

Manual of surveying instructions for the

Cornell University Library

The original of this book is in the Cornell University Library.

There are no known copyright restrictions in the United States on the use of the text.

MANUAL

OF

SURVEYING INSTRUCTIONS

FOR THE

SURVEY 0F THE PUBLIC LANDS

OF THE

UNITED STATES

AND

PRIVATE LAND CLAIMS.

Prepared in conformity with law under the direction of THE COMMISSIONER OF THE GENERAL LAND OFFICE.

$$
J_{\text {andary }} 1,1890 .
$$

WASHINGTON :

government printing office.
1890.
(1) \& 10

Department of the Interior,

General Land Offige, Washington, D. C., December 2, 1889.
Gentlemen: The following instructions, including full and minate directions for the execution of surveys in the field, are issued inder the authority given me by sections 453,456 , and 2398 United States Revised Statutes, and must be strictly complied with by yourselves and your depaty surveyors.

Very respectfully,
Lewis A. Groff, Commissioner.
To Surveyors General of the United States.

INTRODUCTORY.

The present system of survey of the public lands was inaugurated by a committee appointed by the Continental Congress, and consisting of the following delegates:
Hon. Thos. Jefferson, Chairman................... Virginia.
Hon. Hugh Williamson North Carolina.
Hon. David Howell................................... . . Rhode Island.
Hon. Elbridge Gerry Massachusetts.
Hon. Jacob Read... . South Carolina.
On the 7th of May, 1784, this committee reported "An ordinance for ascertaining the mode of locating and disposing of lands in the western territory, and for other purposes therein mentionell." This ordinance required the public lands to be divided into "handreds" of ten geographical miles square, and those again to be subdivided into lots of one mile square each, to be nambered from 1 to 100, commencing in the northwestern corner, and continuing from west to east and from east to west consecutively. This ordinance was considered, debated, and amended, and reported to Congress April 26, 1785, and required the surveyors " to divide the said territory into townships of 7 miles square, by lines running due north and south, and others crossing these at right angles. * * * The plats of the townships, respectively, shall be marked by subdivisions into sections of 1 mile square, or 640 acres, in the same direction as the external lines, and numbered from 1 to 49.
And these sections shall be subdivided into lots of 320 acres." This is the first record of the use of the terms "township" and "section."

May 3, 1785, on motion of Hon. William Grayson, of Virginia, seconded by Hon. James Monroe, of Virginia, the section respecting the extent of townships was amended by striking ont the words "seven miles square" and substituting the words "six miles square." The record of these early sessions of Congress are not very full or complete; but it does not seem to have occurred to the members until the 6th of May, 1785 , that a township six miles square could not contain 49 sections of 1 mile square. At that date a motion to amend was made, which provided, among other changes, that a township should contain 36 sections; and the amendment was lost. The ordinauce as finally passed, however, on the 20th of May, 1785, provided for townships, 6 miles square, containing 36 sections of 1 mile square. The first public surveys were made under this ordinance. The townships, 6 miles sqnare, were laid out in ranges, extending northward from the Ohio River, the townships being numbered from south to north, and the ranges irom east to west. The region embraced by the surveys nader this law forms a part of the present State of Ohio, and is usnally styled "The Seven Ranges." In these initial surveys only the exterior lines of the
townships were surveyed, but the plats were marked by subdivisions into sections of 1 mile square, and mile corners were established on the township lines. The sections, were numbered from 1 to 36 , commeneing with No. 1 in the southeast corner of the township, and running from south to north in each tier to No. 36 in the northwest corner of the township, as shown in the following diagram:

36	60	24	18	12	6
35	29	23	17	11	5
34	28	22	16	10	$\frac{4}{2}$
33	$\frac{27}{}$	21	15	9	3
32	26	20	14	8	2
31	25	19	13	7	1

The surveys were made under the direction of the Geographer of the United States.
The act of Congress approved May 18, 1796 provided for the appointment of a surveyor-general, and directed the survey of the lands northwest of the Ohio River, and above the moath of the Kentacky River, "in which the titles of the Indian tribes have been extinguished." Under this law one-half of the townships surveyed were subdivided into sections "by running through the same, each way, parallel lines at the end of every two miles, and by making a corner on each of said lines at the end of every mile," and it further provided that "the sections shall be numbered. respeetively, beginning with the number oue in the northeast section and proceeding west and east alternately, through the township, with progressive numbers till the thirty-sixth be completed." This method of numbering sections, as shown by the following diagram, is still in use:

6	5	4	3	2	1
7	8	9	10	11	12
18	17	16	15	14	13
19	20	21	22	23	24
30	29	28	27	26	25
31	32	33	34	35	36

The act of Congress approved May 10, 1800, required the "townships west of the Muskingum, which * * * are directed to be sold u quarter townships, to be subdivided into balf sections of three hundred and twenty acres each, as nearly as may be, by ruming parallel lines through the same from east to west, and from south to north, at the distance of one mile from each other, and marking corners, at the dis-
tance of each half mile, on the lines running from east to west, and at the distance of each mile on those running from south to north. ** * And the interior lines of townships intersected by the Muskingum, and of all the townships lying east of that river, which have not been heretofore actually subdivided into sections, shall also be run and marked. * * * And in all cases where the exterior lines of the townships thus to be subdivided into sections or half sections shall exceed, or shall not extend, six miles, the excess or deficiency shall be specially noted, and added to or deducted from the western and northern ranges of sections or half sections in such township, according as the error may be in running the lines from east to west or from south to north."

The act of Congress approved February 11, 1805, directs the subdivision of the public lands into quarter sections, and provides that all the corners marked in the public surveys shall be established as the proper corners of sectious, or subdivisions of sections, which they were intended to designate, and that corners of half and quarter sections not marked shall be placed, as nearly as possible, "equidistant from those two corners which stand on the same line." This act further provides that "The boundary lines actually run and marked * * * shall be established as the proper boundary lines of the sections or subdivisions for which they were intended; and the length of such lines as returned by * * * the surveyors * * * shall be held and considered as the true length thereof, and the boundary lines which shall not have been actually run and marked as aforesaid shall be ascertained by ranning straight lines from the established corners to the opposite corresponding corners; but in those portions of the fractional townships, where no such opposite or corresponding corners have been or can be fixed, the said boundary line shall be ascertained by running from the established corners due north and south or east and west lines, as the case may be, to the * * * external boundary of such fractional township."

The act of Congress approved April 25, 1812, provided "That there shall be established in the Department of the Treasury au office to be denominated the General Land Office, the chief officer of which shall be called the Commissioner of the General Land Office, whose duty it shall be, under the direction of the head of the department, to superintend, execute, and perform all such acts and things touching or respecting the public lands of the United States, and other lands patented or granted by the United States, as have heretofore been directed by law to bedone or performed in the office of the Secretary of State, of the Scoretary and Register of the Treasury, and of the Secretary of War, or which shall hereafter by law be assigned to the said office."

The act of Congress approved April 24, 1820, provides for the sale of public lands in half quarter sections, and requires that "in every case of the division of a quarter section the line for the divisiou thereof shall run north and south * * * and fractional sections, containing 160 acres and upward, shall, in like manner, as nearly as practicable, be subdivided into half quarter sections, under such rules and regulations as may be prescribed by the Secretary of the Treasury; but fractional sections contaiuing less than 160 acres shall not be divided."
The act of Congress approved May 24, 1824, provides "That whenever, in the opiniou of the President of the United States, a departure from the ordinary mode of surveying land on any river, lake, bayou, or watercourse would promote the public interest, he may direct the sur-veyor-geueral in whose district such land is situated, and where the change is intended to be made, under such rules and regulations as the

President may prescribe, to cause the lands thus situated to be surveyed in tracts of two acres in width, fronting on any river, bayou, lake, or watercourse, and running back the depth of forty acres."
The act of Congress approved May 29, 1830 (Secs. 2412, 2413, R. S.), provides for the fine and imprisonment of any person obstructing the survey of the public lands, and for the protection of surveyors, in the discharge of their official duties, by the United States marshal, with sufficient force, whenevar necessary.
The act of Congress approved April 5, 1832, directed the subdivision of the public lands into quarter-quarters; that in every case of the division of a half-quarter section the dividing line should run east and west. and that fractional sections should be subdivided under rules and regulations prescribed by the Secretary of the Treasury. Under the latter provision the Secretary directed that fractional sections containing less than 160 acres, or the residuary portion of a fractional section, after the subdivision into as many quarter-quarter sections as it is susceptible of, may be subdivided into lots, each containing the quantity of a quar-ter-quarter section, as nearly as practicable, by so laying down the line of subdivision that they shall be 20 chains wide, which distances are to be marked on the plat of subdivision, as are also the areas of the quar-ter-quarters and residuary fractions.
The two acts last above mentioned provided that the corners and contents of half-quarter and quarter quarter sections should be ascertained, as nearly as possible, in the manner and on the principles directed and prescribed in the act of Congress approved February 11,1805.

The act of Congress approved July 4, 1836, provided for the reorganization of the General Land Office, and that the executive duties of said office" shall be subject to the supervision and control of the Comınissioner of the General Land Office under the direction of the President of the United States." The repealing clause is, "That such provisions of the act of the twenty-fifth of April, in the year one thousand eight hundred and twelve, entitled 'An act for the establishment of a General Land Office in the Department of the Treasury, and of all acts amendatory thereof as are inconsistent with the provisions of this act, be, and the same are hereby, repealed."

From the working of this act it would appear that the control of the General Land Office was removed from the Treasury Department, aud that the Commissioner reported direct to the President, but, as a matter of fact, the Secretary of the Treasury still had supervisory control, for the act of Congress approved March 3.1849, hy which the Departmept of the Interior was established, provided "That.the Secretary of the Interior shall perform all the duties in relation to the General Land Office, of supervision and appeal, now discharged by the Secretary of the Treasury * * *." By this act the General Land Office was transferred to the Department of the Interior, where it still remains.

In 1855 a maual of instructions to surveyors general was prepared, under the direction of the Commissioner of the General Land Office, by John M. Moore, then principal clerk of surveys, and the act of Congress approved May 30, 1862 (Sec. 2399 R. S.), provided "That the printed manual of instructions relating to the public surveys, prepared at the General Land Office, and bearing the date February twenty-second, eighteen hundred and fifty-five, the instructions of the Commissioner of the General Land Office, and the special instructions of the surveyorgeneral, when not in contlict with said printed manaal or the instructions of said Commissioner, shall be taken and deemed to be a part of every contract for surveying the public lands of the United States."

The instructions contained in this volume are issued under the authority given in the clanse in said act providing that "The instructions of the Commissioner of the General Land Office ****shall be taken and deemed to be a part of every contract for surveying the public lands of the Uuited States."

The following comprise so much of the general laws relating to the survey of the public domain as it is deemed necessary to incorporate in this colume, reference being made by chapter and section to the codification of the Public Land Laws, prepared pursuant to acts of Congress approved March 3, 1879, and June 16, 1880, and by section number to the Revised Statutes of the United States.

CHAPTER TWO.

the general land office.

Sec. 32. The Commissioner of the General Laud Office shall perform, under the direotion of the Secretary of the Interior, all execntive duties appertaining to the surveyiug and sale of the pullic lauds of the Duties of Commissioner. United States, or in anywise respecting such public lands; and, also, such as relate to private claims of lands, and the issuing of patents for all grants of land uuder the authority of the Goverument. (R. S. 453.)

SEC. 35. All returns relative to the public lands shall be made to the Commissiouer of the General Land Otfice; and he shall have power to audit and settle all public acconnts relative to the public lands; and upon the ative to lande. accounts rel-* settlement of any such accounts he shall certify the balance, and trausmit the account with the vouchers and certificate to the First Comptroller of the Treasury for his examination and decision thereon. (R. S. 456.)

SEc. 38. Upon the discontinuauce of any surveying district the anthority, powers, and duties in relation to the survoy, resurvey, or subdivision of lauds therein, and all matters aud things conuected therewith, as dumies of of surveryor-eenernh previously exercised by the surveyor-general, shall be vested in etc.
and devolved upon the Commissioner of the Geueral Land Office; and deputy surveyors or other agents under his direction shall liave free access to any field-notes, maps, records, and other papers turned over to the authorities of auy State, pursuant to law, for the purpose of making copies thereof, without charge of any kind. (R. S. 2219,2220 .)

SEC. 45. The Commissioner shall approve all contracts for the survey of the public lands. (R. S. 2398.)

Approval of survegiag con-
SEC. 46. The instructions issued by the Commissioner of the General Land Office not in conflict with law shall be deemed part of demmest part of contrat for for every coutract for surveging the public lands. (R. S. 2399.) survesing.

SEC. 61. The Commissioner, under the direction of the Secretary of the Interior, is anthorized to enforce and carry into execution every part of the
public land laws not otherwise specially provided for. (R. S. 2478.) make regulations ${ }^{\text {Passioner to }}$
CHAPTERTHREE.

SURVEYS AND SURVEYORS.

Sec. 77. There shall be appointed by the President, by and with the advice and consent of the Sevate, a surveyor-general for the States and Territories herein named, embracing respectively oue surveying clis-

Surveyors-general, how and trict, namely : Louisiana, Florida, Minnesota, Kansas, California, Nevada, Oregon, Nebraska and Iowa, Dalota, Colorado, New Mexico, Idaho, Washington, Montana, Utah, W yoming, Arizona. (R. S. 2207.)

Sec. 83. Every surveyor-general, while in the discharge of the duties of his office, shall reside in the district for which he is ap- eral. pointed. (R. S. 2214.)

SEC. 84. Every surveyor-general shall, before entering on the duties of his office, execute and deliver to the Secretary of the Interior a bond, with Bond of survesor-general. good and sufficient secority, for the penal sum of thirty thousand dollars, conditioned for the faithful disburserment, according to law, of all public money placed in his hands, and for the faithful performance of the duties of his office; and the President has discretionary authority to require a new bond and additional security, under the direction of the Secretary of the Interior, for the lawful disbursements of public moneys. (R. S. 2215, 2216.)

Sec. 85. The commission of each surveyor-general shall cease and expire in four Duration of ofice. Years from the date thereof, unless sooner vacated by death, rcsignation, or removal from office. (R. S. 2217.)
Sec. 86. Every surveyor-general, except where the President sees cause otherwise to determine, is anthorized to continue in the uninterrupted dis-

Continuance of dutias and
bond after expiration of com. mission. charge of his regular official duties after the day of expiration of his dutione office, or until the day when a successor enters upon the deemed good and sufficient and in force until the date of the approval of a new bond to be given by him, if recommissioned, or otherwise, for the additional time he may so continue officially to act, pursuant to the anthority of this section. (R.S. 2222.)
SEC. 87. Whenever the surveys and records of any surveying district are completed the surveyor-general thereof shall be required to deliver over to Trasafer ofpapers nnd dise the secretary of state of the respective States, including such sur-
continuance of of completed surveys. veys, or to such other officer as may be anthorized to receive them, all the field-notes, maps, records, and other papers appertaining to laad titles within the same; and the office of surveyor-general in every such district shall thereafter cease and be discontinued. (R. S. 2218.)
Sec. 88. In all cases of discontinuance, as provided in the preceding section, the anthority, powers, and duties of the survejor-general in relation to Devolutioa of powers
upon Commseioner in case the survey, resurvey, or subdivision of the lands therein, and all upon Commissioner in case of discontinuance. matters and things connected therewith shall be vested in and devolved upon the Commissioner of the General Land Office. (R. S. 2219.)

SEC. 89. Under the authority and direction of the Commissioner of the General Land Office any deputy surveyor or other agent of the United Free aceess to public rec. States shall have free access to any such field-notes, maps, records, ordad diliverad to strete nad
conlitions of such delivery, and other papers for the parpose of taking extracts therefrom or making copies thereof without charge of any kind; but no transfer of such public records shall be made to the authoritles of any State until such State has provided by law for the reception and safe-keepiug of such public records, and for the allowance of free access thereto by the anthurities of the United States. (R. S. 2220, 2221.)
Sec. 90. Every surveyor-general shall engage a sufficient number of skillful surveyors as his deputies, to whom he is anthorized to administer the General duties of survegor-necessars oaths upon their appointments. He shall have author-
general general. ity to frame regulations for their direction, not inconsistent with law or the instructions of the General Land Office, and to remove them for negligence or misconduct in office.
Second. He shall cause to be surveyed, measured, and marked, without delay, all base and meridian lines through such points and perpetuated by such monuments, and such other correction parallels and meridians as may be prescribed by law or by instructions from the General Land Office in respect to the publie lands within his surveying district, to which the Indian title has been or may be hereafter extiuguished.
Third. He shall cause to be survesed all private land claims within his district, after they have been confirmed hy authority of Congress, so far as may be necessary to complete the survey of the public lands.
Fourth. He shall transmit to the register of the respective land offices withiu his district general aud particular plats of all lands surveyed by him for each land district; and he shall forward copies of such plats to the Commissioner of the General Land Office.

Fifth. He shall, so far as is compatible with the desk duties of bis ofice, occasionally inspect the surveying operations while in progress in the field, sufficiently to satisfy himself of the fidelity of the execntion of the work according to contract, and the actual and necessary expenses incurred by him while so engaged shall be allowed; and where it is incompatible with his other duties for a surveyor-general to devote the time necessary to make a personal inspection of the work in progress, then he is anthorized to depute a confidential agent to make snch examination, and the actual and necessary expenses of such person shall be allowed and paid for that service, and five dollars a day ducing the examination in tho field; but such exanination shall not be protracted beyond thirty days, and in no caselonger than is actually necessary; and when a surveyor-general, or any person employed in his office at a regular salary, is engaged in such special service, he shall receive only his necessary expenses in addition to his regular salary. (R. S. 2223.)

Sec. 91. Every depaty surveyor shall enter into bond, with sufficiont security, for Bond of deputs aurvesor. the faithful performance of all surveging contracts confided to Bond of deputs surveyor. him; and the penalty of the bond in each case shall be double the estimated amount of money accruing under such contract, at the rate per mile stipulated to be paid therein. The sufficioney of the suroties to all such bonds shall be approved and certified by the proper survejor-general. (R. S. 2230.)

Sec. 92. The surveyors-general, in addition to the oath now authorized by law to be administered to deputies on their appointment to office, shall require eaoh of their deputies, on the return of his surveys. to take

Oath of deputy surveyor and subsoribe an oath that those surveys have been faithfully and oorrectly executed according to law and the instructions of the surveyor-general. (R. S. 223L.)
Sec. 93. The district attorney of the United States, in whose district any false, erroneous, or fraudulont surveys have been executed, shall, upon suit oubond ofdeputy eurthe application of the proper surveyor-general, immediately insti- vesor, lieu of.
tute euit apon the bond of suoh deputy, and the iustitutiou of euch suit shall act as a lien upon any property owned or held by suoh deputy or his sureties at the time suoh suit was instituted. (R. S. 2232.)

