Needle Ring Measurements On Some Colonial Instruments Preliminary Results
 Colonial Compass Collectors Association Held at the AESG Philadelphia
 Sept 23-24, 2010
 Paul Temple

Outline

- Last Year - A Retrospective
- Some Questions About Colonial Compasses
- Measurement Approach: An $X-Y-\Theta$ Instrument
- Dividing Needle Rings In Colonial Instruments - Jeff Lock's Paper
- Lathes and Wheel Cutting Engines - The Essential Part
- Several early compasses
- Summary

Requirements

Levels Of Angular Measurement Accuracy

Magnetic Compass
Needle -
Resolution of
~ 5 minutes

Distance from Earth to Sun
Parallax across diameter of Earth Transit of Venus 1769

Distance to near-by stars Parallax across diameter of
Earth's Orbit
61 Cygni 0.287 arc sec 11.4 light years distant Bessel 1839

1 Second
of Arc

> 1/10 Second of Arc

Time Lines: European Science and America

Outline

- Last Year - A Retrospective
- Some Questions About Colonial Compasses
- Measurement Approach: An $X-Y-\Theta$ Instrument
- Dividing Needle Rings In Colonial Instruments - Jeff Lock's Paper
- Lathes and Wheel Cutting Engines - The Essential Part
- Several early compasses
- Summary

Some Questions - Forensics

- How accurately placed are the individual needle ring divisions?
- What can be learned by measuring line widths?
- Can anything be learned about the manufacturing techniques?
- Techniques passed from master to apprentice - "genetic" groups
- Is it possible to find any characteristics which could tie instruments together as having been made using a particular piece of equipment (e.g., wheel engine)?
- Is there a "signature" left by a particular horological wheel engine or dividing engine?
- E.g., the dividing plate used in locating marks

What Features Might be Measured?

- Line shapes (curved vs. straight), uniformity
- Line sequences where they overlap (scribed ring and degree mark)
- Line widths (thousandths of an inch) and variation in width
- Line positions (deviation from exact location)
- Line "Radialness": are they aligned with a line drawn fron the center of the ring outward?
- Needle ring circularity
- Layout marks
- ???

Outline

- Last Year - A Retrospective
- Some Questions About Colonial Compasses
- Measurement Approach: An $X-Y-\Theta$ Instrument
- Dividing Needle Rings In Colonial Instruments - Jeff Lock's Paper
- Lathes and Wheel Cutting Engines - The Essential Part
- Several early compasses
- Summary

K \& E Basic Θ Unit

Machining Parts

Stress Relief!

$X-Y-\Theta$ Instrument

The Measurements Plot Line Width and Error in Location

Outline

- Last Year - A Retrospective
- Some Questions About Colonial Compasses
- Measurement Approach - An $X-Y-\Theta$ Instrument
- Dividing Needle Rings In Colonial Instruments - Jeff Lock's Paper
- Lathes and Wheel Cutting Engines - The Essential Part
- Several early compasses
- Summary

How Angles Translate To Distance Ratio Depends Upon Diameter

21,600 minutes in a Circle: $\mathbf{3 6 0} \times 60=21,600$ 21.600 " is circumference of 6.87 " Diameter circle 21,600 thousandths of an inch

Placement accuracy of ~ 1 one-thousandth of an inch to maintain ~ 1 minute of arc accuracy

Minute of Arc

- Precision of typical "mechanical " transits (read with Vernier scale)
- K \& E used for these measurements graduated to $\mathbf{1 / 3}$ minute (20 seconds of arc)
- Needle instruments are considered to be "readable" to ~ 5 minutes of $\operatorname{arc}\left(1 / 12^{\text {th }}\right.$ degree $)$
- 1 minute of arc is $\mathbf{1}$ inch at 100 yards
- Resolving power of the unaided eye is about 1 minute of arc
- Two points of light (e.g. stars) are seen as two if they are no closer than 1 minute of arc
- Hooke determined this by experiment (using black and white squares) in 1600's

