth. In the middle, between the two Poles of the Ecliptick, is a Circle broader than the Colures, cutting them at Right Angles; and this reprefents the Ecliptick, fo called in the Ufe of the Sphere, and is divided into Degrees, figured with the Names and Characters of the Signs, and having on the inward edge thereof feveral of the moft notable fixed Stars, with the Names affixed to thëm, and each Star placed to the Degree and Minate of Longitude thereon, that it hath in Heaven.
Oblique to this Ecliptick $23^{\frac{1}{2}}$ Degrees, on the infide, is fitted a thin Circle, reprefenting the Equinoctial, and is divided into 360 Degrees, and having two parallel leffer Circles at $23 \frac{1}{2}$ Degrees equally diftant therefrom, reprefenting the Tropicks. On the infide of all thefe Circles, pwo thin Semi-circles (called Semi-circles of Latitude) are fitted in the Poles of the Ecliptick, fo as one of them may move thro one half of the Ecliptick, viz. from Cancer thro Aries to Capricorn; and the other from Cancer thro Libra to Capricorn: the former of thefe may be called the vernal Semi-circle of Latitude, and the other the autumnal Semi-circle of Latitude. On the edge of thefe Semi-circles are depicted the fame fixed Stars in their proper Longitude and Latitude, as are placed on the ecliptick Circle aforefaid, with their feveral Names affixed to them.
Thro the folftitial Colure at $23 \frac{2}{2}$ Degrees from each Pole of the Ecliptick, goes a Wire, reprefenting the Earth's Axis, having an Index placed on the end thereof; for pointing at the Hour, on the Hour-Circle placed on the follfitial Colure, as aforefaid. In the middle of this Axis is fixed a round Ball, reprefenting the Earth, having Meridians, Parallels, ξ_{c} c. and the Bounds of the Lands and Waters depitted thereon, as alfo the Names of as many Countries and Towns as can be placed with conveniency thereon. And in swo oppofite Points of the Equinoctial of this Ball, viz. 90 Degrees diftant from the firf Meridian, are fixed two fmall Pins, whereon a moveable Horizon is placed, in the Eaft and Weft Points thereof; fo that thefe Pins ferve for an Axis to the Horizon: for on thefe Pins the Horizon may be elevated or depreffed to any Degree the Pole is elevated above the Horizon. This Horizon flides on the North and South Points, within a brazen Meridian, hung upon the Axis of the Earth.
Round this Meridian, on the outmoft Side, is made a Groove, having a fmall brafs Ring fitted therein, fo as the upper fide thereof is even with the upper fide of the brazen Meridian. This fmall brafs Ring is faftened to two oppofite Points in the Horizon, viz.in the North and South, and ferves as a Spring to keep it to the Degree of the Meridian you elevate the Horizon to. Upon two Pins on this fmall Ring, are likewife faftened two Semi-circles of Altitude, yet not fo faftened, but that they may move as upon Centers, the one moving from North to South, thro the Eaft-fide of the Horizon, and the other the fame way thro the Weft-fide. 'This Motion is performed upon the two Pins aforefaid, as upon two Poles, which they reprefent, viz. the Poles of the Horizon, and therefore are fo placed, that they may divide the upper and lower half of the Horizon into two equal Parts, and as the Horizon is moved, flide always into the Zenith and Nadir, and fo become the Poles of the Horizon. Thefe two Semi-circles of Altitude are divided into twice $9 \circ$ Degrees, numbered at the Horizon upwards and downwards, and ending at 90 in the Zenith and Nadir.

SECTION III.
 The Ufe of the Copernican Sphere.

U SE 1. The Day of the Month given; to rectify the Sphere for Ufe in any given Latitude, and to fet it correfpondent to the Situation of the Heavens.
Bring the Index of the moveable Rundle to the Day of the Month, and elevate the Horizon to the Latitude of the Place ; then bring the Meridian to the Sun's Place in the Ecliptick, and the Index of the Hour-Circle to 12. Laftly, Bring the Center of the Earth, the Sun, or Golden Ball, in the Sphere, and the Sun in Heaven into a Right Line. Then will the Earth be rectified to its Place in Heaven, the Horizon to its Latitude on Earth, the Circles on the Sphere agreeable to thofe in Heaven, and the whole correfpondent with the Heavens for that Day at Noon.

U S E II. The Day of the Month being given, to find the Sun's Declination.

Rectify the Earth's place (according to Ufe I.) and then you will have the Sun's place in the Zodiack ; then bring the Meridian to the Sun's place in the Ecliptick on the Sphere ; and the Number of Degrees comprehended between the Equinoctial and the Sun's place, are the Sun's Declination for that Day at Noon.

U SE III. To find the Sun's Right or Oblique Afcenfion for any Day at Noon.

Rectify the Earth's place to the Day of the Month, and bring the Meridian to the Sun's place in the Ecliptick ; and the Number of Degrees on the Equinotial contained between the vernal Colure, and the Sun's place, are the Right Afcenfion fought.

Now to find the Oblique Afcenfion, turn the Earth till the Eaft fide of the Horizon ftands againt the Sun, and the Degree of the Equinoctial then at the Horizon, Chews the Oislique Afcenfion.

U SE IV. To find the Sun's Meridian Altitude.
Bring the Index of the Rundle to the Day of the Month, and recify the Horizon to the Latitude of the Place. This being done, bring the Meridian to the Sun's place in the Ecliptick, and the Number of Degrees on the Meridian comprehended between the Horizon and the Sun's place, gives the Meridian Altitude fought.

> US E V. To find the Sun's Altitude at any time of the Day.

Bring the Index of the moveable Rundle to the Day of the Month, and rectify the $\mathrm{Ho}-$ rizon, and Hour-Index:' then turn the Earth till the Hour-Index comes to the given Hour of the Day, fand bring the vertical Circle to the Sun's place, and the Number of Degrees of the vertical Circle that tranfite the Sun's place, are his Altitude above the Horizon.

U S E VI. The Sun's Altitude being given, to find the Hour of the Day.

Bring the Index of the Rundle to the Day of the Month, and rectify the Horizon and Hour-Index (as by Ufe I.) then turn the Earth till you can, fit the Horizon to the given Altitude upon the vertical Circle, directly againft the Sun's place; then the Hour-Index will give the Hour of the Day, refpect being had to the Morning or Afternoon.

U SE VII. To find at what Hour the Sun comes to the Eaft or Weft Points of the Horizon.

Bring the Index of the moveable Rundle to the Day of the Month, and rectify the Horizon and Hour-Index (as by $U_{f e}$ I.) then bring the vertical Circle to the Eaft Point of the Horizon, if it be the Sun's Eafting you would enquire; or to the Weft Point of the Horizon, if it be the Sun's Wefting. This being done, turn the Earth till the vertical Circle comes to the Sun's place ; then will the Index point to the Hour of the Day.

U SE VIII. To find the time of the Sun's rifing or fetting.

Bring the Index of the moveable Rundle to the Day of the Month, and rectify the Horizon, and Hour-Index. Then turn the Earth Eaftwards, till fome part of the Eaft-fide of the Horizon ftands directly againft the Sun's place; then will the Hour-Index point to the time of the Sun's rifing. Again, Turn the Earth till fome part of the Welt-fide of the Horizon ftands directly againft the Sun's place, then the Index of the Hour-Circle will fhew the time of the Sun's fetting.

U S E IX. The Hour of the Day given, to find the Sun's Azimuth.

Bring the Index of the moveable Rundle to the Day of the Month, and rectify the Horizon and Hour-Index. 'Then turn the Earth till the Hour-Index points to the Hoar of the Day given. This being done, bring the vertical Circle to the Sun's place, and the Number of Degrees of the Horizon, that the vertical Circle cuts, counted from the Eaft Point, either Northwards or Southwards, are the Degrees of the Sun's Azimuth before Noon. Or the Number of Degrees of the Horizon that the vertical Circle cuts, counted from the Weft-fide of the Horizon, either Northwards or Southwards, give the Sun's Azimuth after Noon.

U S E X. To find in what Place of the Earth the Sun is in the Zenith, at any given time; as allo in what Several Places of the Earth the Sun fball ftand in the Horizon at the Same time.

Bring the Index of the moveable Rundle to the Day of the Month, and rectify the HourIndex; then feek the Sun's Declination, and turn the Earth eaftwards till the Index points to the given Hour; fo fhall the Number of Degrees of the Equinoctial that the Meridian pafies thro while the Earth is thus turning, be the Number of Degrees of Longitude, eaftwards from your Habitation, the Place fhall have in the Parallel of the Sun's Declination.

Now if you open a Pair of Calliper Compaffes to 90 Degrees on the Equinoctial, and place one Foot in this Point of the Earth thus found, and turn the other Foot round about the Earth, all the Places that the Foot paffes thro will at that time have the Sun in their Horizon.

U S E XI. How to find the true Places of the Stars on the Sphere; as likewife their Longitude and Latitude.
Round the Plane of the Ecliptick, are placed feveral of the moft noted fixed Stars, according to their true Longitude ; and along the two Semi-circles of Latitude, are the fame Stars placed according to their Latitude from the Ecliptick. Whence if you would find the true place of any given Star in the Sphere ; Firft feek the Star in the Ecliprick, and likewife the fame Star on one of the Semi-circles of Latitude, and bring the edge of that Semicircle to the Star in the Ecliptick; then will the Star on the Semi-circle of Latitude ftand in the fame Place and Situation on the Sphere, that it does in Heaven.

U S E XII. To find the Declination, right and oblique Afcenfion of a Star.
Bring the proper Semi-circle of Latitude to the Star on the Ecliptick, and the Meridian to the Star on the Semi-circle of Latitude ; and then the Number of Degrees on the $\mathrm{Me}-$ ridian, comprehended between the Equinoctial and the Star, are its Declination. Likewife the Degree of the Equator, cut by the Meridian, is the Star's right Afcenfion. But to find a Scar's oblique Afcenfion, rectify the Horizon (as by USe I.) and bring the proper Semi-circle of Latitude to the Star in the Ecliptick, and turn the Eaft-fide of the Horizon to the Star ; then will the Degree of the Equator cut by the Horizon be the Star's oblique Afcenfion.

U S E XIII. To find the Time of the Rifing and Setting of any Star in any given Latitude.
Bring the Index of the moveable Rundle to the Day of the Month, and rectify the Ho^{-} rizon and Hour-Index; then bring the proper Semi-circle of Latitude to the Star on the Ecliptick, and the Eaft-fide of the Horizon to the Star; this being done, the HourIndex will fhew the Hour the Star rifes at : and if you bring the Weft-fide of the Horizon to the Star, the Index of the Hour-Circle will fhew the Time that the Star fets.

U S E XIV. The Day of the Month, Hour of the Night, and Latitude of the Place being given, to know any remarkable Star olferved in the Heavens.
Bring the Index of the moveable Rundle to the Day of the Month, and rectify the Horizon and Hour-Index ; then turn the Earth till the Index of the Hour-Circle comes to the Hour of the Night, and obferve the Altitude of the Star, and what Point of the Compafs it bears upon. Afterwards bring the vertical Circle to the fame Point of the Compafs, and number the Star's Altitude on the vertical Circle, and try with the Semi-circle of Latitude what Star you can fit to that Altitude, for that is the Star in the Heavens.

U SE XV. The Azimuth of any known Star being given, to find the Hour of the Night, and Almicanter of that Star.

Bring the Index of the moveable Rundle to the Day of the Month, and rectify the Horizon and Hour-Index; afterwards bring the Star to its place, and the vertical Circle to its known Degree of Azimuth. This being done, turn the Earth till the vertical Circle comes to the Star ; then the Index of the Hour-Circle will fhew the Hour of the Night, and the Degree of the vertical Circle cut by the Star will be its Almicanter.

SECTION IV.

The Defrription and USe of the Copernican Spbere, called the Orrery.

The Outfide of this Inftrument, as appears by the figure thereof, is very beautiful, the plate 19. Frame being of fine Ebony adorned with 12 Silver Pilafters, in the form of Caryatides; and Fig. 1. with all the Signs of the Zodiack caft of the fame Metal, and placed between them : the Handles are alfo of Silver finely wrought, with very nice Joints. On the top of the Frame, which is exactly Circular, is a broad Silver Ring, on which the Figures of the twelve Signs are exactly graved, with two Circles accurately divided ; one fhewing the Degrees of each Sign, and the other the Sun's Declination againft his place in the Ecliptick each Day at Noon.

The aforefaid Silver Plate, reprefents the Plane of the great Ecliptick of the Heavens, or that of the Earth's annual Orbit round the Sun ; which, as it paffes thro the Center of the Sun, fo its Circumference is made by the Motion of the Earth's Center; and which, for the better advantage of view and fight, is in the Figure placed parallel to the Horizon.
S is a large gilded Ball, ftanding up in the middle, whofe Support A B makes with the Plane of the Ecliptick an Angle of about 82 Degrees. This Support reprefents the Sun's Axis continued, about which he revolves in about 25 Days, and the Golden Ball reprefents the Sun itfelf placed pretty near the Center of the Earth's Orbit; fo that

Ccc
when
when the Inftrument is fet a going, the Excentricity of the Earth, and the orher Planets, may be in the fame proportion as they are in the Heavens.

The two little Balls M and V, which ftand upon two Wires at different Diftances from the Sun, reprefent Mercury and Venus: The reafon why they are placed upon the faid two Wires, is only that their Centers may be fometimes in,' and always pretty near the Plane of the great Ecliptick ; and this Pofition is contrived in order to Shew what Appearances they do really exhibit in their feveral Revolutions round the Sun.

The Globe E is of Ivory, and reprefents the Earth. The Pin or Wire that fupports it, reprefents the Earth's Axis continued, and makes an Angle of $66 \frac{1}{2}$ Degrees, with the Plane of the Ecliptick. And as the Earth in each of her annual Revolutions round the Sun, always keeps her own Axis parallel to itfelf; fo when this Inftrument is fet a going, the little Ivory Earth will likewife do fo too, in its Revolution round the Golden Sun S.

The little Ball m ftanding upon a Wire, reprefents the Moon, and $a b$ is a Silver Circle reprefenting her Orbit round about the Earth, the Plane whereof always pafies thro the Center of the Earth; and there are feveral Figures graved upon it, fhewing the Moon's Age, from one New Moon to the other.

Cne half of the Moon's Globe is white, and the other black, that fo her Phafes may be reprefented : for this Inftrument is fo contrived, that this little Moon will turn round its own Axis, at the fame time as it moves in the Silver Orbit round the Earth E.

The whole Movement, which confifts of near 100 Wheels, is covered by a great Brafs Plate, having a hole in it, and there is a moveable Index on the Silver Ecliptick, on the former of which, are the common Solar Years denoted; and by taking the Inftrument to pieces, it may be fet to this prefent time; and the Planets, by means of an Ephemeris, may be fet to any particular time alfo. So that if a Weight or Spring, as in a Clock, were applied to the Axis of the Movement, fo as to make it move round once in juft twenty-four Hours, the reprefentative Planets in the Inftrument, viz. Mercury, Venus, the Earth, and the Mucn, would all perform their Motions round the Sun, and one another, exactly in the fame Order as their Originals do in the Heavens; and fo the Afpects, Eclipfes, \& c. of the Sun and Planets, would thereby be fhewn for ever. But becaufe this would be inftructive only in that flow and tedious way, to fuch as could have daily recourfe to it, therefore there is a Handle fitted to it, by which the Axis may be fwiftly turned round; and fo all the Appearances fhewn in a very little time: for by turning the Handle backwards or forwards, what Eclipfes, Tranfits, $\mathcal{G} c$. have happened in any time paft, or what will happen for any time to come, will be fhewn, without doing any injury to the Inftrument.
One entire Turn of the Handle of this Inftrument, anfwers to the diurnal Motion of the Earth about its Axis, and is meafured by means of an Hour-Index, placed at the Foot of the Wire whereon the Earth is fixed, moving once round in the fame time. Alfo obferve that the Contrivance of this Inftrument is fuch, that the Motion may be made to tend either way, forwards or backwards; and fo the Handle may be turned about till the Earth be brought to any Degree or Point of the Ecliptick required.

Again, As the Earth moves round, by turning the Handle, the Moon's Orbit rifes and falls about 5 Degrees above and below the great Ecliptick, that fo her North or South Latitude may be exactly reprefented; and there are two little Studs placed in two oppofite Points of the Moon's Orbit, reprefenting the Moon's Nodes.
Now if the Handle, one 'Turn of which anfwers to one Natural Day, or twenty-four Hours, be turned twenty-five times about, then the Sun will have moved once round about its Axis. Again, $365 \div$ of the Turns of the Handle will carry the Earth quite round the Sun; 88 will carry Mercury quite round; 244 will make Venus move once round the Sun; and about $27 \frac{1}{4}$ Turns will carry the Moon round the Earth in her Orbit, which will likewife at the fame time always turn the fame Hemifphere towards the Earth.

And by thus revolving the Earth and Planets round the Sun, the Inftrument may be brought to exhibit Mercury, and fometimes Venus, as directly interpofed between the Earth and the Sun; and then they will appear as Spots in the Sun's Disk: and this Inftrument fhews alfo very clearly the Difference between the Geocentrick and Heliocentrick Afpects, according as the Eye is placed in the Center of the Earth or Sun.

This Inftrument likewife very plainly fhews the Difference between the Moon's Periodick and Synodick Months, and the reafon thereof; for if the Earth be fet to the firft Point of Aries, at which time fuppofe the firft New Moon happens, and afterwards the Handle be turned $27 \frac{\frac{1}{4}}{}$ times about, we fhall have the fecond New Moon; and if at the Earth's place in the Ecliptick where this laft New Moon happens, fome Mark be made, and then the Handle be turned $27 \frac{1}{4}$ times more, the Moon will be exactly brought again to interpofe between the Earth and the Sun, that is, it will be New Moon with us: but the Line of the Syzygy will not be right againft the aforefaid Mark in the Ecliptick, but behind it; and it will require two Days time, or two Turns more of the Handle, before it gets thither. 'The reafon of this is plain, becaufe in this $27 \div$ Days, the Earth advances fo far forwards in her annual Courfe, as is the Quantity of the Difference in time between the Moon's two Months.

Chap. 4. of an Afronomical Quadraint.
If the Handle be turned about till the Conjunction or Oppofition of the Sun and Moon happens in or near the Nodes, then there will be an Eclipfe of the Sun or Moon. But in order yet further to fhew the Solar Eclipfes, and alfo the feveral Seafons of the Year, the Increafe and Decreafe of Day and Night, and the different Lengths of each in different parts of our Earth, there is a little Lanip contrived to put on upon the Body of the Sun, which cafting, by means of a Convex Glafs, (the Room wherein the Inftrument is, being a little darkened) a ftrong Light upon the Earth, will Thew at once all thefe things: Firft, how one half of our Globe is always illuminated by the Sun, while the other Hemifphere is in the dark, and confequently how Day and Night are formed by the Revolution of the Earth round her Axis. Alfo by turning round the Handle, you will fee how the Shadow of the Moon's Body will cover fome part of the Earth, and thereby fhew, that to the Inhabitants of that part of the Earth there will be a Solar Eclipfe.
When the Earth is brought to the firft Degree of Aries or Lilira, the reafon of the Equality of Days and Nights all over the Earth, will be plainly fhewn by this Inftrument; for in thefe Pofitions, as the Earth turns about her Axis, juft one half of the Equator, and all Parallels thereto, will be in the Light, and the other half in the Dark; and therefore the Days and Nights muft be every where equal : for the Horizon of the Earth's Disk will be parallel to the Plane of the Solffitial Colure.

And when the Earth is brought to Cancer, the Horizon of the Disk, or that Plane which divides the Earth's enlightened Hemifphere from the darkened one, will not then be paralle! to, but lie at Right Angles to the Plane of the Solfitial Colure. The Earth being now in Cancer, the Sun will appear to be in Capricorn, and confequently it will be our Winter Solftice. And as the Earth is turned either way about its Axis, the entire Northern frigid Zone, or all Parts of the Earth lying within the Artick Circle, are in the dark Hemifphere; and by making a Mark in any given Parallel, by the Earth's Diurnal Revolution, you will know how much longer the Nights are than the Days in that Parallel. And the contrary of this will happen, when the Earth is brought to Capricorn.

Therefore this Inftrument delightfully and denoonfratively fhews, how thereby all the Phenomena of the different Seafons of the Year, and the Varieties and Viciffitudes of Night and Day, are folved and accounted for.

C H A P. IV.

Of an Alronomical Quadrant, Micrometer, and Gunter's 2nadrant.

SECTION I.

TH I S Figure reprefents an Aftronomical Quadrant upon its Pedeftal, with its Limb Fig as curioufly divided Diagonally, and furnifhed with a fixed and moveable Telefcope.
This Quadrant may be moved round Horizontally, by turning a, perpetual Screw fitted into the Pedeftal : For as this Screw is turned about by means of a Key, at the fame time it caufes the Axis A to turn, by the falling in of its Threads between the Teeth of a ftrong thick Circle on the faid Axis.
Behind the Quadrant is fixed, at Right Angles to its Plane, a ftrong thick Portion of a Circle greater than a Semi-circle, having one Semi-circle of the outfide thereof cut into Teeth. There is likewife another ftrong thick Portion of a Circle fomething greater than a Semi-circle behind the Quadrant, which is moveable upon two fixed Studs, at Right Angles to the former Portion ; fo that the Plane of this Portion may be parallel, inclined, or at Right Angles to the Plane of the Quadrant. On the fide of this Portion, which is made flat next to the other fixed Portion, is a contrivance with a Screw and perpetual Screw, fuch that in turning the Screw the Threads of the perpetual Screw may be locked in between the Teeth of the fixed circular Portion ; and by this means the Quadrant fixed to any Point, according to the direation of the Plane of the fixed Portion. And when the Quadrant is to be moved but a fmall matter in the aforefaid Direction, this may be done by turning the perpetual Screw with a Key.

The Outfide of the abovementioned moveabie circular Portion is cut into Teeth, and about the Center thereof the Axis A is moveable, according to the Direction of the Plane of the faid Portion. In this Axis flides a little Piece carrying a perpetual Screw, whofe Threads, by means of a Trigger, may be locked in between the Teeth of the moveable circular Portion. And fo when the Axis is fet in the Pedeftal, the Quadrant may be fixed to any Point, according to the Direction of the Plane of the faid moveable Portion.

Therefore by thefe Contrivances the Quadrant may be readily fixed to any required Situation, for obferving Celeftial Phenomena, without moving the Pedeftal.
There is a Piece fliding on the Index, upon which the moveable Telefcope is faftened, carrying a Screw and perpetual Screw; fo that when the Telefcope and Index are to be fixed upon any Point in the Limb of the Inftrument, this may be done, by means of the Screw which locks the Threads of the perpetual Screw in between fome of the Teeth cut round the Curve Surface of the Limb of the Inftrument: and when the Index and Te lefcope is to be moved a very minute Space backwards or forwards along the Limb, this is done by means of a Key turning a fmall Wheel faftened upon the aforenamed Piece, which is cut into a certain Number of Teeth, and whofe Axis is at Right Angles to the Plant of the Quadrant; for this Wheel moves another (having the fame Number of Teeth as that) which is at the end of the Cylinder whereon the perpetual Screw is: and by this means the perpetual Screw is turned about; and fo the Index and Telefcope may be moved a very minute Space backwards or forwards along the Limb. Note, The Number of Teeth the Curve Surface of the Limb is divided into, mult be as great as poffible, and the Threads of the perpetual Screw falling between them very fine; for the Exacinefs of the Infrument very
much depends upon this.

Thefe Quadrants are commonly two Feet Radius, and all Brafs, except the Pedeftal and the perpetual Screws; the Telefcopes have each two Glaffes and Crofs-hairs in their Foci; and for the Manner of dividing their Limbs, $\mathfrak{\sigma} c$. See our Author's Quadrants.

S E C T I O N II.

Concerning a Micrometer.

This Micrometer is made of Brafs : A B C g is a rectangular Brafs Frame, the Side A B being about 3 Inches long, and the Side $B C$, as likewife the oppofite Side $A g$, are about 6 Inches; and each of thefe three Sides are $\%$ of an Inch deep. The two oppofite Sides of this Frame are fcrewed to the circular Plate, which we fhall fpeak of by and by.
The Screw P having exactly 40 'Threads in an Inch, being turned round, moves the Plate G DE F, along two Grooves made near the Tops of the two oppofite Sides of the Frame ; and the Screw Q having the fame Number of Threads in an Inch as P, moves the Plate R N MY along two Grooves made near the bottom of the faid Frame, in the fame direction as the former Plate moves, but with half the velocity as that moves with. Thefe Screws are both at once turned, and fo the faid Plates moved along the fame way, by means of a Handle turning the perpetual Screw S, whofe Threads fall in between the Teeth of Pinions on the Screws P and Q. Note, Two and a half Revolutions of the perpetual Screw S , moves the Screw P exactly once round.

The Screw P turns the Hand a, faftened thereto over 100 equal Divifions made round the Limb of a circular Plate, to which the abovenamed two oppofite Sides of the Frame are fcrewed at Right Angles. The Teeth of the Pinion on the Screw P, whofe Number are 5, takes into the Teeth of a Wheel, on the backnde of the circular Plate, whofe Number are 25. Again, On the Axis of this Wheel is a Pinion of two, which takes into the Teeth of another Wheel moving about the Center of the circular Plate, without fide the fame, having 50 'Teeth. 'This laft Wheel moves the leffer Hand b once round the abovenamed circular Plate, in the $\frac{1}{\circ-0}$ part of the time the Hand a is moving round: for becaufe the Number of Teeth of the Pinion on the Screw P, are 5, and the Number of Teeth of the Wheel this Pinion moves round, are 20 ; therefore the Screw P moves four times round in the fame time the faid Wheel is moving once round. Again, Since there is a Pinion of two takes into the Teeth of a Wheel, whofe Number are 50 , therefore this Wheel with 50 Teeth will move once round in the fame time that the Wheel of 20 'Teeth hath moved twenty-five times round ; and confequently the Screw P, or Hand a, muft move a hundred times round in the fame time as the Wheel of 50 'Teeth, or the Hand b, hath moved once round.

It follows from what hath been faid, that if the circular Plate W, which is faftened at Right Angles to the other circular Plate, be divided into 200 equal Parts, the Index x to which the Handle is faftened, will move five of thefe Parts in the fame time that the Hand a has moved one of the hundred Divifions round the Limb of the other circular Plate : and fo by means of the Index x, and Plate W, every fifth Part of each of the Divifions round the other Plate may be known.

Moreover, Since each of the Screws P and Q have exactly 40 Threads in an Inch; therefore the upper Plate G D E F will move I Inch, when the Hand a hath moved forty times round, the four thoufandth part of an $I_{n c h}$, when the faid Hand hath moved over one of the Divifions round the Limb, and the twenty thoufandth part of an Inch, when the Index x hath moved one part of the 200 round the Limb of the circular Plate W; and the under Plate R N M Y, half an Inch, the two thoufandth part of an Inch, and the ten thoufandth part of an Inch the fame way, in the faid refpectire times.

Chap. 4.

Hence, if the under Plate, having a large round Hole therein, be fixed to a Telefcope, fo that the Frame may be moveable rogether with the whole Inftrument, except the faid lower Plate, and the ftrait fmooth Edge H I, of the fixed narrow Plare A B I H, as likewife the frait fmooth Edge DE of the moveable Plate G D E F, be perceivable thro the round Hole in the under Plate, in the Focus of the Object-Glafs; then when the Handle of the Micrometer is turned, the Edge H I of the narrow Plate A B I H, fixed to the Frame, and D E of the moveable Plate, will appear thro the Telefcope equally to acceed to, or recede from each other. And fo thefe Edges will ferve to take the apparent Diame:ers of the Sun, Moon, ξc. the manner of doing which is thus: Suppofe in looking at the Moon thro the Telefcope, you have rurned the Handle till the two Edges D E and HI are opened, fo as to juft touch or clafp the Moon's Edges; and that there was twenty-one Revolutions of the Hand a to compleat that Opening. Firft fay, As the focal Length of the Object-Glafs, which fuppofe ro Feer, is to Radius, fo is I Inch to the Tangent of an Angle fubtended by I Inch in the Focus of the Object-Glafs, which will be found 28 min . 30 fec. Again, Becaufe there are exactly 40 Threads of the Screws in one Inch, fay, If forty Revolutions of the Hand a give an Angle of 28 min . 38 fec. what Angle will twenty-one Revolutions give ? The Anfwer will be is min. 8 fec. and fuch was the Moon's apparent Diamerer, and fo may the apparent Diameters of any diftant Objects be taken.
It is to be obferved, that the Divfions upon the top of the Plate G DEF, are Diagonal Divifions of the Revolutions of the Screws, with Diagonal Divifions of Inches againft them; and fo as the faid Plate flides along, thefe Diagonals are cut by Divifions made on the Edge of the narrow Plate K L, fixed to the oppofite Sides of the Frame by means of two Screws. Thefe Diagonal Divifions may ferve to count the Revolutions of the Screws, and to fhew how many there are in an Inch, or the Parts of an Inch.

S E C T I O N III.

Of the ConjtruEtion of Gunter's Quadrant.

This Quadrant, which is partly a Projection, that is, the Equator, Tropicks, Eclip- Fig. 4. tick, and Horizon, are Stereographically projected upon the Planie of the Equinoctial, the Eye being fuppofed to be placed in one of the Poles, may be thus made.
About the Center A defrribe the Arc C D, which may reprefent eit her of the Tropicks. Again, Divide the Semidiameter A T fo in E, that $A E$ being Radius, $A T$ may be the 'Tangent of 56 deg. 46 min. half the Sun's greateft Declination above the Radius or Tangent of 45 deg. To do which, fay, As the Tangent of 56 deg. 46 min. is to 1000 ; fo is Radius to 655 : therefore if A'T be made 1000 equal Parrs, A E, the Radius of the Equator, will be 655 of thofe Parts. And if about the Center A, with the Diftance A E, the Quadrant E F be defcribed, this will ferve for the Equinoctial.
Now to find the Center of the Ecliptick, which will be fomewhere in the left Side of the Quadrant A D (reprefenting the Meridian) you mult divide AD fo in G, that if A F be the Radius, A G may be the Tangent of 23 deg . 30 min . the Sun's greateft Declination ; therefore if AF be 1ooo, A G will be 434 . And if about the Center G, with the Semidiameter G D, an Arc E D be defrribed, this will be $\frac{+}{4}$ of the Ecliptick. And to divide it into Signs and Degrees, you muft ufe this Canon, viz. As Radius is to the Tangent of any Degree's diftance from the neareft Equinoctial Point, fo is the Cofine of the Sun's greateft Declination to the Tangent of that Degree's Right Afcenfion, which muft be counted on the Limb from the Point B, by which means the Quadrant of the Ecliptick may be graduated.
As, for Example, The Right Afcenfion of the firt Point of $\begin{array}{r}\text { being } \\ 27 \mathrm{deg} . \\ 54 \mathrm{~min} \text {. lay }\end{array}$ a Ruler to the Center A , and 27 deg. 54 min . on the Limb, from B towards C , and where it cuts the Ecliptick, will be the firlt Point of ४; and fo for any other.
The Line E T, between the Equator and the Tropick, which is called the Line of Declination, may be divided into 23 deg. 30 min . in laying off from the Center A, the Tangent of each Degree added to 45 deg. the Line AE being fuppofed the Radius of the Equinoctial. As fuppofe the Point for ro Degrees of Declination be to be found, add 5 deg. (half 10) to 45 deg. and the Sum will be 50 deg. the Tangent of which will be (fuppofing the Radius 1000) 1192 : therefore laying 1192 Parts from A, or 192 from E, and you will have a Point for ro Degrees of Declination ; and fo for others.
Mot of the principal'Stars between the Equator and Tropick of Cancer, may be put on the Quadrant by means of their Declination, and Right Afcenfion. As fuppofe the Wing of Pegafus be 13 deg. 7 min . and the Right Afcenfion 358 deg. 34 min from the firlt Point of Aries. Now if about the Center \AA, you draw an occult Parallel thro 13 deg. 7 min . of Declination, and then lay a Ruler from the Center A thro I deg. 26 min . (the Complement of 358 deg. 34 min. to 360 deg.) in the Limb B C, the Point where the Ruler cuts.the Parallel, will be the Place for the Wing of Pegafur, to which you may fet the Name, and the Time when he comes to the South.

There being Space fuficient between the Equator and the Center, you may there defcribe the Quadrat, and divide each of the rwo Sides furtheft from the Center into 100 Parts; fo mall the Quadrant be generally prepared for any Latitude. But before the particular Lines can be drawn, you muft have four 'Tables fitted for the Latitude the Quadrant is to ferve in.

Firft, A Table of Meridian Altitudes for the Divifion of the Circles of Days and Months, which may be thus made : Confider the Latitude of the Place, and the Sun's Declination for each Day of the Year ; if the Latitude and Declination be both North, or both South, add the Declination to the Complement of the Latitude ; if they be one North, and the other South, fubftrait the Declination from the Complement of the Latitude, and you will have the Meridian Altitude for that Day. As, in the Latitude of 51 deg. 32 min . North, whofe Complement is 38 deg .28 min . the Declination on the roth of Fune will be 23 deg. 30 min . North ; therefore add 23 deg. 30 min . to 38 deg. 28 min . and the Sum will be 61 deg. 58 min. the Meridian Altitude on the roth of June. Again, The Declination on the 10 th of December will be 23 deg .30 min . South; wherefore take 23 deg .30 min . froni 38 deg. 28 min . and the Remainder will be 14 deg. 58 min . the Meridian Altitude on the Ioth of December. And in this manner may the Meridian Altitude for each Day in the Year be found, and put in a Table.

Your Table being made, you may infcribe the Months and Days of each Month on the Quadrant, in the Space left below the Tropick. As, Laying a Ruler upon the Center A, and 16 deg. 42 min . the Sun's Meridian Altitude on the ift of January, in the Limb B C, you may draw a Line for the end of December and beginning of Fanuary. Again, Laying a Ruler to the Center A, and 24 deg. 34 min . the Sun's Altitude at Noon the end of Fainuary, or firlt of February, on the Limb, and you may draw a Line for that Day. And fo of others.

Now to draw the Horizon, you muft find its Center, which will be in the Meridian Line A C ; and if the Point H be taken fuch, that if A H be the Tangent Complement of the Laticude, viz. of 38 deg. 28 min. A F being fuppofed Radius; or if A. F be fuppofed 1000, and A H 776 of thofe Parts, then will H be the Center of the Horizon. Therefore if about the Center H , with the Diftance HE , an Arc be defcribed cutting the Tropick T D, the faid Arc will reprefent the Horizon.

The next thing done, muft be to make a Table for the Divifion of the Horizon, which may be done by this Canon, viz. As Radius is to the Sine of the Latitude, fo is the Tangent of any Number of Degrees in the Horizon (which will be not more than 40 in our Latitude) to the Tangent of the Arc in the Limb which will divide the Horizon.

As in our Latitude, 7 deg. 52 min. belong to 10 deg. of the Degrees of the Horizon; therefore laying a Ruler to the Center A, and 7 deg. 52 min. in the Limb B C, the Point where the Rulcr cuts the Horizon, will be 10 deg . in the Horizon ; and fo of the reft. But the Lines of Difinction between every 5 th Degree are beft drawn from the Center H.

The third 'Table for drawing the Hour-Lines, muftt be a Table of the Sun's Altitude above the Horizon at every Hour, efpecially when he comes to the Equator, Tropicks, and other intermediate Declinations. If the Sun be in the Equator, and fo have no Declination, as Radius to the Co-fine of the Latitude, fo is the Co-fine of any Hour from the Meridian to the Sine of the Sun's Altitude at that Hour.
But if the Sun be not in the Equator, you muft fay, As the Co-fine of the Hour from the Meridian is to Radius, fo is the Tangent of the Latitude to the Tangent of a 4 th Arc. Then confider the Sun's Declination, and the Hour propofed ; if the Latitude and Declination be both alike, and the Hour fall between Noon and Six, fubftract the Declination from the aforefaid 4 th Arc, and the Remainder will be a 5 th Arc.

But if the Hour be either between Six and Midnight, or the Latitude and Declination unlike, add the Declination to the $4^{\text {th }}$ Arc, and the Sum will be a 5 th Arc. Then as the Sine of the fourth Arc is to the Sine of the Latitude, fo is the Co-fine of the 5 th Arc to the Sine of the Altitude fought:

Lafly, You may find the Sun's Declination when he rifes or fets, at any Hour, by this Canon, viz. As Radius is to the Sine of the Hour from Six, fo is che Co-tangent of the Latitude to the 'Tangent of the Declination.

As in our Latitude you will find, that when the Sun rifes at five in the Summer, or feven in the Winter, his Declination is II deg. 36 min . whence you will find the Sun's Meridian Altitude it the beginning of wis will be 61 deg. 58 min . in 1158 deg. 40 min . in \% 49 deg .58 rin , in $r_{3} 8 \mathrm{deg}$. 30 min . EFc. but the beginning of and we is reprefented by the Tropick T D drawn thro 23 deg. 30 min. of Declination, and the beginning of γ and \approx by the Equator EF. Now if you draw an occult Parallel between the Equator and the Tropick, at I deg. 30 min . of Declination, it fhall reprefent the beginning of 8 , w, m, and it. If you draw another occult Parallel thro 20 deg. 12 min . of Declination, it Will reprefent the beginning of Σ, Ω, \neq and \ldots.

Then lay a Ruler from the Center A thro SI deg. 58 min. of Altitude in the Limb B C, and note the Foint where it croffes the Tropick of so. Then move the Ruler to 58 deg.

Chap. 4. of Gunter's Quadrant.

40 min . and note where it crofles the Parallel of if ; then to 49 deg .58 min. and note where it croffes the Parallel of y; and again to 38 deg. 28 min. noting where it croffes the Equator ; and a Line drawn thro thefe Points will reprefent the Line of 12 in the Summer, while the Sun is in r, \forall, I, \Im, Ω, or \mathfrak{m}. In like manner, if you lay a Ruler to A and 26 deg . 58 min. in the Limb, and note the Point where it crofies the Parallel of $\not \approx$; then move it to 18 deg. 16 min. and note where it croffes the Parallel of $=$. And again, to 14 deg. 58 min. noting where it crofles the Tropick of wo the Line drawn thro thefe Points fhall fhew the Hour of twelve in the Winter. And in this manner may the reft of the Hour-Lines be drawn, only that of feven from the Meridian in Summer, and five in the Winter, will crofs the Line of Declination, at 11 deg. 35 min . and that of eight in the Summer, and four in the Winter, at 21 deg. 38 min .
The fourth Table for drawing of the Azimuth Lines muft alfo be made for the Altitude of the Sun above the Horizon, at every Azimuth, efpecially when the Sun comes to the Equator, Tropicks, and fome orher intermediate Declinations.
If the Sun be in the Equator, and fo has no Declination, as Radius to the Co-fine of the Azimuth from the Meridian ; fo is the Tangent of the Latitude to the Tangent of the Sun's Altitude at that Azimuth in the Equator.
If the Sun be not in the Equator, as the Sine of the Latitude is to the Sine of the Declination, fo is the Co-fine of the Sun's Altitude at the Equator, at a given Azimuth, to the Sine of a $4^{\text {th }}$ Arc.
Now when the Latitude and Declination are both alike in all Azimuths, from the Prime Vertical to the Meridian, add this $4^{t h}$ Arc to the Arc of Alticade at the Equator. But when the Azimuth is above 90 Degrees diflant from the Meridian, take the Altitude at the Equator from this 4 th Arc. When the Latitude and Declination are unlike, take the faid 4^{t} th Arc from the Arc of Altitude at the Equator, and then you will have the Sun's Altitude for a propofed Azimuth.

Laftly, When the Sun rifes or fets upon any Azimuth, to find his Declination, fay, As Radius to the Co-fine of the Latitude, fo is the Co-fine of the Azimuth from the Meridian, to the Sine of the Declination.
Now a Table being made according to the aforefaid Directions, if you would draw the Line of Eaft or Weft, which is 90 Degrees from the Meridian, lay a Ruler to the Center A , and 30 deg. 38 min . numbered in the Limb from C towards B , and note the Point where it croffes the Tropick of s ; then move the Ruler to 26 deg. no min. and note where it croffes the Parallel of $I I$; then to 14 deg. 45 min. and note where it croffes the Parallel of γ; then to $0^{\prime \prime}$ and 0° ?, and you will find it crofs the Equator in the Point F ; then a Line drawn thro thefe Points will be the Eaft and Weft Azimuth. And fo may all the other Azimuths be drawn.

Thefe Lines being thus drawn, if you fet two Sights upon the Line A C, and at the Center A hang a Thread and Plummet, with a Bead upon the Thread, the forefide of the Quadrant will be finifhed.

SECTION IV. T'be USe of Gunter's Quadrant.

U S E I. The Sun's Place being given, to find bis Right Afcenfion, and contrarizuife.
Let the Thread be laid upon the Sun's Place in the Ecliptick, and the Degrees which it cuts in the Limb, will be the Right Afcenfion fought.
For example ; Suppofe the Sun's Place be the $4^{\text {th }}$ Degree of \square, the Thread laid on this Degree will cut σ_{2} deg. in the Limb, which is the Right Afcenfion required. But if the Sun's Place be more than 9 o deg. from the beginning of Aries, the Right Afcenfion will be more than 90 deg. And in this Cafe the Degrees cut by the Thread muft be taken from 180, to have the Right Afcenfion.

Now if the Sun's Right Afcenfion be given, to find its Place, lay the Thread on the Right Afcenfion, and it will crofs the Sun's Place in the Ecliptick.

U S E II. The Sun's Place being given, to fund his Declination, and contrarivife.

Lay the Thread, and fet the Bead to the Sun's Place in the Ecliptick; then move the Thread to the Line of Declination, and there the Bead will fall upon the Degrees of the Line of Declination fought.

For example; Let the Sun's Place be the $4^{t h}$ Degree of n, the Bead being firft fet to this Place, move the Thread to the Line of Declination, and there you will find the Sun's Declination 21 deg. from the Equator.

Now the Sun's Place being fought, in having the Declination given, you muft frit lay the Thread and Bead to the Declination, and then the Bead mored to the Ecliptick will give the Sun's Place fought.

U SE III. The Day of the Month being given, to find the Sun's Meridian Altitude, and
Lay the Thread to the Day of the Month, and the Degrees which it cuts in the Limb will be the Sun's Meridian Altitude.

Suppofe the Day given be May the 15 th, the Thread laid uron this Day will cut 59 deg. 30 min . the Meridian Altitude fought.

Again, If the Thread be fet to the Meridian Altitude, it will fall upon the Day of the Month.

As, fuppofe the Sun's Meridian Altitude be 59 deg. 30 min. the Thread fet to this Altitude falls upon the I5th Day of May, and the 9 th of Fuly; and which of thefe two is the true Day, may be known by the Quarter of the Year, or by another Day's Obfervation: for if the Sun's Altitude be greater, the Thread will fall upon the i6th of May, and the 8 th of $\mathcal{F}_{u} l y$; and if it prove leffer, then the Thread will fall on the 14 th of May, and the roth of July; whereby the Queftion is fully anfwered.

U SE IV. The Sun's Altitude being given, to find the Hour of the Day, and contrarizuife.
Having put the Bead to the Sun's Place in the Ecliptick, obferve the Sun's Altitude by the Quadrant; and then if the Thread be laid over the fame in the Limb, the Bead will fall upon the Hour required. For example : Suppofe on the roth of April, the Sun being then in the begimning of Taurus, I obferve his Altitude by the Quadrant to be 36 deg. place the Bead to the beginning of Taurus in the Ecliptick, and afterwards lay the Thread over 36 Degrees of the Limb; then the Bead will fall upon the Hour-Line of 9 and 3 ; and fo the Hour is 9 in the Morning, or 3 in the Afternoon. Again, If the Altitude be near 40 Degrees, the Bead will fall half way between the Hour-Line of 9 and 3, and the HourLine of 10 and 2. Wherefore it muft be either half an Hour paft 9 in the Morning, or half known by a fecond Obfervation: For if the Sun rifes higher, it itime of the Day, may be comes lower, it is Afternoon.
Now to find the Sun's Altitude by having the Hour given, you muft lay the Bead upon the Hour given (having firft rectified or put it to the Sun's Place) and then the Degrees of the Limb cut by the Thread, will be the Sun's Altitude fought.
Note, The Bead may be rectified otherwife, in bringing the Thread to the Day of the Month, and the Bead to the Hour-Line of 12.

U S E V. To find the Sun's Amplitude either rifing or fetting, when the Day of the Month or
Sun's Place is given.
Let the Bead rectified for the time, be brought to the Horizon ; and there it will fhew the Amplitude fought. If, for example, the Day given be the $4^{t h}$ of May, the Sun will then be in the $4^{t / 3}$ Degree of Gemini. Now if the Bead be reetified and brought to the Horizon, it will there fall on 35 deg. 8 min . and this is the Sun's Amplitude of rifing from the Eaft, and of his fetting from the Weft.

