

An Easy and Accurate Method of Finding a True Meridian Line, and Thence the Variation of the Compass
Author(s): Robert Patterson
Source: Transactions of the American Philosophical Society, 1786, Vol. 2 (1786), pp. 251259

Published by: American Philosophical Society
Stable URL: https://www.jstor.org/stable/1005195

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms \& Conditions of Use, available at https://about.jstor.org/terms

American Philosophical Society is collaborating with JSTOR to digitize, preserve and extend access to Transactions of the American Philosophical Society
ral days before, was fo cloudy that I attempted in vain to regulate my clock, though I watched every favourable opportunity. On the day of the eclipfe I got it pretty well adjufted by feveral correfponding altitudes of the fun. About $I^{\text {h }}$ P. M. the clouds gathered fo much round the fun, that I was apprehenfive they would prevent any obfervation. But being pretty much fcattered, at $\mathbf{I}^{\text {b }} 36^{\prime} 42^{\prime \prime}$ apparent time, I could very plainly perceive that the eclipfe was juft begun. This I judged was very near the beginning, if not exactly fo, though it was attended with fome uncertainty. In a few minutes the fun was wholly covered with the clouds, and remained thus till $3_{\frac{\mathrm{t}}{\mathrm{h}}}$, when they began again to fcatter, and left that part of the heavens in which the fun appeared, perfectly clear. The weather continued thus till the end of the eclipfe, which by a good obfervation was at $3^{\text {h }} 47^{\prime} 2^{\prime \prime}$. Thefe obfervations were made with a reflector made by Nairne, magnifying as near as I could judge about fixty times; but as to the quantity of the eclipfe, no obfervation could be made, the fun being obfcured by the clouds the biggeft part of the time.

N° XXXIII.

An eafy and accurate Metbod of finding a true Meridian Line, and thence the Variation of the Compa/s. By Robert Patterson.

Read Apr.

OF the various methods which aftronomers employ for finding a true meridian line, none feems fo well adapted, as could be wihhed, to the common ufe of furveyors, in finding the variation of the Compars.

To find the azimuth of the fun by a fingle obfervation of his altitude, befides a quadrant which is neceffary fo

252 An EASY METHOD of finding the

this purpofe, requires the previous knowledge either of the latitude of the place, or hour of the day, at the time of obfervation; neither of which can, by the common apparatus of a furveyor, be found with fufficient accuracy.

The fun's azimuth may, it is true, be found without knowing either the latitude of the place or hour of the day, by taking equal altitudes before and after noon; but this requires time, attention and inftruments, which furveyors can but feldom command.

That method, which is perhaps the moft exact, viz. meafuring the time between the paffage of two ftars which differ confiderably, in declination and but little in right afcenfion, over the fame vertical circle, is ftill farther out of the reach of common furveyors.

The following table of the pole ftar will, it is prefumed, furnifh a more eafy, and yet fufficiently accurate method of determining this problem; free from all the above inconveniencies, and requiring no difficult calculation, nor any other inftrument than the common theodolite, or circumferentor. For though the latitude of the place fhould not be known within a whole degree, nor the hour of the night within 2 or 3 minutes, this table, by a fingle obfervation of the magnetic azimuth or bearing of the pole ftar, will generally give the variation of the needle true to a fingle minute of a degree. Nay if the obfervation be made (as it may be every night) when the ftar is near its greateft elongation, an error of 10 , or even 20 minutes in time will, as is plain from the table, produce little or no fenfible error in the azimuth. And as thefe obfervations may be repeated at pleafure during the night, and a mean of all taken, the variation may, by this means, be found to any degree of accuracy that can be defired. Befides, the needle is not at this time affected with any diurnal variation; which in the day-time is very uncertain, and frequently amounts to more than one quarter of a degree.

The

The beft inftrument for obferving the flar's magnetic azimuth is a theodolite, furnifhed with fpirit-levels, and a fmall telefcope with a perpendicular wire. A common circumferentor may, however, anfwer the purpofe. When this inftrument is ufed, a fine thread or hair muft be ftretched along from the top of one fight to that of the other, directly over the center of the compafs; and the obferver muft be very careful to place the fights perpendicular to the horizon when he makes the obfervation; for this purpofe a fmall pocket fpirit-level, in the form of a carpenter's fquare, would be very convenient.

By the common circumferentor we cannot, indeed, take the bearing of an object with very minute accuracy; for though the eye can very well judge of the coincidence of two lines, or of the point of the needle with any whole degree on the compafs, yet the parts of a degree cannot readily be obferved to greater exactnefs than one third or one fourth of the whole. This inconvenience may, however, be eafily remedied, and at a very trifling expence, in the following manner.

Let one of the fights, by means of a fcrew, be made movable at right angles to the index ; and on the end of the index, clofe to the movable fight, fet off, on each fide of the central line, the tangent of three degrees to a radius equal to the whole length of the index, or diftance between the two fights. Let each of thefe degrees be divided into fix equal parts; then will a nonius divifion on the fight, where ten equal parts muft correfpond with eleven on the index, fubdivide thefe parts into minutes of a degree.