Ways Of Dividing A Circle

- Primary Dividing: Using geometry, geometrical relations, dividers and linear rules to locate each degree mark by bisection, trisection, etc.
- Each circle is unique
- Chapman's book, "Dividing The Circle" goes into great detail on techniques used, in particular on dividing large quadrants
- Great skill and artistry needed to execute a precise scale
- Machine Dividing: Precision spur gear and tangent screw - Ramsden
- Less skill needed to produce circles /faster / attained great precision
- Replication Dividing: Using a previously divided "template" to replicate subsequent arcs or circles
- Replicated circles will likely replicate irregularities in the template
- Accuracy of the replicated scale depends on quality of the template and the skill of the worker - poor skill may mask template properties
- Jeff's 2004 paper on dividing needle rings assumes replication

Colonial Clock / Compass Makers

Some were skilled machinists and artisan clockmakers

- They used "clock engines" or "wheel cutting engines"
- Had some form of lathe - prepare gear blanks
- Quite capable of making their own equipment - part of an apprenticeship

Two important steps in any compass needle ring

- Locate the degree position
- Engrave the line

Similar steps in wheel cutting

- Locate the tooth position
- Cut the (space between) teeth

Outline

- Last Year - A Retrospective
- Some Questions About Colonial Compasses
- Measurement Approach - An $X-Y-\Theta$ Instrument
- Dividing Needle Rings In Colonial Instruments - Jeff Lock's Paper
- Lathes and Wheel Cutting Engines - The Essential Part
- Several early compasses
- Summary

Wheel Cutting Engines

- Nearly all contained a template which was used to locate teeth
- Index Plates have series of holes for different numbers of teeth
- Either made by the clockmaker or purchased
- At some point, a primary dividing technique has to have been employed to make a master Index Plate
- Crom, in his "Horological Wheel Cutting Engines 1700 to 1900" does not speak to the technique used to create index plates
- Minute of arc accuracy not necessary for clock gears
- By making two Index Plates simultaneously one suspects one could likely iterate and average errors to improve the accuracy...
- They can be drilled and then rotated and positions compared and averaged
- They can be flipped over and compared
- Need to think about this a little more to be sure

Setting Angle by an Index Wheel

Single Purpose Dividing Engine

Jeff Lock

Scribing The Degree Lines

$18^{\text {th }}$ Cent. Latch Plate Indexing

Early Spur Gear Divider

Lathe Attachment

Crom

Drum Index Method

Crom

A method for making an index plate is described, where a tape of evenly spaced holes is wrapped (and rewrapped) around a wooden drum turned to successively smaller diameters, each time drilling a set of holes in a plate attached to the face of the wooden drum. The drum diameter is carefully adjusted each time to cause the holes to line up (overlap) for each successive set of (ever fewer) holes.*

* A method used by Hindley (~ 1740 's), described by Randall Brooks, page 5, in Duc da Chaulnes' "A New Method of Division for Mathematical and Astronomical Instruments", Classical Science Press 2009

Index Plate and Spur Gear Variants

Early American Wheel Cutting Engine

Crom

Dividing Engines

- Jesse Ramsden (1767), Duc de Chaulnes, Hindley
- Enabled less skilled laborers to produce scales
- Smaller sextants, etc.
- American usage began in the 1820's
- Hanks Troy 1826
- William Young (Philadelphia) 1820's
- Some owners divided scales for other makers (Potts? - No)
- Used into the $2^{\text {nd }}$ half of the $\mathbf{2 0}^{\text {th }}$ century
- Gurley claimed one millionth inch accuracy ~ 1970