USE VI. The Day of the Month or Sun's Place being given, to find the Afienfional D ifference.
Rectify the Bead for the given time, and afterwards bring it to the Horizon; then the Degrees cut by the Thread in the Limb will be the afcenfonal Difference. And if the afcenfional Difference be converted into time, in allowing an Hour for 15 Degrees, and four Minutes of an Hour for one Degree, then we thall have the time of the Sun's rifing before fix in the Summer, and after fix in the Winter: and confequently the Length of Day
and Night may be known by this means.

U S E VII. The Sin's Altitude being given, to find his Azimuth, and contrariuife. Rectify the Bead for the time, and obferre the Sun's Altitude. Then bring the Thread to the Complement of that Altitude, and fo the Bead will give the Azimuth fought upon
or among the Azimuth Lines.

And to find the Altitude by having the Azimuth given, having rectified the Bead to the 'Time, move the Thread till the Bead falls on the given Azimuth; then the Degrees of the Limb cut by the Thread, will be the Sun's Altitude at that time.

U SE VIII. The Altitude of any one of the five Stars on the Qradrant being given, to find the Hour of the Night.
Firft, Put the Bead to the Star, which you intend to obferve, and find how many Hours he is from the Meridian by Ufe IV. then from the Right Afcenfion of the Srar, fubfract the Sun's Right Afcenfion converted into Hours, and mark the Difference: for this Difference added to the obferved Hour of the Star from the Meridian, will hhew how many Hours the Sun is gone from the Mcridian, which is in effect the Hour of the Night.

For example ; Tive isth of May, the Sun being in the $4^{t h}$ Degree of Gemini, I fet the Bead to Anturus, and oblerving his Altitude, find him to be in the Weft, about 52 deg. high, and the Lead to fall upon the Hour-Line of two after Noon; then the Hour will be ${ }_{11}$ Hours 50 min . paft Noon, or io Minates fhort of Midnight. For 62 deg. the Sun's Right Afcenfion, converted into Time, makes 4 Hours 8 min . which if we take out of ${ }_{1} 3$ Hours 58 min. the Right Afcenfion of Arcturus, the Difference will be 9 Hours 50 min. and this being added to two Hours, the obferved Diftance of ArEturus from the Meridian, fhews the Hour if the Night to be if Hours 50 min .

Thus have I brielly fhewn the Manner of Colving feveral of the chief and mof ufeful Aftronomical Problems, by means of this Quadrant. As for the Manner of taking Altitudes in Degrees, as likewife the Ufe of the Quadrat, fee our Author's Quadrant.

There are other Quadrants made by Mr. Sutton long fince; one of which (being in my Opinion the beft) is a Stereographical Projection of $\frac{1}{4}$ of thofe Circles, or quarter of the Sphere between the Tropicks, upon the Plane of the Equinoctial, the Eye being in the Norih Pole.

The faid quarter on the Quadrant, is that between the South part of the Meridian, and Hour of fix, which will leave out all the outward part of the Almicanters between it and the 'Trop'ck of Capricoris ; and inftead thereof, there is taken in fuch a like part of the depreffed Parallels to the Horizon, between the fame Hour of fix and Tropick of Capricorn, for tine Parallels of Depreffion have the fame Refpect to the Tropick of Capricorn, as the Parallels of Altitude have to the Tropick of Cancer, and will produce the fame Effect.

This Projection is fitted for the Latitude of London: and thofe Lines therein that run from the Right-hand to the Left, are Parallels of Altitude; and thofe which crofs them, are Azimuths. The leffer of the Circles that bounds the Projetion, is one fourth of the Tropick of Capricorn, and the other one fourth of the Tropick of Cancer. There are alfo the two Eclipticks drawn from the fame Point in the left Edge of the Quadrant, with the Charafters of the Signs upon them; as likewife the two Horizons from the fame Point. The Limb is divided both into Degrees and 'Time, and by having the Sun's Altitude given, we may find the Hour of the Day to a Minute by this Quadrant.

The Quadrantal Arcs next the Center contain the Calender of Months; and under them in another Arc is the Sun's Declination : fo that a 'Thread laid from the Center over any Day of the Month, will fall upon the Sun's Declination that Day in this laft Arc, and on the Limb upon the Sun's Right Afcenfion for that fame Day. There are feveral of the moft noted fixed Stars between the Tropicks, placed up and down in the Projection; and next below the Projection is the Quadrat and Line of Shadows, being only a Line of natural Tangents to the Arcs of the Limb; and by help thereof, the Heights of Towers, Steeples, \&゙c. may be pretty exactly taken.

Now the Manner of ufing this Projection in finding the Time of the Sun's rifing or fetting, his Amplitude, Azimuth, the Hour of the Day, שcr. is thus: Having laid the Thread to the Day of the Month, bring the Bead to the proper Ecliptick, (which is called rectifying of it) and afterwards move the Thread, and bring the Bead to the Horizon : then the Thread will cut the Limb in the time of the Sun's rifing or fetting before or after fix. And at the fame time the Bead will cut the Horizon in the Degrees of the Sun's Amplitude. Again, Suppofe the Sun's Altitude on the 24 th of April be obferved 45 Degrees, what will the Hour and Azimuth then be? Having laid the Thread over the 24 th of April, bring the Bead to the Summer Ecliptick, and then carry it to the Parallel of the Altitude 45 Degrees : and then the Thread will cut the Limb at 55 deg. 15 min . and fo the Hour will be either 4 I min. paft nine in the Morning, or 19 min . paft two in the Afternoon. And the Bead among the Azimuths fhews the Sun's Diftance from the South to be 50 deg. 41 min .

Note, If the Sun's Altitude be lefs than that which it hath at fix a Clock, on any given Day; then the Operation muft be performed among thofe Parallels above the upper Horizon, the Bead being rectified to the Winter Ecliptick.

There are a great many other Ufes of this Quadrant, which I fhall omit, and refer you to Collins's Sector upon a Quadrant, wherein its Defcription, and Ufe, together with thofe of two other Quadrants, are fully treated of.

BOOK VII.

Of the Conftruction and UJes of Inftruments for Navigation.

ジ.

C H A P. I.

Of the Conftruction and USe of the Sea-Compafs, and Azimuth Compafs.

SECTION I.

Plate 20.
Fig. I .
 HE firf Figure fhews the Compafs Card, whofe Limb reprefents the Horizon of the World. It is divided into four times 90 Degrees, and very often but into 32 equal Parts; for the 32 Points, whereof the four principal Points, which are called Cardinal ones, crofs each other at Right Angles, viz. the North, diftinguifhed by the Flower-de-luce, the South oppofite thereto, and the Eaft and Weft. Now if each of thefe Quarters be bifected, we fhall have the eight Rhumbs. Again, Bifecting each of thefe laft Spaces, we fhall have the eight
Semi-Rhumbs. And laftly, Bifecting each of thefe laft Parts, we thall have Semi-Rhumbs. And laitly, B!fecting each of thefe laft Parts, we fhall have the fixteen Quarter-Rhumbs. The four Collateral Rhumbs take their Name from the four Principal Rhumbs, each affuming the two Names of thofe that are nigheft them: as, the Rhumb in the middle, between the North and the Eaft, is calledNorth-Eaft; that between the South and the Eaf, is called South-Eaft ; that between the South and the Weft, is called Weft.

Alfo every of the eight Semi-Rhumbs affumes its Name from the two Rhumbs that be nigheft it ; as that between the North and North-Eaft, is called North North-Eaft; that between the Eaft and North-Eaf, is called Eaft North-Eaft ; that between the Eaft and SouthEaft, is called Eaft South-Eaft ; and fo of others.

Finally, Each of the Quarter-Rhumbs has its Name compofed of the Rhumbs or SemiRhumbs which are nigheft to it, in adding the Word one-fourth after the Name of the Rhumb neareft to it. For example; The Quarter-Rhumb neareft to the North, and next to the North-Eaft, is called North one-fourth North-Eaft; that which is neareft the North-Eaft towards the North, is called North-Eaft, one-fourth North ; and fo of others, as they appear abbreviated round the Card. Each Quarter-Rhumb contains if deg. 15 min . the Semi-Rhumbs 22 deg .30 min . and the whole Rhumbs 45 deg .

The Infide of this Card, which is fuppofed double, is likewife divided into 32 equal Parts, by a like Number of Radii, denoting the 32 Points, and the middle thereof, which is glewed upon a Pafteboard, hath a free Motion upon its Pivot, that fo it may be ufed when placed upon the Limb of the Box.

Chap. I.

The fecond Figure reprefents a piece of Steel in form of a Rhumbus, which ferves for the Needle, and is faftened under the moveable Card with two little Pins, fo that one of the ends of the longeft Diameter of the faid Rhumbs be precifely under the Flower-de-luce. This piece of Steel muft be touched by a good Load-ftone; fo that one end may direct itfelf towards the North part of the World. The manner of doing which, we have already fhewn in fpeaking of the Load-ftone, and the Compafs. Note, It is not fo well to glew the faid Needle under the Card, as fome do, as otherwife to faften it ; becaufe that caufes a Ruft very contrary to the magnetick Virtue.

The little Figure B, in the middle of the Rhumbus, which is called the Cap of the Needle, is made of Brafs, and hollowed into a Conical Form. This Cap is applied to the Center of the Card, and is faftened thereto with Glew.

The third Figure reprefents the whole Compafs, whereof A is a round wooden Box, about fix or feven Inches Diameter, and four deep; (we fometimes make thefe Boxes fquare.) $b b$ and $c c$ are two Brafs Hoops, the greater of which being $b b$, is faftened to the Sides of the Box at the oppofite Places B B. The other Hoop c C is faftened by two other Pivots at the Places C C, diametrically oppofite to the Hoop bl; and thefe two Pivots go into Holes made towards the top of another kind of wooden Box, in which the Card is put. And by this means, this laft Box, and the two Hoops, will have a very free Motion; fo that when the great Box A is placed flat in a Ship, the leffer Box will be always horizontal, and in equilibrio, notwithftanding the Motion of the Ship. In the middle of the Bottom of this laft Box, is placed a very ftrait and well pointed brafs Pivot, on which is placed the Cap B of the Card, which Card having a very free Morion, the Flower-de-luce will turn towards the North, and all the other Points towards the other Correfpondent Parts of the World. Finally, theCard is covered with a Glafs, that fo the Wind may have no power on it.

> Ufe of the Sea-Compafs.

The Courfe that a Ship muft take to fail to a propofed Place, being known by a SeaChart, and the Compafs placed in the Pilot's Room, fo as the two parallel Sides of the fquare Box be fixed according to the length of the Ship, that is, parallel to a Line drawn from the Poop to the Prow; make a Crofs, or other Mark, upon the middle of that Side of the fquare Box perpendicular to the Ship's length, and the moft diftant from the Poop, that fo the Stern of the Sinip by this means may be directed accordingly.

Example. Departing from the Inand de Oütflant, upon the Confines of Britany, we defire to fail towards Cape Finifter in Galicia. Now in order to do this, we muft firt feek (according to the manner hereafeer directed) in a Mercator's Chart, the Direction or Courfe of the Ship leading to that Place; and this ue find is between the South-Weft and the South South-Weft; that is, the Ship's Courfe muft be South-Weft,one-fourth to the South. Therefore having a fair Wind, turn the Stern of the Ship, fo that a Line tending from the South-Weft, one-fourth South, exactly anfwers to the Crofs marked upon the middle of the Side of the fquare Box ; and then we fhall have our defire. And by this means, which is really admirable, we may direct a Slip's Courfe as well in the Night as in the Day, as well being fhut up in a Room in the Ship, as in the open Air, and as well in cloudy Weather as fair; fo that we may always know whether the Ship goes out of her proper Direction.

Of the Variation or Declination of the Needle.

It is found by experience, that the touched Needle varies from the true North, that is, the Flower-de-luce does not exactly tend to the North part of the World, but varies therefrom, fometimes towards the Ealt, fometimes towards the Weft, more or lefs, according to different Times, and at different Places.

About the Year 1665, the Needle at Paris did not decline or vary at all; whereas now its Variation is there above 12 Degrees North-weftwardly. Therefore every time a favourable Opportunity offers, you muft endeavour to obferve carefully the Variation of the Needle, that fo refpect thereto may be had in the fteering of Ships. If, for example, the Variation of the Needle in the Inland de Oïeffant, which was the fuppofed Place of departure in the abovementioned Example, was io Degrees; and if the Ship fhould exactly keep the Courfe of South-Weft, one-fourth to the South, inftead of arriving at Cape Finifter, it would come to another Country ro Degrees more to the Eaft.

Now to remedy this, you need only remove the Crofs, upon the Side of the Box, fhewing the Rhumb of Direction, more eafterly by the Quantity of the Dégrees of the Needle's Variation weft wardly; and fo as often as a new Declination or Variation of the Needle be found, the place of the faid Crofs muft be altered. Note, When the Box is quite round, a Mark muft be made againft the North and South on the Body of the faid Box.
If likewife a Veffel departs from the Sorlings in England, in order to fail to the Ifland of Madera, you will find by a Sea-Chart that her Courfe muft be Sóuth Sourh-Weft ; but if at the fame time the Variation of the Needle be fix Degrees North Eafterly, the Crofs denoted upon the Edge of the Compafs muft be removed fix Degrees towards the Weft, in order to direct the Ship according to her true Courfe found in the Chart.

But if a Sea-Compafs be ufed, wherein the Pofition of the Needle may be altered, as that which hath a double Card, the Flower-de-luce of the Card muft be fixed, fo that its Point may fhew the true North; and then you will have it to alter every time there is a new Variation obferved. Now in this Cafe the Crofs upon the Edge of the Compafs muft not be altered.

It is very neceflary, and principally in long Courfes, for Seamen to make Celeftial Obfervations ofren, in order to have the Variation of the Needle exactly, that the Direction of the Veffel may thereby be truly had, as likewife that they may know where they are, after having efcaped a great Storm, during which they were obliged to leave the true Courfe, and let the Vchel run according as the Wind or Currents drove her.

S E C TION II. Of the Azimuth Compafs.

Fig. 4.
This Compafs is fomething different from the common Sea-Compafs before fooken of. For upon the round Box, wherein is the Card, is faftened a broad brafs Circle A B, one Semi-circle whereof is divided into 90 equal Parts or Degrees, numbered from the middle of the faid Divifions both ways, with 10, 20, שr. to 45 Degrees; which Degrees are alfo divided into Minutes by Diagonal Lines and Circles: But thefe graduating Lines are drawn from the oppofite part of the Circle, viz. from the Point b, wherein the Index turns in time of Obfervation.
$b c$ is that Index moveable about the Point b, having a Sight $b a$ erected thereon, which moves with a Hinge, that fo it may be raifed or laid down, according to neceffity. From. the upper part of this Sight, down to the middle of the Index, is faftened a fine Hypothenufal Lute-ftring, or Thread $d e$, to give a Shadow upon a Line that is in the middle of the faid Index.

Note, The realon of making the Index move on a Pin faftened in b, is, that the Degrees and Divifions may be larger; for now they are as large again as they would have been, if they liad been divided from the Center, and the Index made to move thereon.

The abovenamed broad brafs Circle A B, is crofled at Right Angles with two Threads, and from the ends of thefe Threads are drawn four fmall black Lines on the Infide of the round Box; alfo there are four Right Lines drawn at Right Angles to each other on the Card.

This round Box, thus fitted with its Card, graduated Circle, and Index, ©ic. is to be hung in the brafs Hoops B B ; and thefe Hoops are faltened to the great fquare wooden Box C C.

The Ufe of the Azimuth Compafs in finding the Sun's Magnetical Azimuth or Amplitude, and from thence the Variation of the Compafs.
There are feveral ways of finding the Variation of the Needle, as by the rifing and fetting of the fame Star, or by the Obfervation of the two equal Alticudes of a Star above the Horizon, fince the faid Star, at each of thofe 'Times, will be equally diftant from the true Meridian of the World; or elfe by a Star's paffage over the Meridian.

But thefe Methods are not much ufed at Sea: Firf, becaufe the Time wherein the Sun, or a Star, paffes over the Meridian, cannot be known precifely enough; for there is a great deal of Time taken in making Obfervations of the Sun's Altitudes, till he is found to have the greateft, that is, his Meridian Altitude.

Secondly, Becaufe the Sun's Declination may be confiderably altered, and alfo the Ship's Latitude between the Times of the two Obfervations of his equal Altitudes above the Horizon, Morning and Evening, or of his Rifing and Setting.

Therefore the Variation of the Compals may much better be found by one Obfervation of the Sun's magnetica! Amplitude, or Azimuth. Bur the Sun's Declination, and the Latitude of the Place the Ship is in, muft be known, that fo his true Amplitude may be had; his Altitude muft allo be given, when the magnetick Azimuth is taken, that fo his true Azimuth may be had at that Time alto.

Now if the Obfervation be for an Amplitude at Sun-rifing, or an Azimuth before Noon, you muft put the Center of the Index $b c$ upon the Weft Point of the Card within the Box, fo that the four Lines on the Edge of the Card, and the four Lines on the Infide of the Box, may agree or come together. But if the Oblervation be for the Sun's Amplitude, Setting, or an Azimuth in the Afternoon, then you muft turn the Center of the Index right-againft the Eaf Point of the Card, and make the Lines within the Box concur with thofe on the Card. Havirg thus fitted the Inftrument for Obfervation, turn the Index b c towards the Sun, till the Sinadow of the Thread de falls directly upon the flit of the Sight, and upon the Line that is along the middle of the Index; then will the inner Edge of the Index cut the Degree and Mirute of the Sun's magnetical Azimuth, from the North or South.

But note, that if the Compals being thus placed, the Azimuth be lefs than 45 deg . from the South, and the Index be turned towards the Sun, it will then pals off the Divifions of

Chap. I. of the Azimuth Compals.

the Limb, and fo they become ufelefs as it now ftands: therefore you muft turn the Inftrement juft a Quarter of the Compals, that is, place the Center of the Index on the North or South Point of the Card, according as the Sun is from you, and then the Edge theren will cut the Degree of the Magnetick Azimuth, or Sun's Azimuch from the North, as before.
The Sun's Magnetical Amplitude, (that is, the Diftance from the Eaft or Welt Points of the Compafs, to that Point in the Horizon whereat the Sun rifes or fets) being obferved by this Inftrument, the Variation of the Compafs may be thus found.

Example. Being out at Sea the 15 th Day of May, in the Year 1715 , in 45 Degrees of Nurth Latitude, I find from Tables that the Sun's Declination is 19 des. North, and his Eaft Amplitude 27 deg. 25 min. North. Now I obferve by the Azimuth Compafs, the Sun's Magnetical Amplitude at his rifing and fetting, and find that he rifes between the $\sigma_{2} d$ and $\sigma_{3} d$ deg. reckoning from the North towards the Ealt part of the Compafs, that is, between the 27% and $28 t h$ Degree from the Eaft ; and fince in this Cafe the magnetical Amplitude is equal to the true Amplitude, I conclude that at this Place and Time, the Needle has no Variation.
But if the Sun at his rifing fhould have appeared between the $52 d$ and $53 d$ Dergee from the North towards the Eaft, his magnetical Amplitude would then be between 37 and 38 Degrees, that is, about io Degrees greater than the true Amplitude: and therefore the Needle would vary about 10 Dearrees North-Eafterly. If, on the contrary, the magnetical Eaft Amplitude found by the Inftrument fiould be lefs than the true Amplitude, their Difference would thew that the Variation of the Needie is North-Eafterly. For if the magnetical Amplitude be greater than the true Amplitude, this proceeds from hence, that the Eaft part of the Compafs is drawn back from the Sun towards the South, and the Flower-de-luce of the Card approaches to the Eaft, and fo gires the Variation North-Eafterly. The reafon for the contrary of this is equally evident.

If the true Eaft Amplitude be Southwardly, as likewife the magnetical Amplitude, and this laft be the greater ; then the Variation of the Needle will be North-Weft; and if on the contrary, the magnetical Amplitude be lefs than the true Amplitude, the Variation of the Needle will be North-Eafterly, as many Degrees as are contained in their Difference.

What we have faid concerning North-Eaft Amplitudes, muft be underfood of SouthWeft Amplitudes, and what we have faid of South-Eall Amplitudes, muft be underfood of North-Weft Amplitudes.
Finally, If Amplitudes are found of different Denominations; for example, when Amplitudes are Eaft, if the true Amplitude be σ deg. Nortl, and the magnetical Amplitude 5 deg. South ; then the Variation, which in this Cafe is North-Weft, will be greater than the true Amplitude, it being equal to the Sum of the magnetical and true Amplitudes: and fo adding them together, we fhall have in Degrees of North-Weft Variation. Underftand the fame for Weft Amplitudes.
The Variation of the Compafs may likewife be found by the Azimuth; but then the Sun's Declination, the Latitude of the Place, and his Altitude muft be had, that fo his true Azimuth may be found.

C H A P. II.

Of the Conftruction and Use of Inftruments for taking the Altitudes of the Sun or Stars at Sea.

Of the Sea-Aftrolabe.

THE moft common Inftrument for taking of Altitudes at Sea is the Anrolabe, which Fig. so confifts of a brafs Circle, about one Foot in Diameter, and fix or feven Lines in thicknefs, that fo it may be pretty weighty : there is fometimes likewife a Weight of fix or feven Pounds hung to this Inftrument at the Place B, that fo when the Aftrolabe is fufpended by its Ring A, which ought to be very moveable, the faid Inftrument may turn any way, and keep a perpendicular Situation during the Motion of the Ship.

The Limb of this Inftrument is divided into four times 90 Degrees, and very often into halves, and fourths of Degrees.

It is abfolutely neceffary, that the Right Line C D, which reprefents the Horizon, be perfectly level, that fo the beginning of the Divifions of the Limb of the Inftrument may be made therefrom. Now to examine whether this be fo or no, you mult obferve fome diftant Object thro the Slits or little Holes of the Sights F and G, faftened near the Ends of the Index, freely turning about the Center E, by means of a turned-headed Rivet : I Ffi
fay, you mut obferve the faid diftant Objects, in placing the Eye to one of the faid Sights for example, to G : then if the Afrolabe be turned about, and the fame Object appears thro the other Sight F, without moving the Index, it is a fign the Fiducial Line of the Index is horizontal. But if at the fecond time of Obfervation, the Index muft be raifed or lowered before the Object be efpied thro the Sights, then the middle Point between the two Pofitions will fhew the true horizontal Line paffing thro the Center of the Inftrument, which mult be verified by feveral repeated Obfervations, before the Divifions of the Limb are begun to be made, in the manner as we have elfewhere explained.

Ufe of the Afrolabe.

The Ufe of this Infrument is for obferving the Sun or Stars Altitude above the Horizon, or their Zenith Diftance. The manner of effecting which, is thus: Holding the Aftrolabe fufpended by its Ring, and turning its Side towards the San, move the Index till the Sun's Rays pafs thro the Sights F and G; then the Extremes of the Index will give the Altizude of the Sun in H , upon the divided Limb, from C to F , compreiended between the horizontal Radius E C and the Rays E F of the Sun, becaufe the Inftrument in this Situation reprefents a Vertical Circle. Now the Divifions of the Arcs B G or A F, fhew the Sun's Zenith diftance.

The Conftruction of the Ring.

This Figure reprefents a brafs Ring or Circle, about 9 Inches in Diameter, which it is neceflary fhould be pretty thick; that fo being weighty, it may keep its perpendicular Situation better than when it is not fo heavy, having the Divifions denoted in the Concave Surface thereof. The little Hole C, made thro the Ring, is 45 Degrees diftant from the Point of Sufpenfion B, and is the Center of the Quadrant D E, divided into 90 Degrees, one of whofe Radius's C E, is parallel to the Vertical Diameter B H of the Ring, and the other horizontal Radius C D, is perpendicular to the faid Vertical Diameter.

Now having found the faid horizontal Radius C D very exactly, by fufpending the Ring, Ě. Radius's muft be drawn from the Center C.to each Degree of the Quadrant DE, and upon the Points wherein the faid Radius's cut the Concave Surface of the Ring, the correfpondent Numbers of the Degrees of the Quadrant muft be graved ; and fo the Concave Surface of the Ring, will be divided from F to G . This Divifioning may be firt made feparately upon a Piane, and afterwards transferred upon the Concave Surface of the Ring.

This Inftrament is reckoned better than the Aftrolabe, becaufe the Divifions of the Degrees upon the Concave Surface are larger in proportion to its bignefs, than thofe on the Aftrolabe.

The Ufe of the Ring.

When this Inffrument is to be ufed, you muff fuffend it by the Swivel B, and turn it towards the Sun A; fo that its Rays may pafs thro the Hole C. This being done, the little Spot will fall between the horizontal Line C F , and vertical Line C G, upon the Degrees of the Sun's Altitude on the Infide of the Ring, reckoned from F to I.

Of the Quadrant.

Fig. 7. The Inftrument of Figure 7, is a Quadrant about one Foot Radius, having its Limb divided into 90 Degrees, and very often each Degree into every 5 th Minute by Diagonals. There are two Sights fixed upon one of the Sides A E, and the Thread to which the Plummet is faftened, is fixed in the Center A. I fhall not here mention the Conftruction of this Inftrument, becaufe we have fufficientiy fpoken thereof in Chap. V. Book IV.
Now to ufe this Inftrument, you muft turn it towards the Sun D, in fuch mamner that its Rays may pafs thro the Sights A and E, and then the Thread will fall upon the Degrees of the Sun's Altitude on the Limb, in the Point C, reckoned from B to C, and the Complement of his Altitude reckoned from E to C .
Of the Fore-Staff, or Crofs-Staff.

Fig. So This Inftrument confits of a frait fquare graduated Staff A B, between two and three Foot in length, and four Crofies or Vanes F F, E E, D D, C C, which fide fiffly thereon. The firt and fhorteft of thefe Vanes F F, is called the Ten-crofs or Vane, and belongs to that Side of the Staff whereon the Divifions begin at about 3 Degrees from the End A, (whereat the Eye is placed in time of Obferiation) to 10 Degrees. Note, Sometimes the Thirty-crofs EF is fo made, as that the Breadth thereof ferves inftead of this Ten-crofs.

The next longer Vane E F, is called the Thirty-crofs, and belongs to that Side of the Staff, whereon the Divifions begin at 10 Degrees, and end at 30 Degrees, and this is called the Thirty-fide: Half the length of the Thirty-vane will reach on this Thirty-fide, from 30 deg. to 23 deg. 52 min. and the whole length from 30 deg. to 19 deg. 47 min.

Chap. 2. of Infruments for taking Allitudes, \&xc.

'The next longer Vane D D, is called the Sixty-crofs, and belongs to that Side ot the Staf whereon the Divifions begin at 20 deg. and end at 60 deg. and is called the Sixty-fide. The length of this Crofs will reach on this Sixty-fide, from 60 deg . to 30 deg .
'The longeft Crofs C C, is called the Ninety-crofs, and belongs to that Side whereon the Divifions vegin at 30 Derrees, and end at 90 Degrees, and is called the Ninety-fide of the Staff: the Degrees on the feveral Sides of the Staff, are numbered with their Complements to 90 Degrees in fmall Figures.

This Staff may be graduated Geometrically thus: Upon a Table, or on a large Paper Fig. 9, pafted fmoothly upon fome Plane, draw the Line F G, the length of the Staff to be graduated, and on F and G raife the Perpendiculars. FC and GD; upon which lay off the Length you intend for the half Length of one of the four Croffes, from F to C, and G to D , and draw the Line C D reprefenting the Staff to be graduated. This being done, about the Center F, with the Semidiameter F G or C D, defcribe an eighth part of a C rcie, which divide into 90 equal Parts. 'Then if Right Lines be drawin from the Point F, to each of the aforefaid Divifions, thefe Lines will divide the Line CD, as the Staff ought to be graduated.

But if this Staff is to be graduated by the Table of natural Tangents, you muft firft obferve, that the Graduations are only the natural Co-tangents of half Arcs, the half Crofs being Radius; therefore divide the length of the half Crofs into 1000 equal Parts, or 100000 if poffible, according to the Radius of the Tables of natural Tangents : then take from this the Co-tangents, as you find them in the Table, and prick them from F fuccelively, and your Staff will be graduated for that Vane. So do for the reft feverally. If it be required to prick down the 80 th Degree, the half of 80 is 40, and the natural Co-tangent of 40 deg. is I19175, which take from the Scale or half Crofs fo divided, and prick it from Fto P, and that will be the Point for 80 Degrees, \&rc. So again, To put on the 64 th Degree, half of 64 is 32 , and its $C 0-t a n$ ent 15160033 , which take from the divided Crofs (prolonged) prick it from E, and you will have the $64^{\text {th }}$ Degree.

Now that the Crofs C D, when transferred to B, fhall make the Angles C A D eighty Fig. io. Degrees, is demonftrable thus: Since $C B$ the half Crofs is Radius, and $A B$ is by Conftruction the Tangent of 50 deg. the Angle A C B is 50 Degrees; and fince the Triangle A B C is Right Angled, the Angle B A C will be 40 Degrees: but the Angle D A C is double the Angle B A C ; therefore the Angle D A C is 80 Degrees, and the Point B the true Point on the Staff for 8o Degrees. 'The fame Demonftration holds, let the Crofs be what it will.

If the Staff be to be graduated by any Dagonal Scale, meafure half the Length of the Vane by the Scale, and Cay, As the Radius of the Tables 100000 , is to the Meafure of half the Crofs, fo is the natural Co-tangent of the half of any Number of Degrees defired to be pricked on the Staff, to the Space berween the Center of the Staff F, and the Point for the Degrees fought.

For example ; Suppofe half the Length of the Vane, meafured on a Diagonal Scate, be 945 ; to find what Number muft be taken off the Diagonal Scale for the 8oth Degree. The Co-tangent of 40 Degrees (half of 80) is 1191753 , which being multiplied by 945 , and divided by Radius, gives 1 I261. And this being taken from the Diagonal Scale, will give the Degrees defired.

The Ufe of the Forc-Staff.

The chief Ufe of this Inftrument, is to take the Altitude of the Sun or Scars, or the Diftance of two Stars; and the Ten, Thirty, Sixty and Ninety Croffes are to be ufed, according as the Altitude is greater or leffer; that is, if it be lefs than 10 Degrees, the Ten Crofs muft be ufed; if above io, but lefs than 30 Degrees, the Thirty Crofs muft be ufed ; and if the Altitude be judged to be above 30, but lefs than 60 Degrees, the Sixty Crofs muft be ufed. But when Altitudes are greater than 60 Degrees, this Inftrument is not fo convenient as others.

To obferve an Allitude.

Place the flat End of the Staff to the outfide of your Eye, as near the Eye as you can, Fig. In and look at the upper End b of the Crofs for the Center of the Sun or Star, and at the lower End a for the Horizon. But if you fee the 'Sky inftead of the Horizon, flide the Crofs a little nearer to your Eye; and if you fee the Sea inftead of the Horizon, move the Crofs a little further from your Eye, and fo continue moving the Crofs till you fee exactly the Sun or Star's Center by the top of the Crofs b, and the Horizon by the bottom thereof a. Then the Degrees and Minutes cut by the inner Edge c of the Crofs, upon the Side of the Staff peculiar to the Crofs you ufe, is the Altitude of the Sun or Star: But if it be the Meridian Altitude you are to find, you muft continue your Obfervation as long as you find the Altitude increafe, ftill moving the Crofs nearer to your Eye ; but when you perceive the Altitude is diminifhed, forbear any farther Obfervation, and do not alter your Crofs; but as it ftands, count the Degrees and Minutes on the Side proper to the Crofs, and you will have the Meridian Altitude required, as alfo the Zenith Diftance, by fub-
ftracting
ftracting the faid Altitude from go Degrees, if it be not graduated on the Staff. To which Zenith Diftance add the Minutes allowed for the Height of your Eye above the Surface of the Sea, according to the little Table in the Margin, or fubftract it from the Altitude, and then you will have the true Zenith Diftance and Altitude.

If it be hazy or fomewhat thick Weather, the Fore-Staff may

Height of the Eye.	Allow- ance.
Englifh Feet.	Min.
1	$\stackrel{1}{1}$
3	2
4	2
5	2%
6	3
7	3
8	3.
9	$3^{\frac{1}{2}}$
10	$3^{\frac{1}{2}}$
12	4
16	4
20	5
24	52
28	6
32	$6 \frac{1}{2}$
36	7
40	7
44	$7^{\frac{1}{2}}$
48	

be ufed as above; but if the Sun fhines out, the upper Limb of the Sun muft be either obferved, and afterwards his Semidiameter muft be fubftracted from the Altitude found, or elfe a coloured Glafs on the top of the Crofs muft be ufed, to defend the Sight from the Splendour of the Sun.

To obferve the Diftance of two Stars, or the Moon's Diftance from a Star, place the Staff's flat end to the Eye, as before directed, and looking to both ends a and b of the Crofs, move it nearer or farther from the Eye, till you can fee the two Stars, the one on one end, and the other on the other end of the Crofs. Then fee what Degrees and Minutes are cut by the Crofs on the fide of the Staff proper to that Vane in ufe; and thofe Degrees fhew the obferced Star's Diftance.

But that there may be no Miftake in placing the Staff to the Eye, which is the greateft Difficulty in the Ufe of this Inftrument: Firft, before Obfervation, put on the Sixty-crofs, and place it to 30 Degrees on its proper Side, and alfo the Ninety-crofs, fliding to it 30 Degrees likewife on his Right Side: this being done, place the end of the Staff to the corner of your Eye, moving it fomething higher or lower about the Eye, till you fee the upper ends of the two Crofles at once exactly in a Right Line, and alfo their lower ends; and that is the true Place of your Staff in 'Time of Obfervation.

If the Sun's Altitude is to be obferved backwards by this Inftrument, you muft have an horizontal Vane to fix upon the Center or Eye-end of the Crofs, as alfo a Shoe of Brafs for a Sight Vane, to fit on to the end of any of the Croffes; then when you would obferve, having put on the horizontal Vane, and fixed the Shoe to the end of a convenient Crofs, turn your back to the Sun, and looking thro the Sight in the brafs Shoe, lift the end of the Staff up or down, till the Shadow made by the upper end of the Crofs falls upon the flit in the Horizon-Vane, and at the fame time you can fee the Horizon through the HorizonVane. Then the Degrees and Minutes cut by the Crofs on the proper Side, are the Altitude. But if there be fixed a Lens, or fmall double Convex-Glafs, to the upper end of the Vane, to contract the Sun-beams, and caft a fmall bright Spot on the Horizon Vane, this will be found more convenient than the Shadow, which is commonly imperfect and double.

> Of the Engligh Quadrant, or Back-Staff.

Fig. 1ニ。
This Inftrument is commonly made of Pear- ${ }^{-}$Tree, and confifts of three Vanes A, B, C, and two Arcs. The Vane at A is called the Horizon-Vane, that at B the Shade-Vane, becaufe it gives the Shadow upon the Horizon-Vane in Time of Obfervation, and that at C the Sight-Vane, becaufe in Time of Obfervation it is placed at the Eye. The leffer Arc DE is the Sixty Arc, and that marked F G is the Thirty Arc, both of which together make 90 Degrees, but they are of different Radius's. The Sixty Arc DE is divided into 60 Degrees, commonly by every five, but fomerimes by fingle Degrees. In Time of Obfervation, the Sladow-Vane is placed upon this Arc always to an even Degree.

The Thirty Arc G F, is divided into 30 Degrees, and each Degree into Minutes by Diagonal Lines, and Concentrick Arcs. 'The Manner of doing which, I have already laid down elfewhere.

The USe of the Englifo Quadrant.

If the Sun's Altitude be to be taken by this Inftrument, you muft put the HorizonVane upon the upper End or Center A of the Quadrant, the Shade-Vane upon the Sixty Arc DE, to fome Number of Degrees lefs than you judge the Co-altitudes will be by 10 or 15 Degrees, and the Sight-Vane upon the Thirty Arc F G. This being done, lift up the Quadrant, with your Back towards the Sun, and look thro the fmall Hole in the SightVane C ; and fo raife or lower the Quadrant till the Shadow of the upper Edge of the Shade-Vane B falls upon the upper Edge of the flit in the Horizon-Vane A: if then at the fame time the Horizon appears thro the faid flit, the Obfervation is finifhed; but if the Sea appears inftead of the Horizon, then remove the Sight-Vane lower towards F; but if the Sky appears inftead of the Horizon, then flide the Sight-Vane a little higher : and fo continue removing the Sight-Vane, till the Horizon appears thro the flit of the Horizon-

Vane,

Vane, and the Shadow of the Shade-Vane falls at the fame time on the faid Slit of the Ho-rizon-Vane. This being done, fee how many Degrees and Minutes are cut by the Edge of the Sight-Vane C, which anfwers to the Sight-Hole, and to them add the Degrees that are cut by the upper Edge of the Shade-Vane, and the Sum is the Zenith Diftance or Complement of the Altitude. But to find the Sun's Meridian or greateft Altitude on any Day, you muft continue the Obfervation as long as the Altitude be found to increafe, which you will perceive, by having the Sea appear inftead of the Horizon, removing the Sight-Vane lower; but when you perceive the Sky appear inftead of the Horizon, the Altitude is diminifhed: therefore defiff from farther Obfervation at that Time, and add the Degrees upon the Sixty Arc to the Degrees and Minutes upon the Thirty Arc, the Sum is the Zenith Diftance, or Co-altitude of the Sun's upper Limb.

And becaufe it is the Zenith Diftance or Co-altitude of the upper Limb of the Sun, that is given by the Quadrant, when obferving by the upper Edge of the Shade-Vane, as it is cuftomary to do, and not the Center ; you muft add 16 min. the Sun's Semi-diameter, to that which is produced by your Obfervation, and the Sum is the true Zenith Diftance of the Sun's Center. But if you obferve by the lower part of the Shadow of the Sliade-Vane, then the lower Limb of the Sun gives the Shadow ; and therefore you muft fubftrate 16 min . from what the Inftrument gives : but confidering the Height of the Obfervator above the Surface of the Sea, which is commonly berween 16 and 20 Feet, you may take five or fix Minues from the 16 Minutes, and make the allowance but 10 min . or 12 min . to be added inftead of 16 min .

Note alfo, The Refraction of the Sun or Stars caufes them to appear higher than they are; therefore after having made your Obfervation, you muft find the convenient Refraction, and fubliract it from your Altitude, or add it to the Zenith Diftance, in order to have the true Alatude or Zenith Diftance.

If a Lens or doubie Convex-Glafs be fixed in the Shade-Vane, which contracts the Rays of Light, and cafts them in a fmall bright Spot on the Slit of the Horizon-Vane inftead of a Shade, this will be an Improvement to the Inftrument, if the Glafs be well fixed; for then it may be ufed in hazy Weather, and that fo thick an Haze, that an Obfervation can hardly be made with the Foreflaff; allo in clear Weather the Spot will be more defined than the Shadow, which at beft is not terminated.

> Of the Semi-circle for taking Altitudes at Sea.

T'his Semi-circle is about one Foot in Diameter, and the Limb thereof is divided into 90 Fig. ${ }_{13}$. Degrees only, each of which are quartered for 15 min. At A and B are two Sights fixed to the Extremes of the Diameter, and another ar C, fo adjufted as to flide on the Limb of the Semi-circle, that fo the Sun's Rays may pafs thro it when the Inftrument is ufing.
The Ufe of the Semi-circle.

If an Altitude is to be taken forwards by this Inftrument, the Eye muft be placed at the Sight A, and then you muft look thro the Sights A and B at the Horizon, and flide the Sight C on the Limb, till the Sun's Rays paffing thro it, likewife come thro the Sight A to the Eye. This being done, the Degrees of the Arc between B and C, fhew the Sun's Altitude.

But if the Sun's Altitude is to be taken backwards, which is the beft way, becaufe of its Splendour offending the Eye, you muft place the Eye to B, and looking thro the Sights B and A, at the Horizon, you muft flide the Sight C along the Limb, till, the Sun's Rays coning thro it, fall upon the Sight A, and then the Arc B C will be the Sun's Altitude above the Horizon, as before.

The Meridian Altitude or Zenith Diftance of the Sun or Stars being found by Obfervation, to find the Latitude of the Place.

Having obferved with fome one of the Inftruments.before fpoken of, the Meridian Altitude or Zenith Diftance of the Sun, or fome Star, feek the Sun's Declination the Day of Obfervation : if it be North, fubfract the Sun's Declination found from the Sun's Altitude, and you will have the Height of the Equinoctial above the Horizon, and this Height taken fron 90 Degrees, and you will have the Latitude of the Place. But if the Zenith Difance be added to the Declination of the Sun or Star, the Sum will be the Latitude of the Place.

Again, If the Sun or Star have South Declination, you muft add the obferved Altitude to the Declination, and the Sum will be the Height of the Equinoztial above the Horizon, which taken from 90 Degrees, and the Latitude will be had. But if from the Zenith Diftance be taken the Declination, the Remainder will be the Latitude of the Place.
Lafly, If the Sun has no Declination, his Altitude taken from 90 Degrees, will be the Latitude; and fo in this Cafe the Zenith Diftance itfelf is the Latitude.

Example. The Sun being in the firt Degree of Cancer, his Meridian Altitude at Paris is 64 deg. 30 min . Zenith Diftance 25 deg. 30 min . his Declination 23 deg. 30 min . North. Now if 23 deg. 30 min. be taken from 64 deg. 30 min. the Remainder is 41 deg. for the Altitude of the Equinoctial, and fo the Complement of 41 deg. to 90 deg . is 49 deg. the

Height of the Pole or Latitude of Paris; but if the Zenith Diftance 25 deg. 30 min . Be added to the Sun's Declination 23 deg. 30 min. the Sum will be 49 deg. the Latitude of Paris, as before.

Again, Suppofe the $22 d$ of December (New Stile) the Sun's Meridian Altitude at Paris is obferved 17 deg. 30 min . and his Zenith Diftance 72 deg. 30 min . his Declination is then 23 deg .30 min . South, which added to 17 deg .30 min . and the Sum is 4 I deg. whofe Complement 49 deg. is the Latitude of Paris. Again, If from the Zenith Diftance 72 deg . 30 min . be taken the Declination, the Remainder will be 49 deg. the Latitude of Paris, as before.

C H A P. III.

Of the Confruction and USes of the Sinecal Quadrant.

Plate 2 I .
Fig. I.

TH I S Inftrument is compofed of feveral Quadrants, having the fame Center A, and feveral parallel ftrait Lines croffing each other at Right Angles, both Quadrants and Right Liliss being equially diftant from each other. Now one of thefe Quadrants, as B C, may be taken for a quarter or fourth part of any great Circle of the Sphere, and principally for a fourth Part of the Horizon and of the Meridian.

If the Quadrant B C be taken for one-fourth part of the Horizon, either of the Sides, as A B, may reprefent the Meridian, that is, the Line of North and South. And then the other Side A C, being at Right Angles with the Meridian, will reprefent the Line of Eaft and Weft. All the other Lines parallel to A B are alfo Meridians, and all thofe parailel to the Side A C, are Eaf and Weff Lines.

The afinefaid Quadrant is firf divided into eight equal Parts by feven Radius's drawn from the Center A, which reprefent the eight Points of the Compafs contained in onefourth of the Horizon, each of which is II deg. 15 min. the Arc BC is likewife divided into 90 Degrees, and each Degree divided into 12 Minutes, by means of Diagonals, drawn from Degree to Degree, and fix Concentrick Circles. There is likewife a Thread, as A L, fixed to the Center A, which being put over any Degree of the Quadrant, ferves to divide the Horizon as is neceffary. 'The Conftruction of the reft of this Inftrument, is enough manifeft from the Figure thereof.

The Ufe of the Sinecal Quadrant.

There are formed 'Triangles upon this Inftrument fimilar to thofe made by a Ship's Way with the Meridians and Parallels, and the Sides of thefe Triangles are meafured by the equal Intervals between the Concentrick Quadrants, and the Lines N and S, E and O .

Thefe Circles and Lines are diftinguifhed, by marking every fifth with broader Lines than the others; fo that if every Interval be taken for one League, there will be five Leagues from one broad Line to the other; and if every Interval be taken for four Leagues, then there will be twenty Leagues, which make a Sea Degree, from one broad Line to the other.

Let us fuppofe, for example, that a Ship has failed 1 go Leagues North Eaft, one-fourth North, which is the third Point, and makes an Angle of 33 deg. 45 min. with the Northpart of the Meridian. Now we have two things given, viz. the Courfe, and Diftance failed, by which a Triangle may be found on this Inftrument fimilar to that made by the Ship's Courfe, and her Latitude and Longitude; and fo the other unknown Parts of the Triangle found. And this is done thus:

Let the Center A reprefent the Place of Departure, and count, by means of the Concentrick Arcs, along the Point that the Ship failed on, as A D, 150 Leagues from A to D; then the Point D will be the Place the Ship is arrived at, which note with a Pin. This being done, let D E be parallel to the Side A C, and then there will be formed a Rightangled Triangle A E D, fimilar to that made by the Ship's Courfe, difference of Latitude and Longitude; the Side A E of this Triangle gives I 25 Leagues for the difference of Latitude Northwards, which make 6 deg. 15 min. reckoning 20 Leagues to a Degree, and one League for three Minutes. And lafty, the Side ED will give 83 leffer Leagues towards the Eaft, which being reduced in the manner hereafter fhewn, will give the difference of Longitude, and fo the whole Triangle will be known.