Suc. 98. The President is authorized, in any case where he thinke the public interest may require it, to transfer the duties of register and receiver in any district to the eurveyor-general of the surveying district in ciuties of register and rewhich ouch land distriot is located. (R. S. 2228.)
ceiver performed by survey-or-general.
SEc. 99. The public lands shall be divided by north and eouth linee run according to the true meridian, and by others crossing them at right angles, Rales of surveg. eo as to form townehips of six milee equare, nuless where the line of an Indian reservation, or of tracts of laud heretofore surveyed or patented, or the course of navigable rivers may render this impracticable; and in that case this rule must be departed from no further than euch particular circumstances require.
Second. The corners of the townshipe must be marked with progreseive uumbers from the beginning, each distance of a mile between such corners muet be also distinctly marked with marke different from those of the coruere.
Third. The townehip ehall be subdivided into eections, containiug, as nearly as may be, six hundred and forty acres each, by running through the same, each way, parallel lines at the end of every two miles; and by makiug a corner on each of such lines at the end of every mile. The sections shall be numbered, respectively, beginning with the number one in the northaat section, and proceeding west and east alternately through the township with progressive numbers till the thirty-six be completed.
Fourth. The deputy surveyors, respectively, shall cause to be marked on a tree near each corner eatablished in the manner deecribed, and within the section, the number of such eection, and over it the number of the township within which euch eection may be; and the deputy surveyors shall carefully note, in their respective field-hooke, the names of the corner trees marked and the numbere so made.
Fifth. Where the exterior lines of the townehips which may be subdivided into sections or half sections exceed, or do not extend six miles, the excess or deficiency shall be esecially noted, and added to or deducted from the western and northern ranges of sections or half sections in such townehipe, according as the error may be in running the lines from east to west, or from north to south; the sections and half sections bounded on the northern and westera lines of such townships shall be sold as containing only the quantity expressed in the returns and plats, respectively, and all others ae containing the complete legal quantity.
Sixth. All lines shall be plainly marked upon trees, and measured with chains, containing two perches, of sixteen and one-half feet each, subdivided into twenty-five equal links; and the chain shall be adjusted to a standard to be kept for that purpose.
Seventh. Every surveyor shall note in his field-book the true situations of all mines, salt-licks, ealt-springe, and mill-seats which come to his knowledge; all water-courses over which the line he runs may pase; and also the quality of the lands.
Eighth. These field books shall be returned to the surveyor-general, who ehall cause therefrom a description of the whole lande surveyed to be made out and transmitued to the officere who may superintend the sales. He shall also canse a fair plat to be made of the townships and fractional parts of townships contained in the lands, describing the subdivisione thereof and the marks of the corners. This plat ehall be recorded in books to be kept for that purpose; and a copy thereof shall be kept open at the surveyor-general's office for public information, and other copies shall be eent to the placee of the eale and to the General Land Office. (R. S. 2395.)
SEC. 100. The boundaries and contents of the several sectione, half sections, and quarter eections of the puhlic lands ehall be asoertained in con- Soundries and contentso formity with the following principles:
public lands, how ascertruned.
First. All the corners marked in the surveyis returned by the surveyor-general shall be established as the proper corners of sections, or subdivisions of eections, which they were intended to designate; and the corners of half and quarter eectione, not marked on the surveȳe, shall be placed as nearly as poseible equidistant from two corners which etand on the same line.

Second. The boundary line日, actually run and marked in the surveys returned by the surveyor-general, ehall be cetablished as the proper boundary lines of the sectione or subdivisions for which they were intended, and the length of such linee as returned,
shall be held and considered as the trne leagth thereof. And the boundary tines which have not been actually run and marked ehall be ascertained by runuiug straight lines from the established corners to the opposite carrespouding corners; but in those portions of the fractional townships, where na such opposite corresponding corners have been or can be fixed, the boundary lines ehall be asecrtained by running from the established corners due north and south or east and west lines, as the case may be, to the water-couree, Indian houudary line, or other external bonadary of such fractional township.

Third. Each section or subdivision of section, the contents whereof have been returned, by the surveyor-general, ehall be held and considered as containing the exact quantity expreseed in such return; and the half-eectione and quarter-sections, the contents whereof shall not have been thus returned, shall be held and considered as containing the one-half or the one-fourth part, respectively, of the returned contente of the section of which they may make part. (R. S. 2396.)

SEC: 101. In every case of the division of a quarter-section the line for the divieion thereof shall run north and sauth, and the corners and contents of half-quarter eectione which may thereafter be sold shall be aecertained in the manner and on the principles directed and prescribed by the section preceding, and fractional sections containing one hundred and sixty acres or upwards shall in like manner, as nearly as practicable, be oubdivided into half quarter-sections, under such rules and regulations as may be prescribed by the Secretary of the Interior, and in every case of a division of a half-quarter section, the line for the division thereof shall run east and west, and the corners and contente of quarter-quarter sections, which may thereafter be sold, shall be ascertained, as nearly as may be, in the manner and on the principles directed and prescribed by the section preceding; and fractional sections containing fewer or more than one hundred and eixty acres shall in like manner, as nearly as may be practicable, be subdivided into quarter-quarter eections, 'under such rulee and regulations as may be prescribed by the Secretary of the Interior. (R. S. 2397.)

SEc. 102. Whenever, in the opinion of the President, a departure from the ordinary method of surveying land on any river; lake, bayou, or water-couree

Variance in shape of sur-
vegs on rivers, \&cc. would promote the public intereet, he may direct the survey or-general, in whose district such land is situated, and where the change is intended to be made, to cause the lands thus sitnated to be surveyed in tracts of two acres in width, fronting on any river, bayou, lake, or water-couree, and running back the depth of forty acres; which tracts of land so surveyed shall be offered for sale entire, instead of in half-quarter sections, and in the usual manner, and on the same terms in all respects as the other public lands of the United States. (R. S. 2407.)

SEC. 106. The public surveje ehall extend over all mineral lands, and all subdividing of surveyed lands into lots less than one huadred and eixty acres may be done by county and lacal surveyors at the expenee of elaimants; but nothing in this section contained shall require the survey of waste or useless lands. (R. S. 2406.)
SEC. 107. The printed manual of instructions relating to the public surveys, prepared at the General Land Office, and bearing date February twenty-
What instructions to be
deemed part of contract. second, eighteen hundred and fifty-tive, the instrnctions of the Commissioper of the General Land Office, and the special instructione of the surveyar-general, when not in conflict with such printed manual or the instructions of the Commissioner, shall be taken and deemed to be part of every contract for surveying the public lands. (R. S. 2399.)
Sec. 111. Contracts for the survey of the public lands ehall not become binding upon the Uuited States until approved by the Commissioner of the Gen-

Contracts fur surveys of public lands, when binding. eral Land Office, except in euch cases as the Commiesioner may otherwise epecially order. (R. S. 2398.)
Sec. 112. The Commissioner of the Geveral Land Office has power, and it shall be

Price ol surveys, how es-
tablished tablished; cost of survey-
the private claims and railing private claims and rail-
road grants to be refunded. his duty to fix the prices per mile for public surveys, which shall in no case exceed the maximum established by law; and, under'instructions to be prepared by the Commissioner, an accurate account shall be kept by each surveyor-general of the cost of eurveying and plotting private land claims, to be reported to the Geueral Land Office, with the nap of such claim; and patents shall not issue for any such private claim, nor shall any copy of such survey be furaisled, until the cost of survey and platting has been paid into the Treasury by the claimant or other party ; and before any land granted to any railroad compauy by the United States shall be conveyed to such company or any persous entitled thereto, under any of the acts incorporating or relatiug to said company, unless such company is exempted by law from the parment of such cost, there shall first be paid into the Treasury of the United States the cost of surveying, selecting, and conveying the same by the said company or persons in interest. (R. S. 2400, 19 Stats. 121.)

Sec. 115. When the settlersin auy to wnship, not mineral or reserved by government, desire a survey made of the same, under the authority of the sur- when aurves may be had vejor-general, and file au application therefor iu writing and de- by nettlers in townshij. posit in a proper' United States depository to the credit of the United States, a sum sufficiest to pay for such survey, together with all expeuses incillent thereto, without cost or claim for indemuity on the United States, it may be lawful for the surveyorgeneral, under such instructions as may be given him by the Commissioner of the General Land Ofioe, and iu accordance with law, to survey such towuship and make return thereof to the geueral and proper local land office, provided the township so proposed to be surveyed is within the range of the regular progress of the public eurveys embraced by existing standard lines or bases for the township and subdivisional surveys. (R. S. 2401.)

SEEC. 116. The deposit of money in a propor United States depository, under the provisions of the preceding section, shall be deemed an appropriation of the sums so deposited for the ohjects contemplated by that section and the Secretary of the Treasury is anthorized to canse the sums so
deposited to be placed to the credit of the proper appropriations for
the surveying eervice; but any excesses in such sums over and above the actual cost of the surveys, comprising all expenses incident thereto, for which they were severally deposited, shall be repaid to the depositors respectively. (R. S. 2402.)
Sec. 117. Where settlers make deposits in accordance with the provisions of section one hundred and fifteen, the amount so deposited shall go in part paymeut for their landssituated in the tow nships, thesurveying of which is paid for ont of euch deposits; or the certificatesissued for such de-

Settlers' deposits for bur vers to go in part payment of lands, and are ussignable. posits may be assigned by indorsement and be received in payment for any public lands of the United States entered by settlers under the pre-emption and homestead laws of the United States, and not otherwise. (R. S. 2403.)
SEC. 118. Each eurveyor-general, when thereunto duly authorized by law, shall eause all coutirmed private land clains within his district to be accurately surveyed, and shall transmit plats and tield-notes thereof to the Commissioner of the Generel Land Office for his approval. When

Surveyors-gederal to sur rey private land claims publication of such surveys is authorized by law, the proof thereof, together with any objections properly filed, and allevidence submitted either in support of or in opposition to the approval of auy such survey, sball also be transmitted to said Commissioner. (R. S. 2447.)

Sec. 120. Every persou who in any manner, by threat or force, in terrupts, hinders, or prevents the surveying of the public lands, or of any private land claim which has or may be confirmed by the United States, by the

Penalty for interruptiog persons authorized to survey the same, in conformity with the in-
structions of the Commissioner of the General Land Office, shall be fined not lessthan fifty dollars, nor more than three thousand dollars, and be imprisoned not less than one fior more than three years. (R. S. 2412.)
Sec. 121. Whenever the President is satisfied that forcible opposition has been offered, or is likely to be offered, to any snrveyor or deputy surveyor in the discharge of his duties in surveying the public lands, it may $\begin{gathered}\text { Protection of survesor }\end{gathered}$ be lawfnl for the President to order the marshal of the State or district, by himself or deputy, to attend such surveyor or deputy surveyor with sufficient force to protect such officer in the execution of his duty, and to remove force should any be offered. (R.S. 2413.)
SEc. 122. The President is authorized to appoint surveyors of pullic lands, who shall explore such vacant and unappropriated lands of the United States as produce the live-oak and red-cedar timbers, and shall se-

Sarresors to explore and lect such tracts or portions thereof, where the principal growth is of select tumber lands to reeither of such timbers, as in the judgment of the Secretary of the Nary may be necessary to furnish for the Nary a sufficient oupply of the same. Such surveyers shall report to the President the tracts by them selected, with the boundaries ascertained and accurately designated by actual survey or water-courses. (R.S. 2459.)

APPOINTMENT OF DEPUTY SURVEXORS.

Sec. 2223, U. S. Revised Statutes, provides that" Every surveyor-general shall engage a sufficient number of skillful survejors as his depaties, to whom be is authorized to administer the necessary oaths upon their appointments. He shall have authority to frame regulations for their directiou, not inconsistent with law or the instructions of the Gen-
eral Land Office, and to remove them for negligence or misconduct in office."

Each surveyor-general should exercise great care in the appointment of deputy surveyors, and should thoroughly satisfy himself, before making such appointments, that the applicants possess the proper theoretical and practical qualifications, as well as to their moral standing and fitness for the important trusts to be confided to them.

Commissions will be issued to deputy surveyors as follows:

FORM OF COMMISSION.

The United States of America.
To all whom these presents shall come, greeting :
Know ye, that, reposing special trust and confidence in the integrity, ability, and discretion of —_I Io appoint him to be depnty survegor of the United States for tha district of - , and do authorize and empower him to execute and fullfil the duties of that office according to law, and to hold the said office with all the rights and emoluments thereunto legally appertaining to him, the said during the pleasure of the surveyor-general of the United States for the district of In for the time being.
In testimony whereof I have hereunto affixed my signature.
Given under my hand at __, the __ day of ___, 18-, in the year of our Lord one thousand eight hundred and ———, and of the independence of the United States of America the one hundred and

> United States Surveyor General for -

The deputy surveyor will acknowledge in writing to the surveyorgeneral the receipt of such commission, stating in such letter that he accepts the same. He must also transmit, with such letter, his official oath, duly subscribed and sworn to, as follows:

Oath prescribed by act of Congress approved May 13, 1884, to be taken by any person eleoted or appointed to any office of honor or profit either in the civil, military, or naval service of the United States (except the President of the United State8):

I, - \qquad that I will snpport and defend the Constitation of the United States against all enemies, foreign and domestic ; that I will bear true faith and allegiance to the same; that I take this obligation freely, without any mental reservation or purpose of evasion; and that I will well and faithfully discharge the duties of the office on which I am about to enter: So help me God.

Sworn to and subscribed before me this - day of -_, A. D., 188-.
A full record of all commissions issued, together with letters of acceptance and official oaths, must be carefnlly filed in the office of the surveyor-general.

The deputy surveyor having been duly commissioned, and his letter of acceptance, oath of office, and official bond filed in the surveyor-general's office, contracts for surveys may then be entered into between the surveyor-general and such deputy surveyor, and all surveying contracts and bonds will be made out in the following form:

FORM OF CONTRACT.

This agreement, made this - day of -__, 188-, between the surveyor-general of the United States for -_, acting for and iu behalf of the United States, of the one part, and - deputy surveyor, of the other part-

Witnosseth, That the said - for and in conaideration of the conditions, terms, provisions, and covenants hereinaftor expressed, and according to the true intent and meaning thereof, doth hereby coveuant and agree with the said surveyorgeneral, in his capacity aforesaid, that - the said ———, in own proper
person-, with the assistance of such chain-men, ax-men, flag-bcarers, and moundmen as may be necessary, in strict conformity with the laws of the United States, the printeu manual of surveying instructions and other surveying instructions issued by the Commissioner of the General Land Office, and with suoh special instructions as he may receive from the said surveyor-general in conformity therewith (all of said instructions to be taken and deemed a part of this contract), will well, truly, and faithfully surver, mark, and establish __ and that _ will complete those surveys in the manner aforesaid, and return the true and original field-notes thereof to the office of the said surveyor-general on or hefore the - day of _next ensuing the date hereof, on penalty of forfeiture, and paying to the United States the sum mentioued in the annexed bond, if default' be made in any of the foregoing conditions. And it is further expressly stipulated and made a condition of this coutract that the surveys herein described shall not be commenced before the first day of the fiscal year ending the 30th day of June, 188-, or before the said -_- shall have been officially notified by the said surveror-general of the approval of this contract by the Commissioner of the General Land Office.
And the said surveyor-general, in his official capacity aforesaid, covenants and agrees with the said _- that on the completion of the surveys above named, in the manner aforesaid, there shall be paid to the said __-_ by the Treasury Department of the United States, as a full compensation for all work performed under this agreement, at the rate of dollars for base, standard, meridian, and meander lines, - dollars for township lines, and - dollars for section lines, per mile, for every mile actually rnn and marked in the field, random lines and offeets not inoluded.

It is further agreed by and between the parties to this agreemeut that no accounts shall be paid unless properly certified by the said surveyor-general (or by his successor in office) that the surveys are in accordance with the instractions herein referred to and the provisions of this agreement, and ontil approved plats and certified transcripts of field-notes of the surveys for which the accounts are rendered are filed in the General Land Office.

And it is further uuderstood and agreed by and between the parties to this agreement that the said surveys will not be approved by the said surveyor-general (or by his successor in office) unless they shall be fonnd to be in exact accordance with the instructions hereinbefore specified: Provided, also, That no member of [or delegate to] Congress or subcontractor shall be admitted to any share or part of this contract, or to any benefit to arise thereupon, and that no payment shall be made for any surveys not executed by the said deputy surveyor-_in his own proper person.

In testimony whereof the parties to these articles of agreement have hereunto set their hands and seals the day and year first above written.

Signed, sealed, and acknowledged before us:
Witnesses to surveyor-general's signature.
Residence:
Residence : ———
[smal.]
Onited States Surveyor-General for
Witnesses to depnty surveyor's signature.

FORM OF BOND.
Know all men by these presente, that we, ———— of ——, as principal,
 - of - as sureties, are held' and firmly bound unto the United States of America in the sum of - dollars, lawful money of the United States, for which payment, well and truly to be made, we bind ourselves, our heirs, executors, and administrators, and each and every one of us and them, jointly and severally, firmly by these presents.
Signed with our hauds and sealed with our seals this - day of - 188 -.
The condition of the ahove obligation is such, That if the above-bounden the United States, the printed manual of surveying instructions and other surveying instructions issued, or which may hereafter be issued, by the Commissioner of the General Land Office, and with such special instructions as he may receive from the
surveyor-general in couformity therewith, make and execnte the surveys which are required of him to be made by the foregoing coutract, and return the true field-notes of the said surveys to the surveyor-general in the manner and witbin the period named in the said contract, theu this obligation to be void; or otherwise, it shall remain in full force aud virtue.
Signed, sealed, and acknowledged before ns:

*Attach an adhesive seal after each signaturo and covering L. S.

Affidavits of sureties.

 depose and say that I am worth, in unincumbered property, not exempt from execntion under the laws of the __ of __ dollars and upward, after payment of my just debts and liabilities, as follows:

Real estate, valued at $\$ \ldots$, and consisting of *
Personal estate, valued at $\$ \longrightarrow$, and consisting of $\dagger-$.
Signature: -__
(Post-office address:) ——.
Sworn to and subsuribed before me this __ day of __, 188-. [sEAL.]

[^0] depose and say that I am worth, in unincambered property, not exempt from execution under the laws of the __ of —_ dollars aud upward, after payment of my just debts and liabilities, as follows:

Real estate, valued at $\$ \ldots$, and cousisting of ${ }^{*}$ ——.
Personal estate, valued at $\$ \xrightarrow{\longrightarrow}$, and consisting of \dagger.
Signature:
(Post-office address:)
Sworn to and subscribed before me this - day of - , 188 .
[seal.]

OF \longrightarrow
County of ——, ss:
I, __ who administered the ahove oath, was, at the time of doing so, a ___ in and for said__, duly qualified to act as such, and that I believe his signature as above written is genuine.

In testimony whereof I have hereto set my hand and affixed the seal of _-_ this ——day of - . one thousand eight hundred and ——.