Ramsden Type Dividing Engine

Ramsden "hand machine"
Chapman

Berger \& Sons Automatic Engine Berger \& Sons

Gurley Dividing Engines

Fauth \& Co. ${ }^{22}$	Large engine. This was later owned by G.N. Saegmuller, by Bausch, Lomb \& Saegmuller, and by Bausch \& Lomb.	G.N. Saegmuller	<1885
Fauth \& Co. ${ }^{23}$	Small. Later owned by Bausch \& Lomb.	G.N. Saegmuller	<1892
W.\&L.E. Gurley ${ }^{24}$	Hand machine	W.H.	1867
W.\&L.E. Gurley	Hand machine	G.N.T.	1868
W.\&L.E. Gurley	Power feed, half automatic. This was later owned by Warren-Knight. R.C. Miller purchased it in 1991.		1880
W.\&L.E. Gurley	Upcutting automatic	E.W. Arms	1883
W.\&L.E. Gurley	"general automatic" later owned by Warren-Knight, and by R.C. Miller.		1881
W.\&L.E. Gurley	Large automatic	C. Brightly	1870
Heller \& Brightly ${ }^{25}$	"graduating engine" later owned by George Kegelman, and by R.C. Miller.	H. Hanks	1826
Horatio Hanks ${ }^{26}$	"three feet radius, on Troughton's plan of his own make"		ca. 1885
Keuffel \& Esser ${ }^{27}$	not named, but implied	J. Ramsden	1775
Knox \& Shain ${ }^{28}$	Ramsden's second engine with plate of 45 inches diameter. It came to Knox \& Shain in the 1850s after having been owned by Mathew Berge (1800) and Nathaniel Worthington (1821). It is now in the National Museum of American History.		
A. Lietz 29	not named, but implied		<1890
Mahn \& Co. ${ }^{30}$	not named, but implied		<1893

Miller

Outline

- Last Year - A Retrospective
- Some Questions About Colonial Compasses
- Measurement Approach - An $X-Y-\Theta$ Instrument
- Dividing Needle Rings In Colonial Instruments - Jeff Lock's Paper
- Lathes and Wheel Cutting Engines - The Essential Part
- Several early compasses
- Summary

Time Lines

1725 | 1750 | 1775 | 1800 | 1825 | 1850 | 1875 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | David Rittenhouse (1732-1796) | | | | |

George B. Graves (1792-1873)
W. \& L Gurley (Myron King)

Gurley Vernier Compass 1867-1875*

- 7" diameter
- 5-7/8" needle
- 1 minute reverse reading Vernier
- Machine divided using Gurley's "hand machine"
- Use data here to show $X-Y-\Theta$ capability and as a baseline - sharp degree line engraving

Typical Myron King hand engraving
*Myron King left Gurley 1875, first Gurley "hand machine" dividing engine finished 1867

W. \& L. Gurley Vernier Compass

Note: Vertical scales different for each maker

- Note unequal line lengths, no circle to mark end of lines
- Representative of an early machine divided compass
- Error of $X-Y-\Theta$ about
0.15 minute (10 seconds) so oscillation probably is real

Goldsmith Chandlee (1751-1821)

- Plain Compass, 6" dia, 5" needle
- Moved to Winchester, VA ~1775
- Graves and Benjamin III were apprenticed to Goldsmith
- Unique style outkeeper , L-T scale on alidade, stippled engraving
- Customer identified on face of compass on some compasses
- "Six Quaker Clockmakers" lists items sold at Chandlee's estate sale in 1821 - Graves and Benjamin (son) purchases

Goldsmith Chandlee

Note: Vertical scales different for each maker

George B. Graves (1792-1873)

- Plane compass
- $71 / 4$ " diameter
- 5 3/4" needle length
- Compass is labeled Winchester, VA
- Graves was trained by Goldsmith Chandlee and purchased many of Chandlee's tools at his estate auction, including small dividing engine and graduating engine and appt.
- Graves was 29 years old at the time
- Benjamin Chandlee was 41 years old and lived only one year more

Goldsmith Chandlee's Estate Sale - 1821

	Benj. Chandlee. do	Clock engine. one round horn Stake.		
Graduating engine \& appt.			\quad	54.00
---:				
George Graves.				