Note, We call leffer Leagues thofe that anfwer to the Parallels of Latitude between the Equator and the Poles, which continually decreafe the nearer they are to the Pole, and confequently alfo the Degrees of Longitude ; and therefore the nearer a Ship fails to either of the Poles, the lefs way muft fhe make to alter her difference of Longitude any determinate Number of Degrees.

Chap. 3. the Sinecal Quadrant.

Since the Center A always reprefents the Place of departure, it is manifet that when the Point D of arrival is found, be it in what manner foever, all the Parts of the Triangle A E D will afterwards be eafily determined.

If the Sinecal Quadrant be taken for a fourth part of the Meridian, one Side thereof, as A B, may be taken for the common Radius of the Meridian, and the Equator ; and the other fide A C, will then be half the Axis of the World. The Degrees of the Circtimference B C, will reprefent the Degrees of Latitude, and the Parallels to the Side A B perpendicular to A C, affumed from every Point of Latitude to the Axis A C, will be the Radius's of the Parallels of Latitude, as likewife the Sine-Complements of tho Le Latitudes.

If, for example, it be required to find how many Degrees of Longitude 83 leifer Leagues make in the Parallel of 48 deg. you muft firf extend a Thread from the Center A, over the 4^{8+h} deg. of Latitude on the Circumference; and keeping it there, count the 83 Leagues propofed on the Sde A B, beginning at the Center A. Thefe will terminate at H , in allowing every fmall Interval four Leagues, and the Interval between the broad Lines twenty Leagnes. This being done, if the Parallel H G be traced out from the Point H to the Thread, the part A G of the Thread, fhews that 125 greater Leagues, or the equinoctial Leagues, make 6 deg. 15 min . in allowing 20 Leagues to a Degree, and three Minutes for one Lrague ; and therefore the 83 leffer Leagues A H, which make the difference of Longitude of the fuppofed Courfe, and which are equal to the Radius of the Parallel G I, make 6 deg .15 min . of the faid Parallel.

Let it be required, for a fecond example, to reduce ioo leffer Leagues into Degrees of Longitude on the Parallel of 60 Degrees. Having firft extended the Thread from the Center A over the 60 th Degree on the Circumference, count the roo Leagues of Longitude on the Side A B , and the Parallel terminating thereon being directed to the Thread, the part of the Thread aflumed from the Center, fhews that 200 Leagues under the Equator make 10 Degrees; that is, 100 Leagues in the Parallel of 60 Degrees make 10 Degrees of Longitude, fince every Degree of a great Circle is double to any Degree of the Parallel of 60 Degrees.

On one Side of this Infrument is put a Scale, called a Scale of Crofs-Latitudes, whofe Conftruction and Divifion is the fame as that of the Meridian Line of Mercator's Chart, of which we fhall fpeak by and by. The Ufe of this Scale is to find a mean Parallel between that of Departure and that of Arrival.

When a Ship has failed on an oblique Courfe, that is, neither exactly North, South, Eaft, or Weft ; thefe Courfes, befides the North and South greater Leagues, give liffer Leagues eaftwardly and weftwardly, which muft be reduced to Degrees of Longitude. But thefe Leagues were made neither upon the Paraliel of Departure, nor upon that of Arrival; for they were made upon" all the Parallels between thofe of Departure and Arrival, and are all unequal between themfelves, and confequently we are neceffitated to find a mean proportional Parallel betw een that of Departure and that of Arrival, which for this reafon is called a mean Parallel, and ferves to reduce Leagues made in failing a-crofs divers Parallels, into Degrees and Minutes of the Equator.

Now there are feveral ways of finding fuch a mean Parallel; but I thall only fpeak of that here, which is done by means of the Scale of Crofs-Lattudes, without Calculation, and is thus: Let it be required, for example, to find a mean Parallel between that of 40 deg. and that of 60 deg.

Take, by means of a Pair of Compaffes, the middle between the 40 th and 60 th deg. upon this Scale, and the faid middle Point will terminate againft the $5 \mathrm{I} / \mathrm{d}$ deg. which confequently will be the mean Parallel fought.

Note, Becaufe this Scale is in two Lines, you muft take the Diftance from 40 deg. of Latitude to 45 deg. which is on one Side, and lay it off upon fome feparate Right Line. This being done, you muft take the Diftance from 45 deg. to 60 deg . which is on the other Side, and join thefe two Spaces together; then half of thefe two Lines being taken between your Compaffes, you muft fet one Foot upon the Number 60 , and the other Point will fall upon 51 deg. which will be the mean Parallel fought. After which, it will be eafy to reduce the Leagues faiked Ealtwardly into Degrees of Longitude, by the Sinecal Quadrant, confidered as a quarter of the Meridian, in the manner as we have laid down in the two Examples abovementioned.

Of Mercator's Charts.

This Figure reprefents a Mercator's Chart. But before we give the Conftruction and Fig. 2 . Ufes thereof, it is neceflary to obferve that when a Ship fails upon any determinate Point of the Compafs, the always makes the fame Angle with all the Meridians fhe pafles over upon the Surface of the Terraqueous Globe.

If a Ship fails North and South, fhe makes an infinitely acute Angle with the Meridian fhe defcribes, that is, fhe runs parallel to it, or rather fails upon it.

If a Ship fails due Eaft and Weft, fhe cuts all the Meridians at Right Angles; for the either defcribes the Equator, or fome leffer Circle which is parallel thereto. But if her Courfe be on any Point between the North and Eaft, North and Weft, South and Eaft, or South and Weft, then fhe will not defcribe a Circle; becaufe a Circle drawn oblique to the

Meridians, will cut all of them at unequal Angles, which the Ship muft not do while fhe fails upon any determinate Point, unlefs North and South, or Eaft and Weft therefore fhe defrribes a Curve, not circular, whofe effential Property is to cut all the Meridians at the fame Angle. And this is called a Loxodromick Curve, or only Loxodromy, and is a kind of Spiral, making an infinity of Revolutions towards a certain Point, which is the Pole, and every 'Turn thereof approaches nigher and nigher thereto. A Ship's Courfe then, except the two firft abovenamed, is always a Loxodromick Curve, and is the Hypothenure of a Right-angled fpherical Triangle, whofe two other Sides are the Ship's Way in Longitude and Latitude. Now we have the Latitude commonly given by Obfervation, and the Loxodromick Angle by the Compafs; therefore by Trigonometry we may find the Hypothenufe, or the Way that the Ship has failed, © 6 .

But becaufe the Calculation of a Ship's Way by means of the Loxodromick Curve is troublefome, therefore the Ancients fought after fome Method whereby a Ship's Way might be a ftrait Line, which might nearly preferve the Property of the Loxodromick Curve, which is, to cut all the Meridians under the fame Angle. But they found this abfolutely impoffible upon the account of the Meridians not being parallel between themfelves, as in reality they are not. And therefore they fuppofed the Meridians to be parallel ftrait Lines; and fo from this fuppofition it follows, that the Degrees of Longitude unequally diftant from the Equator, are of the fame bignefs; whereas they really always diminifh from the Equator, in a certain known Proportion, which is as Radius is to the Sine-Complement of the Latitude. But to retrieve this Error, they have fuppofed the Degrees of Latitude, which by the Nature of the Sphere are every where equal, to be augmented in the fame Proportion as the Degrees of Longitude diminifh. And fo the Inequality which ought to be in the Degrees of Longitude of different Parallels, is thrown upon the Degrees of Latitude in the manner we are going to lay down.

Now Charts made in this manner are called Mercator's Charts, becaufe Mercator was the firtt that made them ; and they are commonly efteemed the bett: for by the Experience of feveral Ages, it is found that Seamen ought to have very fimple Charts, wherein the Meridians, Parallels, and Rhumb-Lines may be reprefented by ftrait Lines, that fo they may prick down their Courfes eafily.
\% \%

C H A P. IV.

Of the Conftruction and USes of Mercator's Charts.

Fig. 2.

IF the Degrees of Latitude are to be augmented as much as thofe of Longitude are found enlarged by making them equal to the Degrees of the Equinoctial, the Secants muft be ufed, which increafe in the fame Proportion as the Sine-Complements of the Latitudes, (which ought to réprefent the Degrees of Longitude) have been encreafed, by making them equal to the Radius of the Equator, becaufe of the Parallelifm of the Meridians: for the Sine-Complement of an Arc is to Radius, as Radius is to the Secant of that Arc.

As, affuming for one Degree of the Equator, and for the firlt Degree of Latitude, the whole Radius, or fome aliquot part thereof; take for the $2 d$ Degree of Latitude, the Secant of one Degree, or a fimilar aliquot part of this Secant; and for the $3 d$ Degree of Latitude, take the Secant of two Degrees, or the fimilar aliquot part thereof, and fo on.

When a Chart is to be made large, you muft take, for 30 Minutes of Latitude, and 30 Minutes of the Equator, the Radius of a Circle or fome aliquot part thereof, for one Degree of Latitude. This being done, you mult add continually the Secant of 30 min . for $1 \frac{1}{2}$ Degree of Latitude, the Secant of I Degree for 2 Degrees of Latitude, the Secant of $1 \frac{i}{2}$ Degree for $2 \frac{1}{2}$ Degrees of Latitude, or their fimilar aliquot parts; and fo proceed on. In doing of which, we ufe a Scale of equal parts, from which the Secants as they are found in Tables are taken off, by taking away fome of the laft Figures.

In thefe Charts the Scale is changed, according as the Latitude is; as, for example, if a Ship fails between the 40th and soth Parallel of Latitude, the Degrees of the Meridians between thofe two Parallels will ferve for a Scale to meafure the Ship's Way ; whence it follows, that there are fewer Leagues on the Parallels, the nearer they are to the Poles, becaufe they are meafured by a Magnitude likewife continually increafing from the Equator towards the Poles.
If, for example, a Chart of this kind be to be drawn from the 40 th Degree of North Latitude to the soth, and from the 6 th Degree of Longitude to the 18th: Firft draw the Line AB, reprefenting the 40 th Parallel to the Equator, which divide into twelve equal Parts, for the 12 Degrees of Longitude, which the Chart is to contain. This being done, take a Setor or Scale, one hundred Parts whereof is equal to each of thefe Degrees of Longitude, and at the Points A and B raife two Perpendiculars to $A B$, which will reprefent two
parallel Meridians, and muft be divided by the continual Addition of Secants. As, for the Difance from 40 deg. to 41 deg. of Latitude, take $131 \frac{1}{2}$ equal Parts from your Scale, which is the Secant of 40 deg . 30 min . For the Diftance from 41 deg. to 42 deg. take $133 \frac{1}{2}$ equal Parts from your Scale, which is the Secant of 41 deg. 30 min. For the Diftance from 42 deg. to 43 deg. take 136 , which is the Secant of 42 deg. 30 min. and fo on to the laft Degree of your Chart, which will be is 4 equal Parts, viz. the Secant of 49 deg .30 min . and will give the Diffance from 49 deg. of Latitude to 50 deg . and by this means the Degrees of Latitude will be augmented in the fame Proportion as the Degrees of Longitude on the Globe do really decreafe.
Having divided the Meridians, you may place the Card upon the Chart, for doing of which, chufe a convenient Place towards the middle thereof, as the Point R, about which, as a Center, defribe a Circle fo big that its Circumference may be divided into 32 equal Parts, for the 32 Points of the Compals. Then having drawn a Line towards the Top of the Chart, parallel to the two divided Meridians, this will be the North Rhumb, and upon it a Flower-de-luce mult be put, that thereby all the other Rhumbs or Points may be known, the principal of which ought to be diftinguifhed from the others by broader Lines.

After this, all the Towns, Ports, Inands, Coafts, Sands, Rocks, Éc. which form the Chart, muft be laid down upon the fame, according to their true Latitudes and Longitudes. And if the Chart be large, there may feveral Cards be placed thereon, always with their North and South Lines parallel bet ween themfelves.

The Ufe of Mercator's Charts.

The chief Ufe of a Sea-Chart, is to find the Point of Departure therein, the Point arrived at, the Courfe, the Diftance failed, the Longitude and the Latitude, as we fhall now explain by fome Examples.
Example I. Suppofe a Ship is to fail from the Ifland de Oueffant, in 48 deg. 30 min . of North Latitude, and 13 deg. 30 min . of Longitude, to Cape Finiffer in Galicia, which is in 43 deg. of Latitude, and 8 deg. of Longitude. Now the Point of the Compafs the Ship muft keep to, as alfo the Diffance between the faid two Places is required. In order to do this, you mult imagine a Line drawn from the Illand de Ouefant to Cape Finifer, and with a Pair of Compafles examine what Point on the Chart that Line is parallel to, and this Point, which is South-Weft, one-fourth South, is that which the Ship muff fail on.
But to find the Diftance of the two Places, take between your Compaffes the Extent of five Degrees on the Meridian againft the beforenamed Courfe, that is, from the 43 d deg. to the 48 th ; and this will be a Scale of 100 Leagues. This being done, fer one Foot of your Compaffes thus opened upon the Inland de Ouefant, and the other Foot upon the occult Line tending to Cape Finifer, making a little Mark thereon; and this Extent of the Compaffes will give 100 Leagues of Diftance. Then take the Diftance from the aforefaid Mark to Cape Finifter between your Compaffes, and placing one Foot upon the $43 d$ deg. of the Meridian, and the other Foot will fall upon 44 deg. 45 min. which amounts to 35 Leagues; and confequently the whole Diftance between Cape Finifter and the Illand de Ouefant is 135 Leagues.
Example II. A Ship failing from the Inand de Ouefant South-Weft, one-fourth South, towards Cape Finifer, and the Mafter-Pilot having examined the Force of the Wind, and the Number of Salls ipread, and knowing by experience the fwifnefs of his Ship, has eftimated her Way to have been 50 Leagues in 20 Hours. Now to find the Point upon the Chart wherein the Slip is, he muft take the Extent of $2 \frac{1}{2}$ Degrees, equivalent to 50 Leagues, between his Companfes, upon the Meridian, from the 46 thl deg. to the $48 \frac{5}{2}$ deg. This being done, if one Foot of the Compalfes thus opened be fet upon the Place of Departure, the other Foot will fall upon the Point T, the Place wherein the Ship is, on the Line of the Ship's Way. But if the Longitude and Latitude of the Point T, or Place wherein the Ship is, be fought, he muft place one Foot of the Compaffes upon the Point T, and the other upon the nearef Parallel, and then conduct the Compaffes thus opened perpendicularly along the Parallel to the Meridian and the Degree thereof whereat the Point of the Compalles cones to, will be the Latitude of the Point 11. And to find the Longitude of this Point, he muft fet one Foot of the Compaffes therein, and the other upon the nearef Meridian. Then if this Foot be flid along the Meridian (fo that a Line joining the two Points be always parallel to itfelf) to the divided Parallel, he will have, upon that Parallel, the Longitude of the Point T.
Eecaufe Meridians and Parallels are not drawn a-crofs the Chart, to the end that the Rhumb-Lines may not be confufed, therefore you may ufe a Ruler, which will produce the fame Effect.
Example III. The Courfe being given, and the Latitude by Obfervation; to find the Diftance failed, and to prick down the Place of the Ship upon the Chart. Suppofe a Ship departed from the Illand de Ouef ant is arrived to a Place whofe Latitude, by Obfervation, is found to be 46 Degrees; take, between your Compaffes, the Diftance from the 46 th Degree of the Meridian to the $48 \frac{1}{2}$, which is the Latitude of the Place of Departure, over which $48 \frac{1}{2}$ Degree and the Ifland de Ouefant having laid a Ruler, flide one Foor of
the Compaffes thus opened along the Side of this Ruler, till the other Foot interfects the Line of the Ship's Way; then the Point of Interfection S will be that whereat the Ship was at the Time of Obfervation. Now to find the Diftance failed, you muft extend the Compafles from this Point S to the Place of Departure, and lay off this Extent upon the Meridian, which will reach from the 46 th Degree to the 49th; and confequently the Diftance failed will be 60 Leagues, allowing 20 Leagues to a Degree.

Example IV. The Latitude and Longitude of a Place being given, to find that Place in the Chart. Having placed one Foot of a Sea-Chart Compafs upon the known Degree of Latitude, and the other upon the nigheft Parallel, you mult place with your other Hand one Foot of another Pair of Compaffes upon the known Degree of Longitude on the Meridian, and the other Foot upon the neareft Meridian; and then flide both thefe Pair of Compafies until their two Points meet each other: for then the Point of Concourfe will be that fought. This Operation is very much ufed by Seamen ; for the Point where they are, being firlt found by Calculation, or the Sinecal Quadrant, they can by this means prick down the Place of the Ship upon the Chart, and fo it will be eafy for them to find what Courfe the Ship mult fteer to continue on her Voyage.

Plate XXI

I Senex foulp!
11
I2mi

BOOK VIII.

Of the Conftruction and Ufes of Sun-Dials.

Remarks and Definitions appertaining to Dialling.

 U N-Dials take their Name from the principal Circles of the Sphere to which they are parallel : as, a Horizontal- Dial is one parallel to the Horizon; an Equi-noctial-Dial one parallel to the Equinoctial; a Vertical-Dial one that is parallel to a Vertical Circle; and fo of others.
There are two forts of Styles placed on the Surfaces of Dials; one is called a Right Style, which is a pointed Iron-Rod, that fhews the Hour or Part on a Dal by the Shadow of its Extremity; and the other is called an oblique or inclined Style, or elfe the Axis, which fhews the Time of Day upon a Dial by the Shadow of the whole Length thereof.
The Extremity of the right Style of any Dial, reprefents the Center of the World and Equator, and the Platie of a Dal is fuppofed to be as far difant from the Center of the Earth, as is the Length of the right Style. For becaufe the Sun's Ditance from the Center of the Eartl is fo great, and the Diftance of any Point in the Earth's Superficies from the Center is fo fmall, compared with the Sun's Ditance; therefore any Point on the Earth's Surface may without any fenfible Error be taken for its Center : and fo the Extremity of the Style of any Dial may be taken for the Center of the Earth; and a Line parallel to the Axis of the World, which paffes thro the Extremity of the Style, may be confidered as the Axis of the World.

The Hour-Lines, which are drawn upon Dial-Planes, are the Interfections of the faid Planes made by the Hour-C rcles of the Sphere.

The Center of a Dal, is the Interfection of its Surface with the Axis of the Dial paffing thro the Extremity of the Style parallel to the Axis of the World ; and in this Center all the Hour-Lines meet each other.

All Dial-Planes may have Centers, except Eaft, Weft, and Polar ones; for on thefe the Hour-Lines are all parallel between themfelves.

The Vertical Line of a Dial-Plane, is a Perpendicular drawn from the Extremity of the Style to the Foot thereot ; but the Vertical Line of the Place wherein the Dial is, is a right Line perpendicular to the Horizon drawn thro the Extremity of the Style.

Dals have likew fe two Meridians ; one of which is the fubfylar Line or proper Meridian of the Dial-Plane, becaufe its Circle paffes thro the Vertical Line of the Dial-Plane; and the other, which is the Meridian of the Place, hath its Meridian Circle paffing thro the Verical Line of the Place.

Wien a Dial declines neither to the Eaft or Weft, the fubftylar Line, or Meridian of the Plane, coincides with the Meridian of the Place or Hour-Line of 12, let the Surface of the Dial be Vertical, Horizontal, or even inclined upwards or downwards.

The Horizontal Line of a D.al-Plane, is the common Section of the faid Plane; and a horizontal or level Line paffing thro the Extremity of the Stile; and the Equinoctial Line is the common Seation of the Dial-Plane and Equinotial Circle : and this Line is always perpendicular to the fubfylar Line; and confequently if the Pofition of the fubitylar Line be known, and a Point of the Equinoctial Line be given, we may likewife have the Pofition of the Equinoctial Line: and contrariwife, if the Equinoctial Line be given, we may have the fubfylar
fubfylar Line, which is perpendicular thereto. Nose, This fubftylar Line muft pafs thro the Foot of the Style and the Center of the Dial.

The Hour-Line of fix always paffes thro the Interfection of the Horizontal and Equinoctial Lines in declining Dials; and fo the faid Point of Interfection is one Point of the Hour-Line of fix. Note, The Point wherein the Subftyle and Meridian Lines meet, is the Center of the Dial.

When a Dial is to be drawn upon a Plane, you mult firlt find the Pofition of the faid Plane, or of the Wall it is to be fet up againft, with regard to the Sun and the principal Circles of the Sphere : And this may be done, in obferving feveral Times the fame Day, at every 3 or 4 Hours interval, where the Shadow of the Extremity of a Style falls upon the Dial-Plane: for by this means the Pofition of the Dial-Plane may be determined, and afterwards all the Hour-Lines, $\mathcal{G} c$. may be drawn thereon in the manner we fhall hereafter Chew. Note, The Exactnefs of a Dial very much depends upon thefe Points.

C H A P. I.

Of Regular and Irregular Dials, drawn upon Planes and Bodies of different Figures.

Plate 22.
Fig. 1.

TH I S Infrument reprefents a hollow Body, having if Planes, upon each of which a Dial may be drawn.
The upper Plane A, is parallel to the Horizon ; and fo upon this a Horizontal-Dial is drawn, as well as upon the under Plane E, whereon the Sun fhines but a very little. The Plane B is parallel to the Axis of the World, and makes an Angle of 49 Degrees with the Horizon of Paris; for the Latitude of which, all the Dials are fuppofed to be drawn. Now upon this Plane is drawn an upper Polar D_{12}, and upon the Plane F, which is oppofite therero, is drawn an under Polar Dial. The Plane C is parallel to the Prime Vertical, and fince it faces the South, there is drawn thereon a South Vertical Dial. And upon the oppofite Plane to this, which is towards G, and faces directly to the North, is drawn a Vertical North Dial, which cannot be reprefented in this Figure.

The Plane H, which is parallel to the Equinoctial, and fo makes an Angle with the Horizon of 41 deg. viz. the Complement of the Latitude of Paris, hath an upper Equinotial Dial drawn upon it; and upon the oppofite Plane D, is drawn an under Equinoctial Dial. The Piane K sparallel to the Plane of the Meridian, and becaufe it directly faces the Weft, a Merdional Weft Dial is drawn thereon, and upon the oppofite Plane to this is drawn a Meridonal Eaft Dial. The Plane I makes an Angle of 45 deg. with the Meridian; and therefore there is drawn upon it a vertical Decliner, declining Southweftwardly 45 deg. and upon the oppofite Plane to this is drawn a North-Eaft Decliner of 45 deg . Finally, The Plane L declines North-Welt 45 deg. and its Oppofite 45 deg. South-Eaft ; and fo upon thefe two Planes are drawn North-Weft and South-Eaft Decliners.

The firft Nine of the abovementioned Dials, are called Regular ones; and the Four others, which decline, are called Irregular Dials.

The Axes of all thefe Dials are parallel to each other, and to the Axis of the World. We fhall hereafter give the Conftruction of all thefe Dials, as well as of thofe on the following Inftrument, of which we are going to \{peak.

The Conftruction of Dials drawn upon a Dodecahedron.

Fig. 2.
This Figure is one of the five Regular Bodies, of which we have fpoken in the firft Book. 'This Body is called a Dodecahedron, and is terminated by 12 equal Pentagons, upon every of which may be drawn a Dial, except on the undermoft.

The Plane A being Horizontal, hath a Horizontal-Dial drawn thereon, whofe Hour-Line of 12 bifects one of the Angles of the Pentagon. Upon the Plane B, which faces the South, is drawn a direct South-Dial, inclining towards the Zenith, or upwards 63 deg. 26 min . The Center of this Dial is upwards, and the fubftylar Line is the Hour-Line of 12 . The oppofite Plane to this, is a North vertical one, inclining downwards or towards the Nadir 63 deg. 26 min. and fo there is drawn thereon a North inclining Dial, whofe Center is downwards.

The Dial C, is a South-Eaft inclining Recliner, whofe Declination is 36 deg. and Inclination to the Zenith 63 deg. 26 min . and its Center is downwards. The Dial D is a NorthEaft Decliner of 72 deg . inclining towards the Nadir $\sigma_{3} \mathrm{deg} .26 \mathrm{~min}$. the Center being upwards, and its oppofite is a South-Weft Decliner of 72 min . inclining towards the Zenith 63 deg .26 min . the Center being downwards.

The Dial E is a North-Eaft Decliner of 36 deg. and inclines towards the Zenith C_{3} deg. 26 min . the Center being downwards. The oppofite Dial to this, is a South-Weft Decliner of 36 deg. and inclines towards the Nadir 63 deg. 26 min . its Center being upwards. Finally, the Dial F is a South-Eaft Decliner of 72 deg. inclining towards the Zenith 63 deg. 26 min . the Center being downwards ; and its oppofite is a North-Welt Decliner of 72 deg. inclining towards the Nadir σ_{3} deg. 26 min. the Center thereof being upwards.

All thefe Dials are furnifhed with their Axes, which are parallel between themfelves, and to the Axis of the World.

Now if one of thefe Bodies of Dials be fet upon a Pedeftal, in a Place well expofed to the Sun, and then be fet right by means of a Compafs or Meridian Line, drawn in the manner we fhall hereafter fhew; all the Dials that che Sun fhines upon will fhew the fame Hour or Part at the fame time by the Shadows of the Styles.

But if a Dodecahedron of Dials be to be placed upon a Pedeftal fixed in a Garden, it ought to be made of folid Matter, as Stone or good Wood, well painted to preferve it from Rain, $\dot{G} c$. therefore it will be here neceflary to fhew how to cut out a Dodecahedron.

Take a Stone cut out into a perfect Cube, and divide each of the four Sides of its Faces Fig. 3. into two equal Parts by two Diameters A C, B D. And at the Points A and C, make the Angles EAF, and HC G, each 116 deg. 34 min . that is, make Angles at the Points A and C, on each fide the Diameter A C, of 58 deg . 17 min . each: becaufe all the Surfaces of the Dodecahedron make Angles of 116 deg. 34 min . with each other ; therefore two Faces thereof being horizontally placed, all the others will incline 63 deg. 26 min. the Complement of 116 deg. 34 min . to 180 deg. Now the Space between F and G, or $E H$, will be the Length of each fide of the Pentagons, half of which, viz. B F, mult be taken and laid of both ways from the Point I to the Points Q and X. And this muft be done upon the Diameters croffing each other on all the other Faces of the Cube. Afterwards the Stone muft be cut away along the Diameters to the Extremities of the fides of the Pentagons: for example, you muft cut away the Stone down or all along the Diameter K M, in a Right Line to the Point Q in the firt Surface of the Cube, as likewife all along the Diameter L N ftrait forwards to the Point S, and again all along the Diameter $B D$ directly forward to the Point T. And proceeding in this manner with the other Faces of the Cube, you may compleat your Dodecahedron. But it will be very proper for a Perfon that has a mind to cut out one of thefe Bodies, to have a Pafteboard one before him, thereby to help his Imagination, that fo he may know better what Angles and Sides to cut away.

Cylinders may be cut likewife into Dodecahedrons, but let the Method above given fuffice.

We make alfo very curious Dials on the Faces of fmall brafs Dodecahedrons.

The Comfruttion of an Horizontal Dial.

'The fourth Figure is an Horizontal Dial: To make which, firf draw the two Lines A B, Fig. A. C D, cutting each other at Right Angles in the Point E, which will be the Center of the Dial, the Line A.B the Meridian or Hour-Line of 12 , and the Line C D the Hour-Line of 6 . This being done, make the Angle B E F, 49 deg. equal to the Elevation of the Pole at Paris (the Elevation of the Pole at Paris is but 48 deg . 51 min . but we neglect the nine Minutes, as being but of fmall Confequence in the Conftruction of Dials) and the Line EF will reprefent the Axis of the World. In this the Point G muft be chofen at pleafure, reprefenting the Center of the Earth, and GH muft be drawn at Right Angles to E F , cutting the Meridian or Hour-Line of 12 in the Point H. This Line GH. reprefents the Radius of the Equinoctial. Now take H G between your Compaffes, which lay off from H to B on the Meridian Line, and draw the Right Line L HK perpendicular to the Meridian, which will reprefent the common Section of the Equinoctial, and the Plane of the Dial : then about the Point B, as a Center, defcribe the Quadrant $M H$, which divide into fix equal Arcs, each of which will be 15 deg. and draw the dotted Lines B 5, B 4, $\mathrm{B}_{3}, \mathrm{~B}_{2}, \mathrm{~B}$ 1. Thefe will divide the Line L H into the Points $1,2,3,4,5$, thro which Points, if Lines be drawn from the Center E of the Dial, you will have the Hour-Lines of 1, 2, 3, 4, and 5, on one fide the Meridian ; and becaufe the Hour-Lines equally diftant on both fides from the Meridian make equal Angles with the Meridian, therefore if the Divifions $\mathrm{I}, 2,3,4,5$, on one fide the Meridian, be laid off from H towards K on the other fide, and thro the Points where they terminate are drawn Lines from the Center E; thefe will be the Hour-Lines of $11,10,9,8,7$. And if the Hour-Lines of 7 and 8 in the Morning are continued out beyond the Center, they will give the Hour-Lines of 7 and 8 in the Evening, and likewife the Hour-Lines of 4 and 5 in the Afternoon continued out in the fame manner will give thofe of 4 and 5 in the Morning. Note, Inftead of drawing the Quadrant M H, we might, for greater facility, have only drawn an Arc greater than 60 deg . for then if an Arc of 60 deg. had been taken upon it from the Point H, by means of its Chord, which is equal to Radius, and the faid Arc had been divided in four equal Arcs, each of 15 deg . and another Arc of 15 deg . had been added to that of 60 deg . for the Hour of 5, we might have drawn the Lines $\mathrm{B}_{1}, \mathrm{~B}_{2}, \mathrm{~B}_{3}$, foc. as we have already done.

Now to draw the Half-hours, you murt bifect each of the Arcs of 15 deg. on the Quadrant MH, in order to have Arcs of 7 deg. 30 min. and for the Quarters, each of thefe laft Arcs mulf be again bifected; and thro each Point of Divifion occuit Lines muit be drawn from the Center B, cutting the Equinozial Line K L. Tien if the Edge of a Ruler be laid thro thefe Points of Concourfe and the Center E of the D.al, the Halfs and Quarters of Hours may be drawn.

The Hour-Lines being drawn upon your Dial, you may give it what Figure you pleafe, as a Paraliclogram, regular Pentagon, w_{c} c.
This Dial being fixed upon a very level Plane, that is, fet parallel to the Horizon, expofed to the Sun, and its Hour-Line of 12 placed exactly North and South; as alfo the Style or Axis EMF being raifed perpendicularly upon the Hour-Line of 12, fo as EF be parallel to the Axis of the World: I fay, if thefe things be fo ordered, the Shadow of the Axis or Style will fhew the Hour of the Day from Sun-rifing to Sun-fetting.

The Confruction of a Non-declining Vertical Dial.

This Dial is parallel to the Prime Vertical, which cuts the Meridian at Right Angles, and paffes thro the Eaft and Weft Points of the Horizon. The Manner of drawing it is thus : Firft draw the Lines E B and C D at Right Angles, the firf of which fhall be the Hour-Line of 12, and the other the Hour-Line of 6 ; then make the Angle BEF at the Point E, the Cenrer of the Dial, equal to the Complement of the Elevation of the Pole, which at Paris is 4 I deg. and raife the Line IG perpendicularly on the Meridian; this will be the right Style, and the Point I is the Foot thereof, and G the Extremity, which, as above faid, may be takenf for the Center of the Earth: and this Line both ways produced, will be the Horizontal-Line.

From the Puint G, in the Right Line E G F, which reprefents the Axis of the World, raife the Line G H at Right Angles thereto, cutting the Meridian in B. This Line GH fhall reprefent the Radius of the Equinoctial, and the Line L H K, drawn thro the Point H, curting the Meridian at Right Angles, reprefents the common Section of the Equinoctial and the Plane of the Dial. Now make H B equal to H G, and about the Point B, as a Center, defcribe the Quadrant of a Circle MH , which divide into 6 equal Arcs, each of which will be 15 deg. by dotted Lines, dividing the Line L K into unequal Parts, which fhall be the Tangents of the faid Arcs. Finally, If thro thofe Points of Divifion and the Center E, you draw Lines, they will be the Hour-Lines on one fide of the Meridian; and for drawing the Hour-Lines on the other fide the Meridian, as alfo the Halves and Quarters of Hours, you muft do as is fhewn in the Horizontal-Dial.

This Dial is fet up againft a Wall, or on a very upright Plane, directly facing the South; for which reafon it is called a Meridional Vertical Dial : its Meridional or Hour-Line of 12 muft be perfectly upright, and its Horizontal-Line level. The Center thereof is upwards, and its Axis points towards the under Pole. The oppofite Dial to this, is a Vertical North one, having the Center downwards, and the Extremity of its Axis pointing to the upper Pole of the World. The Conftruttion of this latter Dial is the fame as that of the ocher, the Hour-Lines and the Axis making the fame Angles with the Meridian, as they do on that. But the Sun fhines but a fmall time upon this Dial, and this oniy in the Summertime, viz. in the Morning from his rifing till he has paffed the Prime Vertical, and in the Evening from the time he has again paffed the Prime Vertical till his fetting. When the Sun defribes the Summer Tropick, he rifes at Paris, at 4 in the Moraing, and comes to the Prime Vertical between 7 and 8 in the Morning; and in the Afternoon he repaffes the Prime Vertical between 4 and 5 , and fets at 8 . Therefore we need only draw the Hour-Lines upon this Dial from 4 in the Morning to 8 , and from 4 in the Afternoon to 8 ; at which time the Sun fhines upon the Meridional Vertical Dial, but from about 8 in the Morning to about 4 in the Afternoon. But when the Sun by his annual Motion is again come back to the Equinoctial, he will not fhine at all upon the Vertical North Dial till after he has croffed the Equinoctial again ; and all this time he will thine upon the Meridional Vertical Dial from his rifing to his fetting.

The Cenfruction of a Polar Dial.

Fig. 6
The 6th Figure reprefents an upper Polar Dial, which is one that inclines upwards, but does not decline : for it is parallel to the Axis of the Worid, and the Hour-Circle of 6, which cuts the Meridian at Right Angles. And for this reafon the Hour of 6 in the Morning or Evening can never be fhewn by this Dial ; for the Shadow of the Style being then parallel to the Plane of the Dial, cannot be caft upon it. This Dial likewife lath no Center, and the Hour-Lines are all parallel between themfelves, and to the Axis of the World. The Plane therefore being parallel to the Horizon of a right Sphere, paffes thro the two Poles of the World, from whence comes the Name of a Polar Dial.
The Manner of drawing this Dial is thus: Firt draw the Line AB reprefenting the Equinoetial, and ID at Right Angles thereto, for the Meridian or Hour-Line of 12. Then affume the Length of the Style at pleafure, according to the bignefs of the Plane the Dial is to bedrawn on ; let this be C D, about the Extrenity of which D defcribe a Quadrant,
which divide into fix equal Arcs, (or only defcribe an Arc of 60 Degrees, which divide into four Parts, of 15 Degrees each, for the four firl Hours after Noon, and then add an Arc of is Degrees for the Hour of 5.) This being done, draw dorted Lines from the Point D, thro the Divifions of the Circumference of the faid Arc, to the Line AB; and then iE Lines are drawn thro the Points wherein the dotted Lines cut the Line A B, parallel to the Meridian, thefe Lines will be the Hour-Lines on one fide the Meridian: and if there be as many Parallels drawn on the other fide the Meridian, at the fame Difances therefrom as the refpective parallel Hour-Lines are on the other fide, thefe will be the Hour-Lines on the other fide of the Meridian. The Style of this Dial muit be equal in Length to C F, the Diftance from the Hour-Line of 3 to the Hour-Line of 12 , and may be made in figure of a Right-angled Parallologram; as is that marked above the Letter K in the Figure of the Dial. This Style is fet upon the Hour-Line of $\mathbf{1 2}$, which for this reafon is called the Subftylar Line.

If a fingle Rod only be ufed for a Style, as that which is in the Point C of the Meridian, then the Hour will be fhewn upon this Dial by the Shadow of the Extremity of the Syle ; whereas when a Parallelogran is ufed, we have the Hour flewn by the Shadow of one of its Sides, that is, by a right Line.

An upper Polar Dial may fhew the Hour from feven in the Morning to five in the After ${ }^{\Delta}$ noon; and an under Polar one is ufelefs, unlefs in the Summer, wherein the Hour is thewn thereby, from the Sun's rifing to five in the Morning, and from feven in the Evening till his fetting : and fo for the Elevation of the Pole of Paris, the Hours of four and five in the Morning, and feven and eight in the Afternonn, are only fet down upon this Dial ; and thefe may be drawn as thofe on the upper Polar Dial, for the Difances of the Hour-Lines of four and five in the Afternoon from the Subfyle, on the upper Polar Dial, are equal to the Diftances of the Hour-Lines of four and five in the Morning from the Subftyle on the under Polar Dial. Underfand the fame for the Hours of feven and eight in the Afternoon; and therefore there is no need of drawing the figure of this Dial. Note, The Diftance of the Hour-Lines on thefe Dials depend upon the Breadth of the Style, or the Diftance of the Point D from the Equinoctial Liue.

To fet up this Dial at Paris, the Plane thereof muft make an Angle of 49 deg. with the Horizon, the upper one facing the Sky directly South, that fo the Axis thereof may be parallel to that of the World, and the oppofire Dial to this, viz. the under Polar one faces downwards, the Morning Hours being towards the Weft, and the Afternoon ones towards the Eaft, on both the upper and under ones.

Now if the Horizontal Line is to be drawn upon this Dal, defcribe the Arc G H, about the Point F, the Extremiry of the Seyle, equal to the Elevation of the Pole, viz. 49 deg. for the Latitude of Paris, and draw the Right Line F H, curting the Meridian in the Point I, thro which draw the Horizontal Line LK, at Right Aingles. Now by means of this Line, we may know whether the Dial be well placed, and have its convenient Inclination ; for if the Dial be inclined rightly, a Plane laid along the Horizontal Line, and fupported by the Edge of the Style, will be level or parallel to the Horizon.

A Polar Dial in a right Sphere is parallel to the Horizon, and in a parallel Sphere it is vertical or upright.

Thbe Conffruction of an Equinoctial Dial.

An upper Equinoctial Dial fhews the Hour but only fix Months in the Year, viz, from Fig to the Vernal Equinox to the Autumnal one; and the oppofite Dal to this, which is an under Equinoctial one, fhews the Hour during the other fix Months of the Year, viz. from the Autumnal Equinox to the Vernal one.

The Plane of this Dial is parallel to the Equinotial Circle, and is cut at Right Angles through the Center thereof by the Axis of the World.
The Conftruction of this Dial is thus: Draw two Right Lines A H, and ED, croffing each other at Right Angles, the firft of which fhall be the Hour-Line of 12, and the other the Hour-Line of 6 ; then about the Point A of Interfection defcribe a Circle, each quarter of which divide into fix equal Parts, thro which, if frait Lines be drawn from the Center A, thefe Lines will be the Hour-Lines, becaufe they each make equal Angles of 15 deg. and if each of thefe Angles be halved and quartered, the halves and quarters of Hours will be had.

The Confruction of an under Equinoctial Dial is the fame as of an upper one ; and in a parallel Sphere, viz. where the Pole is in the Zenith, there is but one EquinoZial Dial, which will likewife be there an Horizontal one. And in a right Sphere, viz. where the two Poles are in the Horizon, thefe Dials are non-declining Vertical ones, and are fet up againft Walls, one of which faces the North Pole, and the other the South Pole, the Sun flkining upon each fix Months in the Year. But in an oblique Sphere, as that which we inhabit, thefe Dials are inclined to the Horizon, and make an Angle therevivith equal to the Complement of the Latitude, viz. at Paris, an Angle of 4 I deg...

The Axis of an Equinocial Dial is a frait Iron Rod going thro the Center of the Dial perpendicular to the Plane thereof, and parallel to the Axis of the World. The Length of
this Rod may be at pleafure, when it hath no other Ufe but fhewing the Hour by the Shadow thereof; but when the Length of the Days, and the Sun's Place are to be fhewn thereby, the faid Rod muft have a determinate Lengeh, as we fhall fhew hereafter.

The Conftruction of Eaft and Weft Dials.

Thefe Dials are parallel to the Plane of the Meridian ; one of which directly faces the Eaft, and the other the Weft. The $8 t$ b Figure is a Weft Dial, having the Hour-Lines parailel to each other, and to the Axis of the World, as in a Polar Dial, and their Conftruction is nearly the fame as of the Hour-Lines on a Polar Dial.

This Dial is made thus: Firft draw the right Line A B, reprefenting the Horizontal Line, and about the Point A, aflume the Arc B C of a Radius at pleafure in this Line, equal to the Complement of the Latitude, or Height of the Equator above the Horizon, which at Paris is 4 I deg. Then draw the Line CD, produced, as is neceffary, from the Point C, and this Line fhall reprefent the common Section of the Equinoctial and Plane of the Dial; after this, draw E D from the Point D, parallel to the Equinoctial Line, and this Line E D will be the Place of the Subftyle, that is, the Line on which the Style muft be placed ; as likewife the Hour-Line of fix. Now to draw the other Hour-Lines, affume the Point E at pleafure on the fubftylar Line, about which, as a Center, defcribe an Arc of 60 deg. which divide into four equal Parts for 15 deg. each, beginning from the fubftylar Line. After this, lay off as many Arcs of 15 deg. as is neceflary upon the faid Arc both ways continued, and draw dotted Lines from the Center E thro all the Divifions of the Arc to the Equinoctial Line : then if right Lines be drawn thro the Points in the Equinoctial Line, made by the dotted Lines, parailel to the Hour-Line of 6 , and perpendicular to the Equinoctial Line; thefe Lines will be the Hour-Lines. Note, This Dial Thews the Time of Day after Noon to the fetting of the Sun; and fince the Sun fets (at Paris) at eight a-Clock in the Summer, we have pricked down the Hour-Lines from one to eight in this Dial, as appears per Figure.

The Conftruction of an Eaft Dial is the fame as of this; and there are pricked down the Hour-Lines upon it from the Sun's rifing in Summer, viz. from four in the Morning to eleven. The reafon that the Hour-Line of twelve cannot be drawn upon thefe Dials, is, becaufe when the Sun is in the Meridian, his Rays are parallel to their Planes.

If a Weft Dial be drawn upon a Sheet of Paper, and then the faid Paper is rendered 'Tranfparent by oiling, you will perceive thro the backfide of the Paper an Eaft Dial drawn entirely; only the Figures of the Hours muft be altered, that is, you muft put II in the place of $1 ; 10$ in the place of 2 ; and fo of others.

The Siyle of thefe Dials is a Brafs or Iron Rod, in Length equal to E D, which is likewife equal to the Diftance of the Hour of 3 from the Hour of 6. 'This Style is fet upright in the Point D, and fhews the Hour by the Shadow of its Extremity. Thefe Dials, which may have likewife a Style in figure of a Parallelogram, as we have mentioned in fpeaking of Polar Dials, are fet upright againft Walls or Planes, perpendicular to the Horizon, and parallel to the Meridian, one of which direEtly faces the Eaft, and the other the Weft, in fuch manner, that the Horizontal Line be pe:festly level.

The Confiruction of Vertical Declining Dials.

A Verrical Dial is one that is made upon a Vertical Plane, that is, a Plane perpendicular to the Horizon, as a very upright Wall.

Among the nine Regular Dials of which we have fpoken, there are four of them Vertical ones, which do not decline at all, fince they directly face the four Cardinal Parts of the World. It now remains that we here fpeak of Irregular Dials, fome of which are vertical Decliners, others undeclining Decliners, and finally, others declining Incliners: Vertical Decliners are of four Kinds: for fome decline South-eaftwardly, the oppofite ones to thefe, North-weftwardly, others decline South-weftwardly, and the oppofite ones to thefe, North-eaftwardly.

Now among the Irregular Dials, the vertical Decliners are moft in ufe, becaufe they are made upon or fet up againft Walls, (which commonly are built upright) or elfe upon Bodies whofe Planes are upright; but before thefe Dials can be made, the Declinations of the Walls or Planes, on which they are to be made or fet up againft, muft firft be known or found exactly: and this may be done by fome one of the Methods hereafter mentioned.
Fige 9.
Now fuppofe we know that a Plane (as that marked I of Figure 1.) or upright Wall, declines 45 deg. South-weftwardly at Paris, or thereabouts, where the Pole is elevated 49 deg. above the Horizon. It is required to draw a Dial for this Declination.