Certificate.
I, , hereby certify that in my opinion the sureties to the above bond are sufficient, and I hereby approve the same.

$$
\text { United States Surveyor-General for }-
$$

1. The names of the surveyor-general, depaty surveyor, sureties, and witnesses must be written in full, and the residence of witnesses written after their signatures.
2. A full description of the surveys embraced in the contract must be written in the blank space left for that purpose.
3. The date when the surveys can be commenced shall not be earlier than the commencement of the tiscal year for which the appropriation is made, except in cases where the uppropriation is made immediately available.
4. The rates named in auy contraet must not exceed those fixed by law.
5. The signature of the surveyor-general and of the depaty surveyor must each be witnessed by two persons.
6. All erasures, mutilations, and interlineations must be avoided.
7. The bond must be dated the date it is signed by all the parties thereto, and its execution must be subsequent to the execution of the contract.
8. The names of all the parties executing the hond, and of the witnesses thereto, must be written in full.
9. The affidavits of sureties must be made before some officer (preferably an officer of the United States) duly authorized to administer oaths and baving a seal.
10. The sufficiency of sureties must be certified to by the surveyor-general.
11. The amount of the boud must be at least double the estimated amount that will be due to the deputy surveyor upou the completion of the contract made ander the same.
12. The duplicate and triplicate contracts and bonds will be forwarded to the Gencral Land Office, and when approved the Commissioner will forward the triplicate to the First Comptroller of the Treasury.

SFSTEM OF RECTANGULAR SURVEYING.

1. The public lands of the United States are ordinarily surveyed into rectangular tracts, bounded by lines conforming to the cardinal points.
2. The public lands shall be laid off, in the first place, into bodies of land of 24 miles square, as near as may be, This shall be done by the extension of standard lines from the principal meridian every 24 miles, and by the extension, from the base and standard lines, of guide meridians every 24 miles. Thereafter they shall be laid off into bodies of land of 6 miles square, as near as may be, called townships, containing as near as may be 23,040 acres. The townships shall be subdivided into 36 tracts, called sections, each containing as near as may be 640 acres. Any number or series of contiguous townships, situate north or south of each other, constitute a range.

The law requires that the lines of the public surveys shall be governed by the true meridian, and that the townships shall be six milessquaretwo things involving in connection a mathematical impossubility-for, strictly to conform to the meridian, necessarily throws the township out of square, by reason of the convergency of meridians, and hence, by adhering to the true meridian, results the necessity of departing from the strict requirements of law as respects the precise area of townships and the subdivisional parts thereof, the townships assuming something of a trapezoidal form, which inequality develops itself more and more as such, the higher the latitude of the sulveys. It is doubtless in view of these circumstances that the law provides (see section 2 of the act of May 18,1796) that the sections of a mile square shall contain the quantity of 640 acres, as nearly as may be ; and, moreover, provides (see section 3 of the act of May 10, 1800) iu the following words: "And in all cases where the exterior lines of the townships, thus to be subdivided into sections or half sections, shall exceed, or shall not extend 6 miles, the excess or deficiency shall be specially noted, and added to or deducted from the western or northern ranges of sections or half sections in such township, according as the error may be in running the lines from east to west, or from south to north; the sections and half sections bounded on the northern and western lines of such townships shall be sold as containing only the quantity expressed in the returns and plats, respectively, and all others as containing the complete legal quantity."

The accompanying diagram, marked B, and the specimen field-notes pertaining to the same, will serve to illustrate the method of running 14214 MAN--2
lines to form traets of land 24 miles square, as well as the method of running out the exterior lines of townships, aud the order and mode of subdividing towuships will be found illustrated in the accompanying specimen field-notes conforming with the township diagram U. The method here presented is designed to insure as full a compliance with all the requirements, meaning, and intent of the surveying laws as, it believed, is practicable.

The section lines are surveyed from south to north on true meridians,* and from east to west, in order to throw the excesses or deficiencies in measurements on the north and west sides of the township, as required by law. In ease where a township has been partially surveyed, and it is necessary to complete the survey of the same, or where the character of the land is such that the only north or west portions of the township can be surveyed, this rule can not be strietly adhered to, but, in such cases, must be departed from only so far as is absolutely necessary. It will also be necessary to depart from this rule where surveys close unon State or Territorial boundaries, or upon surveys extending from different meridians.
3. The townships are to bear numbers in respect to the base line, either north or south of it; and the tiers of townships ealled "ranges" will bear numbers in respect to the meridian line aceording to their relative position to it, either ou the east or west.
4. The thirty-six sections into which a township is subdivided are numbered, commencing with number one at the northeast angle of the township, and proceeding west to number six, and thence proceeding east to number twelve, and so on, alternately, until the number thirtysix in the southeast angle. In all cases of surveys of fractional townships, the sections should bear the same numbers as they would if the township was full.
5. Standard parallels shall be established at intervals of every 24 miles, north and south of the base line, and guide meridians at intervals of every 24 miles, east and west of the principal meridian; the object being to confine the errors resulting from convergence of meridians, and inaccuracies in measurements, within the tracts of lauds bounded by the lines so established.
6. The survey of all principal base aud meridian, standard parallels, and guide meridian, and towuship lines must be made with an instrument operating independently of the magnetic needle. Burt's improved solar compass, or other instrument of equal utility, must be used of necessity in such cases; and it is deemed best that such instrument should be used ander all cireumstances. Where the needle can be relied on, however, the ordinary compass, if provided with a revolving compass box and variation arc, may be used in subdividing and meandering. Whenever deputies use instruments with maguetic apparatus ouly, they must test the accuracy of their work and the condition of their instruments by at least three observations nuon at circumpolar star, upon different days, between the commencement and the close of surveying operations in any given township, and preferably at the southeast and southwest corners of the township and at or near the corner to sections $9,10,15$ and 16 . Deputies using iustruments with solar apparatus are also required to make observatious of the star Polaris at the beginning of every survey and they must examine the adjustments of their instruments and take the latitudet daily, weather

[^1]permitting, in running base, standard, meridian, and range lines, and upon tiree different days during the execation of subdivisioual surveys in each township. They must make complete records in their fieldnotes, nuder proper dates, of the mating of all obsercations in compliance with these instractions, showing the strle and condition of the instrament in use, and the angle formed, bs comparing the line ran with the meridian as br observation determined.
7. The construction and adjustments of all surrering instruments used in the surreying of the pablic lands of the United States must be tested at least once a year,* and oftener if necessary, by comparison with the true meridian, established ander the direction of the surreyorgeneral of the district; and the instraments mast be so modified in construction, or in such a way corrected, as mar be necessary to produce the closest possible approximation to accuracy and niformity in the operation of all such instruments. A record will be made of such examinations, showing the number and strle of the instrument, name of the maker, the quantity of instramental error discorered by comparison, in either solar or magnetic apparatus, or both, and means taken for correction. The sarresor-general will allow no sarrers to be made ontil the instruments to be nsed therefor have been approved by him.
8. The township lines and the sabdivision lines will asnally be measured by a two-pole chain of 33 feet in length, i consisting of 50 links, and each link being seven and ninety-two handredths of an inch long. On uniform and lerel ground, however, the four-pole chain may be used. The measurements will, howerer, always be represented according to the four-pole chain of 100 links. The deputr surrejor must provide himself with a measare of the standard chain kept at the office of the sarveyor-general, to be used br him as a field standard. The chain in use must be compared and adjusted with this field standard each working day, and sach field standard must be retarned to the sarveyorgeneral's office for examination when his work is completed.

OF TALLY PLNS.
9. Ion will nse eleven tally, pins made of steel, not exceeding 14 inches in length, weighty enongb toward the point to make them drop perpendicularls, and having a ring at the top, in which is to be fixed a piece of red cloth, or something else of conspienons color, to make them readily seen when stuck in the ground.

PROCESS OF CHAINLNG.
10. In measuring lines with a two-pole chain. evers fire chaius are called "a tally;" and in measuring lines with a fonr pole chain, every ten chains are called "a tally," becanse at that distance the last of the ten talls pins with which the forward chainman sets ont will hare been stuck. He then cries "tally:" which cre is repeated by the other chainman, and each registers the distance br slipping a thimble, bntton, or ring of leather, or something of the kind, on a belt worn for that purpose, or by some other conrenient method. The hind chainman then comes up, and haring connted in the presence of his fellow the tally pins which he has taken np , so that both may be assured that none of the pins hare been lost, he then takes the forward end of the chain, and proceeds to set the pins. Thas the chainmen alternatelr change places, each setting the pins that he has taken $u p$, s o that one is forward in all

[^2]the odd, and the other in all the even tallies. Such procedure, it is believed, teuds to insure accuracy in measurement, facilitates the recollection of the distances to objects on the line, and renders a mis-tally almost impossible.

leveling the chain and plumbing the pins.

11. The length of every line you ron is to be ascertained by precise horizontal measurement, as nearly approximating to an air line as is possible in practice on the earth's surface. This all-important object cau only be attained by a rigid adherence to the three following observances:
(1) Ever keeping the chain stretched to its utmost degree of tension on even ground.
(2) On uneven ground, keeping the chain not only stretched as aforesaid, but horizontally leveled. And when ascending and descending steep ground, hills or mountains, the chain will have to be shortened to one-half its length (and sometimes more), in order accurately to obtain the true horizontal measnre.
(3) The careful plambing of the tally pins, so as to attain precisely the spot where they should be stuck. The more nneven the surface, the greater the caution needed to set the pins.

MARKING LINES.

12. All lines on which are to be established the legal corner boundaries are to be marked after this method, viz: Those trees which may intercept your line must have two chops or notches cut on each side of them withont any other marks whatever. These are called "sight trees" or "line trees." A sufficient number of other trees stauding within 50 links of the line, on either side of it, are to be blazed on two sides diagonally or quartering toward the line, in order to render the line conspicuons, and readily to be traced, the blazes to be opposite each other, coinciding in direction with the line where the trees stand very near it, and to approach nearer each other the farther the line passes from the blazed trees: Due care must ever be taken to have the lines so well marked as to be readily followed, and to cut the blazes deep enough to leave recognizable scars as long as the trees stand.

Where trees 2 inches or more in diameter are found, the required blazes must not be omitted.

Bushes on or near the line should be bent at right angles therewith, and receive a blow of the ax at about the usual height of blazes from the ground sufficient to leave them in a bent position, but not to prevent their growth.

ON TRIAL, OR RANDOM LINES,

the trees are not to be blazed, unless occasionally, from indispensable necessity, and then it must be done so guardedly as to prevent the possibility of confounding the marks of the trial line with the true. Bat bushes and limbs of trees may be lopped, and stakes set on the trial or random line, at every ten chains, to enable the survegor on his return to follow and correct the trial lines and establish therefrom the true line. To prevent confusion, the temporary stakes set on the trial or random lines must be pulled up when the survejor returns to establish the true line.

INSUPERABLE OBIECTS ON LINE-WITNESS POINTS.

13. Under circumstances where your course is obstructed by impassable obstacles, such as ponds, swamps, marshes, lakes, rivers, creeks, \&c., you will prolong the line across such obstacles by taking the necessary right angle offsets; or, if such be inconvenient, by a traverse or trigonometrical operation, nutil you regain the line on the opposite side. And in case a north and south, or a true east and west, line is regained in adrance of any such obstacle, you will prolong and mark the line back to the obstacle so passed, and state all the particulars in relation thereto in your field-book. And at the intersection of lines with both margins of impassable obstacles, yon will establish a witness point (for the purpose of perpetuating the intersections therewith), by setting a post, and giving in your field-book the course and distance therefrom to two trees on opposite sides of the line, each of which trees you will mark with a blaze and notch facing the post; but on the margins of navigable water-courses, or navigable lakes, yon will mark the trees with the proper number of the fractional section, township, and range.
T The best marking tools adapted to the purpose must be provided for marking neatly and distinctly all the letters and figures required to be made at corners, arabic figures being used exclusively; and the deputy is always to have at hand the necessary implements for keeping his marking irons in order.

ESTABLISHING CORNERS.

To procure the faithful execution of this portion of a surveyor's duty is a matter of the atmost importance. After a true coursing and most exact measurements the establishment of corners is the consummation of the work. If, therefore, the corner be not perpetuated in a permanent and workmanlike manner the great aim of the surveying sersice will not have been attained.
The following are the different points for perpetuating corners, riz:

1. For township bonndaries, at intervals of every 6 miles.
2. For section boundaries, at intervals of every mile, or $\mathbf{8 0}$ chains.
3. For quarter-section boundaries, at intervals of every half mile, or 40 chains. Exceptions, however, occur as fully setforth hereafter in that portion of the manual showing the manner of running township lines and methods of subdividing.
4. Meander corners are established at all those points where the lines of the public surveys intersect the banks of such rivers, bayous, lakes, or islands as are by law directed to be meandered.

DESCRIPTION OF CORNERS.

The following is the form and language to be used by deputy surveyors in describing the establishment of corners in their field-notes, and their work in the field must strictly comply with the same.

STANDAPD TOWNSHIP CORNERB.
SEC. 1. Set a - stone $-\times-\times-$ ins. - ins. in the ssone with pite and ground, for Standard Cor. to (e. g.) Tps. 5 N., R's $2 \& 3^{\text {Mound }}$ W., marked S.C., with 6 notches on N., E., \& W. edges, dug pits 24×18 $\times 12$ ins. crosswise on each line, N., E., \& W. of stone 6 ft . dist. and raised a mound of earth, $2 \frac{1}{2} \mathrm{ft}$. high, 5 ft . base alongside.

Stone with Mound of Stone.

SEC. 2. Set a - stone $-x-x$ - ins. - ins. in the W., marked Sground, for Standard Cor. to (e. g.) Tps. 5 N., R's 2 \& 3 mound of stone,* 1 with 6 notches ou N., E., \& W. edges, and raised a
 Trees. W., marked S. C., with 6 notches on N., E. \& W. edges, from whieh A-, - ins. diam., bears N. ${ }^{\circ}$ E.-lks., dist. marked T. 5 N., R. 2 W. S. 31, B: T.

A-, - ins. diam., bears N. $-{ }^{\circ}$ W.-lks., dist. marked T. 5 N., R. 3 W. S. 36, B. T.
$\Delta-,-$ ins. diam., bears S. $-^{\circ}$ W. -lks ., dist. marked \dagger S. C. T. 5 N, R's $2 \& 3$ W., B. T.

SEc. 4. Set a post, $4 \frac{1}{2}$ ft. long, 4 ins. square, with marked stone (charred stake or quart of charcoal), 12 ins. in the ground, for Standard Cor. to (e. g.) Tps. 5 N., R's 2,\& 3W., marked S. C.T. 5 N. on N.
R. 2 W. S. 31, on E. and
R. 3 W. S. 36 on W. faces, with 6 notches on N., E., \& W. faces, dug pits, $24 \times 18 \times 12$ ins. crosswise on each line, N., E., \& W. of post, 6 ft . dist. and raised a mound of earth $2 \frac{1}{2} \mathrm{ft}$. high, 5 ft . bape, around post.

SEC. 5. Set a post, $4 \frac{1}{2} \mathrm{ft}$. long, 4 ins. square, 24 ins. in
Post with Bearins the ground for Standard Cor. to (e. g.) Tps. 5 N., R's 2
\& 3 W . marked.
S. C. T. 5 N. on N.
R. 2 W. S. 31, on E. and
R. 3 W. S. 36 on W. faces, with 6 notches on N., E., \& W. faces; from which
A-,-ins. diam., bears N.-○ E.-lks., dist. marked T. 5 N., R. 2 W. S. 31, B. T.

A-,-ins. diam., bears N.-○ W.-lks., dist. marked T. 5 N., R. 3 W. S. 36, B. T.

A-, -ins., diam. bears S.-○ W.-lks., dist. marked \dagger S. C. T. 5. N., R's $2 \& 3$ W., B. T.
Mound without Port or SEC. 6. Deposited a marked stone (charred stake or stone. quart of charcoal) 12 ins. in the ground, for Standard Cor. to (e. g.) Tps. 5 N., R's $2 \& 3$ W., dug pits, $24 \times 18 \times 12$ ins. crosswise on each line, N., E., \& W. of cor., 6 ft. dist. and raised a mound of earth $2 \frac{1}{2}$ feet high, 5 ft . base, over it. In E. pit drove a stake 2 ins. square, 2 ft . long, 12 ins. in the ground, marked
S. C. T. 5 N . on N.
R. 2 W. S. 31 on E. aud
R. 3 W. S. 36 on W. faces, with 6 notches on N., E., \& W. faces. Tree Correr without SEC. 7. A-,-ins. diam., which I marked (e. g.) Heariog Trees. S. C.T. 5 N. on N,
R. 2 W. S. 31, on E. and
R. 3 W. S. 36 on W. sides, with 6 notches on N., E., \& W. sides, dug pits $24 \times 18 \times 12$ ins. crosswise on each line, N., E., \& W. of tree 6 ft . dist. and raised a mound of earth around tree, for Standard Cor. to Tps. 5 N., R's 2 \& 3 W.

[^3][^4]R. 3 W. S. 36 on W. sides, with 6 notches on N., E., \& W. sides, for Standard Cor. to Tps. 5 N., R's 2 \& 3 W.; from which

A-, —ins. diam., bears N.- ${ }^{\circ}$ E.- lks. dist. marked T. 5 N., R. 2 W. S. 31, B. T.

A-, -ins. diam., bears N.-O W.- lks. dist. marked T. 5 N., R. 3 W. S. 36, B. T.

A-, -ins. diam., bears S.-O W.- lks. dist. marked* S. U. T. 5 N., R's $2 \& 3$ W., B. T.

CLOSING TOWNSHIP CORNERS.

SEC. 1. Set a - stone $-\times-\times-$ ins. - ins. in the stone with Pits and ground for Closing Cor. to (e. g.) Tps. 4 N., R's 2 \& 3 W., mound
marked C. C. with 6 notches on S. E. \& W. edges, dug pits, $24 \times 18 \times 12$ ins., crosswise on each line, S., E. \& W. of stone. 6 ft . dist., and raised a mound of earth, $2 \frac{1}{2} \mathrm{ft}$. hign, 5 ft . base alongside.

SEC. 2. Set $a-s t o n e-x-x \rightarrow$ ins. - ins. in the stone with Mound ot ground for Closing Cor. to (e. g.) Tps. 4 N., R's $2 \& 3$ W., stone.
marked C. U. with 6 notches on S., E. \& W. edges, and raised a mound of stone $1 \frac{1}{2} \mathrm{ft}$. high, 2 ft . base, alongside. Pits impracticable.

SEC. 3. Set $a-$ stone $-\times-\times$-ins. -ins. in the stone with bearing Trees. ground for Closing Cor. to (e.g.) tps. 4 N., R's $2 \& 3$ W., marked C. C. with 6 notches on S., E., \& W. edges; from which

A-,-ins. diam. bears S.-○ E. -lks. dist. marked T. 4 N., R. 2 W. S. 6, B. T.

A -, -ins. diam. bears S.-o W.-lks. dist. marked T. 4 N., R. 3 W. S. 1, B. T.

A -, -ins. diam. bears N.-o W.-lks. dist. marked* C. C. T. 4 N., R's 2 \& 3 W., B. T.