Chandlee

George B. Graves (1792-1873)

Note: Vertical scales different for each maker
*

- Dot at East and West position, just as with Chandlee
- Few thousandths out of round
* Red trace: degree measurements and blue trace: half-degree measurements

Benjamin Rittenhouse and Potts

- Vernier Compass
- 6" diameter
- 5" needle
- 5 minute reverse reading folded Vernier
- Potts was apprenticed to Rittenhouse
- Rittenhouse went bankrupt in 1802

Benjamin Rittenhouse and Potts

Note: Vertical scales different for each maker

- Round punch marks every 5 degrees placed AFTER demarcation circle was scribed
- Note slope of error
- May be some "non-radialness" to the lines - needs further study

William Lukens Potts (1771-1854)

- Vernier compass
- $63 / 4$ " diameter
- $53 / 4$ needle
- 5 minute reverse reading folded Vernier
- Potts was apprentice to Benjamin Rittenhouse

William Lukens Potts (1771-1854)

Note: Vertical scales different for each maker

- Square punch marks every 5 degrees placed after demarcation circle was engraved
- ~ Dividing engine accuracy but layout marks preclude this method

B. Chandlee Jr. Clock Hour Wheel

Hour Wheel
72 teeth (every 5 degrees)

- Typical wheel cutting engine would be able to cut 72 teeth
- Appears as though Potts (B. Rittenhouse?) used a wheel cutting engine to mark every 5 degrees and then used another means to subdivide into degrees
- Maybe he didn't have 360 degree index plate?

Chandlee

Lewis Michael Plane Compass

- 6" Diameter
- 5" needle
- Benjamin Rittenhouse's first "apprentice"

Lewis Michael Plane Compass

- 6" Diameter
- 5" needle
- Benjamin Rittenhouse's first "apprentice"

Lewis Michael Plain Compass

Lewis Michael Plain Compass

Joins

Lewis Michael

Note: Vertical scales different for each maker

Early vs. Later Lewis Michael

Early compass

Comparison of Accuracy

Rittenhouse \& Potts

Potts

Lewis Michael

Goldsmith Chandlee

G.B. Graves

Line Position Summary

Line Width Summary

Unsigned Compass Examples

- Potts (?) engraving
- $18^{\text {th }}$ century boxed with unique uprights
- "Copper" with nicely contoured alidade
- Jeff Lock's primary dividing technique needle ring for comparison

Potts?

Jeff Lock Needle Ring

- Divided by "Primary Dividing" method as described in Chapman's "Dividing the Circle"
- Rested the needle ring on the Gurley compass glass cover

Jeff Lock Primary Dividing

Note: Vertical scales different for each maker

Eighteenth Cent. Unsigned \#1

Eighteenth Cent. Unsigned \#1

Note: Vertical scales different for each maker

- Non-radial degree lines
- 5 degree mark more nearly radial?
- Did he mark every 5 degrees with a wheel engine and then fill in individual degrees?
- Did he use a protractor?

"Copper" Unsigned \#2

"Copper" Unsigned \#2

- Clearly better execution from \#1
- Some curvature?
- Are the 5 degree lines continuous?

Note: Vertical scales different for each maker

Comparisons

Jeff Lock Primary Dividing Plate

$18^{\text {th }}$ Century unsigned

"Copper" unsigned

Outline

- Last Year - A Retrospective
- Some Questions About Colonial Compasses
- Measurement Approach - An $X-Y-\Theta$ Instrument
- Dividing Needle Rings In Colonial Instruments - Jeff Lock's Paper
- Lathes and Wheel Cutting Engines - The Essential Part
- Several early compasses
- Summary

Summary

- An instrument has been used to make a set of preliminary measurements over first 20 degrees to sample needle rings of contemporary compass makers - see similarities and differences - show promise of forensic progress
- Next step is to enlarge the data base for each compass and possibly to add more compasses