It will be unneceffary to make the fight move in the arch of a circle, the difference between this and the tangent, in fo fmall an arch, being quite imperceptible. With this fimple improvement the common circumferentor will take the bearing of an object true to a minute, thus: Let the end of the needle be made exactly to coincide with the

254 An EASY METHOD of finding the

neareft whole degree, then move the fcrew till the object appears in the direction of the fights, and the nonius on the movable fight will point out the odd minutes.

Explanation and $U \int_{\text {e }}$ of the Table.

The left hand double column of the table contains the time before the flar's paffage over the meridian above the pole, for every twenty minutes of its whole diurnal circuit. The firf column, under each particular latitude, fhews the azimuth of the flar at thefe times, refpectively, in degrees, minutes and tenths of a minute. The fecond column fhews the difference of azimuth in every twenty minutes of intermediate time, in minutes and tenths.

To find the true azimuth of the ftar in any latitude, at any given time.

From the ftar's right afcenfion, viz. $0^{\text {h }} 49^{\mathrm{m}}$, increafed by 24^{b} if neceffary, fubtract the right afcenfion of the fun computed to the time of the ftar's paffage over the meridian, above the pole, nearly, the remainder will be the time of faid paffage, reckoned from noon. From which, increafed by 24^{h} if neceffary, fubtract the time of the obfervation, reckoned alfo from noon, the remainder will fhew the time before the flar comes to the faid meridian. Look for this time in the left hand column of the table, oppofite to which in the column of azimuth, under the proper latitude, you will have the true azimuth of the ftar at that time.

If the time before the ftar comes to the meridian be lefs than 12 hours, its azimuth will be eafterly; but if more than 12 hours, its azimuth will be wefterly.

If the magnetic azimuth, and the true azimuth at the time of the obfervation, be both eafterly or both wefterly, their difference will be the variation of the needle. But if one be eafterly and the other wefterly, their fum will
be the variation. And if the magnetic be to the weftward of the true azimuth, the variation will be wefterly; but if to the eaftward, the variation will be eafterly.

If the time before the ftar's paffage over the meridian be fome intermediate minute, or the latitude of the place fome intermediate degree, not found in the table, a proportional intermediate azimuth, by means of the differences, muft be taken.

The right afcenfion of the pole ftar annually increafes 10 feconds of time, and its polar diftance decreafes 20 feconds of a degree, therefore to its prefent right afcenfion (in 1785 ,) viz. $0^{\text {h }} 49^{\text {m }}$, muft be added one minute every year; and from its prefent polar diftance ($1^{\circ} 50^{\prime} \cdot 5$) one minute muft be fubtracted, and a proportional part from all the numbers in the columns of azimuth, every three years. The effect of aberration and nutation may be fafely neglected; as the error arifing from thefe caufes can never amount to more than half a minute of a degree in azimuth.

In computing the fun's right afcenfion to the time of the ftar's paffage over the meridian nearly, the following little table will be ufeful.

256 An EASY METHOD of finding the

T A B L E.

Time.	Star pancer Meridian
April 2	Noon
19	If A. M.
May 5	
20	9
June 18 18	8
July $\begin{array}{r}18 \\ \\ \hline\end{array}$	7
17	5
Auguf ${ }^{2}$	4
${ }^{17}$	3
September 3	2
October $\begin{array}{r}19 \\ 6\end{array}$	${ }_{\text {M }} \mathrm{M}$ (dinight
22	$I_{1} \mathrm{P}$. M.
November 6	10
${ }^{21}$	9
December 5	8
Janury ${ }^{19}$	7
January 1	6
15	5
29	4
February 13	
March I	2
17	1

ExampieI.

Suppofe on the 1 th of September 1785 , at 80^{\prime} 'clock in the evening, in the latitude of $40^{\circ} \mathrm{N}$. the magnetic azimuth of the pole-ftar had been obferved to be $0^{\circ} 38^{\prime \prime}$ eafterly; required the variation of the needle at the time and place of obfervation.
VARIATION of the COMPASS. 257

H. M.
Star's R. A. increafed by 24 hours, - 2449 Sun's R. A. computed to $I^{\text {h }}$ A. m. (taken from the nautical almanac, or any other table of the fun's R. A.) fubtract - 1125
True time of ftar's paffage over meridian, reckoned from noon,

Which correfponds to true azimuth, $2^{\circ} 23^{\prime} \mathrm{E}$.
Magnetic azimuth, - $\quad \circ 3^{8} \mathrm{E}$.
Variation of the needle, - $\quad 145 \mathrm{~W}$.

Example II.

In the latitude of about 3° north, on the $4^{\text {th }}$ of July r785, at 4^{8} minutes after $1 \supset$ o'clock at night, fuppofe the magnetic azimuth of the pole flar, to be $2^{\circ} 40^{\circ}$ eaft; required the variation of the needle.

Ex-

258 An EASY METHOD of finding the

Example III.
Latitude of the place 42° north, time of obfervation, January 17 th 1785 , at $2^{\text {h }} 40^{\text {m }}$ A. M. Magnetic azimuth, $I^{\circ} 5^{\prime}$ eafterly.

Correfponding to true azimuth, $1^{0}{ }^{\prime} 6^{\prime} \mathrm{W}$.
Magnetic azimuth,
Variation, $\quad-\quad \frac{1}{2} \quad \mathrm{E}$.
2 E.

A Table of the Azimuth of the Pole-ftar for every 20 Minutes of its diurnal Motion round the Pole.