SEc. 4. Set a post, $4 \frac{1}{2} \mathrm{ft}$. long, 4 ins. square, with marked stone (charred stake or quart of charcoal) 12 ins. Post in Mound.
in the ground for Closing Cor. to (e.g.) Tps. 4 N., R's $2 \& 3$ W., marked C. C. T. 4 N. on S.
R. 2 W. S. 6, on E. and
R. 3 W.S. 1 on W. faces, with 6 notches on S., E., \& W. faces, dug pits $24 \times 18 \times 12$ ins., crosswise on each line, S., E., \& W. of post, 6 ft . dist., and raised a mound of earth $2 \frac{1}{2} \mathrm{ft}$. high, 5 ft . base, c. cound post.

SEC. 5. Set a post, $4 \frac{1}{2}$ ft. long, 4 ins. square, 24 ins. in the ground, for Closing Cor. to (e.g.) Tps. 4 N., R's $2{ }^{\text {Post with Bearne Treea. }}$ \& 3 W., marked
C. C. T. 4 N. on S.
R.' 2 W. S. 6, on E. and
R. 3 W. S. 1 on W. faces, with 6 notches on S., E. \& W. faces ; from which

A-, -ins. diam. bears S.—○ E.-lks. dist. marked T. 4 N., R. 2 W. S. 6, B. T.

A -, -ins. diam. bears S.—○ W.—lks. dist. marked T. 4 N., R. 3 W. S. 1, B. T.

A -, -ins. diam., bears N.-o W.-lks. dist., marked* C. C. T. 4 N., R's 2 \& 3 W., B.T.

SEC. 6. Deposited a marked stone (charred stake or Mond without Post or quart of charcoal) 12 ins . in the ground, for Closing Cor. ${ }^{\text {Stone. }}$ to (e. g.) Tps. 4 N., R's $2 \& 3$ W., dug pits $24 \times 18 \times 12$ ins. crosswise on each line, S., E., \& W. of corner, 6 ft . dist., and raised a mound of earth $2 \frac{1}{2} \mathrm{ft}$. high, 5 ft . base, over it. In E pit drove a stake 2 ins. square, 2 ft . long, 12 ins. in the ground, marked
C. C. T. 4 N. on S.

R. 2 W. S. 6 , on E. and

R. 3 W. S. 1 on W. faces, with 6 notches on S., E. \& W. faces.
tree Corror without Bear. SEO. 7. A-, 一ins. diam., which 1 marked (e. g.) ing Trees. O. O. T. 4 N. on S.
R. 2 W. S. 6 , on E. and
R. 3 W. S. 1 on W. sides, with 6 notches on S., E. \& W. sides, dug pits $24 \times 18 \times 12$ ins. crosswise ou each line S. E. \& W. of tree, 6 tt. dist., and raised a mound of earth around tree, for Closing Cor. to Tps. 4 N., R's $2 \& 3 \mathrm{~W}$.

Tree Corner with Benring Trees.

SEc. 8. A-, -ins. diam., which I marked (e. g.)
R. 2 W.S. 6 , on E. and
R. 3 W. S. 1 on W. sides, with 6 notches on S., E. \& W. sides for Closing Cor. to Tps. 4 N., R's 2 \& 3 W .; from which
$A-$, ins. diam. bears S.-O E.-lks. dist., marked T. 4 N. R., 2 W. S. 6, B T.

A-, -ins. diam. bears S.- ${ }^{\circ}$ W. - lks. dist., marked T. 4 N., R. 3 W. S. 1, B. T.

A-,-ins. diam. bears N.- ${ }^{\circ}$ W. -lks. dist., marked* C. C. T. 4 N., R's 2 \& 3 W., B. T.

Sec. 9. All Closing Township Corners must be connected with the nearest standard corner on the Standard Line.

STANDARD SECTION CORNERS.

Stone with Pits and SEC. 1. Seta-stone $-\times-\times$-ins.,-ins. in the ground, Mound. for Standard Cor. to (e. g.) Secs. $35 \& 36$, marked. S. C., with 1 notch on E. and 5 notches on W. edges, dug pits, $18 \times 18 \times 12$ ins., N., E. \& W. of stone $5 \frac{1}{2} \mathrm{ft}$. dist., and raised a mound of earth 2 ft . high, $4 \frac{1}{2} \mathrm{ft}$. base, alongside.
Stone with Mound of
SEc.2. Set a-stone- $\times-\times$-ins.,-ins. in the ground, Stone. for Standard Cor. to (e. g.) Secs. $33 \& 34$, marked S. C., with 3 notches on E. \& W. edges, and raised a mound of stone, $\frac{1}{2} \mathrm{ft}$. high, 2 tt. base, alongside. Pits impracticable.

SEC.3. Seta-stone $-\times-\times-$ ins., -ins. in the ground, stone with Bearing Tres. for Standard Cor. to (e. g.) Secs. $35 \& 36$, marked S. O., with 1 notc. on E. and 5 notches on W. edges, from which

A-, -ins. diam. bears N.-o E.-lks. dist. marked T. 5 N., R. 3 W. S. 36, B. T.

A - , -ins. diam. bears N.-- W. - 1 ks. dist. marked T. 5 N., R. 3 W. S. 35, B. T.

A-, -ins. diam. bears S. -- E. -lks. dist. marked* T. 5 N., R. 3 W. S. C. S. $35 \& 36$, B. T.

SEC. 4. Set a post 4 ft . long, 4 ins. square, with marked
Post in Mound. stone (charred stake or quart of charcoal) 12 ins. in the ground, for Standard Cor. to (e. g.) Secs. $35 \& 36$, marked
S. C. T. 5 N., R. 3 W., on N.
S. 36 on E., and
S. 35 on W. faces, with 1 notch on E. and 5 notches on W. faces, dug pits $18 \times 18 \times 12$ ins., N., E. and W. of post, $5 \frac{1}{2}$ ft. dist., and raised ic mound of earth 2 ft . high, $4 \frac{1}{2} \mathrm{ft}$. base rouud post.

[^5][^6]S. 35 on W. faces, with 1 notch ou E. and 5 notches on W. faces; from which

A-- ins. diam. bears N.-o E. -lks. dist., marked T. 5 N., R. 3 W. S. 36, B. T.

A-, -ius. diam. bears N.-o W. - lks. dist. marked T. 5 N., R. 3 W. S. 35, B. T.

A-,-ins. diam. bears S.-o E. -lks. dist. marked* T. 5 N., R. 3 W. S. C. S. $35 \& 36$, B. T.

Sec. 6. Deposited a marked stone (charred stake or mound without Post or quart of charcoal) 12 ins. in the ground, for Staudard stone.
Cor. to (e. g.) Secs. $33 \& 34$, dug pits, $18 \times 18 \times 12$ ins., N., E. and W. of corner, $5 \frac{1}{2} \mathrm{ft}$. dist., and raised a monud of earth 2 ft . high, $4 \frac{1}{4} \mathrm{ft}$. base, over it. In E. pit drove a stake 2 ins . square, 2 ft . long, 12 ins. in the ground, marked
T. 5 N., R. 3 W., S. O. on N.
S. 34 on E. and
S. 33 on W. faces, with 3 notches on E. \& W. faces.

SEc. 7. A -, - ins. diam., which I marked (e. g.)
Tree Corner without S. C. T. 5 N., R. 3 W., on N.
S. 36. on E. and
S. 35 on W. sides, with one notch on E. and 5 notches on W. sides, dug pits, $18 \times 18 \times 12$ ius. N., E. \& W. of tree, $5 \frac{1}{2} \mathrm{ft}$. dist. and raised a mound of earth around tree, for Standard Cor. to Secs. 35 \& 36.
SEC. 8. A, 一, - ins. diam., which I marked (e. g.)
S. C. T. 5 N., R. 3 W., on N.

Tree Corner with Bearıng
S. 36 , on E. and
S. 35 on W. sides, with 1 notch on E. and 5 notches on W. sides, for Standard Cor. to Secs. $35 \& 36$; from which
A 一, - ins. diam. bears N. - ${ }^{\circ}$ E. - lks. dist. marked T. 5 N., R. 3 W., S. 36, B. T.

A -, -ins. diam. bears N. - ${ }^{\circ}$ W. - lks. dist. marked T. 5 N., R. 3 W., S. 35, B. T.

A -, -ins. diam. bears S. -o E. — lks. dist. marked* T. 5 N., R. 3 W., S.C.S. $35 \& 36$, B. T.

CLOSING SECTION CORNERS.

SEC.1. Set a - stone $-\times-\times$ ins., - ins. in the ground, for Closing Cor. to (e. g.) Secs. $1 \& 2$, marked C. C., with 1 notch on E. and 5 notches on W. edges, dug pits, $18 \times 18 \times 12$ ins. moond S., E. \& W. of stone, $5 \frac{1}{2}$ feet dist., and raised a mound of earth 2 ft . high, $4 \frac{1}{2} \mathrm{ft}$. base alongside.

Sec. 2. Set a - stone - x - x-ins., - ins. in the ground, for Closing Cor. to (e. g.) Secs. $3 \& 4$, marked C. C., with 3 stone with Mound of notches on E. and W. edges, and raised a mound of stone stone $1 \frac{1}{2} \mathrm{ft}$. high, 2 ft . base, alongside Pits impracticable.

Sec. 3. Set a - stone $-\times-\times$-ins., - ins. in the ground, for Olosing Cor. to (e. g.) Secs. $1 \& 2$, marked C. C., with 1 notch on E. and 5 notches on W. edges; from which

A-, ins. diam., bears S.-O'E. -lks. dist. marked T. 4 N., R. 3 W., S. 1 B. T.

A - , - ins. diam., bears S. $-^{\circ}$ W. - lks. dist. marked T. 4 N., R. 3 W., S. 2 B. T.

A -, -ins. diam., bears N. - ${ }^{\circ}$ E. - lks. dist. marked ${ }^{*}$ T. 4 N., R. 3 W., C. C. S. $1 \& 2$ B. T.

[^7]SEc. 4. Set a post 4 ft . long, 4 ins. square, with marked stone (charred Port io Moud. stake or quart of charcoal) 12 ins. in the ground for Closing Cor. to (e. g.) Secs. $1 \& 2$, marked
C. C. T. 4 N., R. 3 W., on S.
S. 1 on E., and
S. 2 on W. faces, with 1 notch on E. and 5 notches on W. faces, dug pits $18 \times 18 \times 12$ ins., S., E. \& W. of post $5 \frac{1}{2}$ ft. dist., and raised a mound of earth 2 ft . high, $4 \frac{1}{2} \mathrm{ft}$. base around post.

SEc. 5. Set a post 4 ft . long, 4 ins. square, 24 ins. in
Post with Bearing Trees. the ground, for Closing Cor. to (e. g.) Secs. $1 \& 2$, marked
C. C. T. 4 N., R. 3 W., on S.
S. 1 on E. and
S. 2 on W. faces, with 1 notch on E and 5 notches on W. faces; from which

A -, —ins. diam., bears S. _-○ E. - lks. dist. marked T. 4 N., R. 3 W., S. 1, B. T.

A -, 一ins. diam., bears S. - ${ }^{\circ}$ W. - lks. dist. marked T. 4 N., R. 3 W., S. 2, B. T.

A -, - ins. diam., bears N. -o'E. - lks. dist. marked* T. 4 N., R. 3 W., O. C. S. $1 \& 2$, B. T.

Mound without Post or stone.

SEC. 6. Deposited a marked stone (charred stake or quart of charcoal) 12 ins. in the ground, for Closing Cor. to (e. g.) Secs. $3 \& 4$, dug pits, $18 \times 18 \times 12$ ins., S., E. \& W. of Cor. $5 \frac{1}{2}$ ft. dist., and raised a mound of earth 2 ft . high, $4 \frac{1}{2} \mathrm{ft}$. base, over it. In E. pit drove a stake, 2 ins. square, 2 ft. long, 12 ins. in the ground, marked
C. C. T. 4 N., R. 3 W., on S.
S. 3 on E., and
S. 4 ou W. faces, with 3 notches on E. \& W. faces.

SEC. 7. A -, - ins. diam., which I marked (e. g.)
Bearine Trees \quad C. C. T. 4 N., R. 3 W., on S.
S. 1, on E., and
S. 2 on W. sides, with 1 notch on E. and 5 notches on W. sides, dug pits $18 \times 18 \times 12$ ins. S., E. \& W. of tree, $5 \frac{1}{1} \mathrm{ft}$. dist., and raised a mound of earth around tree, for closing Cor. to Secs. $1 \& 2$.

Tree Coriner with Benr.
SEC. 8. A -, - ins. diam., which I marked (e. g.)
ing Trees.
C. C. T. 4 N., R. 3 W., on S.
S. 1, on E., and
S. 2 on W. sides, with one notch on E. and 5 notches on W. sides for Closing Cor. to Secs. 1 \& 2; from which

A -, - ins. diam., bears S. - © E. - lks. dist. marked T. 4 N., R. 3 W., S. 1, B. T.

A -, - ins. diam., bears S. - ${ }^{\circ}$ W. - lks. dist. marked T. 4 N., R. 3 W., S. 2, B. T.

A -, - ins. diam., bears N. - ${ }^{\circ}$ E. - lks. dist. marked* T. 4 N., R. 3 W., C. C. S. $1 \& 2$, B. T.

Counection Lines.
Sed. 9. All Section Closing Corners mustbe connected with the nearest standard corner on the Standard line.
CORNERS COMMON TO FOUR TOWNSHIPS.
Stone with pite and SEC. 1. Set a - stone $-\times-\times$ - ins., - ins. in the Mound. ground for Cor. to (e. g.) Tps. 2 \& 3 N., R's $2 \& 3$ W., marked with 6 notches on each edge, dug pits, $24 \times 18 \times 12$ ins. lengthwise on each line, N., S., E. \& W. of stone, 6 ft. dist., and raised a mound of earth $2 \frac{1}{2} \mathrm{ft}$. high, 5 ft . base alongside.

[^8]SEc. 2. Set a - stone $-\times-\times$ ins., -ins. in the stone will mound of ground, for Cor. to (e. g.) Tps. $2 \& 3$ N., R's $2 \& 3 \mathrm{~W}$. ${ }^{\text {stone. }}$
marked with 6 notches on each edge, and raised a monnd of stone $1 \frac{1}{2} \mathrm{ft}$. high, 2 ft . base, alongside. Pits impracticable.

SEC. 3. Set $\mathrm{a}-$ stone $-\times-\times$ - ins., - ins. in the stone with Bering $^{\text {Trees. }}$ ground, for Cor. to (e. g.) Tps. $2 \& 3$ N. R. $2 \& 3$. W.
marked with 6 notches on each edge; from which
A -, - ins., diam., bears N. - ${ }^{\circ}$ E. - lks. dist. marked T. 3 N., R. 2 W., S. 31, B. T.

A -, - ins. diam., bears S. - ${ }^{\circ}$ E. - lks. dist. marked T. 2 N., R. 2 W., S. 6, B. T.

A 一, - ins. diam., bears S. - ${ }^{\circ}$ W. - lks. dist. marked T. 2 N., R. 3 W., S. 1, B. T.

A -, -ins. diam., bears N. - ${ }^{\circ}$ W. - lks. dist. marked T. 3 N., R. 3 W., S. 36, B. T.

SEC. 4. Set a post, $4 \frac{1}{2} \mathrm{ft}$. long 4 ins. square, with post in Mound. marked stone (charred stake or quart of charcoal) 12 ins.
in the ground, for Cor. to (e. g.) Tps. $2 \& 3$ N., R's 2 \& 3 W., marked
T. 3 N., S. 31, on N. E.
R. 2 W., S. 6, on S. E.
T. 2 N., S. 1, on S. W. and
R. 3 W., S. 36 on N. W. faces, with 6 notches on each edge, dug pits, $24 \times 18 \times 12$ ins., lengthwise on each line, N., S., E., \& W. of post, 6 ft . dist., and raised a mound of earth 21 ft . high, 5 ft . base around post.

SEC. 5. Set a post $4 \frac{1}{2} \mathrm{ft}$. long, 4 ins . square, 24 ins. in
the ground, for Cor. to (e. g.) Tps., 2 \& 3 N., R's 2 \& 3 W ., Post with Bearing Treee. marked
T. 3 N. S. 31, on N. E.
R. 2 W. S. 6 , on S. E.
T. 2 N. S. 1, on S. W. and
R. 3 W. S. 36 on N. W. faces, with 6 notches on each edge; from which
A -, —ins. diam., bears N. - ${ }^{\circ}$ E. - lks. dist. marked T. 3 N., R. 2 W. S. 31, B. T.

A - , - ins. diam., bears S. - $^{\circ}$ E. - lks. dist. marked T. 2 N., R. 2 W. S. 6, B. T.
 S. 1, B. T.

A-, -ins. diam., bears N. - ${ }^{\circ}$ W. - lks. dist. marked T. 3 N., R. 3 W. S. 36, B. T.

SEc. 6. Deposited a marked stone (charred stake or
Mound without Post or quart of charcoal) 12 ins. in the ground for Cor. to (e. g.) Stone.
Tps. $2 \& 3 \mathrm{~N}$., R's $2 \& 3 \mathrm{~W}$., dug pits, $24 \times 18 \times 12$ ins., lengthwise on each line, N., S., E., \& W. of Cor., 6 ft. dist., and raised a mound of earth $2 \frac{1}{2} \mathrm{ft}$. high, 5 ft . base over it. In E. pit drove a stake 2 ins . square, 2 ft . long, 12 ins . in the ground, marked
T. 3 N. S. 31, on N. E.
R. 2 W. S. 6 , on S. E.
T. 2 N. S. 1 , on S. W. and
R. 3 W. S. 36, on N. W. faces, with 6 notches on each edge.

Sec. 7. A -, 一 ins. diam., which I marked (e. g.)
T. 3 N. S. 31, on N. E.

Tree Corner witho a
Bearing Trees.
R. 2 W. S. 6 , on S. E.
T. 2 N. S. 1 , on S. W. and
R. 3 W.S. 36 on N. W. sides, with 6 notches facing each cardinal point, dug pits, $24 \times 18 \times 12$ ins. lengthwise on each line, N., S., E., \&
W. of tree, 6 ft. dist., and raised a mound of earth around tree, for Cor. to Tps. $2 \& 3$ N., R's $2 \& 3 \mathrm{~W}$:'
Tree Coreer with Bear. SEC. 8. A - , -ins diam., which I marked (e. g.)
ing Trees.
T. 3. N. S. 31, on N. E.
R. 2 W. S. 6 , on S. E.
T. 2 N. S. 1 , on S. W. and
R. 3 W. S. 36 , on N. W. sides, with 6 notches facing each cardinal point, for Cor, to Tps. 2 \& 3 N., R's $2 \& 3 \mathrm{~W}$., from which

A -, -ins. diam., bears N. - ${ }^{\circ}$ E. - lks. dist. marked T. 3 N., R. 2 W. S. 31, B. T.
A. - , -ins. diam., bears S.—o E. - lks. dist. marked 'T. 2 N., R. 2 W. S. 6, B. T.
A. - , -ins. diam., bears S. - ${ }^{\circ}$ W. - lks. dist. marked T. 2 N., R. 3 W . S. 1, B. T.
A. -. -ins. diam., bears N.- \circ W.-lks. dist. marked T. 3 N., R. 3 W. S. 30, B. T.