References

- Lock, Jeff Dividing the Needle Ring of a Colonial Compass The American Surveyor Vol. 1 No. 5 September/October 2004
- Bion, M, The Construction and Principal Uses of Mathematical Instruments, Astragal Press 1995
- Translated and Supplemented by Edmond Stone, 1758
- Skerritt, William W. \& L.E. Gurley's Engraving Machine Rittenhouse Journal p.p. 97100 Vol. 11 Issue 44, August 1997
- Miller, Robert C. Circular Dividing Engines in the United States Before 1900 Rittenhouse Journal 0.p. 12-21 January 1998
- Crom, Theodore R. Horological Wheel Cutting Engines 1700 to 1900, Gainesville, Florida 1970
- Chapman, Allan Dividing The Circle Ellis Horwood 1990
- Berger, C.L. \& Sons Instruments of Precision, Astragal Press reprint of 1900 catalog 1993
- Chandlee, Edward E. Six Quaker Clockmakers, The Historical Society of Pennsylvania, Philadelphia 1943
- Bedini, Silvio A. Benjamin Rittenhouse and his Apprentices and Partners, The American Surveyor, Vol. 1 No. 7 Dec. 2004
- Duc De Chaulnes New Method of Division for Mathematical and Astronomical Instruments, Classical Science Press 2009

Backup

Benjamin Chandlee III (1780-1822)

- Goldsmith Chandlee's son
- Purchased several items at his father's estate sale

"Bedini" Semicircumferenter

Unsigned Bedini

Potts?

- \mathbf{a}

Lewis Michael Detail

Goldsmith Chandlee's Estate (1)

Goldsmith Chandlee was a small, spare man with dark brown eyes, and fond of company. He was much given to hospitality and entertaining, and possessed a local reputation for a kind of sly humor. He died in Winchester in 1821, and was buried in Center Meeting graveyard on the Valley Pike. His estate was finally settled by Samuel Brown, administrator, after there had been ten annual accountings. One item charged to the estate was for the "expenses in traveling 6-301824 to Nottingham County in Maryland to setteling and an Accounting of the Estate with E. G. Trimble [Ellis Chandlee's widow and Goldsmith's sister-in-law] returning by way of Montgomery County \$14.37."

From the sale of personal property there has been omitted a great quantity of articles which were found in the home and on the farm. Goldsmith Chandlee apparently had no slaves because no mention has been found in meeting minutes or other records of ownership.
a MEMORANDUM OF ARTICLES BELONGING TO THE ESTATE OF GOLDSMITH CHANDLEE, DECEASED SOLD THE IoTH DAY OF 4 TH MONTH 182 I .

Andrew Bush	${ }_{\text {r }}$ Lot old Keys and barrels	. 60
James Roper.	I pair Saddle bags.	1.30
William Seabright.	2 pieces upper Leather.	1. 52
Andrew Bush	1 old looking glass and i cord	. 13
Joseph Sidebottom.	2 Pewter tea pots and I salt cellar	40
Eunice Chandlee	14 Pewter Plates	2.08
Jonathan Robinson	${ }_{1}$ Pewter Dish	1.06
Mary Thompson	2 pewter Dishes and I pewter Basin	.70
Joseph Sidebottom.	I Brass Clock	.121/2
John Hardy	${ }_{1}$ Small wheel	. 50
Josiah Fawcett	I dO do	1.25
Beall Bishop	1 dO do	. 50
Jonathan Lukins	7 Chairs (armed)	6.50
George Culler	8 old chairs.	1.25
Daniel Gold	old carpet \& old table	35
Samuel Johnson	I duger and I plane	. 35
Jonathan Lukins	2 pair old andirons, pick \& Shovel	. 50
T. T. Baldwin	1 pair scales.	1.371/2
Jonah Fawcett.	I pair small scales.	. 38

-

Goldsmith Chandlee's Estate (2)

1. 50

William Davidson	I	$"$	$"$	1.50
Henry Beatty	I	$"$	$"$	1.40

George Graves.
do
do
George Cullen.
George Graves.
do
Benjamin Chandlee,
George Graves.
Thomas Campbell
George Graves.
do
do
do
George Cullen do
Thomas Campbell George Cullen do
George Graves. George Cullen James Meredith. George Graves. Henry Beatty. Jonathan Lukins. J. Bryarly Samucl Johnston George Graves. Eunice Chandlee Mary Thompson Thomas Hieste, Josiah Fawcett. Thomas Keenan Mary Thompson James Meredith Daniel Gold.