Firft, draw the Lines A B, C D, croffing each other at Right Angles in the Point E, the former of which fhall be the Hour-Line of 12, and the other the Horizontal Line. About the Point E, as a Center, draw the Arc F N of 45 deg. becaufe the Plane's Declination is fuch, and fince it is South-weftwardly, the faid Arc muft be drawn on the Right-fide of the Meridian; but if the Declination had been South-eaftwardly, that Arc muft have been

Chap. I.

drawn on the Left-fide the Meridian. This being done, raife the Perpendicuiar FH from the Point F to the Horizontal Line, that fo we may have one Point of the Style therein, viz. the Foot of the Siyle. Then take the Diftance EF berween your Compafies, and lay it of upon the Horizontal Line from E to O , and about the Poiar O , as a Center, defrrive the Arc E G equal to the Height of the Pole, viz. in this Cafe 49 deg. and draw the dotted Line O A to the Hour-Line of 12 ; then A will be the Center of the Dial thro which the Sutfyle A H muft be drawn of an indeterminate Leugth. Note, This Sabityle is one of the principal Lines, by means of which a Dial of this kind is drawn, and upon which the whole cxatnefs thereof almoft depends.

Upon the Point H raife the right Line H I equal to HF, perpendicular to the Subfyle A H, and draw the right Line A I, prolonged, for the Axis of the Dial. Then let fall the Perpendicular K I to the Axis, cutting the fubltylar Line in K , and make K L equal to K I, and draw a right Line both ways thro the Point K, perpendicular to the Subftyle A K ; this will reprefent the Equinoctial Line, and cuts the Horizontal Line in a Point thro which the Hour-Line of σ muft pafs. Thus having already the Hour-Lines of 12 and σ, if the Operations hitherto performed have been done right, two dotted Lines L 6, and LN being drawn, will be at Right Angles; to each other. Again, about the faid Point L, as a Center, defcribe the Quadrant of a Circle between the faid dotted Lines, whofe Circumference divide into 6 equai Arcs, of is Degrees each, and draw occult Lines thro the Points of Divifion to cut the Equinocial Line; but to have the Morning Hour-Lines, and thofe after 6, prolong the Arc of the Quadrant both ways, and lay off as many Arcs of ${ }_{15}$ Degrees upon it, as is neceffary, that fo occult Lines may be drawn from the Center L to cut the Equinctial Lise. Then if Lines are drawn from the Center A thrn all the Points wherein the occult Lines cut the Equinoctial Line, thefe Lines thus drawn will be the ElourLines. Note, There muft be but 12 Hour-Lines drawn upon any vertical declinisg Plane, for the Sun will flime on any one of them but 12 Hours.

Points in the Horizontal Line D C, thro which the Hour-Lines mult pafs, may be found otherwife, by applying the Center of a Horizontal Dial to the Point F, in fuch manner, that the Meridian Line thereof coincides with the Line F E, and its Hour-Line of 6, with the Line F 6: for then the Points where the Hour-Lines of the Horizontal Dial cut the faid Line D C, will be the Points therein thro which the Hour-Lines muft be drawn from the Center A.

The Hour-Lines of fix Hours fucceffively being given upon the Plane of any Dial whatfoever, the other Hour-Lines may be drawn after the following manner: Suppofe, in this Example, that the Hour-Lines from 6 to 12 are drawn; now if you have a mind to draw the Hour-Lines of 9, Io and 11 in the Morning, which may be pricked down upon this Dial, draw a Parallel, as $S V$, from the Point V, taken at pleafure on the Hour-Line of 12, to the Hour-Line of 6 , which fhall cut the Hour-Lines of 1,2 , and 3 , in the Afternoon. This being done, the Diftance from V to the Hour-Line of I taken on this Parallel, and laid off on the ocher fide, will give a Point in the faid Parallel thro which the Hour-Line of II muft be drawn; likewife the Diflance $V 2$ will give a Point thereon, thro which the Hour-Line of 10 mult be drawn; and the Diftance V_{3} will give a Point thro which the Hour-Line of 9 muft pafs. And fo if Lines are drawn from the Center of the Dial A thro the faid Points, chey will be the Hour-Lines.

In this manner likewife may be found the Points thro which the Hour-Lines of 7 and 8 in the Evening are drawn, in firft drawing a Parallel to the Hour-Line of 12, cutting the Hour-Line of 6 in one Point, and meeting the Hour-Lines of 4 and 5 produced; for the Diltance from the Points where the Hour-Lines of 6 and 5 are cut by this Parallel, laid off on the other fide from the Point where the Hour-Line of 6 cuts the Parallel, will give a Poine upon it thro which the Hour-Line of 7 muft be drawn. And the Diftance from the Points where the Parallel cuts the Hour-Lines of 6 and 8 , laid off on the other fide on that Parallel, will give a Point therein thro which the Hour-Line of 8 mult pafs; and if Lines are drawn from the Center A thro thofe two Points found, they will be the Hour-Lines of 7 and 8 in the Evening. This is a very good way of drawing thofe Hour-Lines thar are pretty diftant from the fubfylar Line, becaufe thereby we avoid cutting the Equinozial very obliquely.
The Confruation of a Scuth-Eaft verrical Declirer is the fame as of that which we have defcribed, excepting only that what was there made on the Right muft here be on the Lefr, and the Figures for the Morning Hours fet to thofe for the Afterncon: fo that if a SouthWe \AA declining Dial be drawn upon a Sheet of Paper, and afterwards the Paper be oiled, that you may fee thro ir, you will fee a South-Eaft Decliner thro the Paper ; only the Figures fet to the Hour-Lines muft be altered ; as, where the Figure of I ftands, you mult fet II; where the Figure of 2,10 ; where the Figure of 3,9 ; and fo on. By; this means the fubfylar Line, which falls between the Hour-Lines of 3 and 4 Afternoon, in Figure 9 , will fall in this Dial between 8 and 9 in the Morning. And if the Plane's Dectination had been lefs than 45 deg. the Subfyle would have fallen yet nearer to the Meridian : but if, on the contrary, the Declination thereof had been greater, the Subfyle would have fallen more diftant from the Meridian, and pretty near the Hour-Line of 6. But when this
happens, the Hour-Lines fall fo clofe together near the Subfyle, that we are obliged to make the Model of a Dial upon a very large Plane, that fo the Hour-Lines may be very long, and the part of the Dial towards the Center taken away.

After the abovenamed manner, likewife may be drawn North-Eaft and North-Weft Dials; but thefe have their Centers downwards underneath the Horizontal Line, and properly are no other but South-Eaft or South-Welt Decliners inverted, as may be feen in Figure io, which reprefents a North-Weft Decliner of 45 deg. drawn for the Plane L of Figure I. and the fubflylar Line of this Dial muft be between the Hours of 8 and 9 in the Evening, whence one Decliner only may ferve for drawing four, if they have an equal Declination, tho to different Coafts; two of which will have their Centers upwards, and the other two their Ceaters downwards.

To draw the Subfylar Line upon a Plane by menns of the Shadow of the Extremity of an IronRod, obferved twice the fame Day.

Suppofe the Subfylar Line is to be found on the Decliner of Figure 9, firt place obliquely upon the Dial-Plane, a Wire or Iron Rod, fharp at the end, fo that the Extremity thereof be perpendicularly over the Point H in the Plane. This may be done by means of a Square.

Now fince this Figure is a South-Weft vertical Decliner, therefore the Subfylar Line thereon mult be found among the Afternoon Hours, to the Right-hand of the Meridian; and corfequently, let us fuppofe the Shadow of the Extremity of the Iron-Rod at the firt Obiervation to fall on the Point P; then about the Point H, the Foot of the Style, with the Difance H P , defrribe the circular Arc PR. This being done, fome Hours after the firf Obfervation the fame Day, obferve when the Shadow of the Extremity of the Rod falls a fecond time upon the aforefaid Arc, which fuppofe in the Point Q: then if the Arc $P Q$ be bifected in the Point R, and a Right-line be drawn thro the Points R and H ; this Line uill be the Subfyle, which being exaatly drawn, and the Height of the Pole above the Horizon of the Place where the Dial is made for, being ocherwife known, it will not then be difficult to compleat the Dial; for firft, the Meridian or Hour-Line of 12 is always perpendicular to the Horizon, in vertical Planes, and the Point wherein the Meridian and Subfyiar Line produced meer each other, (as the Point A) will be the Center of the D.al. The Horizontal Line is a level Line paffing thro the Foot of the Style, as D H C.

And to draw the Equinoctial Line, you munt firt form the Triangular Style A H I on the Subflyle, whofe Hypothenufe A I is the Axis, and Side H I the right Style ; then if IR be drawn from the Point 1 perpendicular to the Axis, meeting the Subfylar Line in the Pont K ; and if thro K a Right Line M K N be drawn at Right Angles to the Stylar Line, this Line will be the Equinotial, and the Point wherein it cuts the Horizontal Line will be always the Point thro which the Hour-Line of 6 muft pass. Moreover, the Diftance K L, laid off on the Stylar Line, will give the Point L the Center of the Equinoctial Circle. Now what remains to be done, may be compleated as before explained; and even the whole Dial may be drawn in one's Room, after the Pofitions and Concourfes of the principal Lines arelaid off upon a Sheet of Paper, and the Angle which the Subfylar Line makes with the Meridian or Horizontal Line be taken ; for one is the Complement of the other.

Now to prove whether the Equinoctial Line be drawn right, make the Angle B A O equal to the Complement of the Elevation of the Pole, viz. 41 deg. for the Latitude of Paris, draw the Line A O to the Horizon, and make the Angle A ON a Right one, that fo the Point N may be had in the Meridian or Hour-Line of 12, thro which the Equinoctial Line muft pafs. Thus having feveral Ways for finding the principal Points, one of them will ferve to prove the other.

When a Dial Plane declines South-eaftwardly, the Subfylar Line will be on the right Side of the Meridian. In which Cafe it is proper to take notice, that in finding the Subfylar Line, as above, to obferve when the Shadow of the Extremity of the Rod falls upon the Plane, as foon as the Sun begins to fhine thereon; as likewife to mind the Time very exactly when the Shadow of the Extremity of the Style comes again to touch the circular Arc; you may operate in this manner feveral Days fuccefiively, in order to fee whether the Pofition of the Subfylar Line has been found exactly.

When a Plane declines North-Eaft or North-Weft, the Shadows of the Extremity of the Iron Rod fall above the Foot of the Style, and fo the Center of the Dial muft be downwards. Likewife the moft proper Time for making thefe Operations is about 15 Days before or after the Solfices, for when the Sun is near the Equinoctial, his Decination is too fenfibie, and the Operations lefs exact. Neverthelefs the Equinoctial Line may be drawn upon a Fiane, when the Sun is in the Equinoctial Foints, and by that means a vertical declining Dial confructed, by the following Method.

To drazw the Equinoctial Line upon a verical Plane by merns of the Shadow of the Extremity of an Iron-Rod.
The moft fimple and eafy Method to draw the Equinoctial Line upon a Wall or Plane, is at the Time when the Sun is in the Equinocial, (tho this may be done át any other

Chap. 1.

Time by more complicated Methods) for when the Sun defcribes the Equinoctial by his diurnal Motion, the Shadows of the Extremity of the Iron-Rod or Scyle, will all fall upon a Plane in a right Line, which is the common Section of the Equinctial Circie of the Heavens and the Plane. Therefore if feveral Points, pricked down upon a Plane, made by the Shadow of the Extremity of the Rod, on the Day the Sun is in the Equator, be joined, the right Line joining them will be the Equinotial Line, as the Line M N, in Figure 9. This peing done, draw the right Line A HL thro the Foot of the Style at Right Angles to the Equinoctial Line, and this will be the Subftylar Line: Moreover, draw the level Line D H C thro the Foot H of the Style; this will be the Horizontal Line; and if HI be drawn equal to the Height of the right Style, and parallel to the Equinoctial Line and the Points K and L joined; and if A I be drawn at Right Angles to K I, then the Point A will be the Center of the Dial, and the upright Line Ă B the Meridian or Hour-Line of 12 . The common Section of the Equinoctial and Horizontal Lines, will likewife be the Point thro which the Hour-Line of 6 muft pais, and confequently wherewith the Dial may be finifhed. Note, The Angle H F E will be the Plane's Declination.

To draw a Dial upon a Vertical Plane by means of the Shadow of the Extremity of an Iron-Rod or Style obferved upon the Plane at Noon.

A Style, as H I, (Vide Figure 9.) being fet up on a Wall or Dial Piane, whofe Foot is H , and Extremity I; and if you know by any means when it is Noon, which may be known by a Meridian Line drawn upon a Horizontal Plane, as we fhall mention hereatter, note where the Extremity of the Shadow of the Style HI falls upon the Plane at Noon, which fuppofe in the Point N, and thro this Point draw the Perpendicular A N B , which confequently will be the Meridian of the Place or Hour-Line of 12 ; then draw the level Line CHD, cutting the Meridian at Right Angles in the Point E; this will be the Horizontal Line. Again, Draw H F equal in Length to the right Style H I, and parallel to the Meridian; then take the Hypothenufe E F between your Compalfes, and lay it off upon the Horizontal Line from E to O, and make the Angie E O A equal to the Elevation of the Pole, viz. 49 deg. and then the Point A will be the Center of the Dial.

Likewife make the Angle E O N, underneath the Horizontal Line, equal to the Complement of the Elevation of the Pole, viz. 41 deg and the Point N on the Meridian Line will be that thro which the Equinoctial Line muft pats. Then if the right Line A HK be drawn thro the Center A, and the Foot of the Style H, this will be the Sublylar Line; and if a Perpendicular be drawn thro the Point N to this Line, the faid Perpendicular will be the Equinoctial Line. Thus having found the principal Lines of the Dial, you may compleat it by the Methods before explained.

This Method of drawing a Dial at any Time of the Year, by means of the Shadow of the Extremity of the Siyle H I obferved at Noon, may ferve, when it is not poffible to find the Subftylar Line by the Obfervations of the Shadows of the Extremity of an Iron-Rod or Style, which happens when Planes decline confiderably Eaftwards or Weftwards.

There are feveral other Methods of drawing Vertical Dials on Walls or Planes : but thofe would take up too much time to mention in this fmall Treatife, wherein we have cnly laid down the moft fimple and eafy Methods of drawing Vertical Dials. And in order to draw Dials more exactly, we fhall hereafter lay down Rules for calculating the Angles the Hour-Lines make at the Ceiters; and fo the other Methods may be verified by thefe Rules.

The Conforution of Non-declining inclining Dials.

The Inclinations of thefe Dials are the Angles that their Planes make with the Horizon, and fome of them face the Heavens, and others the Earth. There are likewife two Kinds of them with regard to the Pole; and two other Kinds with regard to the Equinoctial.

If a Piane facing the South hath an Inclination towards the North, this Inclination may Fig. II, İ. be lefs or greater than the Elevation of the Pole; for if the Inclination be equal to the Elevation of the Pole, this Dial-Plane will be an upper or under Polar one, whofe Conftruction we have already laid down.

If the Inclination be lefs than the Elevation of the Pole, which at Paris is nearly 49 deg. and you would make a Dial upon a Plane facing the South, having 30 deg. of Inclination towards the North, fubftract 30 deg . from 49 deg . and the Remaincler 19 deg. will be the Height of the Axis or Style above the Plane. Then if a Horizontal Dial be made upon this Plane for the Latitude of 19 deg. in the manner we have already laid down, we fhall have an Inchmer of 30 deg. drawn, becaufe the faid Plane thus inclined is parallel to the Horizon of thofe Places where the Pole is elevated 19 deg. and confequently this mat be a Horizontal Dial for thofe Places. The Center of this Dial is downwards, underneath the Equinoctial Line, and the Morning Hour-Lines on the Left, and the Afternoon ones on the R ghthand of thofe looking at them.

The under opporite Dial to this, which faces towards the North, is the fame as the upper one facing towards the South, excepting only that the Center is upwards above the

Equinostial

Equinoctial Line, and the Morning Hour-Lines on the Right, and the Afternoon ones on the Left-hand.

If the Inclination of the Plane be greater than the Elevation of the Pole, fuppofe at Paris, and it be 63 deg. fubftract the Elevation of the Pole 49 deg. from 63 deg. and the Remainder will be it deg. and then make an Horizontal Dial for this Elevation of 14 deg. and you will have an Incliner of 63 deg . the Center of the upper Plane facing towards the South, is upwards above the Equinoctial Line, the Morning Hour-Lines on the Left-hand, thofe of the Afternoon towards the Right ; and in the oppofite under Plane facing towards the North, the Center is downwards, the Morning Hours on the Right, and thofe of the Afternoon on the Left, as may be feen in Figure ir and i2.

If the Plane faces the North, and inclines Southwards, the Inclination thereof may be lefs or greater than that of the Equinoctial ; for if it be equal, we need only make an upper or under Equinoctial Dial thereon, which is a Circle divided into 24 equal Parts, as is above directed in fpeaking of Regular Dials.

If the Inclination be lefs than the Elevation of the Equinoctial, as, fuppofe a Plane at Paris inclines 30 deg. Southwardly, add the 30 deg. of Inclination to 49 deg. the Height of the Pole, and make an Horizontal Dial for the Elevation of 79 deg. and your Dial will be drawn: the Center of the upper Dial facing Northwardly, will be upwards, the Morning Hour-Lines on the Right-hand, the Afternoon ones on the Left; and on the oppofite under Dial to this, the Center will be downards, the Morning Hour-Lines on the Left, and the Afternonn ones on the Right-hand.

Finally, If the Inclination, which fuppofe 60 deg. be greater than the Height of the Equincétial, add the Complement of the Inclination, which is 30 deg. to the Elevation of the Equincatal, which is 4 I deg. at Paris, and the Sum is 7 I deg. and make an Horizontal Dial for this Elevation of the Pole. The Center of the upper one of thefe Dials is downwards, the Morning Hour-Lines on the Right-hand, and the Center of the oppofite under Dial is upwards, and the Morning Hour-Lines on the Left-hand.

Note, The Meridian or Hour-Line of 12, is the Subfylar Line of all Non-declining inclining Dials, pafles thro their Centers at right Angles to the Hour-Lines of 6, and nay be drawn by means of the Shadow of a Plumb-Line paffing thro their Centers.

There ought to have been eight Figures to reprefent all thefe difierent Dials, viz. four for the upper ones, and four for the under ones; but fince they are not difficult to be conceived or drawn, we have only reprefented two of them, with refoect to the Dodecahedron on which we place them.

The Confruction of Declining inclining Dials.

The Declination of a Dial is the Angle that the Plane thereof makes with the Prime Vertical ; and its Inclination is the Angle made by the Plane thereof with the Horizon : both of which we fhall fhew how to find hereafter.

Now fuppofe, for example, that a Dial is to be drawn upon a Plane declining 36 deg . South-ealtwardly, and inclining 63 deg. 26 min . towards the Earth, as does the Plane C on the Dodecahedron of Figure 2.

But before we fhew how to draw this Dial, you muft firft obferve that the Horizontal Line, which paffes thro the Foot of the Style in Vertical $D_{\text {als }}$, muft in no wife pafs thro it in inclining Dials; for in uperer Incliners facing the Heavens, this Line muft be drawn above the Foot of the Style, and in under Incliners, facing the Earth, below the Foot of the Style. Secondly, The Meridian or Hour-Line of 12, in inclining Dials, does not cut the Herizontal Line at right Angles, as it does in Vertical Dials, but muft be drawn thro two Points; one of which is found upon the Horizontal Line by means of the Angle of Declination, and the other upon a Vertical Line cutting the Horizontal one at right Angles.

This laf Point in upper Incliners is called the Zenith Point, becaufe if the Sun was in the Zenith of the Place for which the Dial is made, the Extremity of the Shadow of the Style would fall upon that Point, which confequently will be underneath the Style of thefe Dials. And in under Incliners, the faid Point is called the Nadir Point, becaufe if the Sun was in the Nadir, and the Earth tranfparent, the Extremity of the Shadow of the Style would touch that Point, which confequently will be above the Style, as in the propofed Dial.
'Thirdly, The Center of the propofed under Dial which declines South-eaftwardly muft be upwards, the Subfylar Line to tie Left-liand of the Vertical Line, and the Meridian among the Morbing Hour-Lines, and fo on the Risht of the Vertical Line. The Centers of upper Dials declining South-weft wardly muft be likewife upwards, the Subftylar Line on the Right-hand of the Vertical one, aid the Meridian among the Afternoon Hour-Lines; and the oppofite upper Dials to thefe, have their Centers downwards, and are no other but thefe Dials inverted: and therefore one of thefe four Diais is enough to be drawn.
Fig. 13.
In order for this, let it be required to draw a Dial upon a Plane of the abovefaid Declination and Inclination. Firft, Draw the two Lines A B, C D, cutting each other at right Angles in the Point E; then let C D be paraliel to the Horizon, and upon it affume E F
at pleafure, for the Length of the righe Style, whofe Foot flall be E, and Extremity F, and about the Center \mathbf{F} defcribe the Arc G H, equal to the Plane's Inclination, wiz. 63 deg. 26 min . and draw the rignt Line A F ; likewife make the Angle GFI equal to the Complement of 63 deg. 26 min . 3 iz .26 deg. 34 min . This being done, the Point A will be the Nadir, and one Point of the Meridian Line, and if a right Line M L N be drawn thro the Point L, parallel to CD, this will be the Horizontal Line; and if the Diftance LF be taken between your Compaffes, and laid off from L to O, the Point O will be the Center thro which Lines may be drawn dividing the Horizontal Line. Again, About the Point O defcribe the Arc L P of 36 deg. viz. the Plane's Declination, and draw the Line OP cutting the Horizontal Line MLN in the Point 12; then if a right Line be drawn thro the Nadir A and this Point 12, the faid Line A I2 will be the Meridian of the Dial or Hour-Line of 12 : and moreover, if an Angle be made at the Point O on the Left-fide of the Line A B, equal to the Complement of the Plane's Declination, which here is 54 deg . you will have a Point on the Horizontal Line thro which the Hour-Line of 6 , as likewife the Equinoctial Line, mult pafs.

Tine next thing to be found is another Point, befides E the Foot of the Style, thro which the Subftylar Line muft pafs; and in order for this, we need only find the Center of the Dial, after the following manner.

Draw the Line M R from the Point M, (thro which the Hour-Line of 6 paffes) at right Angles to the Meridian A_{12}, lay off the $D_{\text {itance }} \mathrm{O}_{12}$, from I_{2} to R, or elfe the Dittance A F from A to R, draw the occult Line $12 R$, and about the Point R defcribe the Arc N K, of 49 deg. viz. the Elevation of the Pole; then if R K be drawn cutting the Meridian in the Point K, this will be the Center of the Dial. Afier this, the Subtylar Line K E may be drawn; and if the Perpendicular M Q be drawn to this Line thro the Point \mathbf{M}, the faid M Q will be the Equinotial Line. Moreover, the Point in the Meridian Line thro which the Equinocial Line muft pafs, may be found by making the Angle N R Q of 41 deg. that is, the Complement of the Elevation of the Pole.

The Pofitions of the principal Lines being thus found, it will not now be difficult to find the Points on the Horizontal or Equinoctial Lines thro which the Hour-Lines muft be drawn; for if the Points are to be found upon the Horizontal Line, you muft apply the Center of a Horizontal Dial to the Point O, in fuch manner, that the Hour-Line of is anfwers to the Line O_{12}, and the Four-Line of 6 to the Line O 6: then the Points in the Horizontal Line M N, thro which the other Hour-Lines muft be drawn, may be determined eafily. And if the Points thro which the Hour-Lines muft pals on the Equinoctial Line be to be found, you mult raife the Perpendicular ES on the Subftyle equal to E F, and draw the Axis S K ; and afterwards take the Diftance T S between your Compaffes, and lay off on the Subftyle from T to V , then V will be the Center of the Equinozial Circle, by means of which the Equinoctial Line may be divided, as we have direzted in fpeaking of declining Dials, and the Hour-Lines drawn thro the Center of the Dial K. Your Dial being thus made, you may draw a fair Draught thereof, wherein are only the principal Lines, and the Hour-Lines, as may be feen in the Pentagonal Figure marked 14.

By means of this Dial three others of the fame Declination and Inclination may be made. The two under ones declining South-eaftwardly and South-wettwardly, have their Centers upwards; and the two upper ones, which decline North-eaftwardly and North-weftwardly, their Centers downwards, and are only the two former \mathbf{D} als inverted, as we have already mentioned.
The Dal of Figure 15, reprefents that marked F in Figure 2, and is an upper Incliner of 63 deg. 26 min. declining South-eativardly 72 deg. and may be drawn by the abovefaid Method. The Center of this Dial is upwards, and becaule it has a great Declination, the Hour-Lines will fall very clofe to one another near the Subfylar Line; and therefore it ought to be drawn upon a large Plane, that fo the Part thereof next to the Center may be taken away, and the Style and Hour-Lines terminated by two Parallels.

There is another way of drawing Mechanically any forts of Dials whatfoever, upon Polyhedrons or B dies of different Faces or Supericies, without even knowing the Deciinations or Inclinations of the Faces or Superficies, and that with as much exactaefs as by any other Methods whatfoever. In order to do this, you muft firt make an Horizontal Dial upon one of the Planes or Faces that is to be fet parallel to the Horizon, and fet up the Style thereof upon the Hour-Line of 1_{2}, conformable to the Latitude of the Place. After this, the Subfylar Lines muft be drawn upon all the Planes or Faces of the Polyhedron that the Sun can fhine upon, that fo Brafs or Iron Styles, proportioned to the bigneffes of the Pianes or Faces, may be fixed upon them perpendicularly in fuch manner, that the Axes or upper Edges of the faid Styles be parallel to the Axis of the Horizontal D.al. This may be done in filing them away in right Lines by degrees, until their Axes, being compared with the Axis of a large Style fimilar to that of the Horizontal Dial placed level, (or held up fo that its Bafe be parallel to the Horizon, by means of a Thread and Plummet hung to the Top of the Style) appear in a right Line with the Axis of the faid Style.
Things being thus ordered, fet your Polyhedron in the Sun, and turn it about, making the Shadow of the Axis of the Horizontal Dial fall upon each Hour-Line thereof fucceffively,
and if at each of the refpective 'Times right Lines be drawn along the Shadows of the Axes of the Styles of the other Faces of the Body upon the faid Faces, thefe will be the fame Hour-Lines upon each of the Faces of the Body, that the Shadow of the Scyle of the Horizontal Dial fell upon, on the Horizontal Dial. For example ; Suppofe the Shadow of the Axis of the Horizontal Dial falls upon the Hour-Line of 12 ; then at the fame time draw Lines along the Shadows of the Styles upon the other Faces of the Body, and thofe Lines will be the Hour-Lines of 12 upon the faid Faces: underfand the fame for others. This may be done likewife in the Night, by the Light of a Link moved about the Polyinedron.

There are great Stone Bodies cut into feveral Faces placed fometimes in Gardens having Dials drawn upon them, according to the abovefaid Method. And the Edges of the Stone which ferve for Axes to fome of thefe Dials, muft be cut fo as to be parallel to the Axis of the World.

The Aritbmetical Confruction of Dials by the Calculation of Angles.

This Method is a great help for verifying any Operations in Dalling, wherein there is great Exactnefs required, and chiefly when we are obliged to make a fmall Model for drawing a large Dial: for an Error almoft infenfible in the Model, will become very confiderable in the long Hour-Lines to be drawn upon a large Plane.

In the Conftruction of Regular Dials, as of the Horizontal one of Figure 4, the Divifions of the Equinoctial Line LK, are the Tangents of the Angles of the Quadrant M H, and the dotted Lines are their Secants; and therefore they may be pricked down by means of a Scale or Sector, in fuppofing the Radius H B 100 : for then the Tangent H if of 15 deg . will be twenty-feven of the faid Parts; \mathbf{H}_{2}, the Tangent of 30 deg . will be $58 ; \mathrm{H}_{3}$, the Tangent of 45 deg . (equal to Radius) will be $100 ; \mathrm{H}_{4}$, the Tangent of 60 deg. will be 173 ; and H_{5}, the Tangent of 75 deg. will be 373 Parts. The Divifions on the other half of this Line for the Morning Hour-Lines are the fame.

The Divifinns for the halves and quarters of Hours may be found likewife upon the Equinoctial Line, by affuming the Tangents of the correfpondent Arcs, which may be taken from printed Tables of natural Tangents, but from the Table of Secants we can deduce fome Abbreviations. For example, the Line B 4, which is the Secant of 60 deg. being double to Radius, if twice $B \mathrm{H}$ be laid off from B to 4 , you will have the Point on the Equinoctial Line thro which the Hour-Line of 4 muft be drawn. The faid Secant laid off from 4 to L, will give likewife the Point in the Equinoctial Line thro which the HourLine of 5 muft be drawn, ofc.

The Points thro which the half Hours muft pafs, may be found by means of the Secants of the odd Hours. For example, the Secant B 3, laid off at the Point 3 on the Equinoctial Line, will fall on one fide upon the Point for half an Hour palt 4, and on the other fide, for half an Hour paft 10 ; the Secant B 9, will give half an Hour paft 7, and half an Hour paft I B II, will give half an Hour paft 8, and half an Hour paft 2 ; B 1 , will give half an Hour paft 3, and half an Hour paft 9; B 7, will give half an Hour palt 6, and half an Hour paft I2; and laftly, B ; will give half an Hour paft II, and half an Hour pant 5 .

The Divifion of the Equinoctial Line ferves to make Horizontal and Vertical Dials exactly, but chiefly the undeclining Regular Dials, viz. the Polar Eaft and Weft ones: for there need nothing be added to the facility of conftructing Equinoctial Dials, becaufe the Angles that the Bour-Lines make at the Center of the Dials are all equal between themfelves.

The Angles that the Hour-Lines of a Horizontal Dial make with the Meridian in the Center of the Dial, may be found in the following manner by Trigonometry. As Radius is to the Sine of the Elevation of the Pole, fo is the Tangent of the Diftance of any HourCircle from the Meridian, to the Tangent of the Angle that the Hour-Line of that Hour makes with the Meridian or Hour-Line of 12, on the Horizontal Dial. For example ; Suppofe the Angle that the Hour-Lines of I and I I, make with the Meridian on a Horizontal Dial for the Latitude of 49 deg. be required: form a Rule of Proportion whofe firft Term let be the Radius 100000 ; the fecond, the Sine of 49 deg . which is 75471 ; and the third, the Tangent of 15 deg. (viz. the Tangent of the Diftance of the Hour-Circles of 1 I and I from the Meridian) which is 26795. Now having found the fourth Term 20222, feek it in the Tables of Tangents, and you will find II deg. 26 min . ftand againft it : therefore the Angle that the Hour-Lines of I or II make with the Meridian, is II deg. 26 mm .

Thus may be found the Angles that all the Hour-Lines, and half Hour-Lines, orc. make with the Meridian in the Center of a Horizontal Dial, viz. by as many R ules of Proportion, as there are Hour-Lines and half Hour-Lines, $\mathrm{e}^{\circ} \mathrm{c}$. to be drawn, whofe two firf Terms are ftanding, to wit, the Radius, and the Sine of the Elevation of the Pole: and fo you have bur the third 'Term to feek in the Tables; that is, the Tangent of the Hour-Circle's diftance from the Meridian, in order to find the $4 t /$ ' Tcrm. You may take the Logarithms of thole Terms if you have a mind to it, which will fave the trouble of Multiplying and Dividing.

The aforefaid Analogy may ferve likewife for Vertical Dials, if the Sine Complement of the Elevation of the Pole, which is 4 I deg. about Paris, be made ufe of for the fecond Term ; becaufe any Vertical Dial at Paris may be confidered as an Horizontal one for the Latitude of 41 deg.

Moreorer, the aforefaid Analogy holds for undeclining Inclining Dials, if the Sine of the Angle made by the Axis and Meridian Line at the Center of the Dial be ufed for the fecond 'Term of the Anaiogy. For example, Becaufe the Dial B on the Dodecahedron of Figure 2, inclines σ_{3} deg. 26 min. you mult fubftract the Elevation of the Pole, which is 49 deg. from 63 deg. 26 min . and then if you make an Horizontal Dial for the Latitude of 14 deg .26 min . in taking 14 deg. 26 min . for the fecond 'Term of the Analogy, you may calculate the Angies that all the Hour-Lines make with the Meridian or Hour-Line of 12 .

A T ABLE of the Angles that the Hour-Lines make with the Meridian at the Center of an Horizontal Dial.

To diaw the priacipal Lines upon a Vertical Decliner by Trigonometrical Calculation.

This manner of Calculation conints in the five following Rules.
The Declination of a Plane being given, to find the Angle that the Subftylar Line makes with the Meridran.

Ruie I. As Radius is to the Sine of the Plane's Declination, fo is the Tangent Complement of the Latitude, to the Tangent of the Angle made by the Subfylar Line and Meridian in the Center of a Vertical Decliner. And the Angle that the Subftylar Line makes with the Horizon at the Foot of the right Sty!e, is the Complement of this Angle. Alfo the Angle that the Equinoctial Line makes with the Horizon at the Point wherein the Hour-Line of 6 cuts it, is equal to the Angle made by the Subftylar Line and Meridian; and the Angle of the Equinoctial Line and Meridian is its Complement.

Rule II. To find the Angle which the Axis of the Dal makes with the Substylar Line, which may be called likewife the Height of the Pole above the Vertical Plane; fay,

As Radius is to the Sine Complement of the Latitude, fo is the Sine Complement of the Plane's Declination to the Sine of the Angle required. Note, The Angle that the Axis makes with the right Scyle, is the Complement of this Angle; and the Angle that the Radius of the Equinoctial Circle makes with the right Style, is equal to the Angle that the Axis makes with the Sumfyle Alfo the Angle made by the Radius of the Equinoctial Circle and the Subityle, is the Complement thereof.

Rule III. To find the Arc of the Equinoctial or Angle between the Subfylar Line and the Meridian in deciining Dals; that is, the Difference between the Meridian of the Place, and the Meridian of the Plane, for the Subftylar Line is the Meridian of the Plane ; fay,

As Radius is to the Sine of the Latitude, fo is the Tangent Complement of the Plane's Declination to the Tangent of an Arc, whofe Complement will be that required.

Rule IV. To find the Angle that the Hour-Line of 6 makes with the Horizontal Line, and the Meridian in the Center of the Dial ; fay,

As Radius is to the Sine of the Plane's Declination, fo is the Tangent of the Latitude, to the 'Tangent of the Angle that the Hour-Line of 6 makes with the Horizon; the Complement of which, is that made by the Hour-Line of 6 and the Meridian.

Rule V. To find the Angles that the Hour-Lines make with the Subfylar Line; and by this means, the Angles that they make with the Meridian in the Center of a Vertical Dial.

This Propofition is founded upon this Gnomonick Principle, viz. that any Plane may be parallel to fome Horizon, and confequently will be an Horizontal Dal for that Latitude, the Subftylar Line being the Meridian, from which the proper Hour-Lines mult be laid off on both fides.

But before this can be done, the Angle that the Subftyle makes with the Meridian muft be found, by Rule I. the Elevation of the Pole above the Plane, by Rule II. the Are of the Equinoctial between the Subftyle and the Meridian, by Rule III. with the Difference or Degrees of the two firft Diftances from the Style ; one being berween the Subttyle and the Meridian, and the other between the Subityle and the Hour-Line of 6. Thefe being found, fay,

As Radius is to the Sine of the Elevation of the Pole above the Plane, fo is the Tangent of the Diftance of any Hour-Circle from the Meridian of the Plane or Subftylar Line to the Tangent of the Angle made by the Hour-Line of the propofed Hour-Circle and the Subflylar Line in the Center of the Dial.

Note, If the Subftylar Line happens to fall upon any half or whole Hour, then the two firf Diftances of the Hour-Circles from the Subftylar Line will be each 7 deg. 30 min. or is deg. and in this Cafe, the Angles of the Hour-Lines of the Hour-Circles, equally diftant on both fides the Hour the Subfylar Line falls upon, will be equal on both fides the Subflylar Line.
The Application of the precedent Rules to a Vertical Decliner of 45 deg. South-weftuardly, in the Latitude of 49 deg. (Vide Figure 9.)
The Angle made by the Subftylar Line and the Meridian, will be found by the firft Rule 3 I deg. 35 min.

The Angle of the Axis and Subftylar Line, by Rule II. will be 27 deg. 38 min. and the Arc of the Equinoctial between the Meridian of the Place and the Meridian of the Plane, by Rule III. will be found 52 deg. 58 min . and confequently the Subftylar Line falls between the Hour-Lines of 3 and 4 in the Afternoon: and the Angle made by the Hour-Line of 6 and the Meridian, is 50 deg. 52 min .
'The Arc of the Equinoctial 52 deg. 58 min. being found, fubftract 45 deg. which is the Arc of the Equinoctial anfwering to the Hour of 3, from it, and the Remainder 7 deg. 58 min . will be the Arc of the Diftance of the Hour of 3 from the Subftyle, and confequently 7 deg. 2 min. is the Diftance of the Hour of 4 from the Subftyle.

Therefore to find the Angles that the Hour-Lines make with the Subfyle in the Center of the Dial, you muft begin with one of thefe Diftances, in faying, for example, As Radius 100000 is to the Sine of the Elevation of the Pole above the declining Plane, which in this Example is 27 deg. $3^{8} \mathrm{~min}$. whofe Sine is 4638 I , fo is the Tangent of 7 deg. 2 min. which is 12337 , to a fourth Number, which fhall be found 5722 , viz. the Tangent of 3 deg. 16 min. and confequently the Angle that the Hour-Line of 4 makes with the Subftyle, is 3 deg . 16 min. and to find the Angle that the Hour-Line of 5 makes with the Subftylar Line, you muft firft add 15 deg. to 7 deg. 2 min . and feek the Tangent of the Sum 22 deg .2 min . and then proceed, as before, and you will find the Angle made by the Hour-Line of 5 with the Subflylar Line will be ro deg. 38 min. the Angle of the Hour-Line of 6 with the fame, will be 19 deg. 17 min . the Angle of the Hour-Line of 7, 30 deg. 44 min. and the Angle of the Hour-Line of 8 in the Evening, 47 deg .35 min .

But if the Angles that the faid Hour-Lines make with the Meridian or Hour-Line of 12 be required, you mult add 31 deg. 35 min . to each of the aforefaid Angles; and confequently the Angle that the Hour-Line of 4 makes with the Meridian, will be 34 deg .51 min . the Hour-Line of 5,42 deg. 13 min . the Hour-Line of 6,50 deg. 52 min . the Hour-Line of 7,62 deg. 19 min . and the Hour-Line of 8, 79 deg. 10 min .

Having calculated, in the abovefaid manner, the Angles made by the Hour-Lines on the other fide the Subfylar Line, with the faid Subftylar Line, you will find the Angle of the Hour-Line of 3, 3 deg. 45 min . that of the Hour-Line of 2, II deg. 7 min . that of the Hour-Line of 1,19 deg. 54 min . that of the Hour-Line of 12,31 deg. 35 min . that of the Hour-Line of II, 48 deg. 54 min . that of the Hour-Line of 10,75 deg. 7 min. and that of the Hour-Line of 9, 106 deg. $4^{8} \mathrm{~min}$.

Now if 3 I deg. 35 min . viz. the Subftyle's Diftance from the Meridian, be taken from each of thefe laft Angles, then the Angle that the Hour-Line of 9 makes with the Meridian, will be 75 deg. 13 min. that of the Hour-Line of 10,43 deg. 32 min. that of the Hour-Line of 11,17 deg. 19 min. and fo of others.

When the Declination of a Plane is very great, the Center of a Dial cannot then be pricked down conveniently thereon, fince the Hour-Lines will fall too near each other. And in this Cafe they may be drawn between two Horizontal Lines; for the Angles that the Hour-Lines make with the faid Horizontal Lines, are the Complements of the Angles that the refpective Hour-Lines make with the Meridian.

> How to find the Declination of an upright or vertical Wall or Plane, by means of the Shadow of the Extremity of an Iron Rod or Style.

Becaufe the Exactnefs of Vertical Dials chiefly depend on the knowledge of the Situations of the Walls on which they are to be made or fet up againft, with refpect to the Heavens, that is, their Declinations: therefore it is very neceffary that their Declinations be found with all poffible exactnefs, which we fhall endeavour to do before we clofe this Chapter.

Pieparations.

You muft firf fix an Iron Rod or Wire in the Wall obliquely, having its Extremity fharp and pretty diftant from the Wall, as the Rod A I, whofe Extremity I is fharp. Vide Fig. 9.

> Secondly, The Foot H of the Style muft be pricked down upon the Dial Plane. "This Point is that wherein the Perpendicular H I drawn from the Extremity of the Rod or Style meets the Plane of the Dial. You muft likewife draw the Vercical Line H F paffing thro that Point, which reprefents the perpendicular Vertical to the Plane of the Dial, and aifo the Horizontal Line D C cutting the faid Vertical Line at rignt Angles, in the Foot of the

Style H. This being done, mealure exatly the Length of the right Style H I or HF, its equal, that is, neafure the Diltance from the Foot of the Style to its Extremity, with Come Scale divided into fmall Parts. Then having obferved where the Extremity of the Saadiow of the Iron Rod falls upon the Wall at different Times in the fame Day, as at the Points 2, 3, 4; you muft mealure the Diftance of each Extremity of the Shadow from the Horizontal Line with the Scale : as, for example, the Diftance from the Point 2 to the Point Z in the Horizontal Line; as likewife the Diftance from the fame Point to the Verrical Line paffug thro the Foot of the Style ; as from the Point 2 to the Point X ; and then you muft fer down the Numbers found orderly in a Memorial, that fo they may be made ufe of in the following Analogies.

But to prick down upon the Wall nicely the Shadow of the Extremity of the Rod or Style, you muft ufe the following Method, which I had from M. de la Hire. Faften a little 'Tin-Plate, having a round hole therein, near the Extremity of the Rod, in fuch manner, that the Extremity of the Iron Rod be exactly in the Center of the faid round hole, and the Plate expofed directly to the Sun ; then you will fee a little Oval of Light upon the Wall in the Shadow of the Plate : and if you draw quickly with a Pencil, a light Tract upon the Wall about the faid Oval of Light, which is moving continually ; the Center of the faid Oral may be taken for the true Shadow of the Extremity of the Rod.

Having thus marked the Points 2, 3, 4, whereat the Extremity of the Shadow falls, you muff find the Amplitude, and the Sun's Altitude anfwering to each of then, and fet them down in the Memorial.
Note, Tine Amplitude that we mean here, is the Angle that the height of the Style or Rod makes with the Line drawn from each of the obferved Extremities of the Shadow to the Horizontal Line (for each of thefe Lines reprefents upon the Wall the vertical Circle the Sun is in at the Time of Obfervation.) This Angle is marked HFZ in the Figure, and is the Amplitude correfpondent to the Point 2. Now to find this Angle, you muft fay, As the Height of the Rod or Style is to the Difance from the Extremity of the Shadow to the vertical Line, fo is Radius to the Tangent of the Amplitude. And by making this Analogy for each Extremity of the Shadow of the Rod obferved at different Times, the correfpondent Amplitudes will be had, and nuft be fer down in one Column in the Memorial.

Then to find the Sun's Altitude above the Horizon, you muft take the Complement of the Amplitude, and the Diftance of each obferved Extremity of the Shadow from the Horizontal Line. This being done, fay, As the Height of the Style is to the Sine Complement of the Amplitude, fo is the Diftance of the Extremity of the Shadow from the Horizontal Line, to the Tangent of the Sun's Altitude above the Morizon, which being found for the Times of each Obfervation of the Shadow of the Iron Rod, fet them down orderly in one Column.

Note, If the Extremity of the Shadow obferved falls upon the vertical Line paffing thro the Foot of the Style, there will then be no Amplitude ; and in this Cafe you will have the Sun's Altitude by one Rule only, in faying, As the Height of the Style is to the Diftance of the Extremity of the Shadow from the Foot of the Style, fo is Radius to the Tangent of the Sun's Altitude.

After this, you muft find the Difance of each obferved Vertical or Azimuth Line from the Meridian; and in order to do this, the Sun's Declination muft be had for the Times wherein the Extremities of the Siadow were taken: if it be at the time of the Solftices, the fame Declination will ferve for all the Extremities of the Shadow obferved in one Day; but if the Sun be in the Equinoctial, you muift have his Declination for each time of the Obfervation of the Extremiry of the Shadow, in taking the Parts proportional.

Now the Sun's Declination being had, you muft take the Complement thereof, as likewife the Complement of his Altitude, and the Complement of the Latitude, and add them all three together ; and take half the Sum, and from this half Sum take the Complement of the Sun's Altitude, and the Remainder will be a firt Difference : and moreover, if the Complement of the Latitude be taken from the faid half Sum, you will have a fecond Difference. This being done, fay, As the Sine Complement of the Latitude is to the Sine of the firt Difference, fo is the Sine of the fecond Difierence to a fourth Sine: and as the Sine Complement of the Sun's Altitude is to Radius, fo is that fourth Sine found to another Sine ; which being multiplied by Radius, and the Square Root of the Product, will be half -the Diffance of the Extremity of the Shadow obferved, or of its vertical Line from the Meridian or Hour-Line of 12 .