CORNERS COMMON TO FOUR SECTIONS.

Stone with pito and SEC. 1. Set a - stone - $x-\times$ - ins. - ins. in the mound. ground for Cor. to (e. g.) Secs. 25, 26, 35, \& 36, marked with 1 notch on S. \& E. edges, dug pits, $18 \times 18 \times 12$ ins. in each Sec., $5 \frac{1}{2} \mathrm{ft}$. dist., and raised a mound of earth 2 ft . high, $4 \frac{1}{2} \mathrm{ft}$. base alongside. stone with mound or SEC. 2. Set a - stone $-\times-\times-$ ins. - ins. in the stone. with 3 notches on S. and 2 notche's on E. edges, and raised a monnd of stone $1 \frac{1}{2} \mathrm{ft}$. high, 2 ft . base, alongside. Pits impracticable.

SEC. 3. Set a - stone - \times - \times - ins. - ins. in the
Stone with Bearing Trees. ground, for Cor. to (e.g.) Wécs. $9,10,15, \& 16$, marked with 4 notches on S . \& 3 notches on E . edges, from which
A -, - ins. diam., bears N. - ${ }^{\circ}$ E. - liks. dist. marked T. 2 N., R. 2 W. S. 10, B. T.

A -, - ins. diam., bears S. - ${ }^{\circ}$ E. - lks. dist. marked T. 2 N., R. 2 W. S. $15, \mathrm{~B}$. T.

A -, - ins. diam., bears S. - ${ }^{\circ}$ W.- lks. dist. marked T. 2 N., R. 2 W. S. 16, B. T.

A - , - ins. diam., bears N. - ${ }^{\circ}$ W.- lks. dist. marked T. 2 N., R. 2 W. S. 9, B. T.

Port in Mound.

SEc. 4. Set a post 4 ft . long, 4 ins. square, with marked stone (charred stake or quart of charcoal) 12 ins. in the ground, for Cor. to (e. g.) Secs, $15,16,21, \& 22$, marked
T. 2 N. S. 15 , on N. E.
R. 2 W. S. 22, on S. E.
S. 21, ou S. W. and
S. 16 on N. W. faces, with 3 notches on S. \& E. edges, dug pits, $18 \times$ 18×12 ins. in each Sec., $5 \frac{1}{2} \mathrm{ft}$. dist., and raised a monnd of earth 2 ft . high, $4 \frac{1}{2} \mathrm{ft}$. base around post.

SEc. 5. Set a post 4 ft . long, 4 ins. square, 24 ins. in the ground, for Cor. to (e.g.) Secs. 25, 26,35, \& 36, marked
Post with Bearing Trees. T. 2 N. S. 25 , on N. E.
R. 2 W. S. 36 , on S. E.
S. 35, on S. W. and
S. 26, on N. W. faces, with 1 notch on S. \& E. edges; from which

A -, - -ins. diam., bears N. - ${ }^{\circ}$ E. - lks. dist. marked T. 2 N., R. 2 W. S. 25, B. T.

A - , , - ins. diam., bears S. - ${ }^{\circ}$ E. - lks. dist. marked T. 2 N., R. 2 W. S. 36, B. T.

A-, -ins. diam., bears S. - ${ }^{\circ}$ W. - lks. dist. marked T. 2 N., R. 2 W. S. 35, B. T.

A - - ins. diam., bears N. - \circ W. - lks. dist. marked T. 2 N., R. 2 W. S. 26, B. T.

SEC. 6. Deposited a marked stove (charred stake or mound without Pogt or quart of charcoal) 12 ins. in the ground, for Cor. to (e. g. $)^{\text {stone. }}$
Secs. $25,26,35, \& 36$, dug pits, $18 \times 18 \times 12$ ins. in each Sec., $5 \frac{1}{2} \mathrm{ft}$ dist., and raised a mound of earth 2 ft . high, $4 \frac{1}{2} \mathrm{ft}$. base over it.

In S. E. pit drove a stake 2 ins. square, 2 ft . long, 12 ins . in the ground, marked
T. 2 N. S. 25 , on N. E.
R. 2 W. S. 36 , on S. E.
S. 35 , on S. W. and
S. 26, on N. W. faces, with 1 notch on S. \& E. edges.

Sec. 7. A -, - ins. diam., which I marked (e. g.)
T. 2 N. S. 29, on N. E.

Tree Corner without Bearing Trees.
R. 2 W.S. 32, on S. E.
S. 31, on S. W. and
S. 30, on N. W. sides, with 1 notch on S. and 5 notches on E. sides, dug pits; $18 \times 18 \times 12$ ins. in each sec. $5 \frac{1}{2} \mathrm{ft}$. dist. and raised a mound of earth around tree, for Cor. to Secs. 29, 30, 31, \& 32 .

SEC. 8. A-, -ins. diam., which I marked (e. g.) Tree Corner with Bear. T. 2 N. S. 5 , on N. E.
R. 2 W. S. 8 , on S. E.
S. 7, on S. W. and
S. 6, on N. W. sides, with 5 notches ou S. \& E. sides, for Cor. to Secs. $5,6,7 \& 8$; from which

A—, — ins. diam., bears N. —— E. - lks. dist. marked T. 2 N., R. 2 W. S. 5 , B. T.

A-, - ins. diam., bears S. -o E. -- lks. dist. marked T. 2 N., R. 2 W. S. 8 , B. T.

A-, -ins. diam., bears S. -o W. - lks. dist. marked T. 2 N., R. 2 W. S. 7, B. T.

A-, -ins. diam., bears N. -o W. - lks. dist. marked T. 2 N., R. 2 W. S. 6, B. T.

article X.

QUARTER SECTION CORNERS.

SEC. 1. Set a - stone $-\times-\times$ - ins., -ins. in the stone with pita ana ground, for $\frac{1}{4}$ Sec. Cor., marked $\frac{1}{4}$ on N. (or W.) face, dug mound. pits, $18 \times 18 \times 12$ ins., N. \& S. (or E. \& W.) of stone $\tilde{5}_{\frac{1}{2}} \mathrm{ft}$. dist., and raised a mound of earth $1 \frac{1}{2} \mathrm{ft}$. high, $3 \frac{1}{2} \mathrm{ft}$. base alongside.

SEC. 2. Set a - stone - $\times-\times$ - ins., -ins. in the stone with mound of ground, for $\frac{1}{4}$ Sec. Cor., marked $\frac{1}{4}$ on N. (or W.) face, stome. and raised a mound of stone $1 \frac{1}{2} \mathrm{ft}$. high, 2 ft . base, alongside. 'Pits impracticable.

SEc. 3. Set a - stone - $\times-\times$-ins., -ins. in the ${ }_{\text {stone with Beariug }}$ ground, for $\frac{1}{4}$ Sec. Cor., marked $\frac{1}{4}$ on N. (or W.) face; ${ }^{\text {Trea. }}$ from whish
A—, 一 ins. diam., bears N. - ${ }^{\circ}$ E. - lks. dist. marked $\frac{1}{4}$ S. B. T.
A-, 一 ins. diam., bears S. - ${ }^{\circ}$ W. - lks. dist. marked $\frac{1}{4}$ S. B. T.
SEc. 4. Set a post 3 ft . long, 3 ins. square, with
marked stone (charred stake or quart of charcoal) 12 ins. ${ }^{\text {Post }}$ in Mound. in tho ground, for $\frac{1}{4}$ Sec. Cor., marked 4 S . on N. (or W.) face, dug pits, $18 \times 18 \times 12$ ins., N. \& S. (or E. and W.) of post $5 \frac{1}{2}$ ft. dist., and raised a mound of earth $1 \frac{1}{2} \mathrm{ft}$. high, $3 \frac{1}{2} \mathrm{ft}$. base around post.

SEC. 5. Set a post 3 ft . long, 3 ins. square, 24 ins . in face; from which

A-, -ins. diam., bears N. -o E. - lks., dist. marked $\frac{1}{4}$ S. B. T.
A-, - ins. diam., bears S. -o W. - lks. dist. marked $\frac{1}{4}$ S. B. T.
Mound without Post or stone. sto

SEC. 6. Deposited a marked stone (charred stake or ding 48 quart of charcoal) 12 ins. in the ground, for 4 Sec. Cor., dig pits, $18 \times 18 \times 12$ ins., N. \& S. (or L. \& W.) or comer 5. fl. dist. and raised a mound of earth $1 \frac{1}{2} \mathrm{ft}$ high, $3 \frac{1}{2} \mathrm{ft}$. base over it. In E. (or N.) pit drove a stake 2 ft . long, 2 ins . square, 12 ins. in the'ground, marked $\frac{1}{4}$ S. on N. (or W.) face.

SEC. 7. A-, - ins. diam., which I marked $\frac{1}{4}$ S. on N.

Tree Corner without Bearing Trees. (or W.) side, for $\frac{1}{4}$ Sec. Cor., dug pits, $18 \times 18 \times 12$ ins. N. \& S. (or E. \& W.) of tree, $5 \frac{1}{2} \mathrm{ft}$. dist. and raised a mound of earth around tree.

> Tree Corner with Bearing Trees.

SEC. 8. A-, - ins. diam., which I marked $\frac{1}{4}$ S. on N. (or W.) side, for $\frac{1}{4}$ Sec. Cor.; from which
A -, - ins. diam., bears N. - E. - liks. dist. marked $\frac{1}{4}$ S. B. T.
A -, - ins. diam., bears S. - ${ }^{\circ}$ W. - lks. dist. marked $\frac{1}{4}$ S. B. T.
SEc.9. On N. and S. lines the marks must be made Marks. on W. side, and on E. and W. lines on N. side of the stone, post, or tree.

Sec. 10. On N. \& S. lines the pits must be dug N. \& Pits. S. of Cor., and on E. \& W. lines E. \& W. of Cor.

SEc. 11. On N. \& S. lines the stakes must be driven
Stakes in Pits.

Standard quarter section corners.

All Quarter Section Corners on Staudard lines must be established in all respects like other Quarter Section Corners, with the addition of the letters S. C., and if bearing trees are established for such Corners, each tree must be marked S. C. 4 S. B. T.

MEANDER CORNERS.

Stone with Pits and Mound.
SEC. 1. Set a - stone $-\times-\times$ ins., - ins. in the ground for Meander Cor. to (e. g.) Fractional Secs. $1 \& 2$, marked M. C. on-face, dug a pit 3 ft . square, 1 ft . deep, 8 lks - of stone, and raised a mound of earth 2 ft . high, $4 \frac{1}{2} \mathrm{ft}$. base alongside.
stone with Moundor stone. SEC.2. Set a - stone $-\times-\times-$ ins., - ins, in the ground, for Meander Cor. to (e.g.) Fractional Secs. 35 \& 36, marked M. C. on-face, and raised a mound of stone $1 \frac{1}{2} \mathrm{ft}$. high, 2 ft . base, alongside. Pits impracticable.
Stone with Bearing Trees.
SEC.3. Seta-stone $-\times-\times$-ins., - ins. in the ground, for Meander Cor. to (e. g.) Fractional Secs. 9 \& 10, marked M. C. on - face; from which

A - , -ins. dism., bears S. - $^{\circ}$ E. - lks. dist. marked T. 2 N., R. 2 W. S. 10, M. C. B. T.

A-, -ins. diam., bears S. - ${ }^{\circ}$ W.- lks. dist. marked T. 2 N. R. 2 W. S. 9, M. C. B. T.

Post in Mound.
SEc. 4. Set a post 4 ft . long, 4 ins. square, with marked stone (charred stake or quart of charcoal) 12 ins. in the ground, for Meander Cor. to (e. g.) Fractional Secs. 35 \& 36, markęd M. C. on-face, with
T. 2 N. on N.
R. 2 W. S. 36, on E. and
S. 35 on W. faces, dug a pit 3 ft . square, 1 ft . deep, 8 lks .-of post, and raised a mound of earth 2 ft , high, $4 \frac{1}{2} \mathrm{ft}$. base, around post.

Sec. 5. Set a post 4 ft . long, 4 ins. square, 24 ins. in
the ground, for Meander Oor. to (e. g.) Fractional Secs. Poth with Earing Trees, $20 \& 21$, marked M. C. on-face, with
T. 2 N. on S.
R. 2 W. S 21 on E. and
S. 20 on W. faces; from which

A-, -ins. diam., bears S. ${ }^{\circ}$ E. - lks. dist. marked T. 2 N., R. 2 W. S. 21, M. C. B. T.

A-, -ins. diam., bears S.-○ W.-lks. dist. marked T. 2 N., R. 2 W. S. 20, M. C. B. T.

SEC.6. Deposited a marked stone (charred stake or mound without Pust or quart of charcoal) 12 ins. in the ground, for Meander Cor. ${ }^{\text {sione. }}$
to (e. g.) Fractional Sces. $11 \& 12$, dug a pit, 3 ft . square, 1 ft . deep, 8 lks. - of Cor., and raised a mound of earth 2 ft . high, $4 \frac{1}{2} \mathrm{ft}$. base, over it. In pit drove a stake 2 ins. square, 2 ft . long, 12 ins . in the ground, marked M. C. on - face, with
T. 2 N. on S.
R. 2 W. S. 12 on E. and
S. 11 on W. faces.

SEC. 7. A - , - ins. diam., which I marked (e. g.) Tree Corner without Bearing M. C. on - side, with
T. 2 N. on W.
R. 2 W. S. 13 on N. and
S. 24 on S. sides, for Meander Cor. to Fractional Sees. $13 \& 24$.

SEc. 8. A-, - ins. diam., which I marked (e. g.) M. C. on - side, with
T. 2 N. on E.
R. 2 W.S. 6 on N. and
S. 7 on S. sides, for Meander Cor. to Fractional Secs. 6 \& 7; from which

A -, - ins. diam. bears N.- ${ }^{\circ}$ W. - lks. dist. marked T. 2 N., R. 2 W. S. 6, M. C. B. T.

A -, - ins. diam. bears S.- ${ }^{\circ}$ W. - lks. dist., marked T. 2 N., R. 2 W. S. 7, M. C. B. T.

Sec. 9. When a pit is dug at a Meander Cor. it must be 8 lks . from the Cor., ou the side opposite the river or ${ }^{\text {Pita }}$ lake meandered.
Sec. 10. The letters "M. C." for Meander Corner must be marked on the side facing the river or lakie Murks. meandered.

WITNESS CORNERS.

A Witness Corner must bear the same marks that would be placed upon the Corner for which it is a witness, with the addition of the letters W. C., and be established in all respects like such Corner.

If bearing trees are established for a Witness Corner, each tree must be marked-W. C., in addition to the usual marks.

MISCELLANEOUS.

SEc. 1. When a rock in place is established for a
Corner, its dimensions above ground must be given, and a cross (x) marked at exact Corner point. In other respects the form for stone corners will be ased.
SEC. .2. Where mounds of earth are raised "alongside" of Coruers, on N. and S. lines, they must be placed on the W, and ou E, and W, lines on the N. side of Corner. In case the
character of the land is such that this can not be done, the depaty will state in his notes instead of "alongside," " S " (or E.).
-Mounde of Stone.
Sec. 3. In case where pits are practicable the deputy prefers raising a mound of stone, or stone covered with earth,* as more likely to perpetuate the Corner, he will use the form given for mound of stone, omitting the words "pits impracticable," and adding " covered with earth," when so established. (See foot-note, p. 22.)

SEC. 4. Where the requisite number of frees can be
Beariag Trees.
found within 300 links of the Corner point, three (${ }^{(3)}$ bearing trees should be established for every Standard or Closing Oor., four (4) for every Cor. common to (four) Townships or Sections, and two (2) for every Quarter Sec. Cor. or Meander Cor. When a bearing tree is located on the side of a Base Line or Standard Parallel opposite the township to which the corner it witnesses belongs, it will be marked with the township and ranges, (if a township corner), and, (if a section corner), with the township, range, and sections to which it belongs, and with the letters S. C. (for Stand Cor.), or O. C. (for Closing Corr.), as the case may require: The number of the Section in which the tree stands will be omitted. See "Description of Coruers." In case the requisite number of trees can not be found within limits, the deputy must state in his field notes after describiug those established, "no other trees within limits," and "dug pits in Secs.- \& --," or "raised a mound of stone alongside." The bearing trees, being the most important adjunets of the corners, their exact bearings from the true meridian must be taken with the instrument used in running the lines of survey, and the distance should be measured from the center of the tree to the center of the corner. The height of the top of all blazes and markings on trees must be limited to two and one-half fect above the ground.

Stones.
Sec. 5. Stones 18 ins. and less long mast be set twothirds, and over 18 ins. long, three-fourths, of their length in the ground. No stones coutaining less than 504 cubic inches must be used for corners.

Sec. 6. Particular attention is called to the "Summary of objects and data required to be noted," on pages 44
Objecte to be Noted. and 45 of these instructions, and it is expected that the
thoroughly comply with same in his work and field notes.

SEc. 7. No mountains or lands not classedi as surveyLegal Corners. able are to be meandered, and all lines approaching such lands must be discontinued at the section or quarter-section corner.

SEc. 8. Where by reason of impassable objects the
Fractional Townehipe. south boundary of a to n nship can not be established, an auxiliary base-line should be run through the township, first random, then corrected, from one range line to the other, cunnecting corresponding corners, and as far south as possible, and from such line the section lines will be extended northwardly in the usual manner, and any traction south of said line may be surveyed in the opposite direction from the Section Corners on the auxiliary base thus established.
Boundaries.
SEC. 9. When no part of the east or west boundaries can be run, both th3 north and south boundaries will be established as true lines.

SEC. 10. Allowance for the convergency of meridians must be made whenever necessary.

SEC. 11. All letters and figures cat in posts or trees must be marked over with red chalk to make them still more plain and durable.

[^9]SEc. 12. Township corners common to four townships, and section corners common to four sections, are to be set diagonally in the earth, with the angles in the direction of the lines. All other corners are to be set square, with the sides faciug the direction of the lines.

SEC. 13. The sizes of wooden posts, mounds, and pits noted in foregoing descriptions of corners are to be reSize of Posth, etc. garded as minimum, and whenever practicable to increase their dimensions it is desirable to do so.

SEC. 14. In establishing corners, stones should be used wherever practicable; then, posts; and lastly, mounds, with stake in pit.

SEC. 15. It is expected that the deputy surveyors will carefully read and familiarize themselves with these in-

Corner Materuls. structions and all others contained in this volume, and will instruct their assistants as to their duties before commencing work. Extra copies will be furnished the deputies for the use of their assistants.