do

Wm. Henning
George Sharp

George Graves. I Lot Steel wire. 1.40 1.40

2 Gravers. .121/2
8 brass pinions. . $12^{1 / 2}$
$1 / 2$ doz clock second hands. $\quad .50$
9 pair clock hands (gilt)
$41 / 2$ doz gilt watch hands \quad.30
2 saw blades. $\quad .55$
I doz files.
I Burnisher.
19 pair clock hands - -30
k hands 1. 30
a lot of Watch hands in a box.
4 level tubes. for compasses
$61 / 2$ doz key pipes. 33
a lot case springs and buttons. .65
a lot chain hooks, springs and hands.
8 verges.
1 size stick.
do
3 watch dials.
8 Watch brushes.
a lot file handles.
a lot of polishing and ink powder
3 clock bells.
I Pocket Compass (returned to Benj)
do dO
do do
a pr Scotch stone
a lot of castings, etc.
lot of castings. etc.,
I Bench
${ }^{1}$ piece of iron.
a pieces stone
I doe trough.
I corner cupboard.
3 pieces stair carpet.
$25-3 / 4$ yards carpeting.
i Sell knives and forks.
1.55
. 00

Goldsmith Chandlee's Estate (3)

Mary Thompson	I pair do do	. 55
Thomas Keenan	3 brass candlesticks.	. 55
Henry Grove.	2 iron \& I brass candlesticks.	. 25
George Sharp.	I Spice case.	3.05
Thomas Brown.	a lot Black Bottles (17)	1.10
George Graves.	I box clock glass.	13.00
do	2 phials lacker.	. 25
George Sharp.	6 flasks	$.371 / 2$
Josiah Fawcett..	I cupboard.	2.00
Augustine C. Smith	I Rileys narrative.	2.00
William Bryarly	Voyage round the world.	. 95
James Stackhouse	1 book (History)	.36
Benjamin Chandlee	I book Flu Works.	. 65
Jonathan Lukins.	Clarkson's works, 3 vols.	2.50
Benjamin Chandlee	Johnson's dictionary.	1.10
Joshua Lupton	Christians Progress.	.80
Nathan Parkins.	Rural Visitor.	. 42
George Sharp.	9 Table books.	. 09
Nathan Parkins	Paradise Lost.	.25
Josiah Fawcett	I book Churchman	. 25
David Hollingsworth	Moore's Journal.	. 25
Benjamin Chandlee.	Spy.	. 25
dO	John Richardson.	. 25
David Hollingsworth	Josephus 5 vol .	$1.371 / 2$
B. Chandlee	I sermon book	. 25
Nathan Parkins.	Christian Primitive.	. 51
B. Chandlee	Washing ${ }^{\text {n Will. }}$. 25
R. T. Baldwin	1 Thermometer.	5.00
Graves.	2 Clock faces.	9.00
B. Chandlee	4 Razors.	1. 55
Mary Thompson.	I dining table.	3.75
Mary Thompson	I Breakfast. Table.	2.50
Mary Thompson	lot of spoons.	. 4^{2}
Jonathan Lukins.	1 real (Wheel)	. 50
James Stockhouse.	6 wine glasses \& waiter.	. 50
Richard Kid.	Lot Queen's ware.	. 30
Andrew Bush.	lot of small plates \& dishes	1. 69
Richard Kid.	Candle stick \& Candle	.32
do	Box knives \& forks.	.38
Thomas Brown	Watering pot.	.75
Jonathan Robinson	Pewter dish.	. 75
Daniel Gold.	Lot pewter plates.	.48

Andrew Bush.
 Daniel Gold
 Eunice Chandlee
 Hickey

Thomas Brown
Andrew Bush
Samuel Bryarly
Jacob Bowers.
Hickey
Josiah Fawcett,
James Stockhouse.
Jonathan Lukins
George Cullen.
Jonathan Robinson
Thomas Brown
Benj. Chandlee.
do
George Graves.
George Cullin.
Benj. Chandlee
George Graves
Thomas Brown.
George Sharp.
Moses Walton
Bell.
James Meredith
Andrew Nolan
Benjamin Chandlee
George Groves do
Charles Little
Benjamin Chandlee do

Jos. Sidebottom.