This Diftance being found in Degrees and Minutes, we may have the Declination of any Wall, which here is the Angle HFE, by fome one of the five following Cafes.

Firf, If the Extremity of the Shadow of the Style is between the vertical Line paring thro the Foot of the Style, and the Hour-Line of 12, as is the Point 2 in this Example, which was obferved fome time in the Afternoon; then you muft add the Amplitude to the Diftance of the vertical Line from the Meridian.

Secondly, If the Extremity of the Shadow falls beyond the vertical Line paffig thro the Foot of the Style, as here the Point 3 does, you muft iubltraft the Amplitude from the Diftance of the vertical Line from the Meridian, to have the Declination of the Wall.

Thirdly, If the obferved Extremity of the Shadow be found exaflly upon the vertical Line paffing thro the Foot of the Style, then there will be no Amplitude, and its Diftance from the Meridian will be the Wall's Declination.

Fourthly, If the Extremity of the Shadow is on this fide of the Meridian, as here the Point 4 is, which was obferved before Noon, the Amplitude will be greater than the Declination; to have which, you muft fubftract from the Amplitude the Diftance of the Vertical Lire from the Meridian.

Filthly, If the Extremity of the Shadow was offerved precifely at Noon, the Wall's Declination would then be equal to the Amplitude ; and fince the Sun's Declination, and the Latitude is known, it will be eafy to know whether the Altitude obisred any Day be the greateft for that Day, that is, whether it be the Sun's Meridian Altitue. Nite, What we have faid is eafily app!"cable to all Declinations, whether Eaftyards or Weitwards, if the Line of Midnight be ufed inftead of that of Noon, when Walls decline North-Eaft or North-Weft.

An Example will make all this manifeft : in order to which, let us fuppofe, that, in a Place where the North-Pole is elevated, or, which is all one, where the Latitude of the Place is 4^{8} deg. 50 min . we have obferved the Extremity of the Shadow of an Iron-Rod upon a very upright Wall about the time of the Summer Solftic, whofe Dinance from the vertical Line pafing thro the Foot of the Style is roo equal Earts of fome Scale, and the Height of the S:yle 300 of the fame Parts.

The Operation by Logarithms.

This Number remaining is the Logarithm Tangent of 18 deg. 2.6 min . for the Amplitude of the obferved Extremity of the Shadow, and the Complement thereof, is 71 deg. 34 min .

Then to find the Sun's Aititude, fuppofe the Diftance from the Extremity of the Shadow obferved to the Horizontal Line be 600 of the aforefaid equal Parts.

This remaining Number is the Logarithm Tangent of 62 deg. 13 min. the Su:n's Altitude.

The fecond Analogy.

This laft Number is the Logarithm Sine of 76 deg. 4 min. which being doubled, makes 152 deg. 8 min . but fince this Angle is obtufe, you muft fubitract it from 180 deg. and the remainder 27 deg. 52 min . is the diftance of the obferved vertical Circle or Line from the Meridian : and becaufe the Extremity of the Shadow 2, for which the Calculation is fuppofed to be made, is between the verrical Line paffing thro the Foot of the Style, and the Hour-Line of 12 ; you muft add the aforefaid 27 deg. 52 min . to the calculated Amplitude 18 deg. 26 min . to have the Declination 4^{6} deg. 18 min .

The Declination of a Wall may be found by one Obfervation of the Extremity wi the Shadow of a Style or Iron-Rod only ; but it is better to make feveral Obfervations thereof in one Day, or in different Days, that fo the Declination of the Wa!l may be calculated for each Obfervation, and the proportional Parts of the Differences arifing may be taken: if, for example, the Extremity of the Sinadniw of the Style hath been fix times oblerved, you muft take the one-fixth part of the Difierences produced by the Calculations, in order to have the true Declination of the Wall.

C H A P. II.

Of the Confruction and USes of the Declinatory.

TH I S Inftrument is made of a very even Plate of Brafs or dry Wood, in figure of a Fig. 16. Rectangle, about one Foot in length, and feven or eight Inches in breadth.We draw the D:ameter of a Semı-circle upon it parallel to one of the lungeff fides of this Plate, viz.parallel to A B, and we divide this Seni-circle into two Quadrants, containing 90 Degrees each, which we divide fometimes into half Degrees, the Degrees being both ways numbered from the Point H, as may be feen in the Figure of the Inftrument. When this is done, we add an Index I to the faid Plate, which turns about the Center G, by means of a turn'd headed River. On the Fiducial Line of this Index we fcrew a Compafs, with the North-fide towards the Center G, and likewife fometimes a fmall Horizontal Dial, whofe Hour-Line of 12 turns to the Center G. I fhall fay no more as to the Conftruction of this Inftrument, it being eafy to underfand, from what has been faid elfewhere in this Treatife.

The Ufe of this Infrument in taking the Declinations of Planes.
A Plane is faid to decline, when it does not face direatly one of the Cardinal Parts of the World, which are North, South, Eaft and Weft; and the Declination thereof is meafured by an Arc of the Horizon comprehended between the Prime Vertical, and the vertical Circle parallel to the faid Plane, if it be vertical, viz. perpendicular to the Horizon; for if a Plane be inclined, it can be parallel to no vertical Circle. And in this Cafe, the Arc of the Horizon comprehended between the Prime Vertical, and that vertical Circle that is parallel to the Bafe of the inclined Plane, or elfe the Arc of the Horizon computed between the Meridian of the Place and the vertical Circle perpendicular to the Plane, is the Plane's Declination.

There are no Planes, unlefs vertical or inclined ones, that can decline ; for a Horizontal Plane cannot be faid to decline, becaufe the upper Surface thereof directly faces the Zenith, and its Plane turns towards all the four Cardinal Parts of the World indifferently.

Now, in order to find the Declination of a Plane, whether vertical or inclined, you muft draw firft a level Line thereon, that is, a Line parallel to the Horizon, and lay the fide A B of the Inftrument along this Line : then you muft turn the Index and Compafs till the Needle fixes itfelf directly over the Line of the Declination or Variation thereof on the bottom of the Box. This being done, the Degrees of the Semi-circle cut by the Fiducial Line of the

Index gives the Plane's Declination towards that Coaft fhewn by the writing graved upon thie Infrument. If, for example, the Index be found fixed upon the 45 th Degree, between H and B, and the end of the Needle refpecting the North be directly over the Point S of its Line of Declination ; in this Cafe, the Plane declines 45 deg. South-weftwardly: but if in the fame Situation of the Declinatory, the oppofite end of the Needle, refpecting the South, fhould have fixed itfelf over the Point S of the faid Line of Declination, then the Piane would have declined 45 deg . North-eaftwardly.

Again, If the Index be found between A and H , and the North-end of the Needle over the Point S of its Line of Declination, then the Declination of the Plane will be Southeaftwardly; but if in this Situation of the Index, the South-end of the Needle fixes itfelf over the faid Point S, then the Plane will decline North-weftwardly.

If the Sun fhines upon the Wall or Plane whofe Declination is fought, and the time of the Day be known exactly by fome good Dial, as the Aftronomick Ring Dial, we may find the Declination of the Wall or Plane by means of a fmall Horizontal Dial faftened on the Index, which muft be turned till the Style of the Dial fhews the exact Time of tore Day; and then the Degrees of one of the Quadrants cut by the Fiducial Line of che Index, w.ll i.e the Wall or Plare's Declination : and by this means may be avoided the Errors caufnt ty the Compafs, as well on account of the Variation of the Needle, as beaufe of Iron concealed near the Compals.

When the Sun fhines upon a Wall, we may find likewife the Subflyle or proper Maridian by means of obferving two Extremities of the Shadow of an Iron-Rod, in the manner we have above mentioned, and afterwards the Declination; or elfe we may draw a Meridian Line upon an Horizontal Plane near the Wall, which being produced to the Wall, will be a means to find the Declination thereof, as alfo to find the Variation of the Needle. Now the manner of drawing a Meridian Line is thus :
Fig. M. Draw a Circle upon fome level Plane, (fuppofe this to be reprefented by the Figure M) and in the Center thereof fet up a fharp Style very upright, or elfe fix a crooked Style in fome Place, as A, in fuch manner, that a Line drawn from its tharp end to the Center of the faid Circle be perpendicular to the Plane of the Circle ; which you may do by a Square. But before you draw the Circle, it is neceffary to know the Length of the Shadow of the Style, that fo the Circumference of the Circle may be drawn thro the Extremity of the Shadow of the Sryle obferved fome time before Nuon. Now the Circle being drawn, fuppofe the Extremity of the Shadow touches the Circumference of the Circle in the Morning at the Point G, and about as many Houss after Noon as when in the Morning you obferved the Extremity of the faid Snadow in G before Noon, you find the Extremity of the Shadow again to touch the Circumference of the Circle in F; then if the Arc F G be bifected in the Point C, and the Diamerer B C be drawn, his Diameter will be a Meridian Line.

If you have a mind to find a Meridian Line when the Sun is in the Equinoctial Line, there is no need of drawing a Circle, for all the Extremities of the Shadow of the Style will then be in a tight Line, as E D, which is the common Section of the Equinoctial and the Horizontal Plane; and fo any right Line, as B C, cutting ED at right Angles, will be a Meridian Line.

Thus having drawn a Meridian Line, if the Hour-Line of 12 of a Horizontal Dial be placed fo as to coincide therewith, we may have the Time of the Day thereby: and therefore if at the fame time the Index of the Declinatory be turned fo, that the fmall Horizontal Dial faitened thereon fhews the fame Hour or Part, then the Degrees of the Circumference of the Inftrument cut by the Index, will fhew the Declination of the Wall or Plane. Or elfe you may produce the abovefaid Meridian Line till it cuts the declining Plane, for then it will make two unequal Angles with the Horizontal Line drawn upon the Plane, viz. an acute and obtufe Angle, which being meafured with all the exactnefs poffible, the Difference between either of thefe Angles and a right Angle, will be the Declination of the Plane. For example, if the acute Angle be 50 deg . and confequently the obtufe one 130 deg. then the Difference between either of them and a right Angle, will be 40 deg. for the Declination of the Plane.

If you have a mind to find the Variation of the Needle, apply one of the fides of the fquare Box of the Compafs along the Meridian Line drawn on the Plane; and when the Needle is at reft, obferve how many Degrees the North Point thereof is diftant from the Flower-de-luce of the Card; and thefe Degrees will be the Needle's Declination or Variatinn; but this Variation wil! not laft long, for it changes continually. Note, When the Decinarions of Planes be taken with a Compafs, you muft have regard to the Variation of the Necale, in letting it reft orer a Line fhewing the Variation, which is drawn commonly on the buttem of the Compafs-Box.

The Ufe of the Declinatory in taking the Inclinations of Planes.

This Inftrument ferves to take the Inclinations of Planes, as well as their Declinations, that is, the Angles the Planes make with the Horizon, and for this end there is a little Hole in the Center G, having a Plumb-Line faftened therein.

The 17th Figure fliews the manner of taking the Declinations and Inclinations of Pianes. Fig. 17. The Plane A, of this Figure, whereon the Declinatory is applied, is a vertical Meridional undeclining Plane. The Plane B declines South-weftwardly 45 Degrees. The Plane C, is a direct Weft one. The Plane D, declines 45 Degrees North-weftwardy. Aind the other Declinations are taken in the fame manner, in applying the Side A B of the Declinatory to them, fo that the Plane of the Semi-circle be parallel to the Horizon.
Now to meafure the Angle of a Plane's Inclination, you muft apply fome one of the other Sides of the lnftrument to the Plane or Wall, and keeping the Plane of the Semi-circle perpendicular to the Horizon, fee what Number of Degrees of the Circumference thereof the Plumb-Line plays upon, for thefe will be the quantity of the faid Angle of Incli-nation.
If, for example, the Side CD be applied to the Plane E, and the Plumb-Line plays upon the Line G H, then the faid Plane will be parailel to the Horizon. But if the Side C A of the Inftrument being applied on the Plane F, and the Plumb-Line plays, as per Fi_{1-} gure, this Plane inclines 45 Degrees upwards. Again, If the Inftrument being applied to the Plane G, and the Plumb-Line plays upon the Dameter, then this Plane is vertical. And laftly, If the Side A C, being applied on the Plane H, and the Plumb-Line plays as per Figure, then the Inclination thereof will be 45 deg. downwards.

C H A P. III.

Of the Confruction and USes of Infruments, for drawing upon Dials the Arcs of the Signs, the Diurnal Arcs, the Babylonick and Italian Hours, the Almacanters, and the Meridians of. principal Cities.

$W^{\text {E }}$E now proceed to defribe upon Dials certain Lines which the Shadow of the Extremity of the Style paffes over, when the Sun enters into each of the iz Signs of the Zodiack.

> Of the Trigon of Signs.

The firt Figure reprefents the Triangle or Trigon of Signs, made of Brafs of any other plate 23. folid Matter, of a bignefs at pleafure. The Conftruction of this is thus : Firft draw the Fig. 1o Line $a b$, reprefenting the Axis of the World, and ac perpendicuiar chereto, reprefenting the Radius of the Equinoctial, and about the Point a de:cribe the circular Arc d ce at pleafure. This being done, reckon $23 \frac{1}{2}$ deg. both ways from the Point c upon the faid Arc, for the Sun's greateft Declination, and draw the two Lines, a d, $a e$, for the Summer and Winter Tropicks ; likewife draw the Line $d e$, which will be bifected by the Radius of the Equinotial in the Point o, about which, as a Center, draw a Circle, whofe Circumference paffes thro the Points d and e of the Tropicks, and divide the Circumference thereof in is equal Parts, beginning from the Point d. Then thro each Point of Divifion equally diftane from d and e, draw occult Lines parallel to the Radius of the Equinoctial Circle. Thefe Lines will interfeet the $\operatorname{Arc} d c$ in Points thro which and the Center a Lines being drawn, thefe Lines will reprefent the begiinnings of the Signs of the Zodiack, at 30 deg. diftance from each other.
But to divide the Signs into every roth or 5 th Degree, you muft divide the Circumference of the Circle into 36 or 72 equal Parts. After this, we denote the Characters of the Signs upon each Line, as appears per Figure. And when the Trigon is divided into every roth or 5 th Degree, we place the Letter of the Month to the firft io Degrees of each Sign agreeing therewith.

But the Trigon of Signs may be readier made by means of a Table of the Sun's Declination; for having drawn the two Lines $a b$ and $a c$ at right Angles, lay the Center of a Protractor on the Point a, with its Limb towards the Point c; and keeping it fixed thus, count $23 \frac{1}{2}$ deg. on both fides the Radius $a c$, for the Tropicks of $\sigma_{\text {and }}$ as, 20 deg. 12 min.
 And in this manner we divide the Spaces for each Sign into every roth or 5 th deg. by means of the following Table of the Sun's Declination. Note, The Equinoctial Points of r and \neq are placed at the end of the Radius of the Equinoctial a :

A T A BLE of the Sun's Declination for cerery Degree of the Ecliptick.

Degrees of the Ecliptick	Signs. $r^{\sim} \approx$ D. M.	$\begin{aligned} & \text { Signs. } \\ & \text { ૪ m } \\ & \text { D. M. } \end{aligned}$	$\begin{gathered} \text { Signs. } \\ \Pi \quad \ddagger \\ \text { D M. } \end{gathered}$	Degrees of the Ecliptick
I	- 24	II 5 I	2025	29
2	04^{8}	1212	2036	28
3	112	1232	204^{8}	27
4	136	j2 53	2 I	26
5	20	1313	2 I II	25
6	223	1333	2 I 2 I	24
7	247	I 33	2 I 32	23
S	3 I I	1412	2 I 42	22
9	335	1432	2 I 5 I	2 I
10	358	1451	2200	20
I I	422	159	228	I)
12	4 45	1528	22 17	18
I 3	5 ?	I 547	22 24	17
14	532	165	2232	16
15	555	1622	2239	I 5
16	619	1640	2246	14
17	$6 \quad 42$	1657	2252	13
18	75	17 J 4	2257	I 2
19	728	1730	232	I I
20	750	1747	237	10
21	813	183	23 II	9
22	835	18 I6	2315	8
23	85^{8}	1834	23 I 8	7
24	920	I8 49	23 I	6
25	942	193	2324	5
26	10 4	19 IS	2326	4
27	1026	1932	2327	3
28	1047	1946	2328	2
29	I 9	195%	2329	I
30	II 30	20 I2	2330	\bigcirc
	犬 M	\cdots	v9 \%	

By this Table we may know the Sun's Declination and Difance from the Equinoctial Points each Day at Noon, in every Degree of the Signs of the Zodiack, the greatelt Declination being 23 deg. 30 min . tho at prefent it is but about 23 deg .29 min . but a Minute difierence is of no confequence in the Ufe of Dals. The Degrees of the firf Column to the Left-hand, are for the Signs fet down upon the top of the Table, and the Degrees in the laft Column numbered upwards, are for the Signs fet at the bottom of the Table.

> Of the Trigon of Diurral Arcs.

The fecond Figure reprefents the Trigon of Diurnal and Nocturnal Arcs. Thefe are dawn upon Sun-Dials by Curve Lines, like the Arcs of the Signs, and by means of them the Shadow of the Style fhews how many Hours the Sun is above the Horizon, in any given Day, that is, the Length of the Day, and confequently the Length of the Night too; for this is the Complement of that to 24 Hours.
The Trigon of Signs is the fame for all Latitudes, frine the Sun's Declination is the fane for all the Earth : but the Diurnal Arcs are different for every particular Latitude, and we draw as many of thefe Arcs upon a Dial, as there are Hours of Difference berweea the longe and fhertelt Days of the Year.
Now to confruet the Trigon of Durnal Arcs upon Brafs or any other folid Matter, firft draw the right Line R Z for the Radius of the Hour-Line of 12, or of the Equinoetial ; rad about the Point R, with any Opening of your Compaffes takern at pleafure, deferibe the

Plate XXII

Chap. 3.

circular Arc T S V , and lay off both ways thereon from the Point S, two Arcs, each equal to the Complement of the Latitude. For example, if the Latitude be 49 deg. imake the Arcs S V, and S T, of 41 deg. each. This being done, draw the right Line $T \mathrm{X} V$, and about the Point X, as a Center, defcribe the Circumference of a Circle T'Z V Y, which divide into 48 equal Parss by dotted Lines, drawn parallel to the Radius of the Equinoctial R Z : then thefe Lines will cut the Diameter T X V in Points, thro which and the Point R, you may draw the Radius's of the Hours. And fince the longeft Day at Paris is 16 Hours, and the fhorteft 8, you need but draw four Radius's on one Side the Line R Z, and a like Number on the other Side.
Moreover, the Angles that all the Radius's make at the Point R may be found Trigono metrically, by the following Analogy, viz. As Radius is to the Tangent Complement of the Latitude, fo is the Tangent of the Difference between the Semidiurnal Arc at the time of the Equinox and the Arc propofed, to the Tangent of the Sun's requifite Declination. For example; Suppofe it be required to draw upon the Trigon the diurnal Arc of in or 13 Hours, the Semidiurnal Arc is $5 \frac{1}{2}$ Hours, or $6 \frac{1}{2}$ Hours, and the Day of the Equinox the diurnal Arc is I_{2} Hours; and confequently the Semidiurnal Arc is 6 Hours, and the Difference is half an Hour : therefore Radius muft be put for the firlt Term of the Analogy, the Tangent of 4 I deg. (viz. the Complement of the Latitude of Paris) for the fecond Term, and the Sine of 7 deg. 30 min . for the third Term. Now the fourth Term being found, the Sun's Declination is 6 deg. 28 min . South, when the Day at Paris is II Hours long; and 6 deg. 28 min . North, when the Day is 13 Hours; and making three other Analogies, you will find that the Declination of the diurnal Arc of io Hours and 14 Hours, is 12 deg. 41 min. of 9 Hours and 15 Hours, 18 deg. 25 min . and of 8 Hours and 16 Hours, 23 deg. 30 min .

> Of the Trigon with an Index.

The third Figure reprefents the Trigon of Signs put upon a Rule or Index A, in order to draw the Arcs of the Signs upon great Dials. The diurnal Arcs may be drawn likewfe upon this Trigon; but the Arcs of the Signs and diurnal Arcs too mult not be drawn upon one and the fame Dial, for avoiding Confufion. In the Center of the Index there is a little hole thro which is put a Pin, that fo the Inftrument may turn about the Center of a Dial. The Trigon flides along the Index, and may be fixed in any part thereof by means of the Screw B. The Arcs of the Signs with their Characters are round about the Circumference, and there is a fine Thread fixed in the Center thereof, in order to extend over the Radii quite to the Hour-Lines of a D al, as we fhall by and by explain.

The fourth Figure reprefents one half of a Horizontal Dial, having the Morning Hour- Fig. 4^{0} Lines to is a-clock thereon, and the Equinoctial Line C D. This being enough of the Dial, for explaining the Manner of drawing the Arcs of the Signs thereon, by means of Figure 5, which reprefents a Trigon of Signs drawn upon a Piate, on which the HourLines of an Horizontal D.al are adjufted in the following manner:

Take the Length of the Axis V R of the Horizontal Dal between your Compaffes, and lay it off on the Axis of the Trigon from O to C ; after this, take the Diftance from the Center V of the Dal to the Point C , wherein the Equinostial Line cuts the Hour-Line of 12, and lay it off on the Trigon from C to a, and draw lightly the Line $c a 12$, cutting all the feven Lines of the Trigon. This being done, take upon this Line the D .fance from the Point c to the Interfection of the Summer Tropick, and lay it off from the Center V of the Dial on the Hour-Line of 12, and you will have one Point thro which the Summer Tropick muft pafs; likewife take the Diflance from the Point c to the Interfection of the Parallel of I, and lay it off on the Hour-Line of I2, from the Center of the Dial, and you will hiave a Point on the faid Hour-Line thro which the Parallel of II muft pafs; likewife affume all the other Diftances on the Trigon, and lay them off fucceffively on the Hour-Line of 12 of the Dal, from the Center to the Point thro which the Winter Tropick paffes, which muft be the moft diftant from the Center of the Dial, and you will have the Points in the Hour-Line of 12 thro which each of the Parallels of the Signs muft pafs. And by proceeding in this manner with the other Hour-Lines, you will have Points in them thro which the Parallels of the Signs muft pafs. For example, Affume on the Hour-Line of II of the Dial, the Diftance from the Center thereof to the Point wherein the Equinoctial Line cuts it, and lay this Difance off upon the Trigon from c towards a, and draw the right Ligne Cin_{1}; then take the Diftances from the Point c to the Interfection of each of the Parallels of the Signs, and lay them off from the Center of the Dial, on the Hour-Line of II, to the Points 2 2, \mathcal{C}_{c}. and thofe will be Points in the Hour-Line of 1I, thro which the Parallels of the Signs muft pafs. Underfand the fame for others.
But becaufe the Hour-Line of 6 is parallel to the Equinoctial Line, make this likewife parallel to the Radius of the Equinotial oa on the Trigon: and to prick down the Line for the Hour of feven in the Evening, defribe an Arc about the Point C, as a Celter, from the Line for the Hour of 6 to that for the Hour of 5 ; and lay of that Arc on the other fide of the Line for the Hour of 6 , and then you may draw the Hour-Line of 7 , which will not meet the Summer Tropick. Finally, The Line for the Hour of 8 muft make the fame Angle with the Line of the Hour of 6, as the Line for the Hour of 4 does;
but it is ufelefs to draw this Line for the Latitude of 49 deg. becaufe this Line being parallel to the Tropick of os, cannot cut any one Radius of the Signs. Now the Boints thro which the Arcs of the Signs muft pals, being found on the Hour-Lines of the Dial, you mult join all thofe that appertain to the fame Sign with an even hand; and you will have the Curved Arcs of the Signs, whofe CharaGters muft be marked upon the Dial, as per Figure. Note, We fometimes fet down the Names of the Months, and of fome remarkable moveable Feafts upon the Dial. The Arcs of the Signs are drawn upon vertical Dials in this manner ; but here the Winter Tropick muft be nigheft to the Center of the Dial, and the Summer Tropick furtheft diftant from it.

If the Arcs of the Signs or diurnal Arcs are to be drawn upon a great Dial, the third Figure muft be ufed in the following manner:
Fig. 6.
Faften the Rule or Index to the Center of the Dial by a Pin, fo that it may be turned and fixed upon any Hour-Line, as may be feen in Figure 6: then having fixed the Center of the Trigon upon the Index, at a Diftance from the Center of t'e Index equal to the Diflance from the Center of the Dial to the Extremity of the Axis thereof, by means of the Screw R; take the Thread in one Hand, and with the other raife or lower the Inftrument upon the Plane of the Dial, fo that the Thread extended along the Radius of the Equinoctial of the Trigon, meets the Point wherein fome HourLine cuts the Equinoctial Line of the Dial, and in this Situation fix the Index. This being done, extend the Thread along the Radius's of the Trigon, and prick down the Points upon each Hour-Line of the Dial, thro which the Parallels of the Signs muft pafs, both above and below the Equinoctial Line, as we have done on the Hour-Line of 12 of the Dial reprefented in Figure 6. And if you do thus on all the Hour-Lines fucceffively one after the other, and the Points marked thereon appertaining to the fame Sign, be joined by an even Hand, you will have the Parallels of the Signs upon the Surface of the Dial. But to make the Points on the Hour-Line of 6 , the Inftrument muft be turned fo that the Fiducial Line of the Index be upon the Hour-Line of 12, and the Radius of the Equinoctial Circle of the Trigon parallel to the Hour-Line of 6 . The Infrument being thus fixed, extend the 'Thread along the Radius's of the Signs, until it cuts the Hour-Line of 6, and the Points where it cuts the faid Hour-Line, will be thofe thro which the Parailels of the Signs mult pafs in that Hour-Line.

When the Arcs of the Signs are drawn on one fide of the Dial, for example, on the Morning Hour-Lines, you may lay off the fame Diftances from the Center on the Hour-Lines of the other fide the Meridian; as the Points denoted on the Hour-Line of I I mult be laid off on the Hour-Line of I , thofe on the Hour-Line of 10 on the Hour-Line of 2 ; and fo draw the Arcs of the Signs on the other fide of the Meridian. Note, The Arcs of the Signs are drawn upon declining Dials in the fame manner, if the Subtylar Line be made ufe of inftead of the Meridian, and the Diftances from the Center be taken equal upon thofe HourLines equally diftant on both fides of the Subftyle from it.

If the diurnal Arcs are to be pricked down upon a Dial intead of the Arcs of the Signs; that is, the Length of the Days, we may likewife put thereon the Hour of the Sun's rifing and fetting, if the Length of the Day be divided into two equal Parts. For example, when the Day is 15 Hours long, the Sun fets half an Hour paft 7 in the Afternoon, and rifes half an Hour paft 4 in the Morning; and fo of others.

If the Arcs of the Signs are to be drawn upon Equinotial Dials, as on that of Figure 7, Plate 22, take the length of the Axis of the Style A D, and lay it off upon the Axis of the Trigon (of Figure 5. Plate 23.) from O to P , and draw the Line P N parallel to the Radius of the Equinoctial ; this fhall cut the Summer Tropick and two other Parallels: then take the Diftance from the Point P to the Interfection of the Tropick of $\mathcal{G}_{\mathcal{S}}$; and with that Diftance about the Center A of the Dial draw a Circle, which fhall reprefent the Tropick of s. Take likewife the two other Diftances on the Parallel of the Trigon, and draw two other Circles about the Center of the Dial, the one for the Parallel of II and Ω, and the other for that of 8 and m, which may be drawn upon an upper Equinocial Dial. But if this was an under Equinoctial Dial, then the above defcribed Circles would reprefent the Parallels of m, F, \nsim, \ldots and \mathcal{F} : but as for the Parallels of r and \approx, they cannot be drawn upon Equinoctial Dials, becaufe when the Sun is in the Plane of the Celeftial Equator, his Rays fall parallel to the Surfaces of Equinoctial Dials, and the Shadows of their Styles are indefinitely protended.

The Horizontal Line is thus drawn: Firft lay cff the Style's length on the Hour-Line of G, and about the Extremity D thereof, defcribe the Arc E F (upwards for an upper Dial) cqual to the Latitude, viz. 49 deg. for Paris, and draw the Line DF, which fhall cut the Meridian in the Point \mathbf{H}, thro which the Horizontal Line mult be drawn parallel to the Hour-Line of 6, as may be feen in Figure 7, Plate 22.

The Ufe of this Line is to fhew the rifing and fetting of the Sun at his entrance into the beginning of each Sign. For example, becaufe it cuts the Tropick of Cancer on the Dial, in Points thro which the Hour-Line of 4 in the Morning, and 8 in the Evening pafles; therefore the Sun rifes the Day of the Solftice at 4 in the Morning, and fets at 8 in the Evening at Paris. Underftand the fame of others.

To draw the Arcs of the Signs upon Polar Dials.
The Dial being drawn, (as appears in Fig. 6. Plate 22.) the dotted Radii of the Hours continued out till they meet the Equinoftial Line muft be laid off fuccefively upon the Radius of the Equinoctial of the Trigon of Signs (Figure 5. Plate 23.)' for drawing as many Perpendiculars thereon as there are dotted Radii, viz. one for the Hour of 12, and the five others for the Hours of $1,2,3,4$ and 5, which fhall cut the Radii of the Signs of the Trigon. 'This being done, take the Diltances from the Radius of the Equinotial of the Trigon upon the faid Perpendiculars, to the Radius's of the other Signs, and lay them off upon the Hour-Lines of the D.al on both fides the Equinoctial Line A.B. For example ; Take the Diftance 12 v , and lay it off on the Dial from the Point C upon the Hour-Line of 12 , and you will have two Points in the faid Line thro which the Tropicks mult pafs. Likewife take the Space on the Trigon upon the Line 5 vo or \approx, and lay it off upon the Hour-Lines of 5 and 7 on both fides the Equinoctial Line of your Dial, and you will have Points in the Hour-Lines of 5 and 7 , thro which the Tropicks muft pars. And in this manner may Points be found in the other Hour-Lines thro which the faid'Tropicks muft pafs; as alfo the Points in the Hour-Lines thro which the Parallels of the other Signs mult be drawn, which being found mult be joined. Note, We have only drawn the two Tropicks in the figure of this Dial for avoiding Confufion. And the Parallels of the Northern Signs mult be drawn underneath the Equinotial Line, and the Southern Signs above it. Alfo the diurnal Arcs are drawn in the fame manner as the Arcs of the Signs are.

How to draw the Arcs of the Signs upon Eaft and Weft Dials.

The Arcs of the Signs are drawn nearly in the fame manner upon Eaft and Weft Dials as upon Polar ones: for example, let it be required to draw the Arcs of the Signs upon the Weft Dial of Figure 8. Plate 22. the dotted Radii of the Hours produced to the Equinoctial Line C D, muft be laid off upon the Trigon of Figure I. (Plate 23.) from the Point a upon the Radius of the Equinotial, that fo Perpendiculars may be drawn upon the Trigon cutting the Radius's of the Signs ; after this, you muft take upon the faid Perpendiculars the Diftances from the Radius of the Equinoctial to the Interfection of the Radii of the other Signs, and lay them off upon the Hour-Lines of the Dial, on both fides the Equinoctial Line. For exampie, take the Space 6 vs, or 6 g, and lay it off on both fides the Point \mathbf{D} upon the HourLine of 6 on the Dial: Proceed in this manner for finding, Points in the other Hour-Lines thro which the Curve Paraliels of the Signs mult be drawn with an even Hand, fo that the Northern ones be under the Equinoctial Line, and the Southern ones above it. Note, The diurnal Arcs are drawn in the fame manner; and we have only drawn the two 'Tropicks thereon for avoiding Confufion.

The Conftruction of a Horizontal Dial, baving the Italian and Babylonian Howrs; as alfo the Almacanters and Meridians defcribed upon it.

Having already fhewed the manner of pricking down the Aftronomical Hours upon SunDials, as alfo the Diurnal Arcs, and Arcs of the Sigus, there may yet be feveral other Circles of the Sphere reprefented upon Dials, being pleafant and ufeful, which the Shadow of the Extremity of the Style paffes over; as the Italian and Babylonian Hours, the Azimuths, the Almacanters, and the Meridians of principal Cities.

The firf Line of the Italian and Babylonian Hours is the Horizon, like as the firlt Line of the Aftronomical Hours is the Meridian ; for the Italians begin to reckon their Hours when the Center of the Sun touches the Horizon at his fetting, and the Babylonians when he touches the Horizon at his rifing.

A general Method for drauing the Italian and Babylonian Hours upon all kinds of Dials.

The Aftronomical Hour-Lines, and the Equinoctial Line being drawn, as alfo a Diurnal Fig. $7 \cdot$ Arc or Parallel of the Sun's rifing for any Hour, at pleafure, as, for the Hour of 4 ar Paris, which Arc will be the fame as the Summer Tropick, you may find two Points (as we fhall fhew here) in each of the aforefaid Lines, viz. one in the Equinoctial Line, and the other in the Diurnal Arc drawn, by means of which it will not be difficule to prick down the Italian and Babylnian Hour-Lines; becaufe they being the common Sections of great Circles of the Sphere and a Dial-Plane, will be reprefented in right Lines thereon.

Now fuppofe it be required to draw the firft Babylonian Hour-Line upon the Horizontal Dial of Figure 7, firft confider that when the Sun is in the Equinctial he rifes at 6 , and at 7 he has been up juft an Hour ; whence it follows, that the firf Bablonian Hour-Line muft pals thro the Point wherein the Aftronomical Hour-Line of 7 cuts thie Equinocital Line; the fecond thro the Interfection of the Hour-Line of 8 ; the third thro that of the HourLine of 9 ; and fo of ochers.

But when the Sun rifes at 4 in the Morning, the Point in the Tropick of 5 , wherein the Hour-Line of 5 cuts it, is that thro which the firt Babylonian Hour-Line muit pafs; the Interfection of the Hour-Line of σ in the faid Tropick, that thro which the fecond Babylonian Hour-Line muft pafs ; the Interfection of the Hour-Line of 7 with the faid Tropick, that Point thro which the third Babylonian Hour-Line muft pafs; and fo of others. Then if a

Ruler be laid to the Point wherein the Hour-Line of 5 cuts the Tropick of Cancer,-and on the Point in the Equinoctial Line cut by the Hour-Line of 7, and you draw a right Line thro them; this Line will reprefent the firf Babylonian Hour-Line. Proceeding in this maner for the other Babylonian Hour-Lines, you will find that the 8th Eabylanian Hour-Line will pafs thro the Point the Tropick of Cancer is cut by the Aftronomical Hour-Line of 12, and the Point in the Equinoctial cut by the Hour-Line of 12 ; and the sth B.abllonion Whor-Line thro the Point in the faid Tropick cut by the Hour-Line of 7 in the Evening, and the Point in the Equinoctial Line cut by the Hour-Line of 5.

One of the Babylonim Hour-Lines being drawn, it is afterwards eafy to draw all the others; becaufe they proceed orderly from: one Aftronomical Hour-Line to the other, on the Parallel and the Equinoctial Line, as appears per Figure. Finally, The Sun lets at the 16 th Bablonian Hour, when the Day is 16 Hours long: he fets at the 12 th when he is in the Equinoctial; and at the 8th when the Night is I6 Hours long, becaufe he always rifes at the $24^{\text {th }}$ Bubyloniun Hour.

You muft reafon nearly in the fame manner for pricking down the Italian Hour-Lines. Here we always reckon the Sun to fet at the 24th Hour; and confequently in Summer, when the Nights are but 8 Hours loing, he rifes at the 8 th Italian Hour; at the Time of the Equinox he rifes at the 12 施 Italian Hour; and in Winter, when the Nights are 16 Hours long, he rifes at the 16th Italian Hour: and therefore the Hour-Line of the 23 d Italian Hour muft pafs thro the Interfection of the Aftronomical Hour-Line of 7 , and the Summer Tropick the Interfection of the Hour-Line of "5, and the Equinoctial Line, and the Interfection of the Hour-Line of 3, and the Winter Tropick. But two of the faid Points are fufficient for drawing the faid Italian Hour-Line. The 22d Italian Hour-Line paffes thro the Interfection of the Hour-Line of 6 in the Evening, and Summer Tropick, the Interfection of the Hour-Line of 4, and the Equinoctial Line, and the Interfection of the HourLine of 2, and the Winter Tropick. Proceeding on thus, you will find that the I Stb ltalian Hour-Line paffes thro the Points of the $12 t h$ Equinoctial Hour, that is, at the Time of the Equinox, it is Nocn at the $18 t b$ Italian Hour; whereas at the Time of the Summer Solltice it is Noon at the IGth Italian Hour, and at the Winter Solftice it is Noon at the $20 t h$ Italian Hour, in all Places where the Pole is elevated 49 Degrees, as may be feen in the following Table.

A TABLE for draving the Babylonian and Italian Hour-Lines upon Dials.

Babylonian Hour	2. 3. 4.5.6.7. 8. 9. 10. II. 12. I3. I4.
$\begin{gathered} \text { Paffing intlie } \\ \text { Parallel of } \begin{array}{l} \text { on } \\ \text { vo thro } \end{array} . \end{gathered}$	
${ }^{* 2}$ Italian' Hours.	23.22.21.20.19.18.17.16.15.14.13.12.11.10.9.80'
Paffingintije	

'The Ufe of the 'Italian Hour-Lines upon a Dial may be to find the 'Time' of the Sun's "Fetting, in fubftrating the Italian' Hour prefent from 24; and by the Babylonian Hours may be known the Time of the Sun's rifing.

How to draw the Almacanters, and the Azimutls.

Fig. 7 2. The Almacanters or Circles of Altitude are reprefented upon: the Horizontal Dial by concentrick Circles, and the Azimuths by right Lities terminating at the Foot of the Style B, which reprefents the Zenith, and is the common Center of all the Almacanters: and therefore you need but divide the Meridian B XIL into Degrees, the Extremity of the Style C being the Center ; and the Tangents' of thofe Degrees on the Meridian'will be the Semidiameters of the Almacanters, which fhall terminate at the twe Tropicks. Now to find thefe Tangents, you may ufe a Quadrant like that of Figure 8. in this manner: Lay of the Length of the Style C B from A to H, and draw the Line H I parallel to the Side A C of the Quadrant; then will this Line be divided into a Line of Tangents by Radii drawn from the Center A to the Degrees of the Limb.' And thefe Tangents may' be taken berween your Compafles, and laid off upon the Meridian 'Line B^{\prime} XII. in fuch manner, that the goti' Degree anfivers to the Point B. But fince this Dial is niade for the Latitude of 49 deg. and fo confequently the Sun in his greateft Altitude there, is but σ_{4} deg. 30 min. 'you need only Prick down this greateft Altitude, which will terminate at the Summer Tropick.

Chap. 4.

This being done, if one of the Circles of Altitude be divided into every 10 th deg. beginning from the Meridian B XII. which is the goth Azimuth, and thro thefe Points of Divifion right Lines are drawn to the Foot of the Style B: thefe right Lines will reprefent the Azimuths or vertical Circles. We have not drawn them upon the Dial, for avoiding Confufion, but they may be eafily conceived.

Now the Ufe of the Almacanters is to ̣̂hew the Sun's Altitude above the Horizon at any time, and of the Azimuths, to fhew what Azimuth or vertical Circle the Sun is in : and this is known by obferving what Circle of Altitude or Azimuth Line, the Shadow of the Extremity of the Style of the Dial falls upon.

How to draw the Meridians or Circles of Terreftrial Longitude upon the Horizontal Dial.

About the Point D, the Center of the Equinoctial Circle, defcribe the Circumference of Fig. 70 a Circle, and divide it into 360 equal Parts or Degrees, or only into 36 Parts, for every toth Degree; then from the Hour-Line of $\mathbf{1 2}$, which reprefents the Meridian of the Place for which the Dial is made, viz. Paris, count 20 deg. Weftward for its Longitude, or Diftance from the firft Meridian paffing thro the Point \mathcal{G}; on which having wrote the Number 360, prolong the Line G D to E, in the Equinoctial Line, and afterwards from the Center A draw the firf Meridian thro E, which paffes thro the Ifland de Fer, and fo of others. But it will be eafier to draw the Meridians eaftwardly for every 5 th or 10 th Degree, and place thofe principal Cities upon them, whofe Longitudes you know: as, for example, Rome is $10 \frac{1}{2}$ deg. more ealtwardly than Paris, Vienna 15 deg. more eaftwardly tinan the faid City of Paris, and fo of other eminent Cities, whofe Differences of Meridans from that of Paris, are known by a good Globe, or Map, made according to the exact Oblervations of the Academy of Sciences.

The Ufe of thefe Meridians on the Dial, is, to tell at any time when the Sun fhines thereon, what Hour then it is under, any one of the faid Meridians, in adding to the time of Day at Paris, (for which the Dial is made) as many Hours as there are times 15 deg. of Difference between the Meridians, and 4 min . of an Hour for every Degree.
For example; When it is Noon by this Dial at Paris, it will be One a-clock at Vierna, becaufe this City is more to the Eaft than Paris by 15 deg. and confequently receives the Sun's Light fooner than Paris does. And at Rome it will be 42 min . palt 12 , becaufe it is $10 \frac{-1}{2}$ deg. more eaftward than Paris, and fo of others. Thefe Lines of Longitude reprefent the Meridians of the Places attributed to them; fo that when the Shadow of the Style falls upon any one of them, it will be Noon under that Meridian.

C H A P. IV.

Of the Confruction and Ufes of Infruments for drazuing Dials upon different Planes.

THE eighth Figure reprefents a Quiadrant made of Brafs or any folid Matter, of a big- Fig. s. nefs at pleafure, having the Limb divided into 90 Degrees. The Ufe of this Quadrant may be to find the I.engths of Tangents, and by this means to divide a right Line into Degrees, as we did the Meridian of the Horizontal Dial (Fig. 7.) we may find likewife thereon the Divifions of the Equinoctial Line thro which the Hour-Lines muft pafs, in regular Dials; as alfo in declining Dials, if the Subfyle falls exacdy upon a compleat HourLine, by laying off the Length of the Radius of the Equinoctial Circle, from the Center A to H or L, and drawing a right Line, as H I or L M, parallel to the Radius of the Quadrant A C. For example, the Length L I or my anfwering to 15 deg. of the Quadrait, fhall be the Tangent of the firt Hour-Line's diftance from the Meridian or Subfyle of the Dial, which being laid off upon the Equinoctial Line, whofe Radius is fuppofed equal to A L, will determine a Point therein thro which the, faid Hour-Line muft be drawn. L L 12 , anfwering to 30 deg. of the Limb of the Quadrant, will be the Tangent of the "fecond Hour-Line's diftance from the Meridian or Subfyle. L 3, the 'Tangent of 45 deg. will be that of the third, and fo on. Now if by this means you draw the Hour-Lines of three Hours fucceffively on each fide the Meridian or Subfyle, which in all make fix Hours fucceffively; thefe are fufficient for finding the Hour-Lines of the other Hours, according to the Method before explained in fpeaking of declining Dials, and which may be even applied to all regular Dials. For example, If the Hour-Lines of fix Hours fucceffive be drawn upon an Horizontal Dial, as, from 9 in the Morning to 3 in the Afternoon, you may draw all the other Hour-Lines of the Dial by the aforefaid Method ; as the Hour-Lines of 7 and 8 in the Morning, and 4 and 5 in the Afternoon, whofe Points in the Equinoatial Line are
fometimes troublefome to be pricked down, and principally the Points of the Hour-Lines of 5 and 7, becaufe of the Lengths of their Tangents.

The Hour-Lines found by the abovefaid Method, which we fhall not here repeat, will ferve for finding of others; and thefe which are laft found being produced beyond the Center, will give the oppolite ones.

The faid Quadrant will ferve moreover as a Portable Dial, fince the Hour-Lines may be drawn upon it by means of a Table of the Sun's Altitude above the Horizon of the Place for which the Dial is to be made. See more of this in the next Chapter.

The Conftruction of a moveable Horizontal Dial.

Fig. 9.
This Inftrument is compofed of two very fmooth and even Plates of Prafs, or other folid Matter, adjufted upon each other, and joined together by means of a round Rivet in the Center A. The undermoft Plate is fquare, the Length of the Side thereof being from 6 to 8 Inches, and is divided into twice 90 Degrees; by means of which, the Declinations of Planes may be taken. The upper Plate is round, being about 8 Lines fhorter in D:ameter than is the Length of the Side of the under Plate, and having a little Index joined to the Hour-Line of 12, fhewing the Degree of a Plane's Declination.
About the Center A is drawn an Horizontal Dial upon the upper Plate, for the Latitude of the Place it is to be ufed in, and the Axis B is fo adjufted, that the Point thereof terminates in the Center A, wherein a fmall Hole is made for a Thread to come thro. There is alfo a Compais D fattened to this upper Plate, having a Line in the bottom of the Box, flewing the Variation of the Needle.

The Ufe of the moveable Fiorizontal Dial.