MEANDERING.
SEC. 1. Proceeding down stream, the bank on the left hand is termed the "left bank," and that on the right hand the " right bank." These terms are to be universally used to distinguish the two banks of a river or stream.
SEC. 2. Both banks of navigable rivers, as well as of all rivers not embraced in the class denominated as "navigable," the right-angle width of which is three chains and upwards, will be meandered on both banks by taking the general courses and distances of their sinuosities, and the same are to be entered in the field-book. Rivers not classed as navigable will nct be meandered above the point where the average right-angle width is less than three chains.
At those points where either the township or section lines intersect the banks of a navigable stream, or any meanderable line, corners are to be established at the time of running these lines. These are called "meander corners;" and in meandering you are to commence at one of those corners, coursing the bauks or boundary line, and measuring the distance of each course from your commencing corner to the next "meander corner." By the same method you are to meander the opposite bank of the same river.

The crossing distance between the meander corners on same line and thȩ true bearing and distance between opposite meander corners is to be ascertained by triangulation or direct measurement, in order that the river may be protracted with entire accuracy. The particulars to be given in the field notes.
The subdividing deputies will be required to establish meander corners on both banks of such meanderable streams at the intersection of all section lines, and the distances across the river, determined as above directed, will be noted in the field-book.
In meandering water-courses, where a distance is more than ten chains between stations, whole chains only should be taken; but if the distance is less than ten chains, and it is found convenient to employ chains and links, the number of links should be a multiple of ten, thereby saving time and labor in testing the closings both in the field and in the sur-veyor-general's office.
SEC. 3. You are also to meander, in manuer aforesaid, all lakes, and deep ponds of the area of twenty-five acres and upwards; also naviga-

14214 м $\Lambda^{\prime} \mathrm{N}-3$
ble bayous; shallow ponds, readily to be drained, or likely to dry up, are not to be meandered.
In meandering lakes, bayous, or ponds you are to commence at a meander corner, and proceed as above directed for meaudering the bauks of navigable streams; and from said corner take the courses and distances of the entire margin of the same, noting the intersections with all meander corners established thereon.

You will notice all streams of water falling into the river, lake, or bayou you are surveying, stating the width of the same at their mouth; also all springs, noting the size thereof and depth, and whether the water be pure or mineral ; also the head and mouth of all bayous; and all'islands, rapids, and bars are to be noticed, with intersections to their upper and lower points to establish their exact situation. You will also note the elevation of the banks of rivers and streams, the heights of falls and cascades, and the length of rapids.
To meander a lake or deep pond lying entirely within the boundaries of a section, you will run and measure two lines thereunto from the nearest section or quarter-section corner on opposite sides of such pond, giving the courses of such lines. At each of the points where such lines shall intersect the margin of such pond or lake you will establish a meander corner as above directed. (See "Meander corners.")
The relative position of these points being thus definitely fixed in the section, the meandering will commence at one of them, and be continued to the other, noting the intersection, and thence to the beginning. The proceedings are to be fully entered in the field-book.

Sec. 4. Meander lines should not be established at the segregation line between dry and swamp or overflowed land, but at the ordinary low-water mark of the actual margin of the rivers or lakes on which such swamp or overflowed lands border. In cases where such meauder lines were formerly established at the segregation line between dry and swamp or overflowed lands, new and proper meander lines may be established under the direction of the surveyor general, and the township and section lines extended over such swamp or overflowed lands and the corners established, as hereinbefore provided, iu order that the plats and field notes of surveys mav show the actual facts in the case.
5. The precise relative position of islands, in a township made fractional by the river in which the same are situated, is to be determined trigonometrically ; sighting to a flag or other fixed object on the island, from a special and carefally measured base line, connected with the surveyed lines, on or near the river bank, you are to form connection between the meander corners on the river to points corresponding thereto, in direct line, on the bank of the island, and there establish the proper meander corners, and calculate the distance across.
6. In taking the connection of an island with the main land, when there is no meander corner in line, opposite thereto, to sight from, you will measure a special base from the most convenient meander corner, and from such base yon will triangulate to some fixed point on the shore of the island, ascertain the distance across, and there establish a special meander corner, wherefrom you will commence to meander the island.
7. In the survey of lands bordering ou tide water, "meander corners" are to be established at the points where surveyed lines intersect highwater mark, and meanders are to follow the high-water line.
8 The field-notes of meanders will be set forth in the field-books showing the dates when the work is performed, as illustrated in the specimen notes annexed. They are to state and describe particularly
the meander corner from which they commenced, and each one upon which they close, and are to exhibit the meanders of each fractional section separately; following, and composing a part of such notes, will be given a description of the land, timber, depth of inuudation to which the bottom is subject, and the banks, current, and bottom of the stream or body of water you are meandering. The utmost care must be taken to pass no object of topography, or change 'therein, without giving a particular description thereof in its proper place in your meander notes.

SURVEYING.

Initial points from which the lines of the public surveys are to be extendel must be established whenever necessary under such special instructions as may be prescribed in each case by the Commissioner of the General Land Office. The locus of such initial points must be selected with great care and due consideration for their prominence and easy identification, and must be established astronomically.

The initial point having been established, the lines of the public surveys are to be extended therefrom as follows:

BASE LINE.

The base line shall be extended east and west from the initial point by the use of solar instruments or transits, as may be directed by the survegor-general, in his special written instructions. The transit should be designated for the alignment of all important lines. Where solar instruments are used the deputy must test said instruments in every 12 miles of line run by observation on the polar star; and in all cases where he has reason to suppose that said instrument is in error, he must take an observation on the polar star, and if error be found, must make the necessary corrections before proceeding with his survey. The proper corners shall be established at each 40 and 80 chains, and at the intersection of the line with rivers, lakes, or bayons that should be meandered, in accordance with the instructions for the establishment of coruers. In order to check errors in measurement, two sets of chainmen, operating independently of each other, must be employed.

Where transits are used, the line will be ruu by setting off at the point of departure on the principal meridian* a tangent to the parallel of latitude, which will be a line falling at right angies to said meridian. The line thus determined will be prolonged by two back and two fore sights at each setting of the instrument, turning the horizontal limb 180° in azimuth between the observations. The survey will be continued on this line for twelve (12) miles, \ddagger but the corners will be established at the proper points by offisets northerly from said line, at the end of each half mile. In order to offset correctly from the tangent to the parallel, the deputy will be guided by the tables of offsets and azimuths contained in this volumet. As the azimuth of the tangent is shown, the angle thence to the true meridian at each mile is readily found, thus indicating the direction of the offset line. The computations are made for a distance of 12 miles, at the end of which observations on the polar star must be taken for the projection of a new tangent. The computations are also upon whole degrees of latitnde; offsets for intervening parallels can be readily determined by interpolation. Where offset distances to quarter-section corners exceed 50 links, their direction to the parallel can be determined in like manner by interpolation for azimuth.

[^10]Where said distances are less than 50 links interpolations for determining directions will not be required.

PRINCIPAL MERIDIAN.

The principal meridian shall be extended north and south from the initial point, by the use of solar instruments or transits, as may be directed by the surveyor general in his special written instructious. Where solar instrumeuts are used, the line will be run in the same manner as prescribed for running the base line by solar instruments. Where transits are used, observations upon the polar star must be taken within each 12 miles of line run. In addition to the above general instructions, it is required that in all cases where the establishment of a new principal meridian seems to be necessary to the surveyor-general, he shall snbmit the matter, together with his reasons therefor, to the Commissioner of the General Land Office, and the survey of such principal meridian shall not be commenced until written authority, together with such special instructions as he may deem necessary, shall have been received from the Commissioner. Two set of chainmen, operating independently of each other, must be employed.

STANDARD PARALLELS.

Standard parallels, which are also called correction lines, shall be extended east and west from the principal meridian, at intervals of every 24 miles north and south of the base line, in the same manner as prescribed for ranning the base line, and two sets of chainmen must be employed.

GUIDE MERIDIANS.

Guide meridiaus shall be extended north and south from the base line, at intervals of every 24 miles east and west from the principal meridian, in the same manner as prescribed for running the principal meridian, and two sets of chainmen must be employed.

It is contemplated that these base, principal meridian, standard, and guide meridian lines shall first be extended over the territory to be surveyed, and that afterwards township and section lines shall be run, where needed, within these tracts of 24 miles square, formed by the extension of these principal lines; and each surveyor-general will therefore cause said principal lines to be extended as rapidly as practicable.

Paragraph 5, "System of rectangular surveying,"" declares that the object of running standard parallels and guide meridians is "to confine the errors resulting from convergency of meridians, and inaccuracies in measurement, within the tracts of lands bounded by the lines so established."
As the convergency is rapidly increased in the higher latitudes and resulting inaccuracies developed in about the same proportion, it would seem to be consistent with the spirit of the above paragraph to so contract the blocks of 24 miles square, by diminishing either the distances between correction lines, or by reducing the interval between guide meridians, or by using both contractions simultaneously, as to confine convergency errors, as near as practicable, to a uniform amount.

Unfortunately, guide meridians have been so irregularly spaced in the several surveying districts, in some cases exceeding the authorized 24 miles by three times its amount or even more, that any attempt to provide a general rule for use in all parts of the country would

[^11]probably result in failure to correct existing irregularities and help still further to increase the present confusion.

Therefore, the only thing that can be done is to reiterate the above directions limiting the tracts bounded by guide meridians and standard parallels to 24 miles square and direct, that in future, compliance with the above requirement will be insisted upon.

EXTERIORS OR TOWNSHIP LINES.

The east and west boundaries of townships are always to be run from south to north on a true meridian line; and the north and south boundaries are to be run from east to west, or from west to east (according to the location of the township to be surveyed with reference to prior surveys), on a random or trial line and corrected back on a true line. The distance north or south of the township corner to be closed upon, from the point of intersection of these random lines with the east or west boundary of the township, must be carefully measured and noted. Should it happen, however, that such random line should fall short, or overrun in length, or intersect the cast or west boundary more than three chains' distance from the township corner thereon, ascompared with the corresponding boundary on the south (due allowance being made for convergency), the line, and if necessary the entire exterior boundaries of the township, must be retraced, so as to discover and correct the error. In running random lines temporary corners are to be set at each 40 and 80 chains, and permanent corwers established upon the true line as corrected back, in accordance with instructions, throwing the excess or deficiency on the west half mile, as prescribed by law. Permanent corners are to be established in accordance with instructions on the east and west township boundaries at the time they are run. Whenever practicable the township lines within these tracts of 24 miles square must be surveyed in regnlar order from south to north, i.e., the exterior boundaries of the township in any one range lying immediately north of the south boundary of such tract of 24 miles square must first be surveyed, and the exteriors of the other three townships in said range extended therefrom, in regular order from south to north, and it is preferable to first survey the entire range of townships in such tract adjoining the east boundary or adjoining the west boundary, and the other three ranges in regular sequence. In cases, however, where the character of the land is such that this rnle caunot be complied with, the following will be observed:

In extending the south or north boundaries of a township to the west, where the southwest or northwest corners cannot be established in the regular way by running a north and south line, such boundaries will be run west on a true line, allowing for convergency on the west half mile; and from the township corner established at the end of such boundary, the west boundary will be run north or south, as the case may be. In extending south or north boundaries of a township to the east, where the southeast or northeast corner cannot be established in the regular way, the same rule will be observed, except that such boundaries will be run east on a true line, and the east boundary run north or south, as the case may be. One set of chainmen oniy is required in running township lines.

METHOD OF SUBDIVIDING.

1. The variation is to be found by observations on Polaris taken at or near the S. E. corner of the township. The first mile, both of the
south and east boundaries of each township you are required to subdivide, is to be carefully traced and measured before you enter upon the subdivision thereof. This will enable you to observe any errors that may have been made in former surveys either in direction or length of the lines and will also enable you to compare your chaining with that upon the township boundaries.
2. Any discrepancy arising either from a disagreement of bearings or a difference in measurement, is to be carefully noted in the field-notes. In this article the term "bearing" is to be construed to mean the true bearing or angle made with the true meridian.
3. After adjusting your compass to the variation which you have determined by observation, you will commence at the corner to sections 35 and 36 , on the south boundary, and run a line northwardly with the true bearing of the range line, forty chains, to the quarter-section corner, which you are to establish between sections 35 and 36 ; contmuing on said course forty chains farther, you will establish the corner to sections $25,26,35$, and 36 .
4. From the section corner last named run a random line, without blazing, parallel to the south boundary of section 36, for the corner of sections 85 and 36, on east boundary, and at forty chains from the starting point set a post for temporary quarter-section corner. If you intersect exactly at the corner, yon will blaze your random line back, and establish it as the true line; but if your random line intersects the said east boundary, either north or south of said corner, you will measure the distance of such intersection, from which you will calculate a course that will run a true line back to the corner from which your random started. Yon will establish the permanent quarter-section corner at a point equidistant from the two terminations of the true line.
5. From the corner of sections $25,26,35$, and 36 , run northwardly with the true bearing of the range line between sections 25 and 26 , setting the quarter-section post as before, at forty chains, and at eighty chains establishing the corner of sections $23,24,25$, and 26 . Then run a random parallel to the south boundary of section 36 for the corner of sections 24 and 25 on east boundary; setting temporary quarter-section post at forty chains; correcting back, and establishing permanent quarter-section corner at the equidistant point on the true line, in the manner directed on the line between sectious 25 and 36 .
6. In this manner you will proceed with the survey of each successive section in the first tier, until you arrive at the north boundary of the township, which you will reach in running up a random line between sec. tions 1 and 2, with the true bearing of the range line, setting the temporary quarter section corner at forty chains from the interior section corner so as to throw the excess or deficiency of measurement on the quartersections adjoining the north boundary of the township. If this random line should not intersect at the corner established for sections 1 , 2,35 , and 36 , upon the township line, you will note the distance that you fall east or west of the same, from which distance you will calculate a course that will run a true line to the corner from which your random started, on which line rou will establish the permanent quartersection corner. If the north boundary of a township is a base ir standard line, the line between sections 1 and 2 is to be run with the true bear. ing of the range line as a true line, and the closing corner established at the point of intersection with sach base or standard line; and in such case the distance from said closing corner to the nearest standard corner on such base or standard line must be carefnlly measured and noted as a connection line.
7. In like manner proceed with the survey of each successive tier of sections, until you arrive at the fifth tier; and from each section corner which you establish upon the west boundary of this tier you are to run random lines parallel to the south boundary of scction 31, towards the corresponding corners established upon the range line forming the western boundary of the township; setting, as sou proceed, each temporary quarter-section corner at forty chains from the interior section corner, so as to throw the excess or deficiency of measnrement on the extreme tier of quarter sections contiguous to the township boundary; and on returning establish the true line, and establish thereon the permanent quarter-section corner. The random of an east and west section line must always be run parallel to the south boundary of the tier of sections to which it belongs and with the true bearing of said boundary.
8. It is not required that the deputy shall complete the survey of the first tier of sections from south to north, before commencing the survey of the second or any subsequent tier, but the corner on which the random line closes must have been previously established br running the line which determiues its position, except as follows: Where it is impracticable to establish such section corner in the regular manner it may be established by running the east and west line as a true line, with a true bearing, determined as above directed for random lines, setting the quarter-section corner at 40 chains and the section corner at 80 chains.
9. Quarter-section corners, both upon north and south and upon east and west lines, are to be established at a point equidistant trom the corresponding section corners, except upon the lines closing on the north and west boundaries of the township, and in those situations the quartersection corners will always be established at precisely forty chains to the north or west (as the case may be) of the respective section corners from which those lines respectively start, by which procedure the excess or deficiency in the measurements will be thrown, according to law, on the extreme tier of quarter sections.

If, in the subdivision of part of a township, the lands to be surveyed can not be reached by lines extending from the south boundary of the township, a line corresponding to the south boundary of the same shall be extended from some section corner on the east boundary of the township to the west boundary thereof, in order that it may constitute the south boundary of the surveyable area; from which subdivisional meridiau lines will be projected northward, and the surveys carried forward in the same manner as for the sulbdivision of a fuil township, in order that regular and fractional areas shall occupy their true and legal positions.

Fragmentary portions of surveyable lands lying south of the provisional base last described may be included in the survey by extending lines southioardly from the same in harmony with the general system.

When the proper point for the establishment of a section corner is inaccessible, and a witness monument can be erected upon each of the two lines which approach the same at distances not exceeding twenty chains therefrom, the quarter-sections depending thereon will be disposed of in the same manner as if the corner had beeu regularly establishèd.

The witness monument must be marked as conspicuously as a section corner, and bearing trees used wherever possible.

The deputy will be required to furnish good evidence that the section corver is actually inaccessible.

1. Every north-and-south section line, except those terminating in the north boundary of the township, must be cighty chains in length.
2. The east-and-west section lines, except those terminating in the west boundary of the township, are to be within eighty links of the actual distance established on the south boundary line of the township for the width of said tier of sections, and must close within fifty links north or south of the section corner.
3. The north boundary and south boundary of any one section, except in the extreme western tier, are to be within eighty links of equal length.
4. The meanders within each fractional section, or between any two meander posts, or of an island in the interior of a section, must close within a limit determined by allowing five-eighths of a link for each chain of said meander line when less than 80 chains in leingth. When the meander line is more than 80 chains in length the closing error must in no case exceed 150 links.
5. In running random township extcriors, if such random lines fall short or overrun in length, or intersect the eastern or western boundary, as the case may be, of the township, at more than three chains worth or south of the true corner, the lines must be retraced, even if found necessary to remeasure the meridional boundaries of the township. One set of chainmen only is required in subdividing.

RETRACING TOWNSHIP LINES AND BOUNDARIES OF PRIVATE LAND Claims.

If, in subdividing a township, it is found that the exterior boundaries have been improperly run, measured, or marked, or the corners established thereon have been obliterated, the deputy will resurvey so much of said exterior boundaries as may be necessary, and establish new corners upon same wherever necessary. Where no subdivisions have been made on either side of a township boundary, it will be corrected, if necessary, in point of alignment as well as measurement, by establishing the section corners at lawful distauces from the south or east boundaries of the township (as the case may be), and upon a right line extending between the township corners; and in such case, the old corners on said township boundaries will be destroyed.

Where subdivisional lines have been closed upon a township boundary in advance of the preliminary survey of the same, its alignment will not be changed. If it is found necessary to establish new corners on such boundary they will receive only the marks referring to the sections in the township being subdivided, and the marks on the old corners on such boundary, which refer to such sections, will be obliterated.

In all cases such necessary corrections will be made as will place the section corners at the aforesaid lawful distances from the south or east boundary, in order that a legal subdivision of the township may be made, and where new corners are thus necessarily established, the distance and direction between new and old corners must be carefully noted.

New corners on township boundaries must be established by a survey of such lines, gud in no case will such corners be established from data acquired in running lines closing on such boundaries. One set of chainmen, only, is required in retracing township lines.

When township or subdivision lines intersect the boundaries of confirmed private land claims, the latter must be retraced so far as may be necessary to establish the corners to the fractional sections at their
proper places, and such corners must be established, in all respects, like meauder corners, except that instead of the letters "M. C." the letters used to desiguate snch private land claim must be marked on corners. In retracing the boundary of such claim the deputy must set stakes thereon, it each forty chains, where the ground is level, and on broken ground, at every spur, ridge, or other prominent point, and also at each angle formed by a change in the direction of such boundary.