George Graves.
do
do
do
Benj. Chandlee. Samuel Meredith.
George Graves.
Benj. Chandlee
Rocking Chair 63
lot chairs $1 / 2$ doz. 1.30
6.07
Gingerbread chest (box) 22
Saddle 12
Saddle pad. 25
7 Stuff Bottom chairs one armed. 6.00
one walnut dining table. 2.00
one ditto breakfast do. 1.25
Horse. 10.00
Blacksmith's vise. 2.36
one ditto. 2.30
one ditto. 3.05
4 frizzing tongs
small grindstone 50
Clock engine.
one round horn Stake. 2.75
Graduating engine \& appt. 25.00
Glass stand Springtools. 55
Dial plates. 3.30
lot watch tools. 5•75
${ }_{1}$ Dial. 29
I do 29
.25
I doI do25
I Dial 28
I do 27
glass cover and lettersBalance Tool.50
Sundry Brass plates.
Sundry Brass plates. $\cdot 76$
Pocket compass and box Mahogany 1.00
Dial Model 5.00
Magnet. 4.00
.08
do do scales \& 39
lot of tools rulers \& weights 37
one set of dyes for stamping figures 1.00
one compass part finished. 9.00
2 small pocket compass part finished.
Small pocket compass. 31
mall dividing engine

Goldsmith Chandlee's Estate (4)

George Graves.	one scale tool.	2.00
do	1 pr brass scales.	. 47
do	3 lots of old brass.	2.50
do	8 pr Brass castings.	1.00
Benjamin Chandlee.	Punch and Stake.	. 25
George Graves.	Stake.	. 51
do	Lot of tools.	. 80
Thomas Brown.	Spoon models.	. 70
Jonathan Lukins.	Large Shears.	.71
Thos. Heist.	one lot old files.	. 17
George Graves.	Role Lathe.	6.25
do	lot tools punches, etc etc.,	. $121 / 2$
do	one large lathe.	13.00
do	lot sundry tools.	4.25
John Foster.	lot clock work.	7.00
George Graves.	one do do	4.75
do	2 lathes.	4.25
Alfred W. Vickers.	2 do	4.50
George Graves.	lot tools.	3.75
do	barrel tool.	1.50
Benj. Chandlee	Bell patterns.	. 25
George Graves.	2 lot tools.	12.75
do	large turkey oil stove	1.00
Benj. Chandlee	3 clock wheel patterns.	. $121 / 2$
George Graves.	Stake and Block.	$4 \cdot 75$
George Reed.	4 boxes sundries (old brass)	2.60
Thomas Brown	4 boxes sundries (old brass)	. 60
Thomas Heist.	lot of sheet lead	1.45
Benjamin Chandlee.	one clock.	20.00
Thomas Heist.	Iron wire.	$.5^{6}$
George Graves.	Sheet brass 41 cts . (continued)	
George Reed.	Spelter. $781 / 2$ at $121 / 2 \mathrm{cts}$.	$9.811 / 2$
George Reed.	Show case.	1.00
Benjamin Chandlee	lot Shark's skins.	1.00
George Reed.	Box pewter	. 65
Alfred McVicker.	one clock face.	2.15
Thomas Brown,	one waggon	7.56
Eunice Chandlee	Carriage.	60.00
Hickey	Cow.	10.50
Josiah Massie.	Waggon Gears.	2.86
Thomas Brown.	Sett Gears.	3.20
Henry Beatty	3 hogs.	10.25