The U:e of this Inftrument is for drawing Dials upon any Planes, of whatfoever Situations; (as on declining inclining Planes, or both) in the following manner:
Firft draw a Horizontal or level Line upon the propofed Plane ; place that fide of the Square along this Line, whereon is wrote the Side applied to the Wall, and turn the Horizontal Dial till the Needle fertles itfelf over the Line of Declination in the bottom of the Box: then extend the Thread along the Axis of the Dial till it meers the Plane, and the Point wherein it meets the faid Plane will be the Center of the Dial. This being done, extend the Thread along each of the Hour-Lines of the Horizontal Dial that the Plane can receive, and mark the Points on the Horizontal Lise upon the Plane, cut by the Thread: then if Lines be drawn from the Center found on the Plane thro each of thofe Points, thofe will be the refpective Hour-Lines that the '1 hread was extended alung on the Horizontal Dial, and muft have the fame Figures fet to them. Note, If the Dial be verticai, not having any Declination, the Hour-Lite of 12 will be perpendicular to the Horizontal Line of the Plane.
The Subfylar Line is drawn thro the Center of the Plane, and the Angular Point of a Square, we Side whereof being laid along the Horizontal Line, and the other Side touching the Style of the Horizontal Dial.

Again, The Diftance from the Side of the Square laid along the Plane to the Axis, is the Lengti of the right Style, which being laid along in the fame Place at right Angles to the Subtyle, you may draw the Axis from the Center to the Extremity thereof; which may be forned on the Plaine by means of an Iron Rod, parallel to the Situation of the Thread extended along the Axis of the Heriznntal Dial, and muft be fuftained by a Prop planted in the Plane perpendicular to the Subftyle.
If you have a mind to have a right Style only, fome Point muft be fought in the Subfyle diffant from the Center of the Dial, proportional to the bignefs of the Dial, and an IronRod muft be fet up perpendicularly therein : but the Point of this Rod muft touch the Thread extended along the Axis. Finally, You may give what Figure you pleaie to the Dial, and produce the Hour-Lines as is neceffary, according to the bignefs of the Plane. If a great Dial is to be drawn, you may place the Inftrument at a Difance from the Plane it is to be drawn on; but then you mult take care that it be very level, and the Side thereof parallel to the Plane. And if North Dials are to be drawn, having firf fould the Declination of the Plane, for example, 45 deg . North-weftwardly, plice the Index of the Dial over the Degree of the oppofite Declination on the fquare Plate, viz. over 45 def. Southeaftwardly, then invert the whole Inftrument, and extend the Thread along the $\AA_{\text {x }}$:s, that fo the Center of the Dial may be found upon the Plane underneath the Horizontal Line, on which having pricked down the Points thro which the Hour-Lines muff pals, jou may draw them to the Center, and then proceed as before.

The Conftruction of the Sciateria.

Fig. 10. This Infrument is compofed of an Equinoctial Circle A, made of Brafs or any other folid Matter, adjufted upon a Quadrant B. The Point of the Hour of 12 of this Equinocial Circle is tattened to one end of tice Quacrant, and a litele Steel Cylinder abcut two Lines in Diameer, ferving for an Axis, and going thro the Center of the Equinoctial Circie, is fo fixed to the other end C of the Quadrant, as to kcep the faid Equinotial Circle fixcd at right Angles to the Quadrant.

The Quadrant is divided into go deg. and is made to flide on the Top of the Piece L, according to different Elevations of the Poie. The little Ball G is hung at the end of a 'Thread, whofe other end is faftened to the 'Top of an upright Line on the Piece L, and fo by means of this, and the Ball and Socket H, the Inftrument may be fet upright. The Piece I is of Steel, and the end therenf is forced into a Wall or Pane, to fapport the whole Inftrument when it is to be ufed. The Figure D is the Trigon of Signs pue on tase Axis, and turns about the fame by means of a Ferril. This Trigon has a Tinead F fattened to the Extremity thereof, and there is another Tirread E faltened to the Center of the Dal. But note, we do not place the Trigon upon the Axis, unlefs when the Ares of the Signs are to be drawn upon Dals.

The Ufe of the Sciaterra.

- You mult firlt force the Steel Point I, into theWall or Plane whereon a D'al is to be drawn, and place the Quadrant to the Degree of the Elevation of the Pole : then you muft take a Square Compafs, and lay the Side thereof along the Plane of the Quadrant, and turn the Intrument until the Needle fixes itfelf directly over the Line of Decitiation; or if you have not a Compafs when the Sun fhines, and the Hour of the Day is known; turn the Inftrument till the Shadow of the Axis falls upon the Hour of the Day upon the Equinoctial Circle.
'The Infrument being thus difpofed, extend the Thread E from the Center alorg the Axis till it meets the Wall or Ptane propofed, and there make a Point for the Center of the D al : then extending the faid Thread over each Hour of the Equinoctial, note the Points whercia it meets the Wall or Piane, and draw Lines from the Center (ocfore found) thro them, and thofe will be the Hour-Lines. After this, you may give the Dal what Figure you pleafe, and fet the fame Figures upon the Hour-Lines as are upon the correfpondent Hours of the Equinoctial Circle. Ivote, The Style is fer up in the manner we have mentioned in fpeaking of the moveable Horizontal Dial.

If the Arcs of the S:gns, or diurnal Arcs, are to be drawn upon the D al, you muft put the Ferril at the end of the Trignn upon the Axis, and fix it over eaci Hour of the Equinctial one after another by means of the Screw: then extending the Turead F along the Lines appertaining to each Sign, mark as many Points on each Hour-Line on the Wall or Plane, and juin them by curve Lines, which fhall form the Arcs of the Signs, whereon mult be fet their refeeftive Cnaracters.

The Arcs of the Sigus may be otherwife drawn in the following manner: The Axis of the Dal being well fixe , chule a Point in the fame for the Extremity of the right Seyle, reprefenting the Center of the Earch; and upon this Ax's put the Ferril of the Trigon in fuch manner, that the Extremity of the r!ght Style exactly anfwers to the Vertex of the Trigon, reprefencing tiae Center of the Equinnctial and the World. Then having fixed the Trigon by n eans of the Screw preffing againf the Axis, turn it fo that one of the Planes thereof (for the Signs nuthr to be drawn upon both fides) falls exattly upon the Hour-Lines one after another, and extend the Threat F along the Radius's of the Signs on the Trigon, and by means thereof mark Points upon each Hour-Line of the Wall or Plane: and if thefe Points be joined, we fiall have the Arcs of the Signs.

Proceed thus for drawing North Dals, as likewife inclining and declining Dials, in obferving to inveri the Infrument when the Centers of the Dials are downwards.

The Conftrucion of M. Pardie's Sciaterra.

This Infrument, which is made of Brafs or other folid Matter, of a bignefs at pleafure, Fig. Iro confifts of four principal Pieces or Parts. The firt is a very even fquare Plate D, called the Horizontal Plane, becaufe it is placed horizontal or level when ufing, having a round Hole E in the middle, wherein is placed a Pivot, upon which turns the fecond Piece, called the Meridional Plane, in fuch manner that the faid Piece is always at right Angles to che Horizontal Plane. On the narrow fide C of this Piece is faftened a Plumb-Line, whole ule is for placing the Inftrument: level. The Top of this Piece is cut away into a concave Quadrant, both fides of which are divided into 90 deg. beginning from the Perpendicular anfwering to the middle of the Pirot, and there is a precty deep flit made down the middle of this Quadrant to receive a prominent Piece of a Semi-circle H, which is the third principal part, that fo the faid Semi-circle may be in the fame Plane as the fecond Piece is, and likewvife be raifed or lowered according to different Elevations of the Pole. The Dameter of this Semi-circle is called the Axis, and the Center thereof is fimply called the Center of the Inftrument, like as the Thread faftened thereto is called the central Thread. The fourth Piece A is a very even Circle, both fides thereof being divided into 24 equal Parts, for the 24 Hours of the Day; and this is fixed at right Angles to the Semicircle H, and fo moves along with it. One of the fides thereof is called the upper-fide, and the other the under-fide. The'Trigon of Signs is drawn (in the mamer before explained) upon both fides of the Semicircle, having the Point A, the Extremity of the Diameter of the Equinoctial Circle, for the Vertex thereof.

The Ufe of this Inftrument.

Having firf placed the Points of r and \cong of the Semi-circle upon the Degree of the Elevarion of the Pole in the Place for which you would draw a Dial, fet the Inftrument upon a fixed Horizontal Plane, near to the Wall or Plane you are to draw a Dial on. Then turn the Meridional Plane till the Shadow of the Equinoctial Circle falls upon the Day of the Month or Degree of the Sign on the Axis the Sun is in. This being done, the Shadow of the faid Axis or Diameter of the Semi-circle H, will fhew the time of Day upon the Equinotial Circle, and the whole Inftrument will be well fituated, the Meridional Plane anfwering to the Meridian of the Heavens, the Equinoctial Circle parallel to the Celeftial Equinoctial Circle, and the Axis of the Dial parallel to the Axis of the World. This being done, extend the Thread F faftened to the Center, along the Axis to the Wail or Plane you are to draw a Dial on, and the Point wherein it meets the Wall will be the Center of the Dial. The faid Thread thus extended will likewife give the Pofition of the Style or Axis of the Dial ; for if an Iron Rod be placed in the faid Point of Concourle, and in the fame Situation as the Thread is, this will be the Scyle of the Dial: but if you have a mind to have a right Style only, you need but fet up a Rod in the Wall or Plane, whofe end touches the Thread extended along the Axis of the Inftrument; and this Rod may have what Figure you pleafe given to it, as a Serpent or Bird, provided the Extremity of the Bill thereof meets the faid Thread.

Now to mark the Hour-Lines upon the Dial, extend the Thread from the Center over the Plane of the Equinoctial Circle along the Hour-Lines therenf one after another, until it meets the Wall : then if Lines be drawn from the Center of the Dial to the faid Points of Concourfe, thefe will be the Hour-Lines. But the Hour-Lines may be otherwife pricked down in the Night, by the light of a Link or Candle ; for the central 'Thread being firft extended along the Axis, and faftened to the Wall, afterwards move the Link till the Shadow of the Axis falls upon any given Hour upon the Equinoctial Circle, and then the Shadow of the faid extended Thread upon the Wall will be the fame Hour-Line ; and by drawing a Line upon the Wall along the fame with a Pencil, that will be the HourLine.

Proceed thus for drawing the other Hour-Lines. Note, This Method of drawing Dials is a very good one, particularly when a Surface is not llat and even, or when the Center of the Dial falls at a great Diftance. You muft obferve likewife, that the Shadow of the Axis of the Inftrument fhews the Time of Day on the upper-fide of the Equinoctial Circle from the $2.0 t b^{\prime}$ of March (N.S.) to the $22 d$ of September, and on the under-fide the other fix Months; and the fide of the Equinotial Circle that the Sun fhines upon, muft always but jufs touch the Center of the Semi-circle.

C H A P. V.

Of the Conftruction and Ufes of Portable Dials.

Of the Conftruction of a Glcbe.

Fig. İ。

THIS Figure reprefents a Globe, whereon are drawn the Meridians or Hour-Circles. 'There are divers fizes of them; the great ones are fet up in Gardens, and are of Stone or Wood well painted, and the fmall ones are made of Brafs, having Compaffes belonging to them, and may be reckoned among the Number of. Portable Dials.

The manner of turning round Balls of any Matter is well known, but, if a large StoneBall is to be made, that cannot be turned becaufe of its Weight : firtt, you mout nighly form it with a Chiffel, and then take a wooden or brafs Semi-circle of the fame Diameter as you defign your Ball. This being done, turn the Semi-circle about the Ball, and take away all the Superfuities with a Rafpe, until the Semi-circle every where and way juft touches the Superficies thereof; afterwards make it fmooth with a Pumice-Stone or Sea-Dog Fifh's Skin, EGc.

The Globe being well rounded and made fmooth, you muft take the Diameter thereof with a Pair of Spheric Compaffes, viz. fuch whofe Points are crooked, which fuppofe the right Line A B ; this Line is divided into two equal Parts in E by the vertical Line ZN, the upper Point whereof Z, reprefents the Zenith, and the lower one N, the Nadir. Now fet onc Point of the Spheric Compaffes in E, and extend the orher to A, and draw the Meridian Circle A Z B N ; likewife fetting one Foot of your Compalles in Z, with the laft Opening defcribe the Circle A E B, reprefenting the Horizon ; and from the Point B to C count 49 deg. the Elevation of the Pole on the Meridian, and fetting one Foot of your Compalfes in the Point C, reprefenting the North Pole, extend the other to 41 deg . on the Meridian below the Point B , and draw the Equinoctial Circle; likewile ferting one Foot of

Chap. 5.

your Compafies, opened to the fame Diftance as before, upon the Point in the Meridian cut by the Equinoctial, you may draw the Hour-Circle of 6 paffing thro the Poles C and D . By this means the Equinoctial fharl be divided into four equal Parts by the Meridian and HourCircle of 6 ; and if each of thefe four Parts be divided into fix equal Parts, for the 24 Hours of a Natural Day, and about the Points of Divifion as Centers, with the extent of a Quadrant of the Globe, Circles be defcribed ; thefe will all pafs thro the Poles of the World C and D, and are the Hour-Circles. If you have a mind to have the half Hours or Quarters, each of the Divifions on the Equinoctial muft be divided into 2 or 4 equal Parts. The Hour-Circles are numbered round the Equinoctial both above and below it, as appears per Figure.

If the Parallels of the Signs are to be drawn upon the Globe, you muft count upon the Meridian both ways for the Equinoctial, the Declination for every Sigit, according to the Table expreffed; as, for example, for the two Tropicks you muft count 23 deg. 30 minh . from the Equinoctial, and about the Poles C and D, draw Circles on the Globe. Note, The two Poiar Circles mult be drawn at 23 deg. 30 min . from the Poles, or 66 deg. 30 min . from the Equinotial.

The Globe thus ordered muft be placed upon a Pedeffal proportionable to the bignefs thereof in a Hole made in the Nadir N, diftant from the Pole the Complement of 'its Eleration (viz. 4 I deg.) and fixed in a Garden, or elfewhere, well expofed to the Sun, fo as to be conformable to the Sphere of the World.

But if it be a fmall Portable Globe, we place a little Compafs upon the Pedeftal thereof, that fo the Globe may be fet North and South when the Huur of the Day is to be fhewn thereby, which is fhewn thereon without a Style, by the Shadow of the fame Globe: for the Shadow or Light thereon always occupies one half of the Globe's Convexity, when the Sun Shines upon it ; and fo the Extremity of the Shadow or Light fhews the Hour in two oppofite Places. If, moreover, the different Countries on the Earth's Superficies, as likewife the principal Cities, are laid down upon the Globe according to their true Latitudes and Longitudes, you may difcover any Moment the Sun fhines upon the fame, by the illuminated part thereof, what Places of the Earth the Sun fhines upon, and what Piaces are in darknefs. The Extremity of the Shadow fhews likewife what Pacaces the Sun is rifing or ferting at ; and what Places have long Days, and what have flort Nights : you may likewife diftinguifh thereon the Places towards the Poles that have perpetcal Night and Day. All this is eafy to be underftood by thofe who are acquainted with the Nature of the Sphere. Note, This Dial is the moft natural of all others, becaufe it refembles the Earth itfeif, and the Sun fhines thereon as he does on the Earch.

You may find the Hour of the Day orherwife, by means of a thin brafs Semi-circle divided into twice 90 deg. adjufed to the Poles or Extremes of the Axis, by help of two little Ferrils. This Semi-circle being turned about the Globe with your Hand, until it only makes a perpendicular Shadow upon the Globe, reprefents the Hour-Circle wherein the Sun is, and confequencly fhews the Hour of the Day, and alfo what Places of the Earth it is Noon at that Time. But in this Cafe the Number 12 muft be fet to the Meridian, and the Numbers 6 and σ to the two Points wherein the Equinoctial cuts the Horizon : and this is the reafon why we commonly place two rows of Figures along the Equinocial. The Shadow of the two ends of the Axis, if they are continued nut far enough beyond the Poles, and the Hours are figured round the Polar Circles, will likewife fhew the Hour. Nite, In order to make fmall Portable Globes univerfal, we adjuft Quadrants underneath them, that fo the Pedeftal may be flid according to the Elevation of the Pole. This is eafy to be underifood:

The Confruction and USe of the Concave and Convex Semi-cylinder.

Thefe Dials, which are made of different bigneffes, the fmall ones of Brafs and the great ones of Stone or Wood, are very curious on account of their fhewing the Hour of the Day without a Style. Their Exaetnefs confifts very much in being very round and even both within fide and without.
The $13^{\text {th }}$ Figure reprefents one of thefe Dials, fet upon and faftened on its Pedeftal, in- Fig. 13: clining to the Horizon under an Angle equal to the Elevation of the Pole, aind directly Eacing the South : and therefore the Hour-Lines and the Edges A B, a b, ferving as a Scyle, are all parallel between themfelves, and to the Axis of the World. The whole Convex Cylinder is divided into 24 equal Parts, or twice 12 Hours, by parallel Lines; and the Concave Semi-cylinder is divided in 6 equal Parts by Right Lines; which are the Hour-Lines from 6 in the Morning to 6 in the Afternoon.

Now when the Sun fhines upon this Dial, the Hour of the Day is fhewn on the Convex fide thereof, by the defect of Light, that is, by a right Line feparating the Light from the Shadow. But the Hour of the Day is fhewn in the Concave part of the Dial, by the Shadow of one of the Edges A B or ab; fo that when the Sun in the Morning is come to the Hour-Circle of 6 , the Shadow of the eaft Edge $a b$ will then fall upon the orher Edge AB, which is the Hour-Line of 6 : and as the Sui rifes higher above the Horizon, the Shadow of the faid Edge $a b$ will defcend and fhew the Hour among the Hour-Lines. (Note,

The Figures cin the Top are for the Morning Hours, and thefe on the Bottom for the Afternoon ones.) When the Sun is come to the Meridian, he directly fhines into the Dial, and then the Edges will caft no Shadow : but when the Sun has pailed the Meridian, and defcends weftwards, the Shadow of the oppofite Edge A B will fhew the Hour firm 12.to 6 in the Evening. If you have a mind to have the halves and quarters of Hours, you ned but double or quadruple the Divifions.

Small Dials of this kind have Compafles belonging to them, that fo the Dials may be fee North and South.

The Conftrution and UJe of the Vertical Cylinder.

This is a vertical Dial drawn upon the Superficies of a Cylinder by means of a Table of the Sun's Altitude above the Horizon at every Hour, when he enters into every 1oth Degree of the Signs, according to the Latitude of the Place for which the Dial is to be drawn; and for this end the following Table is calculated for ${ }_{49}$ Degrees of Latitude.

A TABLE of the Sun's Altitudes for every Hour of the Day at bis Entrance into every 10th Degree of the Signs, for the Latitude of 49 Degrces.

Hours. Signs.	D. M.	$\text { D. }{ }^{\mathrm{I}} \mathrm{M}$	$\text { D. }{ }^{\text {II. }} \mathrm{M} .$	$\left\|\begin{array}{c} \text { IIl. } \\ \text { D. } \end{array}\right\|$	$\left\|\begin{array}{c} \text { VIII. } \\ \text { IV. } \\ \text { D. } \end{array}\right\|$	D. V. M.	D. VI.	V.
30	$6+30$	6156	$55 \quad 19$	$46 \quad 35$	37	$27 \quad 10$	$17 \quad 30$	
$20 \quad 10$	$67 \quad 9$	6133	55	$46 \quad 18$	3642	$26 \quad 54$	$17 \quad 10$	4
$10 \quad 20$	63	$60 \quad 31$		$45 \quad 29$	$35 \quad 5$	26.	16 20	7
III Ω	6112	5849	523.4	$4+$	$34 \quad 39$	2450		550
$20 \quad 10$	$5^{8} \quad 48$	$56 \quad 30$	$50 \quad 29$	$42 \begin{array}{ll}14\end{array}$	$32 \quad 53$	23	$13 \quad 200$	$3 \quad 57$
1020	$55 \quad 52$	$53 \quad 42$	$47 \quad 57$	$39 \quad 55$	3041	$20 \quad 57$	1111	I 40
४ 吹	5230	5030	45	$37 \quad 14$	28 10	$18 \quad 28$	840	
2010	$58 \quad 51$	$4^{6} \quad 48$	$4^{1} 44$	$34 \begin{array}{ll}13\end{array}$	$25 \quad 19$	$15 \quad 43$	544	
1020°	44	$43 \quad 12$	$38 \quad 15$	31	$22 \quad 18$	$12 \quad 48$	$2 \quad 59$	
$r=$	41	3920	$34 \quad 37$	$27 \quad 38$	$19 \quad 9$			
2010	37	3526	$30 \quad 58$	$24 \quad 15$	$15 \quad 58$	$\begin{array}{ll}6 & 42\end{array}$		
1020	33	3140	$27 \quad 24$	$20 \quad 55$	$12 \quad 51$	$3 \quad 4+$		
* m		284	$23 \quad 58$	1742		- 54		
= 010	268	$24 \quad 46$	2051	$14 \quad 45$	76			
1020	$23 \quad 12$	2152	$18 \quad 5$	$12 \quad 12$	443			
$=7$	$20 \quad 48$							
$20 \quad 10$	$18 \quad 48$	1744	146	$8 \quad 27$	$1{ }^{1} 13$			
$10 \quad 20$	$17 \quad 52$	$16 \quad 38$	$13 \quad 3$	$7 \quad 27$				
us 30	$17 \quad 30$	$15 \quad 15$	1242	7 8				

We invwproceed to fow the Conftruttion of the aforefaid Dial upon a Plane wbich afterwarts may be made Cylindrical, or wrapped round a Cylinder; or this Dial may be made upoin the Surface of as Cyliniter it elf, if the Lines be drawn thereon as upon a Plane.

Fig. 14.
Defcribe the Right-angled Parallelogram A B C D upon a brafs Plate or Sheet of Paper, whofe breadth A B or C D let be nearly equal to the Circumference of the Cylinder it is to be wrapped round, and prolong the Line $A B$, upon which alliume $A E$ for the length of the Style, which fhall determine the length of the Cylinder. Then about the Point E, as a Ceuter, with the Radius E A, make a circular Arc equal to the Sun's Meridian Altitude at his entrance into Cancer, and draw the occult Line ED, determining the length or height of the Cylinder A D; but if this length was given, and the length of the Style required, you muft defribe an Arc about the Point D, equal to the Complement of the Sun's greateft Meridian Alritude, which, if the greateft Altitude be 64 deg. 30 min. will be 25 deg. 30 min . and draw the occult Line D E, which flall determine the length of the Style E \hat{A}, proportioned to the length of the Cylinder.

This being done, divide the Arc A F into Degrees and Minutes, and draw occult Lines thro each of the Points of Divilion, frum the Center E to the Line A D, that fo this Live
may be made a Scale of Tangents. But this Line may be otherwife divided, by fuppofing thie Radius A E 100 or rooo equal Parts, according to the length of the Cylinder, and taking the correfpondent Tangents from printed Tables, and laying them off from A.

Things being thus ordered, divide the Sides A B, D C into 6 equal Parts, and join the Points of Divifion by five parallel right Lines, which will reprefent the begianitgs of the twelve Sigus; then trifect each of thefe parallel Spaces for the roth and 20 th Degiree of each Sign. Now by this means the beginnings of the Months may be fet upon your Dial, becaufe there will be no fenfible Error in fixing the Sun's entrance into every Sign the 2oth Day of every Month, (N. S.) Then to prick down the Hour-Points upon all thefe Lines one after another, you muft ufe the foregoing Table: for example, to prick down the Hour-Point of 10 in the Morning, or 2 in the Afternoon, upon the Line A D reprefenting the Summer Tropick, you will find by the 'Table, that the Sun's Altitude at the time of the Summer Solftice at the Hours of 10 or 2 , is 55 deg. 19 min. therefore you mult take the Tangent of 55 deg. 19 min. from your Scale of Altitudes A D, and lay off from the Side A B upon the faid Tropick, and then you will have a Point therein thro which the propofed Hour-Line muft pals. Again, To prick down the Hour-Point of the faid Hour of 2 upon another Parailel, fuppofe on that of the ift Degree of Leo or Gemini, you will find by the Table that the Sun's Altitude will then be 52 deg. 34 min. and the Tangent of thefe Degrees being taken from the Scale of Altitudes A D, and laid off upon the faid Parallel from A B, will give a Point therein thro which the HourLine of 2 mult pafs. And if, you proceed in this manner, and find Points in the other Pa rallels, and likewife on their Divifions of every roth and 20th Degree; thefe Points joined will give the Curved Hour-Line of 10 in the Morning, or 2 in the Afternoon.

And thus likewife may be found Points in the Parallels thro which the other HourLines muft pafs; which being done, you mult join all thofe belonging to the fame Hour by an even Hand, and mark the CharaEters of the Signs, the firft Letters of the Months, as likewife the Hour-Figures, each in tineir refpective Places, as per Figure, and your Dial will be finifhed; which afterwards muft be wrapped about the Cylinder, or bent Cy lindrically, fo that the Lines reprefenting the two Tropicks be parallel between themfelves.

The Style is faftened to a Chapiter ferving as an Ornament, and muft be moveable on the Line A B, that fo it may be placed at right Angles on the Degree of the Sign or Day of the Month. This Dial being placed upright, or hung by a Ring, turn it to the Sun, fo that the Shadow of the Style may fall down right upon the Parallel of the Day you defire to know the Hour in, and then the Extremity thereof will fhew the Hour or Part.

The Sun's Altitude may be fhewn likewife by this Inftrument thus: Pur the Style upon the Scale of Altitudes, keeping the Cylinder fufpended or horizontally placed, and turn it about fo that the Syle be towards the Sun ; then the Shadow of the Extremity thereof fhall fhew the Sun's Altitude above the Horizon.

The abovefaid Parallelogram may ferve likewife as a Dial, without being wrapped round a Cylinder, or turned up Cylindrically, if the Style be fo adjufted as to flide along the Line A B, that fo it may be fer over the Day of the Month, or Parallel of the Sign the Sun is in. This is eafily done, in making a little Slit along the top of the Plate, and flatting the Foot of the Style, fo that it may flide in the faid Slit without varying its length. Now if this Parallelogram be placed upright, and the Line A B level (which may be eafily done by means of a Plumb-Line faftened to one of the Sides) and you hold it thus in your hand, or fufpend it by a Ring, fo that it be directly expofed to the Sun, and the Shadow of the Style falls upon the Parallel of the Sign or Month ; then the Extremity of the Shadow of the faid Style will fall upon the Hour.

The Congtruction and Ufe of a Dial drawn an a Quadrant.

This Figure reprefents a Portable Dial drawn on a Quadrant, whofe Conftruction we have Fig. © thought fit to lay down here, fince it is made, as well as the Cylindrical Dial, by means of a Table of the Sun's Altitude calculated for the Latitude of the Place the Dial is made for.

Firft, Divide the Limb B C of the Quadrant into Degrees, and about the Center A defcribe another Arc R S, reprefenting the Tropick of so. Likewife divide the Radius A B nearly into 3 equal Parts, and with the Diftance A D draw a circular Arc for the Tropick of vs ; divide the Space B D into 6 equal Parts, and defcribe the like Number of circular Arcs about the Center A, which fhall reprefent the Parallels of the orher Signs; as they are denoted on the Side A C of the Quadrant. The next thing to be done, is to draw the Hour-Lines. Let it be required (for example) to find a Point in the Tropick of © thro which the Hour-Line of 12 muft pafs: By the above pofited Table, the Sun's Altitude (at Paris) at the faid time is 64 deg. 29 min. therefore take a Thread, or Ruler faftened to the Center A, and extend it to that Number of Degrees and Minutes on the Limb of the Quadrant, and where the Thread or Edge of the Ruler cuts the Tropick of To, will be one Point thro which the Hour-Line of 12 muft be drawn. Then feek the

Sun's Alitit ude when he enters into II, which being found 6I deg. 12 min . lay the Thread over 61 deg. 12 min . on the Limb, and where it cuts the Parallel of II, make a Mark: for a Point in the faid Parallel thro which the Hour-Line of iz muft pafs. And if you proceed in this manner, Points may be found in the Parallels, or their Parts, (if the Quadrant be big enough) thro which the Hour-Line of 12 muft pafs, as likewife all the other Hour-Lines; and if the Points be joined, the curve Hour-Lines will be had, and the Dial will be finifhed, when there are t wo Sights fixed upon the Side A C.

The Ufe of this Quadrant.

Direct the Plane of the Inftrument towards the Sun in fuch manner, that his Rays may pals thro the Holes of the Sights G G, and then the Plumb-Line freely playing, will fhew the time of Day by interfeating the Parallel that the Sun is in. But if you put a little Bead or Pin's Head upon the Plumb-Line, then you may extend the Thread from the Center, and flide the Bead thereon, and fix it over the Degree of the Sign or Day of the Month, and holding up the Quadrant, as before, the Bead will fall upon the Hour of the Day.

The ConftruEtion and Ufe of a Particular right-lined Dial.

Fig. 15.
This Dial, which we call Particular, becaufe it ferves but for one determinate Latitude, is made upon a very even Plate of Brafs, or other Metal, about the bignefs of a playing Card. The Conftruction thereof is thus: Firft, draw the twe right Lines A B , C D, croffing one another at right Angles in the Point E, about which, as a Center, with the Radius EC defcribe the Circle C B D, and divide it into 24 equal Parts, beginning from the Point D; then thro each two Divifions thereof equally diftant from the Points C and D, draw parallel right Lines, which will be the Hour-Lines, whereof DR is that of $12, \mathrm{BE}$ that of 6 , and $\mathrm{C} M$ that of Midnight. This being done, form the right-angled Parallelogram PMQR, and draw the occult Line DR, making an Angle with CD equal to the Elevation of the Pole, viz. 49 deg. This Line fhall reprefent the Radius of the Equinoctial, and by means thereof the Trigon of Signs muft be formed, having D for its Vertex. In order for this, produce the Hour-Line of the Sun's rifing in the longeft Day of Summer, which here is the Hour-Line of 4 ; as likewife the Hour-Line of 6, untilit mects the Radius of the Equinoctial Circle DR; then the Point in the Radius of the Equinoctial cut by the Hour-Line of 6, will be the Center of a Circle, whofe Diameter fhall be perpendicular to the faid Radius, and is terminated by the Interfection of the Hour-Line of 4 therewith. 'This Circle being defcribed, divide the Circumference thereof into 12 equal Parts, in order to form the Trigon of Signs, as is before explained in the third Chapter of this Book. Note, The two Tropicks will be at the Extremities of the faid Diameter, each making an Angle of 23 deg .30 min . with the Radius of the Equinoctial, the Vertex being the Point D. Now the next thing to be done, mult be to make a little flit along the Radius of the Equinoctial, that fo a little Slider or Curfor may flide along it, having a little Hole drilled thro it for faftening a 'Thread and Plummet with a Bead or Pin's Head on the Thread. And after this, we place two Sights on the Extremities of the Line P Q.

The Ufe of this Dial.
Slide the Curfor, and fix the Hole in which the Thread is faftened over the Degree of the Sign the Sun is in, or the Day of the Month; then flip the Bead or Pin's-head along the Thread, until it be upon the Hour-Line of 12. This being done, hold up your Inftrument, lifting it higher or lower till the Sun fhines thro the Holes of the Sights R and S, and the Thread freely plays upon the Plane thereof; then the Bead will fall upon the Hour of the Day.

The Confruction of a Univerfal right-lined Dial.

Fig. i6.
This right-lined Dial, which ferves for all Latitudes, is made of a bignefs at pleafure, upon a very even Plate of Brafs or other folid Matter. The Conftruction of it is thus: Draw the Lines A B , CD, cutting each other at right Angles in the Point E, about which, as a Center, defcribe the Quadrant A F, which divide into 90 deg. and with the Point E for the Vertex, make a Trigon of Signs according to the Method explained in Chap. 2. Divide each Sign into 3 Parts, each being 10 deg. and fet the firf Letters of the Months to the Places correfponding to them, by fuppofing (as we have already) that the Sun's entrance into every Sign is the 20th Day of the Month (N. S.) for example, his entrance into r the $20 t h$ of March, his entrance into 8 the 20 th of April, \&c. This may be without any fenfible Error in fo fmall an Inftrument. Now draw dotted Lines from the Center E thro the Divifions of the Quadrant A F, to the Line A G, which will divide it into Points, from which Parallels muft be drawn to the Line A B, which fhall be the different Latitudes or Elerations of the Pole, which muft be only marked between the two 'Tropicks, as you fee in the Figure, wherein they are drawn to every 5 th deg. On both fides the Point B lay off upon the Line B H, the Divifions that the Radii of the Sigus of
the Trigon make on the Line a a, reprefenting the Latitude of 45 deg. that fo the Reprefentation of another Zodiack may be made upon the Line B H.

Now the manner of drawing the Hour-Lines upon this Dial is thus: Draw Lines thro every $15^{\text {th }}$ deg. of the Quadrant AF, parallel to E D, which is the Hour-Line of 6 ; and thefe Parallels will be the Hour-Lines from 6 in the Evening to 6 in the Morning, A L bemg the Hour-Line of Midnight. And if the parallel Spaces be laid off on the other fide of the Hour-Line of 6 , you will have the Hour-Lines from 6 in the Morning to 6 in the Evening. And for drawing the half Hours, divide each 15 th deg. of the Quadrant A F into half, and draw Parallel Lines between the Hour-Lines.

The Hour-Lines may be yet otherwife drawn, by means of a Circle, whofe Diameter is the Line A B, and whofe Circumference is divided into 24 equal Parts for the 24 Hours of the Day, or into 48, for the Half-Hours. For then if right Lines be drawn thro the oppofite Points of Divifion, parallel to E D, we fhall have the Hour-Lines, and thofe of the Half Hours, as we have faid in the Conftruction of the former right-lined Dial.

About the Point I, as a Center, draw an occult Quadrant, which divide into 90 deg. and laying a Ruler to the Center I, and on each Divifion mark the fame Degrees uponthe Sides G Q, and GS of the Inftrument. Note, By means of thefe Divifions we may find the Sun's Altitude above the Horizon, as we fhall fhew by and by. R R are two Sights fixed on the Side GH. And the Piece K is a fmall Arm or Index, made of 3 Blades of Brafs, fo joined to eacli other by headed Rivets, that they may have a Motion either to the right or left: at the fharp end of this Arm is made a very little Hole, thro which goes a Thread with a Plummet at the end thereof, and a little Bead or Pin's Head thereon. This little Arm is fattened to the Inftrument with a headed Rivet, that fo it may have a Motion at the place K.

The Ufe of this Dial.

If the Hour of the Day be to be found by this Inftrument, you muft adjuft the end a of the Index on the Interfection of the Line of the Latitude of the Place, and the Degree of the Sign the Sun is in, or the Day of the Month ; then extend the Thread, and flide the Bead to the fame Degree of the Sign in the little Zodiack, drawn on the HourLine of 12 B I. This being done, hold the Inftrument up antil the Sun fhines thro the Sights R R, and the Thread freely playing upon the Plane of the Inftrument, the Bead will fall upon the Hour of the Day.

If the time of the Sun's rifing and fetting in all the Signs of the Zodiack for the Latitudes denoted upon the Inftrument be required, fix the end a of the Index on the Interfection of the Line of the Latitude of the Place, and the Degree of the Sign the Sun is in; then the Thread freely falling parallel to the Hour-Lines, will fhew the Hour of the rifing and fetting of the Sun. For example, the end of the Index being fixed on the Interfection of the Sign of Φ, and the Line of the Latitude of 49 deg . the Thread will fall along the Hour-Line of 4 in the Morning, or 8 in the Evening : and this flews, that about the 20 th of June, (N. S.) the Sun rifes at Paris, at 4 in the Morning, and fets at 8 in the Evening, and fo of others.

The Elevation of the Pole is found thus: Place the end of the Index on the Point I, and raife or lower the Inftrument until the Sun's Rays pafs thro the Holes of the Sights; then the Thread freely playing, will fhew the Sun's Altitude upon the Degrees on the fide QS or Q G.

All thefe kinds of Dials, that fhew the Hour of the Day by the Sun's Altitude, are convenient in this, that they fhew the Time of Day without a Compafs; but their common Imperfection is, that about Noon the Hour cannot be exactly determined by them, unlefs by feveral Obfervations to know whether the Sun increafes or decreafes in Altitude, and confequently whether it is before or after Noon.

The Conftruction of a Horizontal Dial for feveral Latitudes.

This Dial, which is made upon a very even and fmooth Plate of Brafs, or other folid plate 24. Matter, hath a little Piece of Brafs in form of a Bird, the lower part of which is ad-Fig. r. jufted in two little knuckles, that fo it may be rendered moveable, and lie down upon the Plane of the Dial. This Bird is kept upright by means of a Spring that is underneath the Dial-Plate, which going thro a little fquare Hole in the Plate, keeps the Bird firm upon its Foot. There is a Style or Axis going into the Bird, which is double, the lower end of which goes into a little knuckle at the Center of the Dial, that fo the faid Style may be raifed or lowered, according to the Latitude. There is on the Style a circular Arc, whereon the Degrees are fet down from 35 or 40 to 60 . There is a Slit made along this divided Arc, paffing by the Eye of the Bird, that fo its Bill may be fet to the Degree of the Pole's Elevation, and fixed there. The Dial-Plate is hollowed in circular, that fo a Compals may be added thereto, faftened underneath by two Screws. The Needle and the Glafs covering it, are placed in the fame manner as in other Compaffes, of which we have already fpoken.

The Surface of this Dial is divided into 4 or 5 Circumferences for the like Number of different Latitudes, according to fome one of the Methods before laid down for drawing of Horizontal Dials, whereof that by the calculation of Angles is moft in ufe for fuch fmall Dials as thefe. They may be drawn alfo by means of a Platform, upon which are feveral Dials divided by the Rules before given. But this is well known to the Inftrumentmaker.

The outmon Circumference, which is divided for 55 deg. of Latitude, may well enough ferve for thofe Places contained between the 58 hand 53 d deg. of Latitude. The fecond, which is divided for 50 deg. of Latitude, may ferve for Places contained between the 53 d and the $47^{\text {th }}$ deg. of Latitude. The third, which is divided for 45 deg. may ferve for Places between the 47 th and $42 d$ deg. And the fourth, which is divided for 40 'deg. ferves for Places contained berween the $42 d$ and 38 th deg. of Latitude.

When a 5 th. Dial is drawn upon the Plate for the Latitude of 35 deg. this ferves for all Places contained between the 37 th and the $32 d$ deg. of Latitude. Now by means of a good Map of the World, or Globe, you may fee what Places thete Dials will be in u:c ; for that which is made for one Latitude, will ferve for all Places round about the Earch, having the fame North and South Latitude. We commonly grave underneath the Dial a Table of the principal Cities of the World with their Latitudes and Longitudes, that fo the convenient Circumference on the Plate may be chofe, and the Axis of the Dial raifed to the proper Elevation of the Pole.

The USe of this Dial.

To find the Hour of the Day, raife or lower the Style, fo that the end of the B'll of the little Bird may anfwer to the Degree of the Elevation of the Pole marke.i or the Style; as at Paris againtt the 49 th Degree. The Style being tuus raifed, place rne Dial parallel to the Horizon, that is, level, and turn it fo to the Sun til' the North Point of the Needle ufually marked with a little Ring, fixes itfelf over the Line of Declination, wherenn is a Flower-deluce, and Nor b is writ. Then the Shadow of the Style will thew the Hour of the Day upon the Circumference divided for the Latitude of the Place. You mult take care not to fet the Dial near Iron, for this changes the Drection of the Needle.

The Corgeruction of a Ring Dial.

Eis. a.
Take a very round Ring of Brafs, or other folid Matter, about two Inches in Diameter, four or five Lines in breadth, and of a convenient thicknefs, and aflume the Pour A at pleafure thereon (whereat there is a little Hoie) about which, as a Center, defcribe a Quadrant A D C, which divide into 90 Degrees. Then find the Sun's Altitudes in the foregoing Table at erery Hour when he is in the Equinoctial for the Latitude of Paris, and lay ${ }^{4}$ ing a Ruler from the Center A thro thofe Alticudes affumed on the Quadrant, you may draw Lines which will divide the concave Surface of the Ring into the Hour-Ponts. Now this Dial will be very good for the times of the Equinox, it being fuipended by the Ring B_{3} fo that the Line A D is upright.
But one of thefe Dials may be made for fhewing the Hour of the Day at any other time of the Year, if the Hole A be made moveable. For doing of which, make the Arcs A E,
 II, Ω, \ldots, , and F; and the Arcs A G, A L, 47 deg. for the Signs is and ws. (The reafon why we aflume thefe Arcs doubie, is, becaufe Angles at the Circumference are but half thofe at the Center.). Now by this means we fhall have a kind of Zodiack upon the conivex Surface of the Ring, whereon mult be marked the Signs in their proper Places, or elfe the firt Letters of the Months, that fo the Hole A may be put to the Degree of the Sign, or the Day of the Month.
You muft defrribe likewife 7 Circles in the concave Surface of the Ring, whereof that in the middle will be for the Equinoctial, and the others for the other Parallels. This being done, about the Points A, E, F, G, I, K, L, as fo many Centers, defcribe Quadrants of 90 deg. upon which Quadrants aflume the Altitudes of the Sun every Hour when he is in every of the Signis, and produce the Radii drawn from the Centers to the Points of Affumption until they cut the Circumferences in the concave part of the Ring, and you will hare Points thereon for the Hour-Lines which muft be joined.
Note, Thefe Divifions may be feparately drawn, and afterwards transferred on the Ring.

The Ufe of this Dial.

Place the moveable Hole at the Degree of the Sign wherein the Sun is; then holding the Ring fufpended, turn it towards the Sun, fo that his Rays paffing thro the Hole A, may fall upoin the convenient Circtumference of the Sign in the concave part of the Ring, and then you will have the. Hour of the Day fhewn.

Plate XXIII

To defcribe the Hour-Lines upon another fort of Ring.

The fourth Figure reprefents this Ring compleat, and the Parallelogram A B C D, repre- Fig. 3 . fents it laid open of ftretched upon a Plane, that fo the Hour-Lines may be pricked down thereon before it be turned up circularly.
This Ring is made of a blade of Brafs, or other folid Matter, being in length proportionable to the Bignefs you would have the Ring, and at leaft 4 or 5 Lines broad, with a proportionable thicknefs, and whofe Extremes A C, B D, are cut at right Angles. About the Points C and D defcribe two Quadrants A L, M B , and divide each of them into 9 equal Parts; and from each oppofite Divifion draw the Parallels of the Signs, whereof the Line C F D fhall be for r and \approx, A E B for the two Tropicks, and the others for the other Signs placed according to their order. Then bifect the Parallelogram A BCD by the Line EF, and draw the Line G H feparately equal to EB, that fo a Scale miay be made thereof, which muft be divided into 9 equal Parts, each of which muft be fubdivided into to equal Parts more by little dots, and fo the faid Scale will be divided into so equal Parts, anfwering to the 90 deg. of a Quadrant. This being done, take the Degrees of the Sun's Altitude from the above pofited Table of Altitudes, at every Hour when the Sun is in the Equinox, and the Solltices, for the Horizon of Paris. For example, When the Sun is in the If $/ \mathrm{deg}$. of 2, his Meridian Altituce is 64 deg. 29 min . take $64 \frac{1}{2}$ equal Parts from the Scale G H between your Compaffes, and lay them off upon the Brafs Blade both ways from E to the Points I and K, as likewife from the Point F to the Points L and M, and join the Points IL and K M, by right Lines: then take from the Table the Sun's Altitude at the Hours of I and II, when he is in the Summer Solftice, viz. 6I deg. 54 min. which here may be taken for 62 deg. and opening vour Compafles to the extent of 62 equal Parts of the Scale, lay them off, upon A B from K towards E, and you will have a Point of the Hour-Lines of 1 I and I ; likewife take 41 equal Parts or Degrees, for the Sun's Meridian Altitude when he is in the Equinoctial, and lay them off from M to O , and from L to N , and the Points N and O are thofe thro which the two Hour-Lines of 12 muft be drawn. Moreover, take 39 deg. 20 min. the Sun's Altitude when he is in the Equinox, at the Hours of II and I, from the Scale, and lay them off from the faid Points M and L upon the faid Line C D, and you will have two Points in the Line C D, thro which the Hour-Lines of if and I muft be drawn. And in this manner may Points be found in this Line, thro which the other Hour-Lines muft pafs.
But now to find Points in the Line A B, or Tropick of Cipricorn, on this fide the Point E, thro which the Hour-Lines muft be drawn, (for the Points of the fame Line, on the other fide of E, for the Tropick of Cancer may be found in the fame manner as the Point for the Hour-Lire of Ir and I was) you muft take take $17 \frac{1}{2}$ Degrees, or equal Parts from the Scale, viz. the Sun's Meridian Altitude, when he is in the Tropick of Capricorn, and lay them off from I to P , and P will be the Point thro which the Hour-Line of 12 muft pals; and fo may the Points be found thro which the other Hour-Lines muft be drawn. Now if the Points found in the Lines A B, and C D, thro which the Hour-Lines pafs, be joined by right Lines ; thefe right Lines will be the Hour-Lines.