SPECIAL INSTRUCTIONS ISSUED DY UNITED STATES SURVEYORS•GENERAL TO UNINED STATES DEPUTY SURVEYORS.

One of the most important duties to be performed by the surveyorgeneral, is to provide the depaty surveyor with Special Instructions, in connection with the contract, prepared in accordance with law, which instructions are not to be limited to calling attention to certain paragraphs in this Manual; reiteration of its requirements and in providing the deputy with a printed copy of directions of a general nature; but they must, in all cases, and particularly for the survey of exteriors, be specific in character, with all necessary detailed statements setting forth w hat the deputy is to do and how the work is to be performed. Before making out special instructions, the survegor-general will canse a thorough examination to be made of the field notes and plats of older survers of standard and township lines upon which the depaty is to base his work, and give him fill information-both written and graphicof the exact condition of adjoining surveys, with all irregularities that may be found, carefully and clearly noted, with all necessary instructions for his guidance if he finds everything as it should be, and, in addition, advise him, so tiar as he can, what to do in case the surveys on the ground are not as represented in the old notes.

If the contract includes exterior lines, the surveyor-general will specify in detail where the depaty is to commence, in what order and in what direction he is to run the lines, inform him how much convergency to use, and provide for his use a diagram, giving full and accurate information in regard to lengths and bearings of all lines of old surveys, from which be is to work, or upon which be is to close. The diagrams will be made in triplicate, one copy for the General Land Office, one for the deputy, and one to be retained. They may be either original drawings, blue prints, or tracings. In no case must the deputy be sent into the field without full and accurate information in regard to all iregularities which will in any manner affect the extent or acouraoy of his survey.

FIELD NOTES.

The proper blank books for field notes will be furnished by the surveyor general, and in such books the deputy surveyor must make a faithful, distinct, and minute record of everything officially done and observed by himself and his assistants, pursuant to instructions, in relation to running, measuring, and marking lines, establishing corners, etc., aud present, as far as possible, a full and complete topographical description of the country surveyed.

From the data thus recorded at the time when the work is done ou the ground, the deputy must prepare true field notes of the surveys executed by him, in the manner hereinafter prescribed, and return same to the surveyor-general, together with the required sketches, at the earliest practicable date after the completion of his work in the field.

The true field notes are in no casc to be made out in the office of the sur-veyor-general.

The field notes of the survey of base, meridiau, standard, exterior,
and subdivision lines are each to be written in separate books. The subdivisions of each township will form one book. No adhesive material of any lind will be used to fasten the leaves or covers.

The first, or title page of each field-note book is to describe the subject matter of the same, the locus of the survey, by whom survered, date of contract, and the dates of commencement and completion of the work. The second page is to contain the names and duties of the assistants, and the index is to be placed on same or following page. Whenever a new assistant is employed, or the duties of any one of them changed, such facts are to be stated in an appropriate entry immediately preceding the notes taken under such changed arrangements.

The exhibition of every mile of surveying, whether on township, or subdivisional lines, and of meanders in each section, most be complete in itself, and be separated by a black line drawn across the paper.

The change in the variation, if any is observed, the hour of the day and cause of the change will be stated at the commencement of every line run.

The variation of the needle must always occupy a separate line preceding the notes of measurements on line.
The description of the surface, soil, minerals, timber, andergrowth, etc., on each mile of line, is to follow the notes of survey of such line, and not be mixed up with them.
The date of each day's work must follow immediately after the notes thereof.
No abbreviations of words are allowable, except of such words as are constantly occurring, such as "sec." for "section"; "in. diam." for "inches diameter"; "chs." for "chains"; "lks." for "links"; "dist." for "distant"; "交 sec. cor." for "quarter-section corner"; "va." for " cariation," etc.; for 14 inches long, 12 inches wide, and 3 inches thick, in describing a corner stone, use $14 \times 12 \times 3$, being particular to always observe the same order of length, width, and thickness. Proper names must never be abbreviated, however often their recurrence.

When the lines of survey cross hills or ravines, the height or depth of same, in feet, must be noted as nearly as practicable.
The corners established in previous surveys, from which the lines start, or upon which they close, must be fully described in the field notes. A full description of such corners will in all cases be furnished the depaty from the surveyor-general's office at the date authority is given for commencing work.
In all cases where a corner is re-established the field notes must describe fully the manner in which it is done.
Field notes of the survey of base, standard, and meridian lines must describe all corners established thereon, how established, the crossings of streams, ravines, hills, and mountains; character of soil, timber, minerals, etc.; and after the description of each township corner established in running such lines, the deputy will note particularly in the "general description " the townships ou each side of the lines ran.

Field notes of the survey of exterior boundaries of townships must describe the corners and topography, as above required, and the "general description" at the end of such notes must describe the townships as fully as may be, and also state whether or not they should be subdivided.

Near the end of his field notes and immediately before the "general description," the deputy surveyor will add, in form similar to that shown in specimen field notes, No. 3, a tabular statement of the latitude aud departure of each boundary line of the township, taken from a traverse table, giving the totals and errors in latitude and departare,
which must in no case exceed the "preseribed limits for closings" contained in this manual.* If a part or the whole of one or more of the boundaries is made up of meander lines, \uparrow the total northings, southings, eastings and westings of such lines will take the place of the missing N. and S. or E. and W. lines, so as to present the total errors of the township boundaries, considered as a closed survey. If all the exterior lines have been surveyed by the deputy, the bearings and distances for the table will be taken from his own notes. In a case where some of the boundaries have been surveyed under an older contract, the deputy will use the bearings and distances supplied by the Surveyor General in connection with his own lines, and if the errors exceed the allowance defined in paragraphs 4 and 5 of the "prescribed limits," he will determine where the error occurs, correct the same before he leaves the field, and place the table in his field note book. This requirement is made necessary by the frequent occurrence of errors in the exterior lines, of which nothing is known in this office until after the township has been subdivided and the returns taken up for examination and settlement of the acconnt, and then much correspondence and delay results in injury to the service and sometimes in trouble for settlers.

Field notes of the subdivisional survey of townships must describe the corners and topography as above required, and the "general deseription" at the end of such notes must state minutely the character of the land, soil, timber, etc., found in such townships.

The topography must be given on the true line in all cases, and must be taken correctly, not estimated or approximated.

A blank line must be left at the bottom of each page of the field notes, and the notes must be written in a plain, legible hand, and in clear and precise language, so that the figures, letters, words, and meaning will always be unmistakable, and erasures and interlineations avoided, as far as possible.

With the notes of the survey of principal lines forming a tract of 24 miles square the depnty will submit a plat of the lines run on a scale of one-half inch to the mile, and with the notes of survey of the exterior lines of townships a plat of the lines run on the seale of two inches to the mile, on which are to be noted all the objects of topography on line necessary to illustrate the notes, viz, the distance on line at the crossings of streams, so far as such can be noted on the paper, and the directiou of each by an arrow-head pointing down stream; also, the intersection of line by prairies, marshes, swamps, ravines, ponds, lakes, hills, mountains, and all other matters indicated by the notes, to the fullest extent practicable.

With the instructions for making subdivisional surveys of townships into sections, the deputy will be furnished by the surveyor-general with a diagram of the exterior lines previonsly established of the townships to be subdivided (on the above-named scale), upon which are carefully to be laid down the measurements of each of the lines on such bonndaries whereon he is to close, and the magnetic variation of each mile. And on such diagram the deputy who subdivides will make appropriate sketches of the various objects of topography as they occur on his lines, so as to exhibit not only the points on line at which the same occur, but also the direction and position of each between the lines, or within each section, as far as practicable, so that every object of topography may be properly completed or connected in the showing.

[^12]SUMMARY OF OBJEGTS AND DATA REQUIRED TO BE NOTED.

1. The precise length of every line rum, noting all necessary offsets therefrom, with the reason and morle thereof.
2. The kind and diameter of all "bearing trees," with the course and distance of the same from their respective corners; and the precise relative position of WITNESS CORNERS to the true corners.
3. The kind of materials of which corners are constructed.
4. Trees on line. The name, diameter, and distance on live to all trees which it intersects.
5. Intersections by line of lanỉ objects. The distance at which the line firstintersects and then leaves every settler's claim and improvement ; prairie, river, creek, or other "bottom ;" or swamp, marsh, grove, and wind-fall, with the course of the same at both points of intersection; also the distances at which you begin to ascend, arrive at the top, begin to descend, and reach the foot of all remarkable hills and ridges, with their courses, and estimated height, in feet, above the level land of the surrounding country, or above the bottom lands, ravines, or waters near which they are situated.
6. Intersections by line of water objects. All rivers, creeks, and smaller streams of water which the line crosses; the distances on line at the points of intersection, and their widths on line. In cases of navigable streams, their width will be ascertaincd between the meander corners, as set forth under the proper head.
7. The land's surface-whether level, rolling, broken, or hilly.
8. The soil-whether first, second, third, or fourth rate.
9. Timber-the several kinds of timber and undergrowth, in the order in which they predominate.
10. Bottom lands-to be described as wet or dry, and if subject to inundation, state to what depth.
11. Springs of unter-whether fresh, saline, ar mineral, with the conrse of the strean flowing from them.
12. Lakes and ponds-describing their banks and giving their height, and also depth of water, and whether it be pure or stagnant.
13. Improvements. Towns and villages; houses or cabins; fields, or other improvements; sugar-tree groves, sugar camps, mill seats, forges, and factories. To be located by bearing and distance or intersecting bearings from given points.
14. Coal banks or beds; peat or turf grounds; minerals and ores; with particular description of the same as to quality and extent, and all dig gings therefor ; also salt springs and licks. All reliable information you can obtain respecting these objects, whether they be on your immediate line or not, is to appear on the general description to be given at the end of the notes.
15. Roads and trails, with their directions, whence and whither.
16. Rapids, cataracts, cascades, or falls of water, with tine estimated height of their fall in feet.
17. Precipices, caves, sink holes, ravines, stone quarries, ledges of rocks, with the kind of stone they afford.
18. Natural curiosities, interesting fossils, petrifications, organic remains, etc.; also all ancient works of art, such as mounds, fortifications, embankments, ditches, or objects of like nature.
19. The variation of the needle must be noted at all points or places on the lines where there is found any material change of variation, and the position of such points must be perfectly identitied in the notes.
20. Besides the ordinary notes taken on line (and which must always be written down on the spot, leaving nothing to be supplied bs mem-
ory), the deputy will subjoin, at the conclusion of his book, such further description or information touching any matter or thing connected with the township (or other survey) which he may be able to afford, and may deem useful or necessary to be known-with a general description of the township in the aggregate, as respects the face of the country, its soil and geological features, timber, minerals, waters, etc.

Following the "general description" of the township is to be " A list of the names of the individuals employed to assist in running, measuring, and marking the lines and corners described in the forgoing field notes of township No. - of the base line of range No. -_ of the -_. MERIDIAN, showing the respective capacities in which they acted."

AFFIDAVITS TO FIELD NOTES.

The following are the forms of official oaths to be taken by deputy surveyors and their assistants. The original oaths are to be affixed to the true field notes returned to the surveyor-general by the deputy surveyor; the preliminary oaths being placed immediately after the index of the first book, and the final oaths at the end of the last book of tield notes of the surveys to which they refer :

PRELIMINARY OATHS OF ASSISTANTS.

We, _._._ and ___ do solemnly swear that we will well and faithfully execute the duties of chain-carriers; that we will level the chain upon even and uneven ground and plumb the tally pins, either by sticking or dropping the same; that we will report the true distance to all notable objects, and the true length of all lines that we assist in measuring, to the best of our skill and ability, and in accordance with instructions given us, in the survey of the _-_ .

We, __ aud ___ do solemnly swear that we will well and truly perform the duties of axemen, in the establishmeat of corners and other duties, according to instructions given us, and to the best of our skill and ability, in the survey of

I, _._ do solemnly swear that I will well and truly perform the duties of flagman, according to instructions given me, to the best of my skill and ability, in the survey of

FINAL OATHS FOR SURVEYS.

List of names.

A list of the names of the individuals employed by —————United States deputy surveyor, to assist in running, measuring, and marking the lines and corners described in the foregoing field notes of the survey of ———, showing the respective capacities in which they acted.

FINAL OATHS OF ASSISTANTS.

We bereby certify that we assisted ___ United States deputy surveyor, in surveying all those parts or portions of the - of the _- base and meridian, - of -- as are represented in the foregong field notes as having been surveyed by him and under his direction; and that said survey has been in-ail respects, to the best of our knowledge and belief, well and faithfully surveyed, and the corner monuments established according to the instructions furnished by the United States surveyor-general for
——.

Subscribed and sworn to before me this __ day of ___, 18-.

FINAL OATH OF UNITED STATES DEPUTY SURVEYOR.

I, __———United States deputy surveyor, do solemnly swear that in puisuance of instructions received from - ——, Uuited States surveyor-general for ——, bearing date of the __ day of _, 18-, I have well, faithfully, and truly, in my owu proper person, and in strict conformity with the instruction furnished by the United States surveyor-general for -_, the surveying manual, and the laws of the United States, sarveycd all those parts or portions of of the base and - meridian in the of _- as are represented in the foregoing field notes as having been surveyed by me and under my directions; and I do further solemnly swear that all the corners of said survey have been established and perpetnated in strict accordance with the surveying manual, printed instructions, the special written idstructions of the United States surveyor-general for ——, and in the specific manner described in the field notes, and that the foregoing are the true field notes of such survey; and should any fraud be detected, I will suffer the penalty of perjury, under the provisions of an act of Congress approved August 8, 1846.

United States Deputy Surveyor.

Subscribed by said _—_ depaty surveyor, and sworn to before methis _ _ day of --, 18-.

$$
\text { U. S. Surveyor-Gencral for }-
$$

The final oath of the deputy surveyor must, in all cases, be taken before the U. S. Surveyor-General for the State or Territory in which the survey is executed. Before the above final oath is administered to the deputy surveyor, the surveyor-general will make snch personal examination of the notes taken in the field and such general investigation of the returns as he may consider necessary to fully assure himself that all the observations for determination of the true meridian and variation and the tabular statement of closing errors, when one is required, are actually contained in the original notes taken by the deputy on the ground, and that his contract and special instructions have been complied with in every particular. It is preferable that all oaths-both preliminary and final-of assistants sbould be taken before some officer duly authorized to administer oaths other than the deputy surreyor. In cases, however, where great delay, expense, or inconvenience would result from a strict compliance with this rule, the deputy surveyor is authorized to administer the necessary oaths to his assistants, but in each case where this is done he must submit a full written report to the proper surveyor general of the circumstances of such case.

To enable the deputy surveyor to fully understand and appreciate the responsibility under which he is acting, his attention in invited to the
provisions of the second section of the act of Congress approved August 8,1846 , entitled "An act to equalize the compensation of the sur-veyors-general of the public lands of the United States, and for other purposes," and which is as follows:
"Sec. 2. That the surveyors-general of the public lands of the United States, in addition to the oath now authorized by law to be administered to deputies on their appointment to office, shall require each of their deputies, on the return of his surveys, to take and subscribe an oath or aftirmation that those surveys bave been faithfully and correctly executed according to law and the instructions of the surveyor-geveral; and on satisfactory evidence being presented to any court of competent jurisdiction that such surveys, or any part thereof, had not been thus executed, the deputy making such false oath or affirmation shall be deemed guilty of perjury, and shall suffer all the pains and penalties attached to that offense; and the district attorney of the United States for the time being in whose district any such false, erroneous, or frandulent surveys shall have been executed, shall, upon the application of the proper surveyor-general, immediately institute snit upon the bond of such deputy; and the institution of such suitshall act as a lien upon any property owned or held by such deputy, or his sureties, at the time such suit was instituted."

SPECIMEN FIELD NOTES AND PLATS.

Diagram B illustrates the method of laying off tracts of land 24 miles square, as nearly as practicable, by the survey of principal lines, and the survey of exteriors or township lines within such tracts, north of the base line and east of the principal meridian. The same general principles will apply equally to the survey of such tracts differently located with reference to the initial point. The topography noted on said diagram is on those portions of the lines of surveys for which specimen field notes are given.
Diagram O illustrates the method of laying off a township into sections and quarter sections. In the subdivision of townships lying south of and contiguous to the base line, or to any standard parallel, the lines between the sections of the northern tier will be run with the true bearing of the east boundary of the township as true lines; quarter-section corners will be established at 40 chains, closing section corners will be established at the points of intersection of such lines with the base or standard lines (as the case may be), and the course and distance from such corners to the nearest standard corner upon the line closed upou are to be accurately ascertained and set down in the field notes.

Diagram D illustrates the mode of establishing stone, post, and mound corners for townships, sections, and quarter sections.

Specimen field notes Nos. 1, 2, 3, 4, and 5 illustrate, respectively, the mode and order of surveying standard lines, meridian lines, exteriors or township liues, resurveying exteriors or township lines, and subdividing a township into sections and quarter sections. The attention of the deputy is particularly directed to these specimens, as indicating not only the method in which his work is to be conducted, but also the order, manner, language, etc., in which his field notes are required to be returued to the surveyor general's office; and such specimens are to be deemed part of these instructions, and any departure from their details, without special anthority, in cases where the circumstances are
analogous in practice, will be regarded as a violation of his contract and oath.
The subdivisions of fractional sections into the 40 acre lots (as near as may be) are to be so laid down on the official township plat in broken black lines as to admit of giving to each a specitic designation, if possible, according to its relative position in the fractional section, as per example afforded by Diagram C, as well as by a number, in all cases where the lot can not properly be designated as a quarter-quarter. Those fractional subdivision lots which are not susceptible of being described according to relative local position, are to be numbered in regular series; those bordering on the north boundary of a township to be numbered progressively from east to west, and those bordering on the west boundary of a township to be numbered progressively from north to south, in each section. As section 6 borders on both the north and west boundaries of the township, the fractional lots in the same will be numbered as follows: Commencing with No. 1 in the northeast, thence progressively west to No. 4 in the northwest, and south to No. 7 in the southwest corner of the section.
In numbering fractional lots, other than those above specified (wherever practicable and as a general rule), the series should commence with No. 1 in the northeastern or the most easterly fractional lot, and continue from east to west, and west to east, alternately, to the end of the series, as shown in Diagram C; bnt such general rule is departed from under circumstances given as examples in said diagram.

Interior lots are to be, as nearly as possible, 20 chains long by 20 chains wide; and the excess or deticiency of measurement is always to be thrown on the lots bordering on the northern and western boundaries of the township, or those made fractional by meander lines.

The official township plat to be returned to the General Land Office is to show on its face, on the right-hand margin, the meanders of navigable streams, islands, and lakes. Such details are wanted in the adjustment of the surveying accounts, but may be omitted in the copy of the township plat to be furnished to the district land office by the surveyor general. A suitable margin for binding is to be preserved on the left-hand side of each plat. Each plat is to be certified, with table an' nexed, according to the forms subjoined to "Diagram O," and is to show the areas of public land, of private surveys, and of water, with the aggregate area as shown on the diagram.