Chandlee

Andrew Bush.	I plane.	. 65
George Graves.	Sundries bellows \& flasks \& sands	5.00
Thomas Brown.	Charcoal.	1.10
Thomas Kennin	old desk.	3.50
Thomas Heist.	Walnut desk	10.00
M. R. Seal.	looking glass.	2.05
Benjamin Chandlee.	map of Frederick County.	2.00
Andrew Bush.	$4^{1 / 2}$ yds Linen.	$2.111 / 2$
Eunice Chandlee	Lot of Bed quilts.	16.50
do.	Looking Glass	2.00
do	Bed Bedstead etc.	18.00
Mary Thompson.	Bed, Bedding \& bedstead.	19.00
Rueben Stramge.	Waggon tent (cover)	3.50
George Cullin.	Window Curtains.	1.00
Andrew Bush.	do do	1.60
Benj. Chandlee	two pair window curtains.	1.00
Thomas Robinson	one case drawers.	8.25
Benj. Chandlee.	lot bed curtains.	6.00
Thos. Kennan	Walnut Bureau.	6.75
Benj. Chandlee.	Bed \& Bedstead, etc.,	19.00
Jacob Bowers.	Cot bedstead.	3.25
George Graves,	case of Drawers	6.13
Eunice Chandlee.	Walnut chest \& side saddle.	2.00
Eunice Chandlee	1 arm chair.	. 25
"	bed and furniture.	22.00
"	warming pan	1.00
"	2 chairs.	1.00
"	candle stand	1.00
"	wash stand	1.00
"	Table and furniture.	5.00
"	writing desk \& Bible	6.00
"	Lot Silver spoons.	12.00
"	do cups \& Saucers \& Spoons,	7.00
"	Bottles \& Vial.	. 50
"	Shovel \& Tongs.	1.50
"	Andirons.	1.00
،	Carpet.	. 50
"	Looking Glass.	. 50
"	Window Curtains.	1.00
Jonathan Lukins.	Desk \& bookcase.	8.60
Mary Thompson	Carpet, Chairs \& Kinives.	10.00
Henry Beatty.	Ground plaster Paris. at 40 cts .	2.86

Goldsmith Chandlee's Estate (5)

Jos. Fawcett.	Barrel Tar.	1.50
Henry Beatty	Barrel Tar.	1.50
B. Chandlee.	Tallow	10.00
Andrew Bush.	40 pounds of Tallow at 1 I $1 / 2$	4.60
Hickey	40 " " "	3.90
Benjamin Chandlee.	42 pounds of Hard soap.	4.62
Levi Wickham.	1 keg Tobacco ${ }_{1} 30$ pounds	31.84
George Graves.	1 tenplate stove \& pipe.	13.15
George Graves. do	15 3/4 Sheet Brass. 5 pouns sheet brass at 41°	$\begin{aligned} & 6.453 / 4 \\ & 4.62 \end{aligned}$
Josiah Fawcett.	Carpet yarn at 7 cts .	2.30
Henry Beatty.	io bushel ground Plaster Paris	4.00
Old Barrels etc., sold at Market to divers persons amounting to		$\begin{gathered} \$ 1,586.483 / 4 \\ 16.00 \end{gathered}$
Mary Thompson	I lot spoons. etc.,	I,602.483/4
		5.00
		I,607.483/4

At a Court held for the Corporation of Winchester the 31st day of October, 1823 . This Sale Account for the Estate of Goldsmith Chandlee deceased was produced to the Court, and ordered to be Recorded.

Teste:
Lent. Grent. Clerk.,

All the illustrations in this chapter represent articles made by Goldsmith Chandlee. The eight-day repeating clocks were signed G. Chandlee Winchester, or Stephensburg, and were made with brass works and the rack and snail device for the striking train. The dials were made of iron painted white, with the exception of Figure 63. Many dials are not described because they are similar, except for the varied decorations.

Time Lines

1725	1750	1775	1800	1825	1850	1875
David Rittenhouse	$(1732-1796)$					

Benjamin Rittenhouse (1740-1825)

Lewis Michael ($\sim 1765-1840$'s?)

William Lukens Potts (1771-1854)
Apprentice to B.R. (1786)

Goldsmith Chandlee (1751-1821)
George B. Graves (1792-1873)