But if you have a mind to be exacter, you may take the Degrees of the Sun's Altitudes at every Hour when he enters, and is in each roth and 20th Degree of every Sign, and then find Points on the refpective Parallels on the Dial thro which the Hour-Lines muft be drawn, which will not be right Lines but Curves; and in this cafe the Dial will be exacter.
Having drawn the Hour-Lines, you muft Number them on both fides the Lines A B, CD, and alfo fet down the Charafers of the Signs, and the firt Letters of the Months, each in their proper Place. When this is done, you muft drill two little Holes in the Points \mathbf{R} and S (viz. the middles of the Lines I L, K M) in a conical Figure, the greater Bafes being outmoft, that fo the Sun's Rays may better come thro them; afterwards round or turn up the faid Blade circularly, folder the Extremities A C, B D together, and place a Button, with a Ring in the middle of the Junction of the faid Extrenities, fo that the whole Inftrunent be in equilibrio; which that it may, you muft turn the outfide thereof:

The Ufe of this Inftrument.

Hold the Ring fufpended, and turn the Hole proper for the Time of Year towards the Sun, fo that his Rays may fall upon the Parallel of the Sign he is in, the Day wherein you ufe the Infirument ; and then the Hour of the Day will be fhewn thereon by a bright Spot or Point of Light.

Note, The Hole S is in ufe from the 20 th of March, (N. S.) to the 22d of September, and the Hole R for the other fix Months. We likewife write upon the convex Superficies of the Ring near the little Holes, the 20 th of March, and the 22d of September, as appears in Figure 3. and, lafly, obferve that thefe two laft Dials are proper but for one Latitude.

The Confruition and Ufe of the univerfal Aftronomical Ring-Dial.

Fig. 5.
This Inftrument, whofe Ufe is to find the Hour of the Day in any part of the Earth, by a bright Spot of the Sun's Light, is made of Brafs or other Metal, and confifts of two Rings or flat Circles curned both within fide and without. The Diameter of thefe Rings, which ought to be broad and thick proportionable to their bigneffes, are from two to fix Inches. The outward Ring A reprefents the Meridian of any Place wherein one is, and there are two Divifions of 90 Degrees thereon, which are diametrically oppofite to each other, one whereof Cerves from our North Pole to the Equator, and the other from the Equator to the South Pole.

The innermof Ring reprefents the Equator, and ought to turn very exactly within the outward one, by means of two Pivots or Pins put into Holes made diametrically oppofite in the two Rings at the Points of the Hour of 12 .

There is a thin Riglet (called a Bridge) with a Curfor marked C, compofed of two little Pieces that flide in an Aperture made along the middle of the faid Bridge, and which are kept together by two fmall Screws. Thro the middle of this Curfor is a very little Hole drilled, that fo the Sun may fhme thro it. Now the middle of the faid Bridge may be confidered as the Axis of the World, and the Extremities as the Poles of the World; and there are drawn on one fide thereof the Signs of the Zodiack with their Characters, and on the other fide the Days and Names of the Months, or only their firft Letters, being placed according to the refpect they have to the Signs. The Signs are divided into every 10 th or 5 th Degree, according to their Declination, by means of a Trigon already divided, the Vertex of which, or Extremity of the Radius of the Equinoctial, being within fide the Equinoctial Circle, as at the Point F.The two Pieces D D which are fcrewed to the outermort Ring, ferve to fupport the Bridge or Axis which is moveable round, and are fo ordered as that the innermoft Ring may lie exaaly within the outermoft, and they both make as it were but one. The two Pieces E are alfo fcrewed on the outermof Ring, and ferve as Props to keep the Equinoctial Circle or inward Ring at right Angles to the Meridian or outermoft Ring.

We fhall not here repeat the manner of dividing the two Quadrants into Degrees, and the Equincetial Circle into Hours, Halves and Quarters, having fufficiently fpoken of this elfewhere. We fhall only add, that all the Dirifions of the Equinoctial Circle muft be drawn upon the concave fide thereof, which may be done by means of a piece of Steel tuzned up fquare, according to the Curvature of the Circle.

Near the outward Edges, on each of the two flat fides of the Meridian, is made a Groove for the Piece G tollide therein, the middle of which is bent inwards, that fo it may go into the faid Grooves. The two fides of this Piece, which muft be well hammered that they may have a good Spring, are made flat, in order to prefs againft the convex Surface of the Meridian, that thereby the Piece G may be held faft on any Degree of Divifion of the Meridian. 'The Button thro which the Ring of Sufpenfion H goes, is riveted to the middle of the Piece G, fo that it may turn round very freely, and by this means the Inftrument be very perpendicularly fufpended by the $\operatorname{Ring} H:$ for this is one of the principal things in which the Exactnefs of the Inftrument confifts.

The Ufe of the Aftronomical Ring-Dial.

Place the fhort Line a on the middle of the hanging Piece G over the Degree of the Latitude of the Place you are in upon the Meridian Circle, for example, over the 49 th deg. at Paris; and then put the Line croffing the little Hole of the Curfor on the Bridge to the Degree of the Sign, or the Day of the Month you defire to know the Hour of the Day in. This being done, open the Inftrument fo that the two Rings or Circles be at right Angles to each other, and fufpend it by the Ring H, fo that the Axis of the Dial reprefented by the middle of the Bridge be parallel to the Axis of the World.

Turn the flat fide of the Bridge towards the Sun, fo that his Rays coming thro the litthe Hole in the middle of the Curfor, fall exacity on a Line drawn round the middle of the concave Surface of the Equinoctial Circle, or innermoft Ring ; and then the bright Spot or luminous Point fhews the Hour of the Day in the faid concave Surface of the Ring.

Note, The Hour of 12 cannot be fhewn by this Dial, becaufe the outermof Circle or Ring being then in the Plane of the Meridian, it hinders the Sun's Rays from falling upon the innermof or Equinoctial Circle. You muft obferve likewife, that when the Sun is in the Equinocial, ycu cannot then tell the Hour of the Day by this Dial, becaufe his Rays fall paraliel to the Plane of the faid Equinoctial Circle. But this is but about one Hour every Day, and four Days in the Year.

The Confruction and Ufe of a Ring-Dial with three Rings.

Eig. 6.
This Inftrument differs from the precedent one in nothing but only a third Ring or Circle, carrying the Sun's Declination. The Ring A reprefents the Meridian of the Place you would ufe the Dial in; the Ring B reprefents the Equinotial Circle ; and the Ring D, which turns exactly within the faid Equinoctial Circle, produces the fame effect, as the

Chap. 5.

Bridge reprefenting the Axis of the World in the precedent Inftrument. The two Extremities of the Diameter of this laft Ring, or the two Points of the Circumference thereof, whereat it is faftened to the Meridian, anfwer to the two Poles of the World. On the oppofite Parts D D of the Circumference of this Circle, is denoted a double Trigon of Signs, whofe Center is the Vertex wherein all the Radius's reanite, the Arcs of each of which are fubdivided into every 10 th or 5 th Degree, to which may be likewife fubjoined the Days of the correfpondent Months.

The Index E is faitened to the Center of the innermof Ring, having two Sights rivetted to the Extremities thereof, each having a fmall Hole drilled therein, for the Sun's Rays to pafs thro. Ncte, Dials compofed in this manner thew the Hour of 12, becaufe the Index is without the Plane of the Meridian Circle : and when we make them large, as 9 or io Inches in Diameter, we divide the Equinoctial Circle into every 5 th or every 2d Minute.

This Dial hath a Piece F like as the former Dial has, going into a Groove made on each fide the Meridian, to be flid to the Latitude of the Place. We fometimes fet thefe Dials upon Pedeftals, nearly like thofe of Spheres, which are flid to the Latitude; and in this Cafe they are placed upon an Horizontal Plain ; we likewife add Compaffes to them, by which means the Variation of the Needle may be exactly known.

The Ufe of this Dial.

Place the little Line in the middle of the hanging Piece F to the Latitude of the Place wherein you have a mind to know the Hour of the Day, and the fiducial Line of the Index on the Day of the Month, or Degree of the Sign the Sun is in. Then open the Equinoaial Circle at right Angles to the Meridian, and holding the Inftrument fufpended, raife or lower the innermoft Circle, fo that the Sun's Rays may go thro the Holes of the two Sights; then the Line which is drawn along the middle of the Convexity of the faid Circle, will Shew the Hour or Part drawn in the middle of the Concavity of the Equinoctial Citcle, even at all times of the Day.

This may likewife be done fonmething more convenient, when the Inftrument is placed Horizontally upon its Pedeftal.

The Conftruction of a univerfal inclined Horizontal, and an Equinoctial Dial.

This Inftrument confifts of two Plates of Brafs, or other folid Matter, whereof the Fig. $7 \cdot$ under-one A is hollowed in about the middle, to receive a Compafs faftened underneath with Screws. The Plate B is moveable by means of a ftrong Joint at the Plate C. Upon this Plate is drawn a Horizontal Dial for fome Latitude greater than any one of thofe the Dial is to be ufed in, and having a Style thereon proportionable to that Latitude; for when the fatd Plane B is raifed by means of the Quadrant, the Horizontal Plane muft always have a lefs Latitude than that the Dial is made for, or orherwife the Axis of the Style will have an Elevation too little.

Initead of the Quadrant D we generally place but only an Arc from the Equator to 60 Degrees, which are numbered downwards, 60 being at the bottom, and for this Latitude of 60 deg. we commonly draw the aforefaid Horizontal Dial. That Arc of 60 deg. is fafteued by iwo fmall Tenons, and may be laid down upon the Plate A, as likewife may the Style upon the Plate B, and both of thefe are kept upright by means of little Springs underneath the Plates. What remains of the Conftruction of this Dial, may be fupplied from the Figure thereof.

The USe of the inclined Horizontal Dial.

Raife the upper Plate B to the Degree of Latitude or Elevation of the Pole of the Place wherein you are, by means of the Graduations on the Quadrant D. Then if the Plane A be fet Horizontal, fo that the Needle of the Compafs fettles itfelf over its Line of Declination, the Shadow of the Axis will fhew the Hour of the Day. Note, We grave the Names of Ceveral principal Cities, as likewife their Latitudes and Longitudes, underneath the two Piates, in order to avoid the trouble of feeking them in Maps.

After the abovefaid manner, Equinoctial Dials are made Univerfal throughout the whole Earth; but here we muft have a whole Quadrant. The upper Plate is commonly in form of a hollowed Circle, which we divide into 24 equal Parts, for the Hours, each of which we fubdivide into 4 equal Parts, for the Quarters; all thefe being drawn in the Concavity of the Circle.

There is a Piece that goes thro the Circle, carrying the right Style, which is kept faft in the middle of the Circle by means of a little Spring faftened underneath the Circle ; and by this means the right Style may be raifed above the faid Circle, and lowered underneath it. And when the Equinoctial Dial is drawn, we ufe the little Piece F for a Style, placed in the Center of the Circle. Note, The upper part of the Dial fhews the Mour of the Day from the $22 d$ of March, (N.S.) to the $22 d$ of September, and the under part thereof the Hour of the Day, the other 6 Months of the Year.

The UJe of the EquinoEtial Dial.

You muft place the Edge of the Equinoctial Circle to the Degree of the Elevation of the Pole, by means of the Quadrant ; then if the Dial be fet North and South by means of the Compafs, the Shadow of the Style will fhew the Hour of the Day at all times of the Year, even when the Sun is in the Equinoctial, becaufe the Circle is hollowed in.

The Conftruction of an Azimuth Dial.

'This Dial, which is commonly made in the bottom of a Compafs, is called an Azimuth Dial, becaufe it is made by means of the Azimuth's or Sun's Vertical Circles, upon a Plate of Brafs, or other folid Matter, parallel to the Horizon. Firf, draw the Line A B, reprefenting the Meridian, upon which defcribe a Circle at pleafure, half of which we fhall only ufe here for drawing the Morning Hour-Lines, becaufe thofe of the Afternoon are drawn after the fame way. Divide this Circle into Degrees, beginning from the Point A, reprefenting the North Pole. Then trifect the Semi-diameter A C, and take A D equal to two thirds therenf, which muft be divided into 6 Parts, thro each Point of Divifion; about the Center C muft be drawn concentrick Arcs, reprefenting the Parallels of the Signs, the Arc H being the Summer Tropick, that neareft to the Center C the Winter Tropick, and each of the others for two Signs equally diftant from the Tropicks, as appears per Figure.

The Parallels of the Signs may moreover be drawn, in defcribing a Semi-circle upon the Line H D, which Semi-circle being divided into σ equal Parts, you muft let fall dotted Parallels upon the Line H D ; thefe Parallels will divide the faid Line into unequal Parts, and if thro the Points of Divifions Arcs be defcribed about the Center C, thefe Arcs will be the Parallels of the Signs at unequal Diftances from each other.

Now for drawing the Hour-Lines, the following Table of the Sun's Azimuths muft be ufed ; for example, to prick down a Point in the Tropick of Cancer thro which the HourLine of 11 in the Morning muft be drawn, you will find the Sun's Azimuth will then be 30 deg. 17 min . and when he is in the firt Degree of \square, or laft of Ω, his Azimuth at the fame Hour is 27 deg. 58 min . and fo of others. Therefore if a Ruler be laid on the Center C , and on the 30 th deg. and 27 min . of the outward divided Limb, the Edge of the Ruler will cut the Parallel of $\mathbb{\Phi}$, in a Point thro which the Hour-Line of in muft pafs : then keeping the Ruler to the Center, move it, and lay it over the 27 th deg. and 58 th min . of the outmoft Limb, and you will have a Point in the Parallel of II and Ω thro which the HourLine of in muft pafs; and in this manner may Points be found in the other Parallels thro which the Hour-Line of II muft pafs; and alfo Points in all the Parallels thro with the other Morning Hour-Lines muft pafs: each of which Points belonging to the fame Hours being joined, you will have the curved Hour-Lines on one fide of the Meridian. And to find the Points thro which the Afternoon Hour-Lines muft pafs, take the Diftances of each Point in the Parallels from the Meridian, and transfer them on the fame Parallels continued out on the other fide of the Meridian, becaufe the Sun's Azimuth at any two Hours equally diftant on each fide the Meridian, is the fame.

The Ufe of the Azimuth) Dial.

'Turn the fide B towards the Sun, fo that the Shadow of the right Style planted in a Point without the Compafs, and parallel to the Line of Noon, may fall along the Meridian Line : then the Needle pointing exactly North and South, will fhew the Hour of the Day in the Interfection thereof with the Parallel of the Sign the Sun is in, upon condition that the Needle has no Variation. But fince the Needle varies now above 12 Degrees at Paris, you muft place the Style in the Point E over the Line of Declination or Variation K I, and adjuft the Shadow of the Style along the faid Line of Variation, and by this means the Error arifing from the Needle's Variation will be avoided.

A T A BLE of the Sun's Azimutb or Diftance from the Meridian every Hour of the Day for the Latitudo of 49 Degrces.

Hours. Signs.			$\begin{gathered} \text { X. } \\ \text { II. } \end{gathered}$		IX.III.		VIII.IV.		VII.		VI.VI.D. M.	V.VII.D. M.	IV.VIII.D. M.		
						M.									
\pm		17			53	40		30		57	95	20	10556	11628	12726
$\Omega \quad \mathrm{I}$	27	58	50	33	67	34	81	6		45	10335	11456			
\% ¢	23	30	43	53	60	29		17	86	21	9736				
$\approx r$	19	33	37	25	52	58		57							
m m	16	42	32	25		30	59	28							
1 \%	14	56		1 I		23	54	26							
vo	4	19	28	2		4^{8}									

The Confruction and Ufe of the Analemmatick or Ecliptick Horizontal Dial.

This is called an Analemmatick Dial, becaufe it is made by means of the Analemma, which is the Projection or Reprefentation of the principal Circles of the Sphere upon a Plane. The 9th Figure is the Analemma; and the roth Figure reprefents the Dial compleat, which thews the Hour of the Day without a Compafs.

Now to project the Analemma; upon a very even fmooth Plate of Brafs, draw the Lines Fig, 9b A B and C D, cutting each other at right Angles in the Point E, about which, as a Center, defcribe the Circle A C B D, reprefenting the Meridian, its Diameter C D, the Horizon, and A B the Prime Vertical. Then alfume the Arc D F equal to the Elevation of the Pole, which here is 49 deg. and draw the Line E F reprefenting the Axis of the World; likewife affume the Arc C G equal to the height of the Equinoctial 41 Degrees, and draw the Line G E for the Equinoctial. Aflume the Arcs G H, G I, each of 23 deg. 30 min . for the Sun's greateft Declination, and draw the Line H I cutting the Equinoctial in the Point Y, about which, as a Center, defcribe the Circle H L I K, or only half of it, which divide into 6 equal Parts, and thro each Point of Divifion draw Parallels to the Equinoctial, which continue out to the Horizon ; then from the Sections made by the faid $\mathrm{Pa}-$ rallels on the Meridian, let fall the Parallels M, N, O and P to the Horizon, and from the Sections made by the faid Parallels on the Axis, let fall the indefinite Perpendiculars $S c$, $\mathrm{R} b, \mathrm{Q} a$ to the Horizon. 'This being done, take the Diftance EM between your Compaffes, with which fetting one Foot in N, with othe other make a fmall Arc upon the Line $Q a$, and with one Foot in O cut the Line $R b$ with the other; then, continually keeping the Compaffes opened to the extent EM, fet one Foot in P, and cut the Line S_{c} in the Point C .

Now to conftruct the little Zodiack, take the Diftance $f C$, and lay off from E towards A and B for the Tropicks of $\$$ and v; again, lay off the Diftance 46 , from the Point E on one fide, for the Parallel of \square, and on the orher fide for the Parallel of m; and finally, take the Diftance $\mathrm{X} a$, for marking the Parallel of \succ on one fide, and that of \not on the other, and then the little Zodiack may be formed, as per Figure. Now to prick down the Hour-Points, you muf defcribe the Circle M T Z V about the Center E, with the Diftance E M, and divide the Circumference thereof into 24 equal Parts, as likewife the Circumference of the Meridian A C B D, and from each oppofite Point of Divifion in the Meridian draw ftrait Lines parallel to A B, and in the Circle M T Z V, ftrait Lines parallel to C D, and thro the Interfections of thefe Lines that are neareft to the Meridian, draw lightly an Ellipfis from Point to Point, as you fee in the Figure. Thefe Points of Section will be the Hour-Points, thofe for the Morning being on the left, and thofe for the Afternoon on the right; and to have the half and quarter Hour-Points, the two Circles ACBD, M T Z V, muft be divided into 96 equal Parts.
Things being thus prepared, transfer all the Hour-Points on another Brafs Plate, and Figo 10. form the Ellipfis B thereon, by ligthly drawing Lines from Point to Point, and grave the proper Numbers upon it, as they are marked in the roth Figure. Likewife transfer the Trigon of Sigus upon the faid Plate, taking each of the Diftances between your Compaffes, the one after the other, fo that the Signs r and \approx be in the Line of the Hour of 6 , and place the Characters of the Signs thereon, as alfo the firft Letters of the Months, each one in their order. When this is done, you muft adjuft a Curfor C fo as to flide along the middle of the Trigon. This Curfor carries the right Style D, which rifes and falls by means of two fmall knuckles.

On the other part of this Plate, is drawn an Horizontal Dial according to the common Rules, for the fame Latitude the Analemma is made for, and we place the Style or Axis E thereon upon the Hour-Line of 12, which rifes, falls, and is kept upright by means of a fmall Spring underneath the Plate.

The USe of this Dial.

Set the Dial parallel to the Horizon, and put the Curfor with its right Style upon the Day of the Month, or Sign the Sun is in ; then turn the Indrument until the fame Hour be fhewn upon the two Dials, which will be the Hour of the Day. If, for example, the Shadow of the Extremity of the right Style falls upon the IIth Hour on the Analemmatick Dial, and at the fame time the Shadow of the Style of the Horizontal Dial falls likewife upon the 1 Ith Hour, on the Horizontal Dial ; then the true Hour of the Day will be that of II. The Conveniency of this Dial confifts in this, that the Hour of the Day may be found thereby without a Meridian Line, or Compafs; but then it muft be pretty large, to fhew the Hour exactly.

The Conftruction of a univerfal Polar, Eaft and Weft Dial.
This Inftrument confifts of a very Itrait and fmooth circular Piece of Brafs, or other Fig. In. Metal, pretty thick, that fo it may preferve its perpendicular. Weight, as likewife that a Groove may be made round the Limb thereof, for a hanging-Piece to flide about the fame, like that on the Aftronomical Ring. Center, reprefenting the Equinoctial, near the top of which affume a Point at pleafure, thro which draw a right Line perpendicular to the Equinoctial Line, which fhall be the Hour-Line of 6 . 'Then to have the other Hour-Lines, you mult lay off the anfwerable Tangents upon the Equinoctial Line both ways from the Point therein of the Hour-Line of 6 ; as the Tangent of 15 deg. for the Hour-Points of 5 and 7; the Tangent of 30 deg . for 4 and 8 ; the Tangent of 45 deg . for 3 and $9, \mathcal{\sigma c}$. and if Lines be drawn thro thefe Points parallel to the Hour-Line of σ, thefe will be the Hour-Lines; and the Length of the right Style mult be equal to the Radius or Tangent of 45 deg. and muft be placed upright upon the Hour-Line of 6 , at the Point wherein it cuts the Equinoctial Line.

At the Points C C, on the Hour-Line of 9 in the Morning, and 3 in the Afternoon, are adjufted two fmall knuckles, in which is placed the Piece V, which may lie down upon the circular Piece, and likewife fand at right Angles to it. Upon this Piece are pricked down the Hour-Lines of a Polar Dial, from 9 in the Morning to 12 , and from 12 to 3 in the Afternoon. We fhall not here repeat the manner of drawing thefe Hour-Lines, for we have fufficiently fpoken of this already, as likewife how to draw the Arcs of the Signs; only obferse, that the Parallels of the Signs are divided into every roth deg. and the firft Letters of the Names of the Months are fet down in their proper Place.

The Sryle B is adjufted to the circular Piece with a Joint, that fo it may be raifed or lie flat upon the faid Piece; but it mult be raifed fo that the Extremity thereof may be exactly over the Point in the Equinoctial Line cut by the Hour-Line of 6, and the Diftance of the faid Extremity from this Point equal to the Diftance from the Hour-Line of 9 to the Hour-Line of 6 .

The Ufe of the faid Dial.

If you hate a mind to find the Hour of the Day before Noon, place the little Line on the middle of the hanging Piece L upon the Latitude of the Place ; on that Quadrant on the Right-hand of the Style B, raife the Style fo that the Extremity thereof be directly over the Interfection of the Equinoctial and the Hour-Line of 6 , and its Diftance from that Point of Interfection equal to the Diftance from the Hour-Line of 9 to the Hour-Line of 6. Then holding the Dial fufpended by its Ring, expofe it to the Sun, fo that the Shadow of the Extremity of the Style falls upon the Day of the Month ; and you will have the Hour of the Day upon the Eaft or Polar Dial. But if the Hour of the Day be required in the Afternoon, you muft put the hanging Piece on the Latitude of the Place upon the Quadrant on the left fide of the Style, and turn the Dial to the Sun fo that the Shadow of the Extremity of the Style falls on the Degree of the Sign or Day of the Month. Then you will have the Hour of the Day as before.

Thus have I laid down the Confruction and Ufes of Portable Dials, chiefly in ufe, which may be fet North and South, without a Compafs or Meridian Line. But before I clofe this Chapter, I thall briefly defcribe fome other Portable Dials, which are curious enough, but are fomething difficult to make.

The firt of thefe is a horizontal Dial of 2 or 3 Inches fquare, which we make of Brafs or any other folid Metal, for a given Latitude, and whofe Axis fhewing the Hour, is a Thread faftened at one end to the Center of the faid Dial, and the other end of which is hung to the top of a pretty thick Brafs Blade, placed at the Extremity of the Dial near the HourLine of 12. This Blade may lie down upon the Plane of the Dial, and is kepr upright by means of a Spring underneath the Dial ; and the Height of the Notch wherein the Thread lies above the Plane of the Dial, is equal to the Tangent of the Latitude.

About a quarter of the Height of the faid Blade is adjufted thereon a Circle or Ring, proportioned to the bignefs of the Dial-Plate. This Ring is moveable by means of a Joint, and fo may lie down upon the Blade, and the Blade upon the horizontal Dial-Plane ; and when the Inftrument is ufing, there is a Prop to keep this Ring at the Height of the Equinoctial, viz. 4 I deg. but when the Thread ferving for an Axis is extended, it muft exactly pals thro the Center of this Ring.

The Concavity of the Ring is divided into Hours, Halves and Quarters, as the Equinoctial Ring of the univerfal Ring-Dal is; and there is a Bead or Pin's Head put upon the 'Thread, that fo it may be moved to the Sign the Sun is in, and ferve as a Curfor to fhew the Hour of the Day in the middle of the Concavity of the Ring or Equinotial.

Now to place the Bead to the Sign or proper Month, you muft have a Ceparate Brafs Riglet, having the Signs of the Zodiack, as alfo the Days of the Months drawn thereon in the manner they were drawn upon the Bridge of the univerfal Ring-Dial; and having placed the faid Riglet from the Center of the horizontal Dial along the Thread or Axis, flide the Bead to the Degree of the Bign the Sun is in, and then take away the Riglet, and fo will the Bead be placed for fhewing the Hour of the Day.

On the backfide of the Blade is drawn an upright Line for a Plumb-Line to play on, that To the Dial may be fet level. Note, This Dial may be rendered univerfal, if an Arc of a Circle divided into Degrees be adjufted behind the Blade by means of a Joint, fo as it
may lie upon the Blade, and the Point whereon the Plumb-Line is hung by the Center of the faid Arc ; for then the Dial may be fet to the Latitude, by making the Plumb-Line fall upon the proper Degree on the circular Arc. It is proper alfo to obferve, that the Hours from eight in the Evening to four in the Morning may be taken away from the Equinotial Ring, that fo this Dial may be of ufe at the time of the Equinox.

The Ufe of the aforefaid Dial.

Having placed the Bead to the Degree of the Sign the Sun is in, or Day of the Month, as before directed, expofe the Dial to the Sun, and turn it to the right or left until the Shadow of the Bead falls upon the fame Hour or Part, on the middle of the Concavity of the Equinoctial Ring, as the Shadow of the Thread or Axis does on the horizontal Dial ; and then that will be the true time of the Day.

We make feveral other Portable Dials, as horizontal Aftrolabes, being Projections of the Sphere upon the Plane of the Horizon; other Aftrolabes vertically ufed by means of a Plumb-Line; horizontal Dials made by means of the Sun's Altitudes, which are likewife fet North and South without a Compafs, and whereon the Signs are drawn by right Lines iffuing from the fame Center, and the Hour-Lines, curve Lines; as likewife other Portable Dials, which are curious enough, whofe Conftruction and Figures we referve for another time.

Horizontal Dials whereon are drawn the Signs, as that of Fig. 7. Plate 23. may likewife be fet North and South without a Compafs, if the Dial be fo placed in the Sun, that the Shadow of the Extremity of the right Style falls upon the Degree of the Sign the Sun is in, or Day of the Month. But here there is this Inconveniency, that the Diftance of the Parallel of Cancer from the adjacent Parallels is fo fmall, that the Space of 10 Days there cannot be diftinguifhed. So that when we have done all we can, it is fcarce poffible to make a Portable Dial that can be fet North and South without a Compafs or Meridian Line, without falling into one of thefe Inconveniencies, either of having the Hour-Lines near Noon too nigh each other, or not exactly fhewing the Hour of the Day at the time of the Solftices, becaufe of the fmall Difference that there is in the Sun's Elevations and Declination at thofe times.

C H A P. VI.

Of the Conftruction and Use of a Moon-Dial, and a Nocturnal or Star-Dial.

Of the Conftruction of a Horixontal Dial for 乃ewing the Hour of the Night by the Moon.

TH IS is called a Moon-Dial, becaufe by it you may tell in the Night by the Shadow Fig. 12. of the Moon, what Hour-Circle the Sun is in. It confifts of two Pieces or Plates of Brafs, or other folid Matter, of a bignefs at pleafure. The under-Plate H, is in figure of a Parallelogram, and the upper one A is circular, turns about the fhadowed Space L, and the Center B, and has a Horizontal Dial drawn upon it for the Latitude of the Place, according to the Rules before prefcribed for drawing Horizontal Dials. The under Plate hath a Circle thereon divided into 30 unequal Parts, for the Days of a Lunar Month. Thefe Divifions are made thus ; let D E be the Equinoctial Line by which the Horizontal Dial was drawn, and F the Center of the Equinoctial Circle, (or the Center by which the Equinoctial Line is divided.) About this Center defcribe a dotted Circle, and divide it into 30 equal Parts, or half of it into 15, and having laid the edge of a Ruler on the Center F, lay it over each Point of the Divifions of the faid Circle one after another, and prick down Points upon the Equinoctial Line ; then lay the Ruler to the Center B, and on each Point of Divifion of the Equinoctial Line, and divide the Circle H; and when you have divided half of it, transfer the fame Divifions on the other Semi-circle, and by this means the whole Circle will be divided into 30 unequal Parts for the 30 Days of a Lunar Month, about which Numbers muft be graved, as they appear per Figure. This being done, place the Axis B C anfwering to the Elevation of the Pole, and difpofe it fo that when it is fet up it may not hinder the Hour-Plate from turning about the Cent er B.

The Ufe of this Dial.

The Mon's Age mult be found by an Ephemeris, or by the Epa\&t, that fo the Point of the Hour-Iine of 12 on the Horizontal Dial may be applied to the Day of her Age in the Circle H of the under Plate.

But before we go any further, you muft obferve, that the Moon by her proper Motion recedes Eaftwards from the Sun every Day about 4^{8} Minutes of an Hour, that is, if the Moon is in Conjunction with the Sun on any Day upon the Meridian, the next Day the Sun : and this is the reafon that the Lunar Days are longer than the Solar ones; a Lunar Day being that Space of Time elapfed between her Paffage over the Meridian, and her next Panare over the fame ; and thefe Days are very unequal on account of the Irregularities of the Moon's Motion.

Now when the Moon is come to be in Oppofition to the Sun, fhe will again be found in the fame Hour-Circle as the Sun is; fo that if, for example, the Sun fhould be then in the Meridian of our Antipodes, the Moon would be in our Meridian, and confequently would fhew the fame Hour on our Sun-Dials as the Sun would,' if it was above the Horizon. But this Conformity would be of fmall duration, becaufe of the Moon's retardation of about two Minutes every Hour. If moreover the Sun, at the time of the Oppofition, be juft fetting above our Horizon, the Moon being diametrically oppofite to it will be juft rifing, \& f c. and therefore to remedy the faid Retardation, we have divided the Circle Hinto 30 Parts.

Now the Point of the Hour-Line of 12 on the Horizontal Dial being put to the Moon's Age, as above directed, and the under-Plate fet North and South by means of a Compals or Meridian Line, the Shadow of the Style will fhew the Hour of the Night; but to have the Hour more exaat, you muft know whether it is the firft, fecond or third Quarter of the Moon's Day that you feek the Hour in, that fo the Point of the Hour-Line of 12 may be fet againft a proportionable part of one of the 30 Spaces or Lunar Days of the Circle H .

The Table on the under-Plate H, is afed for finding the Hour of the Night by the Shadow of the Moon upon an ordinary Dial. To make this Table, draw 4 Parallel right Lines or Curves of any length, and divide the Space II into twelve equal Parts for 12 Hours, and the two other Spaces K K into 15 , for the 30 Lunar Days.

The Ufe of this Table.

Firft obferve what Hour the Shadow of the Moon fhews upon a Sun-Dial ; then find the Moon's Age, and feek the Hour correfpondent thereto in the Table, and add the Hour fhewn by the Sun-Dial thereto; then their Sum, if it be lefs. than I2, or elfe its excefs above 12, will be the true Hour of the Night. For example; Suppofe the Hour fhewn upon the Sun-Dial by the Moon, be the 6 th, and her Age be 5 or 20 Days, againft either of thefe Numbers in the Table you will find 4, which added to 6 makes 10, and fo the Hour of the Night will be 1o. Again, Suppofe the Moon fhews the Hour of 9 upon the Sun-Dial, when fle is 10 or 25 Days old, againft io and 25 in the Table you will find 8 , which added to 9 , makes 17, from which 12 being taken, the Remainder 5 will be the true Hour fcught. And fo of others.
To find the Moon's Age, you muff firf find the Golden Number; and this is done by adding I to the given Year, and dividing the Sum by 19, and the Remainder will be the Golden Number. Then you muft find the Epact, by 'means of the Golden Number; and this is done thus: Divide the Golden Number by 3, and each Unit remaining being called 10, will be the Epact, if the Sum be lefs than 30; but if above 30, 30 being taken from it, and the Remainder added to the Golden Number will be the Epatt. The Epatt being found, the Moon's Age may be had after this manner : If the Moon's Age be fought in Ganuary, add 0 to the Epact ; in February, 2; in March, 1 ; in April, $2 ;$ in May, 3 ; in Fune, 4; in Fuly, 5 ; in Auguft, 6 ; in September, 8; in OEtiber, 8 ; in November, 10 ; and in December, 10: and the Sum, if it be lefs than 30, or the excefs above 30, added to the Day of the given Month (rejecting 30 if need be) will be the Moon's Age that Day. For example, to find the Moon's Age the 14th Day of March, in the Year 1716. (O. S.) the Golden Number is 7, and the Epact 17; therefore adding 1 for March to 17, and the Sum will be 18 ; and if to this 18 be added 14 for the Day of the Month, the Sum will be 32, from which 30 being taken, and the Remainder 2 will be, the Moon's Age. Note, .This way of finding the Moon's Age is not fue exact as we have it by the Ephemeris. Likewife obferve, that vertical Moon-Dials may be made in the manner as the horizontal ones are, but the Divifions of 30 Parts upon Equinoctial. Dials muft be equal, and the moveable Circle divided into 24 equal Parts, δc.

The Confruction of a Nocturnal or Star-Dial.

The 13 th Figure fhews the Difpofition of the chief Stars compofing the Conftellation of $U_{r} f_{a}$ Major, and Urfa Minor, about the Pole and thie Pote-Star.

The Noeturnal we are going to mention, is made by the Confideration of the diurnal Motion, that the two Stars of Urfa Major, called his Guards, or the bright Star of Urfa Minor, make about the Pole, or the Pole Star, which at prefent is but about 2 deg. diftant from the Pole.

Now to conftruet this Inftrument, you muft firf know the right Afcenfion of the faid Stars, or in what Days of the Year they are found in the fame Hour-Circle as the Sun is. This may be found, by Calculation, on a Globe, or a Celeftial Planifphere, by placing the Star in queftion under the Meridian, and examining what Degree of the Ecliptick will be found at the fame time under the. Meridian. By this Method you will find that the

Chap. 7.

bright Star or Guard of the Little Bear, was found twice in one Year with the Sun under the Meridian, viz. in the Year 1715, once the 8 th of May, (N.S.) above the Pole, and again the 8 th of November below the Pole. Therefore in the faid two Days of the Year, the abovementioned Star will be in all the Hour-Circles at the fame time as the Sun is ; and confequently will fhew the fame Hour. You will find alfo, that the two Guards of Urfa Major were found two other Days of the Year under the fame Meridian or HourCircle as the Sun, viz. the firf Day of September below the Pole, and the firl Day of March above it. And in thefe two Days the faid Stars will fhew the fame Hours as the Sun does; but becaufe the fixed Stars return to the Meridian every day about i deg. fooner than the Sun, or four Minutes of an Hour, which is two Hours per Month, it is this, which is to be obferved for having the Hour of the Sun, which is the Meafure of our Days.

Thefe things being premifed, it will not be difficult to make a Nocturnal or Star-Dial, in the following manner:

The Infrument is compofed of two circular Plates applied on each other ; the greater of Fig. 140) which, having a Handle for holding up the Inftrument when ufing, is about two Inches and a half in Diameter, and is divided into twelve Parts for the twelve Months of the Year, and each Month divided into every 5 th Day ; fo that the middle of the Handle exactly anfwers to the Day of the Year wherein that Star which is ufed has the fame right Afcenfion as the Sun has. If, for example, this Infrument be made for the two Guards of Urfa Major, the firft Day of September muft be againft the middle of the Handle; and if it be made for the bright Star of Urfa Minor, the 8th Dày of November muft be againtt the middle of the Handle. Therefore if you will have the Inftrument ferve for both thefe Stars, the Handle muft be made moveable about the faid circular Plate, that fo it may be fixed according to neceffity ; and this is eafy to do by means of two little Screws.

This being done, the upper leffer Circle muft be divided into 24 equal Parts, or twice 12 Hours, for the 24 Hours of the Day, and each Hour into Quarters, according to the Order appearing in the Figure. Thefe 24 Hours are diftinguifhed by a like Number of Teeth, whereof thofe whereat the Hours of 12 are marked are longer than the others, that fo the Hours may be counted in the Night without a Light.

In the Center of the two circular Plates is adjufted a long Index A, moveable about the fame upon the upper Plate. Thefe three Pieces, viz, the two Circles and the Index, are joined together by means of a headed Rivet, and pierced fo, that there is a round Hole thro the Center about two Inches diameter, for eafy feeing the Pole-Star thro it. Note, The Motions of the upper-Plate and Index ought to be pretty fiff, that fo they may remain where they are placed when the Inftrument is ufing.

The Ufe of this Inftrument.

Turn the upper circular Plate till the longeft Tooth whereat is marked is be againft the Day of the Month on the under Plate ; then bringing the Inftrument near your Eyes, hold it up by the Handle, fo that it leans neither to the Right or Left, with its Plane as near parallel to the Equinoctial as you can ; and looking at the Pole-Star thro the Hole in the Center of the Inftrument, turn the Index about, till by the Edge coming from the Center, you can fee the bright Star or Guard of the Little Bear, if the Inftrument be adapted for that Star, and that Tooth of the upper Circle that is under the Edge of the Index, is at the Hour of the Night upon the Edge of the Hour-Circle; which may be known without a Light, by accounting the 'Teeth from the longef, which is for the Hour of 12 .

You mult proceed in this manner for finding the Hour of the Night, when the Inftrument is made for the Guards of Urfa Major, which Stars are nearly in a right Line with the Pole-Star, are of the fame Magnitude, and are very ufeful for finding the Pole-Star.

C H A P. VII.

Of the Conftruction of a Water-Clock.

TH IS Clock is compofed of a Metalline well foldered Cylinder, or round Box B, Fig. rsi wherein is a certain quantity of prepared Water, and feveral little Cells, which communicate with each other by Holes near the Circumference,' and which let no more Water run thro them than is neceffary for making the Cylinder defcend flowly by its proper Weight. This Cylinder is hung to the Points A A by two fine Cords of equal thicknefs, waich are wound about the Iron Axle-tree D D, which Axle-tree goes thro the exact middie of
the Cylinder at right Angles to the Bafes, and as it defcends fhews the Hour marked upon a vertical Plane on both fides of the Cylinder. The Divifions on this Plane are made thus: Having wound up the Cylinder to the top of the Plane from whence you would begin the Hour-Divitions, let it defcend 12 Hours, reckoned by a Clock or good Sun-Dial, and note the Place where the Axle-tree is come to at the end of that time, and divide the Space the Axle-tree has moved thro in 12 equal Parts, each of which fet Numbers to, for the Hours.

We make liken. fe Clocks of this kind, that thew, the Hour by a Hand turning about a Dial-Piate, as appears in the fame Figure. This is done by means of a Pulley four or five Inches in diameter, faftened behind the Dial-Plate on a Brafs or Steel Rod, going thro the Center thereof ; one end of this Rod goes into a little Hole for fupporting it, and at the other end is fixed the Hand fhewing the Hour.

The faid Hand turns by means of a Cord put about the Pulley, one end of which fupports the Axle-tree at the Place H, and at the other end is hung a fmall Weight F; then as the Cylinder flowly defcends, it caufes the Pulley to turn about, and confequently the Hand, which by this means fhews the Hour.

The Circumference of the Pulley mult be equat to the Length the Axle-tree of the Cylinder moves thro during tweive Hours; and for this End you mult take that Lengeh exactly with a String, and then make the Circumference of the Pulley equal to the Length of the String; and fo the Pulley and Hand will go once round in twelve Hours. When the Cylinder defcends a hittle too fwift, and confequently the Hand moves too faft, then the Weight F mult be made heavier; and when it defcends too flow, it mult be made lighter.

The Conftrution of the Cylinder or Round Box.
Fig. 16.
This Cylinder is fometimes made of beaten Silver, but commonly with Tin. The Diameter of eaub Bafe thereof is about 5 Inches, and the Height 2.
The Infide of this Cylinder is divided into feren little Cells, (and fometimes into five) as the Figure fleevs. Thete little Cells are made by foldering feven Silver or Tin inclined Planes to each Bale, and the concave Circumference of the Cylinder; each of which are about a Inches long, as B F, A L, E I, D H, C G. Thefe Cells have fuch an Inclination when they turn about, that they receive the Water thro a little Hole in each Plane near the Circumference, and by this means let it run from one Cell to the other; fo that as the Cylinder rulls, it defcends, and fhews the Hour upon a vertical Plane by the Extremity of the Ax'e-tree, which (as we have faid) goes thro the fquare Hole \mathbf{M} in the middle of the Cylinder. Note, In a Cylinder of the abovefaid bignefs we ufually pour feven or eight Ounces of diftilled Water. But before the Water be poured in, you mult take great care to well folder the inclined Planes to the Bafes and Circumference. After this, the Water muft be poured thro two Holes pofited on one and the fame Diameter, equally diftant from the Center M; then thefe Holes mult be well fopped with foldering, that fo the Air may no: get in, or the Water run' out while the Cylinder is turning about.

You may perceive, by the Figure, that the inclined Planes within the Cylinder do not join each other, but end in G, H, I, L, F, that fo when the Cylinder is winding up, the Water may runfswiftly from one Cell to the other, and the Cylinder remain at any Height one pleafes; becaufe that at every Motion we give it when winding up, the Water running in a great Quantity thro the Openings, the Cylinder will prefently affume its Equilibrium, which would not happen if the Ceils were abfolutely inclofed: for the little Holes in the inclined Planes, are not fufficient for letting the Water run thro them fo fwift as it ought, it going through them but by drops.

It is manifett, if this Cylinder was fufpended by the Center of Gravity thereof, as would happen if the Surface of the Axle-tree fhould exactly pafs thro the Center of the faid Cylinder, it would remain at reft; and rhe Caufe of its Motion is, that it is fufpended without the Center of Gravity by the Cord's going about the Axle-tree, which ought not to be, with regard to the bignefs of the Cylinder, and the quantity of Water in it, but about one Line, or one Line and a half, in thicknefs.

From what has been faid, it is evident that the Swiftnefs or Slownefs of the Motion of the Cylinder depends upon the thicknefs of the Axle-tree; for the thicker the Axle-tree is, the flower will the Cylinder defcend, and contrariwife, becaufe it has more or lefs Excentricity, and confequently the Water will run more or lefs fivift from one Cell to another ; by which means the Force of its Motion will be more or lefs ballanced by the Weight of the Water contained in the oppofite Cell.

If you have a mind to fee the Circulation of the Water in one of thefe Cylinders, you may have one made that fhall have a Glafs Bare ; but then it will be difficult to find a Matter that fhall make the inclined Planes fick firm to this Glafs Cafe, and this to the Circumference of the Cylinder.

When the Cylinder is nearly defcended to the bottom of the Cords, you muft raife it up with your Hand, making it turn at the fame time, fo that the Cords may equally roll all along the Axle-tree, and that it be hung horizontally.

I have hinted before, that the Water poured into the Cylinder muft be diffilled, otherwife it mult be often changed, becaufe it makes a Slime about the fmall Holes thro which it runs, which hinders its running as it fhould do.

C H A P. VIII.

Of the Confruction of an Inftrument, Berwing on wobat Point of the Compafs the Wind blows, without going out of one's Room.

YO U muft affix to the Ceiling, Mantle-tree, or Wall of a Room, a Circle divided into 32 equal Parts, for the 32 Points of the Compafs, fo that the North and South Points thereof exaelly anfiver to the Meridian Line, which may be eafily done by a Compafs. Then there muft be a Hand made moveable about the faid Circle, and this Hand muft be turned about by an upright Axle-tree, which may be turned round by the leaft Wind blowing againft the Fane at the top thereof; above the Roof of the Houfe.

Bur to explain this more fully, confult Fig. 17. The Wind turning the Fane A B, (which Fig. 17. ought to be of Iron) fixed to the top of the Axle-tree C D, turns this Axle-tree, which is placed upright, and fuftained towards the top by the horizontal Plane EF, which is a piece of Iron faftened to fome convenient Place for holding up the Axle-tree. And at the bottom of the faid Axle-tree is placed a Stcel fquare G H, having a fhallow fmall Hole D made therein for the Point of the Axle-trec, which ought to be of tempered Stecl for the Axletree to ftand in, and move with the leaft Wind. The Pinion I K muft have 8 equal T'eeth for the 8 principal Winds. The Teeth of this Pinion take into the Teeth of the Wheel M L, whofe Number are 16 or 32 , according to the Points denoted upon the Circle Y Z; and fo this Wheel is turned about by the Fane, as alfo its Axis PQ, which being placed horizontally, goes thro the Wall T at right Angles to it, as alfo to the Circle of Winds Y Z, fixed to the Wall. The Hand R fhewing which way the Wind blows, is fixed to the end of this Axle-tree PQ, and turns along with it; and the Names of the Winds muft be diftinguifhed by Capital Letters, as on Compafs Cards.

By the Difpofition of the whole Inftrument it is eafy to perceive, that when the Wind turns the Fane A B, this likewife turns the Axle-tree CD, which at the fame time turns the Pinion IK, and the Pinion IK the Wheel L M, and this the Axis Q P, and Q^{P} the Hand. And fo you may fee which way the Wind blows, without going out of the Room.

A fhort Defcription of the principal Tools ufed in making of Mathematical Infruments.

THE chief and moft neceffary Tool is a large Vice, ferving to hold Work while it is filing, Ucc. It is neceffary that this Tool be well filed, that the Chops meet each other exaaly, that they be cut like a File, be in good temperature, that the Screw be adjufted as it fhould be in its Box; and that the whole Tool be well fixed to a Bench. There are alfo Hand-Vices of different bignefies, according to the Work to be filed.

The Anvil, which ferves for hammering Work upon, ought to be very fmooth and of tempered Steel, and piaced upon a great wooden Billor, fo that it may not give way when it is working upon.

There are alfo Bench-Anvils for frengthening and rivetting fmall Work; fome of thefe, which are called Bec's, and ferve to make Ferrils upon, $\mathcal{W} c$. have one fide Conical, and the other in figure of a fquare Pyramid.

Hand-Saws are made fo as to have Branches drawing the Blades (which are of different bignefies) ftraight by means of Screws and Nuts.
It is neceffary to have. good Files. The rough ones made in Germany are the beft; and the fmooth and baftard Files of England are very good. There are alfo fmall rough and fmooth Files, for filing Work Triangular, Square, Circular, Semi-circular, Ec. Ralps for
fafhioning

A Defrription of the principal Tools

fafhioning of Wood; feveral forts of Hammers for ftraightening, fmoothing, rivetting, ©̛. of Work; Tapes and Plates for making Screws.

Pincers and Knippers of feveral kinds. Sciffars of feveral fizes for cutting of Metals. Burnifhing-Sticks for polifhing Work. Steel-Drills of divers bigneffes for making of Holes thro Work, having one end filed like a Cat's Tongue, and the other fharp. Thefe Drills are ufed different ways; for fome of them are placed in a drilling Leath, which is compofed of a fmall fquare Iron-Bar, and two little Poupets or Heads carrying a Pulley, wherein is placed the Drill in a fquare Hole going thro it, which is turned by means of a little Cat-gut Bow. Note, This Tool is placed in a Vice when it is ufing. Brafs or Wood may be drilled alfo by putting it firt into the. Vice, and the Drill in a Pulley. Then if the end of the Drill be put into a fhallow Cavity made in a piece of Brafs or Iron, placed againft your Breaft, and the Point thereof be put to the thing you would make a Hole thro; by turning the Drill fwiftly about by means of the Bow, and at the fame time preffing it with your Breaft againft the thing to be drilled, you will foon make a Hole thro it.

The Leath is alfo of great ufe ; the mof fimple of them is made of two Brafs or Iron Poupets or Heads niding along a fquare Iron-Bar, and a Support which alfo flides along the faid Bar, upon which the Tools are laid when they are ufing. At the top of the Poupets are two Screws of tempered Steel going thro them, which are fixed by means of Nuts. When this Leath is to be ufed, it muft be placed in a Vice, and the thing to be turned, between the two Points of the Screws; and if you have a mind to turn with your Hand, you muft ufe a Cat-gut Bow.

Great Leaths for turning with one's Foot are compofed of two wooden Poupets, and two wooden fide Beams, of a length and breadth proportional to the bignefs of the Leath, which are fuftained by two Pieces of Wood called the Feet of the Leath. Thefe fide Beams are placed level, about two or three Inches diftant from each other, according to the bignefs of the Poupets put between them, and the ends of them are adjufted upon the Feet, which are about four Foot high, and they are likewife joined underneath by two or three crofs pieces of Wood, for rendering the Machine more ftable and folid.

The Poupets, which are two pieces of Wood of equal length and thicknefs, have one part of each cut fo as to go in between the fide Beams; and the other part, being the Head, is cut fquare, and folidly pofited upon the fide Beams; and that they may be very firm, there are Clefts of Wood drove with a Mallet into Mortice-holes at the bottom of the Poupets underneath the fide Beams.

In the Head of each Poupet is a tempered fteel Point ftrongly inclofed in the Wood; fo that when thefe two Points are brought to each other, they may exactly touch. There is likewife a wooden Bar going all along, which is fuftained by the Arms of the Poupets, which may be lengthened and fhortened at pleafure; and this ferves as a Reft for the 'Tools, when they are ufing.

Againft the Ceiling, over the Leath, is fixed an Elaftick wooden Rod, having at the end thereof a Cord faftened, which comes down to the Ground, and is fixed to the end of a piece of Wood, called the Treader.

Now when you have a mind to work, the Cord muft be put about the Piece to be turned, or about a Mandril adjufted to it; and preffing your Foot upon the Treader, you will turn the Work by means of the Rod which fprings; then with proper Tools laid upon the Support, and againft the Piece which is turning, you muft firft fafhion it with coarfe Tools, and finifh it with fine ones.

Becaufe all Work cannot be turned between two Points, one of the Poupets mult be taken away, and inftead thereof muft be placed a piece of Wood furnifhed with Iron, adjufted between the fide Beams as the Poupets are, and inftead of having a Steel Point has a very round Hole therein, in which goes the Colet of an Iron-Arbor, whofe other end is fuftained by the Steel-Point of the other Poupet.

The faid Arbor is fifteen or eighteen Inches long, and is compofed thus: at the end, which is fupported againft the aforefaid piece of Wood, is a Screw of a very large Thread made round the Arbor, upon which are fcrewed on divers Brafs Boxes, in which are held faft the pieces of Wood, which ferve to place the feveral Works to be turned. And at the other end of the faid Arbor are made feveral Threads of Screws of different bignefles, that fo Screws may be turned.

Near the middle of the faid Arbor, is placed a Mandril or wooden Pulley, about which goes a Cord. There may be feveral other Picces adjufted on this Arbor, for turning irregular Figures, as Ovals, Hcarts, Rofes, wreathed Pillars, ©゚c. All thefe Picces are filed into the Figures that one would have them make, and have fquare Holes in the middle of them, which are adjufted to a Square near the end of the Arbor.
When the Pieces are difpofed on the Arbor, the pointed end thereof is placed in a little Hole in the Stcel-Point of the Poupet, and the other end in the abovefaid wooden Piece (placed inftead of a fecond Pouper) which is made fo, that there are two Pieces which fpring, and pufh the Figure backwards and forwards, and by this means move the Arbor backwards and forwards, more or lefs, according to the Figure; and this is the

$$
\begin{align*}
& 3 \times 2 \\
& \text { क्रा } \\
& \therefore \text { a } \\
& \text { ? } \\
& \text { \% } \\
& ? \\
& \operatorname{cox}^{2}+\mathrm{m}
\end{align*}
$$

$$
\begin{aligned}
& \rightarrow
\end{aligned}
$$

ufed in making of Mathematical Inftruments.

Caufe that the Tool gives the proper Figure to the Work, which moves to it, or recedes from it, according to the Motion of the Arbor ; for the Tool mult always be held falt upon the Support. But fince thefe kinds of Figures are feldom ufed for Mathematical Inftruments, I fhall fay no more as to this way of turning.
The principal Ufe of the faid Arbor, ferves for turning of Rings, making of Grooves in Compaffes, and other the like things. And this may be done, in placing the Pieces to be turned upon the Wood belonging to the Boxes (of which we have already fooken) which are adjufted on the Leath for receiving the faid Pieces. Note, The Refts or Supports of the Tools are likewife placed according as the Work requires; fome before, and fome fideways.
Male and Female Screws are formed, by putting the proper Thread on the Arbor into a piece of Wood hollowed into a Screw of the fame Thread, which is placed at the Pouper carrying the end of the Arbor. And the other end of the Arbor, where is a Colet of the fame thicknefs, is put exactly into the Hole of the abovementioned piece of Wood ; then if the 'Treader be put in motion by your Foot, the Work will move backwards and forwards, fo as that you may form a Screw or a Nut, with toothed Tools made on purpofe, according to the Threads marked upon the Arbor. Note, For turning of Wood, Googes, Chiffels, שic. are ufed. But for Brafs and other Metals, fmaller Tools of tempered Steel muft be ufed, as Graving-Tools, ξ^{3} c.
Thus have I here, and in the Body of this Work, given a fhort Account of the Tools commonly ufed in making of Mathematical Inftruments. The others may be eafily fupplied according to Neceffity. But fince they are ufually made by thofe that ufe them, I fhall here fhew how to chufe the beft Metal for their Conftruction.
The beft Steel comes from Germany. This ought to be without Flaws, Black-veins, or Iron-furrows. You may know this by breaking of it, and feeing whether the Grain be very fine and equal.
In forging of Tools, or any thing elfe of Steel, you mult take care of over-heating them, and perform it as foon as pofible; for the longer they are hot, the more will they be fpoiled.
When the Tools are forged and filed, and you have a mind to temper them, you muft heat them red-hot till their Colour be fomething redder than a Cherry, and then they muft be tempered in Spring or Well-Water : the colder the Water is, the better. And when they are cold, they mult be taken out of the Water, and laid prefently upon a piece of hot Iron, fo long, till the Colour they have contraqed by tempering is loft, and they become yellowifh; and then they muft be thrown again into the Water, without flaying till they become blue, becaufe they will lofe their Force.
To temper Bundles of Files, or other Pieces of Iron, you muft take Chimney-Soot, the oldeft and groffeft being the beft, and having finely powdered it, temper it with Pifs and Vinegar, putting a little melted Salt therein, until the whole be as a liquid Pafte. The Soot being tempered, the Tools muft be covered over with it, and this covered with Earth, and the whole Bundle thrown into a ftrong Charcoal fire ; and when it is become fomething redder than a Cherry, it muft be taken out and thrown into a Veffel full of very cold Water, and then the Files will be fufficiently hard.
We ha, e already fhewed the manner of foldering Brafs or Silver to each other; and we would have it here obferved, that Iron may be foldered to Iron, by putting thin Brafs upon the Piece to be foldered, and the Powder of Borax, and then covering it all round with Charcoal, and heating it until we perceive the Brafs melts and runs.
Note, Brafs cannot be hammered when it is hot, for it will break ; but Copper is hammered cold or hot : but this is feldom ufed in making of Mathematical Infruments, becaufe ${ }^{2}$ Stone is finer and more convenient. Brafs is made with red Copper and Calamin, which is a Stone giving a yellow Tinture to the Metal, and is found in the Country of Liege, and in France.
Gold and Silver may be hammered cold or hot, and may be melted alfo nearly as Brafs is; and Mathematical Inftruments are made with Gold and Silver in the fame manner as with Brafs.

The Ufe of the Sector in the Confruction of Solar Eclipfes．

みE゙トゥ」「ノUN I：

HE Path of a Vertex，is that Circle of the Earth which any Place or Vertex on its Superficies defcribes，in the Space of twenty－four Hours， by the Earth＇s diurnal Revolution．Whence the Path＇s of Vertices are Cir－ cles parallel to the Equator．

DEFINITIONII．

If a Plane be conceived to touch the Moon＇s Orbit in that Point，where－ in a Line connecting the Centers of the Earth and Sun interfects the faid Orbit，and flands at right Angles to the aforenamed Line ：And if an infinite Number of right Lines be fuppofed to pafs from the Center of the Sun，thro this Plane to the Periphery of the Earth，to its Axis，as likewife to the Axis of the Ecliptick，and the Path of any Vertex； the faid Lines will orthographically project the Earth＇s Disk，its Axis，the Axis of the Ecliptick，and the Path of the Vertex，on the aforefaid Plane ：and this is the Projection we are to delineate．This being prefuppofed，it will follow；

1．That when the Sun is in Φ, Ω, ，$\approx \cong, \mathfrak{m}, \neq$ the Northern half of the Earth＇s Axis projected on the aforefaid Plane，viewed on that Side next to the Earth，lies to the Right－hand from the Axis of the Ecliptick：But if the Longitude of the Sun be in any of the fix oppofite Signs，it lies to the Left－hand from the Axis of the Ecliptick．
2．When the Sun＇s apparent Place happens to be either in $r, \forall, \pi, \neq \Omega, \boldsymbol{x}$ ， the North Pole lies in the illuminate or vifible part of the Disk；but otherways in the ob curie．

3．When the Sun＇s Place in the Ecliptick is 90 Degrees diftant from either Pole； that is，when the Sun is in the Equator，the Paths of the Vertices，or all Circles of the Earth parallel to the Equator，will be projected in right Lines upon the faid Plane ：but if the Sun＇s Place be leffer than 90 Degrees，the faid Paths will be projected in Ellipfes upon the faid Plane，whofe conjugate Diameters will be fo much the leffer，as the Place of the Sun is leffer．
4．The trairfverfe Diameter of the Ellipfes reprefenting any Path，is equal to double the right Sine of the Diftance of the faid Vertex from the Pole ；that is，equal to twice the Co－Sine of the Latitude of the Place or Vertex ：but the Conjugate，to the Difference of the right Sines of the Sum，and Difference of the Diftances of the Path and Sun from the Pole ；that is，equa！to the Sine of the Complement of the Sun＇s Declination added to the Co－Latitude of the Place，lefs the right Sine of the Difference of the Complement of the Sun＇s Declination，and the Co－Latitude of the Place．
5．The tranfverfe Diameter lies at right Angles to the Earth＇s Axis，and the conjugate coincides therewith．

SECTION 1.

To reprefent in Plano, the Patb of a Vertex in the Eartb's Disk, whofe Diftance from the North Pole is 38 deg. 3^{2} min. the Sun's Place being in 10 deg. 40 min. 30 Sec. of Gemini, femblable to that wbich will be projeeted on a Plane, toucbing the Earth's Orbit in that 'Point, by frrait Lincs produced from the Sun to the Earth.

HAving drawn the Semi-circle H E R, let it reprefent the Northern half of the Earth's Plate 25: illuminate Disk (becaufe the Sun is in Gemini) projected upon the faid Plane, the Sun irs Fis. i. Center, the Point therein oppofite to the Sun, $\mathrm{H} \odot \mathrm{R}$ an Arc of the Ecliptick pafiing through it. Upon © raife © E, perpendicular to the Ecliptick $H R$, and the Point E wherein it interfects the Limb of the Disk, will be the Pole of the Eccliptick, and \odot E its Axis.

Again; Make $\odot E$ equal to the Radius of a Line of Chords (by Ufe III. of the Line of Chords) from which taking the Chord of 23 deg . 30 min . (the conftant Diftance of the two Poles) fet it off both ways from E to B and C , draw the Line BC , in which the Northern Pole of the World fhall be found.

Make B A equal to A C, the half of this Line, the Radius of a Line of Sines and therein fet off the Sine of the Sun's Diftance from the folftitial Colure 19 deg. 19 min . 30 fec. from A to P, on the Left-hand of the Axis of the Ecliptick, (becaufe the Sun is in Gemini) and draw the Line $\odot P$, which will be the Axis of the Earch, and P the place of North-Pole in the illuminate Hemifphere of the Disk.

Or the Angle E © I, which the Axis of the Earth and Ecliptick make with cach other, may be more accurately determined by Calculation. For,
deg. min. Sec.
'As Radius - to the Sine of the Sun's Diftance from the fol- $\} 900000$ 10,000000 ftitial Colure - - - - $\quad \begin{array}{llllll}19 & 19 & 30 & 9,51973 r\end{array}$ So is the Tangent of the Sun's greatef Declination to the $\mathbf{Z}^{23} \quad 30$ 00 \quad 2,637956 Tangent of the Inclination of the Axis = $\quad=-58$ 10 54 9, 157687.

Count the faid 8 deg. io min. 54 fec. in the Limb of the Disk from E to I, on the

 Left-hand, and draw the Line © I, this fhall be the Axis; and the Point P wherein it interfects the Line B C, the place of the Pole in the illuminate Disk.The next thing required will be the Sun's Diftance from the Pole, or the Complement of his Declination, which will be found 67 deg. 57 min .48 fec. this, added to the Diffance of the Vertex from the Pole 38 deg. 32 min. makes 106 deg. 29 min. 48 fec. and the fame 38 deg. 32 min. taken from 67 deg. 51 min .48 fec. gives 29 deg. 25 min . 48 fec. the Meridional Diftance of the Sun from the Vertex.
Make © E the Radius of the Disk, to be the Radius of a Line of Sines, from which take the Sine of 73 deg . 30 min. 12 fec. (the Complement of 106 deg. 29 min. 48 fec. to a Semi-circle) and fet it off in the Axis frcm © to 12 ; it there gives the Meridional Interfection of the Nocturnal Arc of the Path with the Axis.
Take the Sine of 29 deg. 25 min .48 fec. from the fame Line of Sines, and fet it off the fame way from \bigcirc to M, and it there gives the Interfection of the diurnal Arc of the Path with the Meridian. Whence M_{12} will be the conjugate Diameter of the Path, it being the Difference of the Sines of $70 . \mathrm{deg} .30 \mathrm{~min}$. 12 fec. and 29 deg . 25 $\min .48 \mathrm{fec}$. that is, the Difference of the Sines of the Sum, and Difference of the $\mathrm{D}_{\text {i }}$ flances of the Path and Sun from the Pole, which will be the conjugate Diameter of any Path.
Bifect ${ }_{12} \mathrm{M}$ in C , and through it draw 6 C 6 at right Angles to the Axis of the Globe ; and then taking the Sine of 38 deg .32 min . the Diftance of the Pole from the Verrex, fet it off from C both ways to 6 and 6 ; thein the Line 66 will be the Tranverfe-diameter of the Path, and $\mathbf{C} 6$ the Semi-diameter.
Making C 6 equal to the Radius of a Line of Sines, if from the fame you take the right Sines of $15,30,45,60,75$ Degrees, and fet them off feverally both ways from Cën ${ }^{+1}$ the Tranverfe-diameter, and from the Points fo found erect Perpendiculars, a II, $a_{\text {I }}$, ${ }_{\mathrm{R}}$. $10, a 2, \mathrm{v}_{\mathrm{c}}$. equal to the Co-fines of the faid Arcs, taken from a Line of Sines, whofe, Radius fhall be C 12 , equal to C M, you will have twenty-four Points given, through which the Ellipfis reprefenting the Path fhall pafs, which fhall alfo fhew the Place of tile Vertex at every Hour of the Day. In the fame manner may the Parts of an Hour be pricked down in the Path, in laying of the Sine of the Degrees and Minutes correfponding thereto from C towards 6, and then raifing Perpendiculars from the Points fo found in the Semitranfverfe, and fetting off from the faid Semi-tranfverfe each way upon the Perpendiculars,

The Ufe of the Sector in the

the Sines of the Compiements of the Degrees and Minutes correfponding to the aforefaid Parts of an Hour. As, for example ; to denote half an Hour paft 11 and 12, take the Sine of 7 deg. 30 min . and lay it off on both fides from C to b and b; then take the Co -fine of 7 deg. 30 min . and having raifed the Perpendiculars $6 \frac{1}{2}$, lay of the faid Sine-Complement from 6 to $\frac{1}{2}$, and you will have the Points in the Periphery of the Ellipfis, for half an Hour paft II, and half an Hour paft I2; and in this manner may the Path be divided into Minutes, if the Ellipfis be large enough.
Take this for another example ; Suppofe I would reprefent upon the Plane of the Earth's Disk, the Path of Gibraltar, whofe Latitude is 35 deg. 32 min. North, and the Sun's Place is in 15 deg. 45 min. of Leo.

Having, as before, drawn the Scmi-circle H E R, for the Northern half of the Earth's illuminate Disk, and drawn © \odot perpendicular to $R H$, as alfo drawn the Line $C B$, which is always equal to twice the Chord of the Sun's greateft Declination, 23 deg. 30 min. you muft next make A B equal to a Radius of a Line of Sines, and then lay off from A to P, on the Rigint-hand of the Axis of the Ecliptick, (becaufe theSun is in Leo) the Sine of the Sun's Diftance from the folftitial Colure 45 deg. 45 min . or, the Angle EO I may be more nicely determined by Calculation, as was before directed, and then © P I, will be the Axis of the World.

Now the Sun's Difance from the Pole, or the Complement of his Declination is 73 deg . 51 min . which being added to the Complement of the Latitude 54 deg .28 min . the Sum will be 128 deg. 19 min . and this taken from 180 deg. the Remainder will be 51 deg. 41 min. alfo if 54 deg. 28 min . be taken from 73 deg. 5 I min. the Difference will be 19 deg. 23 min .
Then if you make the Semi-diameter of the Disk the Radius of a Line of Sines, and lay off from the Center \odot to 12 , the Sine of 51 deg. 41 min . the Point 12 in the Axis will be the Meridional Interfection of the Nocturnal Arc of the Path with the Axis; and if again you lay off the Sine of 19 deg. 23 min . from to M , you will have the Meridional Interfection of the Diurnal Arc of the Path with the Axis; whence $\mathrm{M}_{1} 2$ will be the conjugate Diameter of the Elliptical Path.

And if you bifeat M Iz in C, and draw the Line 6 C 6 at right Angles to the Axis (1) I; and then lay off the Sine Complement of the Latitude 54 deg. 28 min. from C to 6 , on each fide the Axis you will have the Tranfverfe-diameter of the Path, which may be drawn and divided, as before directed, for that of Fig. I.

Note, When the elevated Pole is in the obfcure Hemifphere of the Earth, the diurnal Arc, or illuminated Part of the Path, is in that Part of the Ellipfis that lies neareft to the faid Pole, but otherways in the more remote ; and where the Ellipfis cuts the Limb of the Disk, are the Points on it from which the Sun appears to rife and fet, $\mathcal{E}^{2} c$. And becaufe thefe Points are neceffary to be found, when an Eclipfe happens near Sun-rifing or Sun-fetting, they may be determined in the following manner:
Fig. I,
Lay off the Sun's Declination 22 deg. 2 min. upon the Limb of the Disk from R to N, as alfo the Complement of the Latitude of 38 deg .32 min . from R to P ; then draw the Line © N , and from the Point P let fall upon the Diameter R H, the Perpendicular PQ , cutting the Line $\odot \mathrm{N}$ in L . This being done, take the Extent $\odot \mathrm{L}$, between your Compaffes, and lay it off upon the Axis $\odot I$ from \odot to K ; then draw a Line both ways from the Point K , parallel to the tranfverfe Axis $\mathrm{C} \sigma$ of the Path, and the faid Line will cut the Limb of the Disk in the Points $q p$ of the Sun's rifing and fetting.

Or the Arc I p may be more accurately determined by Calculation; for in the Triangle $\odot Q L$, right-angled at Q, are given the Angle $Q L \odot$, equal to the Sun's Diftance from the Pole; and the Side Q © equal to the Sine of the Latitude. To find the Side O L, which is equal to the Sine Complement of the Arc I p, the Canon is, As the Sine of the Sun's Diftance from the Pole, is to Radius; fo is the Sine of the Latitude to the Sine Complement of the Arc I p, or I q.

S E C TION II.

HAving in the foregoing SeZion fhewn how to draw the Path of any Vertex upon the
Earth's Disk, as likewife to divide it the next thing necef Earth's Disk, as likewife to divide it, the next thing neceffary to be given, in order to confruct the Phafes of a Solar Eclipfe in any given Place on the Earth's Superficies, are ;
I. The apparent Time of the neareft Approach of the Moon to the Center of the Disk, or the Time of the Middle of the Eclipfe.
If. The neareft Diftance of the Moon's Center from the Center of the Disk in her Paffage over it ; which is equal to her Latitude at the time of the Conjunation.
III. The Semi-diameter of the Disk at the time of the Conjunction.
IV. The Moon's Semi-diameter at the fame time.
V. The Sun's Semi-diameter.
VI. The Semi-diameter of the Penumbra. thatthe Perpendicular to the Moon's Way forms with the Axis of the Ecliptick; and it the Argument of Latitude be more than 9 Sines, or lefs than 3, the faid Perpendicular lies to the Left-hand; if more, to the Right, from the Axis of the Ecliptick.
VIII. The hourly Motion of the Moon from the Sun at the time of the Conjunction.

Note, The Semi-diameter of the Disk is always equal to the Difference of the Sun and Moon's horizontal Parallaxes.

All thefe for the Solar Eclipfe of May 11. 1724. will be as follows:
Hours. min. Sec.
'The apparent Time of the neareft Approach of the Moon to
the Center of the Disk, will be
The neareft Diftance of the Moon's Center from the Center of?
che Disk
The Semi-diameter of the Disk
The Moon's Semi-diameter
The Sun's Semi-diameter
The Semi-diameter of the Penumbra
The Angle of the Moon's Way with the Ecliptick
The hourly Motion of the Moon from the Sun

Thefe being found from Afronomical Tables and Calculations, I fhall fhew how to draw the Line of the Moon's Way, or Path of the Penumbra, upon the Plarie of the Earth's $D_{\imath}: k$, as it falls at the time of the Conjunction of May 11, 1724. and the manner of dividing the fame, for London, Genoil, and Rome.

Having drawn the Semi-circle HER of the Earth's Disk, and the Parhs of London, Plate 26. Genon, aild Rome, by the direations of the laft Section, the Sun's Place being 6I deg. Fito 1 . 38 min. 45 fec. and the Latitude of London 51 deg. 31 min . that of Genon 44 deg .27 mm. and that of Rume 41 deg. 51 min. you nuft next draw the Perpendicular to the Moon's Way ; which is done thus: Take the Semi-diameter $\odot \mathrm{H}$ of the Disk between your Compaffes, and open your Settor fo, that the Diftance from 60 to 60 of Chords be equal to that Extent ; then taking 5 deg. 37 min. parallel-wife from the Lines of Chords, (wtiich is the Angle of the Moon's Way with the Ecliptick, or the Angle that a Perpendicular to her Way makes with the Axis E © of the fame Ecliptick) lay them off upon the Limb of the Disk from E to F , on the Right-hand of the Axis of the Ecliptick, becaufe the Argument of Latitude is more than three Sines, and the Line © F being drawn, will be the Perpendicular to the Moon's Way at the time of the general Conjunction, May II, 1724°

Again : Take the Senii-diameter of the Disk between your Compaffes, and open the Sector fo, that the Diftance from 6 I $_{6}^{\frac{3}{6} \frac{8}{6}}$, the Semi-diameter of the Disk, on each Line of Lines be equal to thar Extent ; then the Sector remaining thus opened, take between your Conpailes the parallel Extent of $32 \frac{14}{6}$, the neareft Approach of the Monn to the Center of the Disk, and lay it off from © to M , upon the Perpendicular to the Moon's Way; then, if upon the Yoint M, a Perpendicular, as M G, be drawn both ways, this will be the Line of the Moon's Way; or Path of the Penumbra.
Now to divide the faid Path into its proper Hours, which let be for London. The middle of the General Eclipfe, or the time when the Moon's Center will be at M, happens at 12 Minutes paft 5 in the Afternoon: fay, As 1 Hou: or 60 Minutes to 35 min . 18 fec. the hourly Motion of the Moon from the Sun; fo is 12 Minutes the time more than 5 in the Afternoon, to 7 min .3 fec. the Motion from 5 a-clock to the midddle.
Your Sector remaining open'd to the laft Angle it was fer to, take the Extent from $7 \sigma^{\frac{3}{3}}$ to $7 \% \frac{3}{\circ}$ on each Line of Lines, and fetting one Foor of your Compaffes upon M, with the other make a Point on the Moon's Way to the Right-hand ; and this fhall be the Place of the Penumbra at 5 a-clock in the Afternoon at Londcn; which therefore denote with the Number V.

The hourly Motion of the Moon from the Sun is 35 min . 18 fec. therefore take the parallel Extent of $35 \frac{18}{60}$, on the Line of Lines, between your Compaffes, and ferting one Foot upon V, with the other make Points on each fide V, thefe fhall fhew the Place !of the Moon's Center at the Hours of IV and VI; and if from thefe Points you farther fet off the faid Extent in the faid Line, you may thereby find the Place of the Moon's Center for every 1 lour, whilf the Penumbra fhall touch the Disk: and if the Space between every Hour be divided into 60 equal Parts, you fhall have the Place of the Moon's Center in the Line of her Way, to every fingle Minute of Time.

Or, you may take the Semi-diameter of the Disk between your Compaffes, and make s Scale thereof, in dividing it, by means of the Sector, in the following manner: Open the Setor fo , that the Diftance between $61 \frac{38}{6}$, the Semi-diameter of the Disk, and $61 \frac{1}{2}$ on the Line of Lines, be equal to the Semi-diameter of the Disk. This Difance lay off fom

A to B: then your Sector remaining thus opened, take between your Compaffes fucceffive$1 y$, the parallel Diftances of each Divifion to $6 \mathrm{I} \frac{3}{6} \frac{8}{9}$, and lay them off from A towards B, every 5 th of which Number, and your Scale will be divided into Minutes. And by the fame Method you may divide each Minute into Parts, ferving for Seconds, if your Scale be long enough. Now your Scale being divided, you may make ufe thereof, for drawing and dividing the Path of the Penumbra, without the Sector: For $32 \frac{14}{60}$ of thefe Parts of the Scale, give.you the neareft Diftance of the Moon's Center to the Center of the Disk. Alfo $7 \% \frac{3}{\circ}$ Parts of the faid Scale, will be the Diftance of the Center of the Penumbra from the Point M, at five a-clock; and $35: \frac{8}{\circ}$ of the Parts of the Scale, will be the Diftance from Hour to Hour, on the Path of the Penumbra.

Now to fix Numbers upon the faid Path of the Penumbra, reprefenting the Hours when the Moon's Center will be at the faid Hours, at Rume and Genoa, we muft have the Difference of Longitude between London and the faid two Places given; as alfo, whether they are to the Eaft or Weft from London; the Difference of Longitude between London and Rome, is 12 deg. 37 min . and between London and Genoa, is 9 deg .37 min . they being both to the Eaft from London. Each of thefe being reduced to Time, the former will be so Minutes, and the latter 38 Minutes, wherefore 5 a-clock for Rome on the Moon's Way, muft be at 10 min . paft 4, for London; and 6 a-clock at 10 Minutes paft five, ©c. Underftand the fame for other Hours and Minutes. I have noted the Hours for Rome under the Line of the Moon's Way, with Ruman Characters. Again, 5 a-clock on the Moon's Way for Genoa, muft be fet at 22 Minutes paft 5 for London; and 6 a-clock, at 22 Minutes paft σ, $\mathcal{F}^{c} c$. I have noted the Hours for Gtnoa with fmall Figures over the Line of the Moon's Way.

Note, the 10 Minutes, and 22, are each of them the Complement of 50 Minutes, and 38 Minutes to 60 Minutes.

S ECTION III.

To determine the apparent Time of the Beginning or End of a Solar Eclipfe, the Time when the Sunhall be eclipfed to any poflible Number of Digits, the Inclination of the Culps of the Eclipfo, and the Time of the vifible Conjunction of the Luminaries, in any given Latitude.

THE Paths of London, Rome and Genon, as alfo the Path of the Penumbra being drawn and divided, as direted in the two laft Sections for the great Eclipfe of 1724 , which will be a very proper Example for fufficiently explaining this Method, take between your Compafies the Semi-diameter of the Penumbra $32 \frac{35}{5}$, from the Line of Lines on the Setor, it being firft opened to the Sem-diameter of the Disk $61 \frac{33}{6}$; or you may take it from your Scale, which being done, carry one Foot of your Compaffes along the Line of the Moon's Way, from the Right-hand to the Left; wherein find fuch a Point, that if the faid Foot be fer, the other Foot fhall cut the fame Hour or Minute, in the Path of the Vertex of any given Place ; then the Points in the Paths upon which either of the Feet of your Compaffes ftand, will Thew the Time of the Beginning of the Eclipfe at that Place.

For example; If you carry the Semi-diameter of the Disk along the Line of the Moon's Way, you will find that one Foot of the Compaffes being fet at a, on the Moon's Way, which is 4 I min. paft 5 in the Afternoon for London, the other Foot will fall on the Point b on the Path of London, which is likewife 41 min . paft 5 in the Afternoon; wherefore the Beginning of the Eclipfe at London will be at 41 min. paft 5 in the Afternoon.

Again: If you carry ftill on the Foot of your Compaffes, they remaining yet opened to the Semi-diameter of the Disk, and find another Point on the Moon's Way, whereon if you fix one Point of your Compaffes, the other fhall cut the Path of the Vertex at the fame Hour or Minute, which this ftands upon in the Line of the Moon's Way, the Points whereon your Compaffes fland in either Path, fhall fhew the Minute the Eclipfe ends.

For example: One Foot of the Compaffes being fet to g in the Path of the Vertex, which is 29 min . paft 7 in the Afternoon, the other Foot will fall upon the Line of the Moon's Way, at the fame Hour and Minute, viz. 29 min. paft 7 ; therefore the Eclipfe ends at London 29 min paft 7: but take notice, that the Line of the Moon's Way fhould be continued further out beyond 7 a-clock, that fo the Point of the Compaffes may fall upon the proper Minute, to wit, 29.
Moreover : If one fide of a Square be applied to the Ecliptick HR, and fo moved backwards or forwards, until the other fide of the faid Square cuts the fame Hour or Minute in the Path of the Vertex, and Line of the Moon's Way ; this fame Hour or Minute will be the Time of the vifible Conjunction of the Luminaries at the given Place.

For example ; When the perpendicular fide of the Square cuts the Path of the Moon's Yay at e, which is 37 min . paft 6 , the faid fide will likewife cut the Path of the Vereex for 2.indon at c, which is 37 min . paft 6 ; therefore the Time of the vifible Conjunction of th Lumaries at London will be 37 min. after 6 .

Draw the Line $a b$, as alfo the Line $\odot b$; this fhall reprefent the vertical Circle, and the Angle $\odot b a$ will be the Angle that the vertical Circle makes with the Line connecting the Centers of the Sun and Moon, at the begimning of the Eclipfe at London.

Draw the Line $g m$; to wit, join the Points in the Path of the Vertex, and the Path of the Moon's Way, which fhews the end of the Eclipfe at London; and the Line $\odot g$, then the Angle $\odot g m$, will be that which the vertical Circle forms with the Line joining the Centers of the Luminaries.

Take the Semi-diameter of the Sun, viz. $15 \frac{53}{6}$ between your Compaffes, either from your Sector, opened as before direfted, to the Semi-diameter of the Disk, or from your Scale, and with that upon the Center c (to wit, the Minute in the Path of L•ndon, whereat the Time of the vifible Conjunction happens) defcribe a Circle ; this Circle fhall reprefent the Sun.

Again ; Take the Moon's Semi-diameter $16 \frac{42}{60}$ from your Sector, (remaining opened as before) or your Scale, and upon the Center e (to wit, the Minute in the Path of the Moon's Way, whereat the true Conjunetion happens at Londun) defcribe another Circle. This fhall cut off from the former Circle fo much as the Sun will be eclipfed, at the Time of the vifible Conjunction.

From ○ draw the Line $๑ c v$: This thall reprefent the vertical Circle, and v the vertical Point in the Sun's Limb, whereby the Pofition of the Cufps of the Eclipfe, in relpect of the Perpendicular paffing thro the Sun's Center, are plainly and eafily had.

Produce $d c$ till it interfect the Moon's Limb in p, then fhall $p q$ be the part of the Sun's
Diameter eclipfed, at the time of the greareft Oufcuration at Lond.n: And if the Sun's Diameter be divided into 12 equal Parts, or Digits, you will find $p q$ to be $1 \mathrm{f} \div \frac{\pi}{\circ}$ of thofe Parts or Digits.

Whence at London,
The Beginning of the Eclipfe, May in. r724. at
The vifible Conjunction of the Luminaries
The End

After the fame manner, the Beginning of the Eclipfe at Genoa will be o6 27
Vifible Conjunction, or middle of the Eclipfe - 0720
The Sun will there fet eclipfed, and the Eclipfe will be Total.
And the Beginning of the Eclipfe at Rome is - - 0642
The vifible Conjunction, or Middle, will there be when the Sun is fer, and confequently alfo the End.

I have, as you fee in the Figure, alfo drawn a fourth Path for Edinburgh, whofe Latitude is 55 deg. 56 min . and Longitude about 3 deg. to the Weft from London. Wherefore for each Hour in the Moon's Way for London, you mutt account 12 min . more for the fame Hour at Edinburgh; that is, for example, 5 a-clock on the Line of the Moon's Way for Edinburgh, muft ftand at 12 min . paft 5 at London. Underftand the fame for other Hours, $\mathcal{O}_{\mathrm{c}} \mathrm{c}$.

And by proceeding according to the Directions before given, you will find,

Note, The Path of the Moon's Way ought to be continued out further to the Left-hand, in order to determine the Time of the End of the Eclipfe at Edinburgh.

If you have a mind to know at what Time any poffible Number of Digits or Minutes fhall be eclipfed at any Place in the Sun's antecedent or confequent Limb; divide the Sun's Dameter into Digits or Minutes, and cut off the Parts required to be eclipfed from the Semi-diameter of the Penumbra; then take the remaining part of it between your Compaffes, and carrying it along the Line of the Moon's Way, find the firf Point in it, in which placing one Foot, the other will cut the fame Hour in the Path of the Place that the fixed Foot ftands upon; then the Hour and Minute in either Path upon whicn the Feet of your Compaffes ftand, will be the Time of that Obfcuration.

As, for example; Suppofe it was required to find at what Time 6 Digits or $\frac{x}{2}$ of the Sun's Diameter fhall be eclipfed in his antecedent Limb at London: Cut off $\frac{\square}{2}$ of the Sun's Semidiameter from the Semi-diameter of the Penumbra, and carrying the Remainder, as d rected, you will find, that if one Point of your Compaffes be fet at 6 Hours 9 Minutes in the Atcernoon, on the Path of the Moon's Way, the other Point will alfo fall upon the fame Hour and Minute in the Path of London; and therefore the Time when the Sun's antecedent Limb
at London will be half eclipfed, will be at 9 Minutes paft 6 ; and when its confequent Limb will be half eclipfed, will be at 5 Minutes paft 7.

Now to determine the Pofition of the Cufps of the Eclipfe, for example, at London: Draw a Circle A D BE, reprefenting the Sun's Body, and the right Line AC B, reprefenting his vertical Diameter. This being done, lay off the Angle © b a upon the Sun's Limb from A to D, draw the Diameter ECD, and the Point D will be the firf Point of the Sun's Limb obfcured by the Moon at the Beginning of the Eclipfe.

Again; To determine the Pofition and Appearance of the Eclipfe at the Time of the middle, or greatelt Obfcuration, take the Sun's Semi-diameter between your Compaffes, and upon the Point C, defcribe a Circle; then draw the vertical Diameter A CB, and make the Angle A C D equal to the Angle vcp, and draw the Diameter D C F. This being done, take the Moon's Semi-diameter between your Compaffes, and having laid off from the Center C to E, the Diftance $c e$ in the firl Figure; upon the Point E, as a Center, defcribe an Arc cutting the Sun's Limb, and the Pofition and Appearance of the Eclipfe at the Time of the greateft Obfcuration, or the middle, at London, will be as you fee in the Figure.

Laftly, To determine the Pofition of the End of the Eclipfe, draw a Circle (as in the 4 th Figure) and crofs it with the vertical Diameter A C B ; then make the Angle A.CE equal to the Angle © $g m$, and draw the Diameter E D ; then will the Point \mathbf{E} on the Limb of the Sun, be that which is laft obfcured, or whereat the Eclipfe ends.

If you have a mind to find the Continuation of total Darknefs at any Place where the Sun will be totally eclipfed, cut off the Semi-diameter of the Sun, from the Semi-diameter of the Penumbra, and taking the Remainder between your Compaffes, carry it along the Line of the Moon's Way, and find the firft Point in it; on which placing one Foot, the other will cut the fame Hour in the Path of the Place, which Hour note down. Again; Carrying on further the fame Extent of your Compaffes, find two Points on the Paths of the Vertex and Moon's Way, which fhall fhew the fame Hour and Minute on them both. This Time allo note down; then fubftract the Time before found from this Time, and the Difference will be the Time of Continuance of total Darknefs.

$$
3
$$

$$
51+30288
$$

$$
3
$$

$$
=
$$

$$
\begin{aligned}
& 1 \\
& \frac{1}{1}+5 \\
& 20
\end{aligned}
$$

$$
\therefore \quad 16
$$

 \qquad

$$
\begin{aligned}
& \text { 8x: }
\end{aligned}
$$

[^0]: Imitetur igitur Ars Naturanı, \& quod ea defiderat inveniat; quod offendit fequatur. Nibil cnim aut Natura extremunn invenerit, aut Doetrina primunn: Sod Rerunn Principia ab Ingenio profecta funt, \& Exitus Dijciplina compparantur.

 Cicer. ad Heren. lib. 3.

 $$
 L O N D O N:
 $$

 Printed by H.W. for John Senex, at the Globe, over-againft St. Dunftan's Church, in Fleetftreet; and William Taylor, at the Ship and Black-Swan in Pater-nofter Row.
 M.Dcc.xxim.

[^1]: * Our Author houtd bave faid, Leffer Number.

[^2]: * Our Autbor frould bave faid, the greateft and Ieaft Lines.

[^3]: the

[^4]: ## To drawu upon Paper a fortifed Plan, according to the Method of Count Pagan.

 Let it be, for Example, an Hexagon: firt draw the Line AB 180 Toifes, for the exterior Side of the Hexagon, and raife the Perpendicular CD from the Point C of 30 Toifes; then draw the Lines ADH, B D G, interfecting each other in the Point D, and take 55 Toifes from your Scale, to determine the Length of the Faces AE, BF: from the Point E draw the Flank E G, making a right Angle in the Point G, at the end of the Line of Defence B G, and likewife the other Flank FH at right Angles to A H: finally, draw the Courtain G H, and you will have one Side of the Hexagon fortified. The other Sides are fortified in the fame manner. About this Side of the Polygon thus fortified, you muft draw a Ditch, reprefented by the Lines A C, C B, parallel to the Faces of the Baftions, meeting each other towards the Middle of the Courtain in the Point C. This Ditch ought to be 20 Toifes in Breadth, and 3 Toifes deep. The Ground taken out in making of the Ditch, ferves to form the Rampart with its Parapet, and the Glacis of the Cover'd Way, preferving the fineft for the Parapet of the Body of the Place, and the Cover'd Way; for if the Ground be ftony, Cannon-Balls, coming from the Befiegers againt Parapets made with it, will make the Stones fly about, and annoy the Soldiers defending the Body of the Place. On the contrary, when the Ground is fine, the Bullets will but make Holes, and enter therein, provided Parapers have Breadth enough to deaden them: by Experience it is found, that Parapets muft contift of well-rammed Earth at leaft 20 Foot thick, to be Proof againft Cannon.

 The Parapet is made upongtlie Rampart 24 Feet borad, containing the Banquette, or little Bank, made parallel to the Faces, Flanks, and Courtains, forming the Inclofure of the Ptace.
 The Bafe of the Rampart is is Toifes broad, and is made parallel to the Courtains only, to the end that the Baltions may be full, and that there may be there found Earch in cafe of need, to make an Intrenchment.
 When any Baftion is left open, a Mine muft be made therein well arched, Bomb proof, and covered with Ground well rammed, and it muft be endeavour'd to be made fo that the Rain-Water cannot get into it, to the end that Provifions put therein, may be preferved from time to time.

 The Cover'd Way is made parallel without the Ditch, about ς Toifes broad, and upon it there is a Parapet made 6 Foot high, and a Banquette, at the Foot of the faid Parapet, 3 Foot broad, and a Foot and a half high, fo that Soldiers may commodioufly ufe their Arms on the Top of the Parapet, whofe Top muft be en Glacis, that is, having a Defcent or Slope going down 20 or 30 Toifes into the Country.

 There muft be no hollow Places about this Glacis, for the Enemy to cover themfelyes in; therefore when an Ingineer vifits the Fortification of a Place, it is requifite for him to examine the adjacent Parts, and have the hollow Places filled up, at leaft within the reach of a Muf-quet-fhot from the Cover'd Way; and alfo to have all Places too high levelled, that fo thofe which defend the Place, may difoover all the adjacent Parts.

[^5]: one