Each township plat is to be prepared in triplicate: one for the General Land Office, one for the United States district land office, and the third to be retained as the record in the office of the survejor-general.
The plat for the local land office must not be forwarded until notice is received by the surveyor-general from the Commissioner of the General Land Office that the survey represented on said plat has been accepted, and that he is authorized to file the triplicate plat.

The plats must be prepared as nearly as possible in accordance with the specimen plat designated as "Diagram C." The use of all fluids, except a preparation of India ink of good quality, must be avoided by the draughtsman in delineations relating to the public surveys. Alllines, figures, etc., must be sharply defined. All lettering on the plats must be clear and sharp in outline and design, and ornamentation of any kind is prohibited. These requirements are ne'cessary in order that everything shown upon original plats may be fairly reproduced in making photolithographic copies of the same.

All towns, settlements, permanent buildings, private claims, reservations, water courses, ditches, lakes, islands, mountains, buttes, caũons,
roads, railroads, telegraph lines, canals, etc., will be shown upon the plats and designated by proper names where such are known.

The true meridian and declination of the magnetic needle, or variation of the compass, must be determiued, by observation on Polaris, at or near the southeast corner of the township, or at the point where the survey begins. The mean local time of observation and ail particulars will be stated in the field notes. In all cases the mean declination will be the value to insert in the tabular statement (See Diagram C), below the plat. A table will be found in this maual* for reducing the observed to the mean declination. If the observation is taken away from the corner, the point must be so counected with the township line as to defiue its exact direction with reference to the true meridian. For the above determination the surveyor may use any one of methods herein described.

All township plats are to be drawn to a uniform scale of 40 chains to 1 inch, United States standard, and diagrams of exteriors to a scale of 160 chains to 1 inch.

Surveyors-general will require that the specimen plat shall be closely followed in order that uniformity of appearance and expression of drawings representing the public land surveys may be attained.

The true field books, each bearing the written approval of the surveyorgeneral, are to be substantially bound into volnmes of suitable size, and retained in the surveyor-general's office, and certified transcripts of such field books (to be of foolscap size) are to be prepared and forwarded, from time to time, to the General Land Office.

All transcripts of survers, made out as described under the head "Field Notes," must be written in a hold, legible hand, with durable black ink, and such transcripts of any series of surveys included in one account forwarded to the General Land Office must be securely put up in one package, but not fastened together, at the office of the surveyorgeneral prior to transmittal.

With the copy of each township plat furnished to a district land office, the surveyor-general is reqnired by law to furuish descriptive notes as to the character and quality of the soil and timber found ou and in the vicinity of each surveyed line, and giving a description of each conner.

Printed blank forms for such notes will be furnished by the General Land Uffice. The forms provide eighteen spaces for meander corners, which, in most cases, will be sufficient; but when the number shall exceed eighteen, the residue will have to be inserted on the face of the township plat, to be furnished to the register of the district land office, or on the supplemental blank form.

There is shown a series of meander corners on Diagram C, viz, from No. 1 to No 12 on the river and islaud, No. 1 to No. 5 on Lin's Lake, and No. 1 to No. 2 ou small lake in Sec. 33.

GEOGRAPHICAL POSITIONS OF BASE-LINES AND PRINCIPAL MERIDIANS GOVERNING THE PUBLIC SURVEYS.
Since the adoption of the rectangular system of public surveys, May 20,1785 , twenty-four initial poiuts, or the intersection of the principal bases with surveying meridians, have been brought into requisition to secure the certainty and brevity of description in the transfer of public lands to individual ownership. From the principal bases townships of six miles square are run out and established, with regular series of numbers counting north and soith thereof, and from

[^13]the sarveying meridians a like series of ranges are numbered both east and west of the principal meridians.
During the period of ninety years since the organization of the system the following numerical and independent principal meridians and bases have been initiated, to wit:

The first principal meridian divides the States of Ohio and Indiana, having for its base the Ohio River, the meridian being coincident with $84^{\circ} 51^{\prime}$ of longitude west from Greenwich. The meridian governs the surveys of public lands in the State of Ohio.

The second principal meridian coincides with $86^{\circ} 28^{\prime}$ of longitude west from Greenwich, starts from the confuence of the Little Blue River with the Ohio, runs north to the northern boundary of Indiana, and governs the surveys in Indiana and a portion of those in Illiuois.

The third principal meridian starts from the mouth of the Ohio River and extends to the northern boundary of the State of Illinois, and governs the surveys in said State east of the meridian, with the exception of those projected from the second meridian, and the surveys on the west to the Illinois River. This meridian coincides with $89^{\circ} 10^{\prime} 30^{\prime \prime}$ of longitude west from Greenwich.

The fourth principal meridian begins in the middle of the channel of the mouth of the Illinois River, in latitude $38^{\circ} 58^{\prime} 12^{\prime \prime}$ north and longitude $90^{\circ} 2 y^{\prime} 56^{\prime \prime}$ west from Greenwich, and governs the surveys in Illinois west of the llinois River and west of the third principal meridian lying north of the river. It also extends due north throngh Wisconsin and northeastern Minnesota, governing all the surveys in the former and those in the latter State lying east of the Mississippi and the third guide meridian (west of the fifth principal meridian) north of the river.

The fifth principal meridian starts from the mouth of the Arkansas River, and, with a common base-line running due west from the mouth of the Saint Francis River, in Arkansas, governs the surveys in Arkansas, Missouri, Iowa, Minnesota west of the Mississippi, and the third guide meridian north of the river, and in Dakota Territory east of the Missouri River. This meridian is coincident with $90^{\circ} 58^{\prime}$ longitude west from Greenwich.

The sixth principal meridian coincides with longitude $97 \circ 22^{\prime}$ west from Greenwich, and, with the principal base line intersecting it on the 40th degree of north latitude, extends north to the intersection of the Missouri River and south to the 37th degree of north latitude, controlling the surveys in Kansas, Nebraska, that part of Dakota lying south and west of the Missouri River, Wyoming, and Colorado, excepting the valley of the Rio Grande del Norte, in southwestern Colorado, where the surveys are projected from the New Mexico meridian.
ln aldition to the foregoing six principal meridiaus and bases governing public surveys, there have been established the following meridians and bases, viz:

The Michigan meridian, in longitude $84^{\circ} 19^{\prime} 09^{\prime \prime}$ west from Greenwich, with a base-line on a parallel seven miles north of Detroit, governing the surreys in Michigan.

The Tallahassee meridian, in longitude $84^{\circ} 18^{\prime}$ west from Greenwieh, runs due north and south from the point of intersection with the baseline at Tallahassee, and governs the surveys in Florida.

The Saint Stephen's meridian, longitude $88^{\circ} 02^{\prime}$ west from Greenwieh, starts from Mobile, passes through Saint Stephen's, intersects the base line on the 31st degree of north latitude, and controls the surveys of
the southern district in Alabama and of the Pearl River district lying east of the river and south of township 10 north in the State of Mississippi.

The Huntsville meridian, longitude $86^{\circ} 31^{\prime}$ west from Greenwich, extends from the northern boundary of Alabama as a base, passes through the town of Huntsville, and governs the surveys of the northern district in Alabama.

The Choctaw meridian, longitude $89^{\circ} 10^{\prime} 30^{\prime \prime}$ west from Greenwich, passes two miles west of the town of Jackson, in the State of Mississippi, starting from the base-line twenty-nine miles south of Jackson, and terminating on the south boundary of the Chickasaw cession, controlling the surveys east and west of the meridian and north of the base.

The Washington meridian, longitude $91^{\circ} 05^{\prime}$ west from Greenwich, seren miles east of the town of Washington, in the State of Mississippi, with the base-line corresponding with the 31st degree of north latitude, goverus the surveys in the southwestern angle of the State.

The Saint Helena meridian, $91^{\circ} 11^{\prime}$ longitude west from Greenwich, extends from the 31st degree of north latitude, as a base, due south, and passing one mile east of Baton Rouge, controls the survegs in the Greensburgh and the southeastern districts of Louisiana, both lying east of the Mississippi.

The Louisiana meridian, longitude $92^{\circ} 20^{\prime}$ west from Greenwich, intersects the 31st degree north latitude at a distance of forty-eight miles west of the eastern bank of the Mississippi River, and, with the baseline coincident with the said parallel of north latitude, governs the surveys in Louisiana west of the Mississippi.

The New Mcxico meridian, longitude $106^{\circ} 52^{\prime} 09^{\prime \prime}$ west from Greenwich, intersects the principal base-line on the Rio Grande del Norte abont ten miles below the mouth of the Puerco River, on the parallel of $34^{\circ} 19^{\prime}$ north latitude, and controls the surveys in New Mexico, and in the valley of the Rio Grande del Norte, in Colorado.

The Great Salt Lake meridian, longitude $111^{\circ} 53^{\prime \prime} 47^{\prime \prime}$ west from Greenwich, intersects the base-line at the corner of Temple Block, in Salt Lake City, Utah, on the parallel of $40^{\circ} 46^{\prime} 04^{\prime \prime}$ north latitude, and governs the surveys in the Territory of Utah.

The Boisé meridian, longitude $116^{\circ} 20^{\prime}$ west from Greenwich, intersects the principal base between the Snake and Boisé Rivers, in latitude $43^{\circ} 26^{\prime}$ north. The initial monument, at the intersection of the base and meridian, is nineteen miles distant from Boisé City, on a course of south $29^{\circ} 30^{\prime}$ west. This meridian governs the surveys in the Territory of Idaho.

The Mount Diablo meridian, California, coincides with longitude 121° 54^{\prime} west from Green wich, intersects the base-line on the summit of the mountain from which it takes its name, in latitude $37^{\circ} 53^{\prime}$ north, and governs the surveys of all central and northeastern California and the entire State of Nevada.

The San Bernardino meridian, California, longitude $116^{\circ} 56^{\prime}$ west from Greenwich, intersects the base-line at Mount San Bernardino, latitude $34^{\circ} 06^{\prime}$ north, and governs the surveys in southern California lying east of the meridian and that part of the surveys situated west of it which are south of the eighth standard parallel south of the Mount Diablo base-line.

The Humboldt meridian, longitude $124^{\circ} 11^{\prime}$ west from Greenwich, intersects the principal base-line on the summit of Mount Pierce, in latitude $40^{\circ} 25^{\prime} 30^{\prime \prime}$ north, and controls the surveys in the northwestern
corner of California lying west of the Coast range of mountains and north of township 5 south of the Humboldt base.

The Willamette meridian is coincident wite longitude $122^{\circ} 44^{\prime}$ west from Greenwich, its intersection with the base-line is on the parallel of $45^{\circ} 30^{\prime}$ north latitude, and it controls the pablic surveysin Oregon and Washington Territory.

The Montana meridian extends north and south from the initial monument established on the summit of a limestone hill, eight hundred feet higb, longitude $111^{\circ} 40^{\prime} 54^{\prime \prime}$ west from Greenwich. The base line runs east and west from the monument on the parallel of $45^{\circ} 46^{\prime} 27^{\prime \prime}$ north latitude. The surveys for the entire Territory of Montana are governed by this meridian.

The Gila and Salt River meridian intersects the base-line on the south side of the Gila River, opposite the mouth of Salt River, in longitude $112^{\circ} 15^{\prime} 46^{\prime \prime \prime}$ west from Greenwich, and latitude $33^{\circ} 22^{\prime} 57^{\prime \prime}$ north, and goverus the public surveys in the Territory of Arizona.

The Indian meridian intersects the base-line at Fort Arbuckle, Indian Territory, in longitude $97^{\circ} 15^{\prime} 56^{\prime \prime}$ west from Greenwich, latitude 34° 31^{\prime} north, and governs the surveys in that Territory.
the magnetio declination or variation of the needle.
The following account of the geographical distribution and of the annual change of the maguetic declination or variation of the needle, with tables, explanations, and charts, presenting the latest information on the snbject, were prepared by direction of the Superintendent of the U. S. Coast and Geodetic Survey, in accordance with a request of the Commissioner of the General Land Office.

> Department of the Inverior, General Land Office, Washington, D. C., November 30, 1889.

For the following article with tables and their explanation, relating to the use of the compass in surveying, the Commissioner of the General Land Office is indebted to Prof. T. C. Mendenball, Superintendent of the U. S. Coast and Geodetic Survey; it was furnished at the request of the Commissioner.

The paper originally written in January, 1878, by Assistant C. A. Schott, in charge of the computing division, has been revised and enlarged by him in order to present the latest information on the subject; it is also accompanied by two charts, taken from the Coast and Geodetic Survey Report for 1889 illustrating the present distribution of the mag. netic declination.

This paper is designed to take the place of the chapter commencing at the foot of page 25 and euding in the middle of page 29 of the "Manual of Instructions to Surveyors-General of the United States," printed in 1871, part of which in the course of time had become obsolete. The article will be found of great interest and value as an aid in the prosecution of the surveys of the public lands.

AN ACCOUNT OF THE PRESENT GEOGRAPHICAL DISTRIBUTION AND OF THE ANNUAL CHANGE OF THE MAGNETIC DECLINATION (COMMONLY KNOWN AS THE VARIATION of THE COMPASS NEEDLE*) WITHIN THE limits of the united states.

The magnetic declination at any place is the angle contained between two vertical planes, one being the astronomical or true meridian of the place and the other a plane in which the horizontal axis of a freely suspended magnetic needle lies at the time. The former is a fixed plane, the latter is variable since observation shows that the direction of a magnetic needle, when delicately suspended, is constantly changing, nor is it the same at different places. The maguetic declination, thus varying with respect to locality and time, it is necessary on the part of the observer to give with his statement of the declination the exact local time, year, month, day and hour, and fraction when the measure was taken, as well as the geographical position or the latitude and longitude of the place, which co-ordinates may be expressed in minutes of arc, and it generally suffices to give the nearest whole minute; longitudes are to be reckoned westward from Greenwich as the initial meridian.

The declination is called "west" when the north-seeking end of the maguet or needle points to the west of the true meridian, and is called "east" when the same end points to the east of the true meridian. The north end of the needle tends approximately toward the north and more particularly toward a region which surrounds the magnetic pole of dip; the magnetic declination within the limits of the United States presents, such great extremes as 182° west at Eastport, Me., 3° east at Key West, Fla., $13 \frac{1}{10}$ east at San Diego, Cal., 23° east in the Strait of Fuca, Washington Territory, and about 33° east at Fort Yukon, Alaska. The general distribation of the declination in the United States at the present time is shown on the accompanying charts, taken from the annual report of the Coast and Geodetic Survey for 1889 (as yet unpublished), the large MS. charts on two sheets having been greatly reduced to suit the present publication. These charts are for the epoch 1890 (January).

With regard to changes with the lapse of time the declinations, as observed, have undergone variations of several degrees. Thus at Boston, Mass., the declination cbanged from 10° west in 1700 to about $6 \frac{1}{2}$ west in 1778, and is now approaching 12° west and still increasing; at Monterey, Cal., the declination was 11_{2}^{10} east iu 1780 ; it is now 16° east. On this subject the reader may consult the Coast and Geodetic Survey Report for $1888 . \dagger$

The accuracy with which the declination may be determined depends chiefly upon the instrumental means at command, but also.in a great measure upon the ability and care of the observer in using his instruments and in selecting the proper method and best time for observation. The instruments ordinarily in the hands of the observer are sufficiently described in works on surveying or in catalogues of instrument-makers; but for descriptions and illustrations of more refined instruments and for their adjustment and the methods of using them the reader may be

[^14]referred to Coast and Geodetic Survey Report for 1881, Appendix No. 8, entitled "Directions for Measurement of Terrestrial Magnetism."
It is a matter of observation that'the needle, especially when light and delicately suspended, is seldom or never at rest; the principal laws of the angular ehanges have been made out; others and minor ones are known with more or less certainty and some are conjectural. These motions have, for convenience, been classified as regular and irregular variations, but we shall notice here only the principal ones.
To the former class belongs the solar variation depending upon the hour of the day, the time of the year, and the coulition of the sun with respect to spot-activity; to the same elass belongs the lunar variation depending on the moon's hour-angle and her position in the orbit, but this is of little interest to the practical survejor on account of the small amplitude. In the same class is also included the secular variation, which is a systematic alteration in the earth's magnetism involving eenturies to unfold itself, and as yet of unexplained origin. To the second class belong the so-called magnetic disturbances or storms, whieh frequently and simultaneously affect large parts and sometimes apparently the whole surface of the earth. On large averages these disturbances are found subject to complex laws, and they are noticed generally to aceompany auroral displays and strong earth-eurrents.

They may be expected to oecur at any time. Omitting any detailed notiee of these disturbances and confining our attention to those more or less systematie changes which are of speeial interest to the surveyor as possibly affeeting his work, we shall briefly review the effects of the principal regular variations as exhibited within the area of the United states.

The solar diurnal variation eonsists in a systematic movement of the direction of a magnet, having for its period the solar day; its charaeter is the same for the greater part of the northern hemisphere. About the time of sunrise, or soon after it, the north-seeking end of the needle is generally found approaching to or near its easternmost position, i.e., near or at its eastern elongation. This phase happens, for instance, at Philadelphia, Pa., on the yearly average aboat 8^{h} a. m., at Key West, Fla, about $8_{4}^{4^{\mathrm{h}}}$ a. m., and at Los Angeles, Cal., at $8_{3}^{\frac{12}{\mathrm{~h}}}$ a. m.; it is subjeet to an annnal variation, the time being earlier in summer and near $7 \frac{1}{2}^{11}$ a. m. at Philadelphia, near $7 \frac{1_{2}{ }^{\mathrm{a}}}{}$ a. m. at Key West, near $7 \frac{2}{2}^{\mathrm{h}}$ at Los Angeles, near 8^{h} a. m. at Fort Steilacoom, Wash., and near 73h ${ }^{3}$ a. m. at Camp Date Creek, Arizona. In the winter, this phase is reached laterabout $83^{\frac{3 \mathrm{~h}}{4}}$ or 9^{h} a. m. at Philadelphia, about $9 \frac{1}{2}^{\mathrm{h}}$ a. m. at Key West and Los Angeles. The needle after remaining nearly stationary about this time, soon begins its principal daily motion toward the west, at first slowly, but after about 92^{h} a. m . quite rapidly, and slackening again when nearing its western daily extreme, known as the western elongation, about $1_{2}^{\frac{11}{h}} \mathrm{p} . \mathrm{m}$. This phase is reaehed on the yearly average abont $13^{1 \mathrm{~h}}$ p. m. at Philadelphia, about $13^{3 \mathrm{~h}}$ p. m. at Key West, aud about 11^{h} at Los Angeles, a few minutes earlier in summer and a few minutes later in winter, but it will generally fall between 1^{h} and $2^{\mathrm{n}} \mathrm{p} . \mathrm{m}$. After this second temporary stand the needle reverses its angular motion and gradually returns to the direction from which it had set out in the early morning. Not infrequently a small or seeondary oscillation takes place during the night. The average daily tireetion of the needle is reached in summer about 101^{h} a. m. and in winter about $100^{34} \mathrm{a}$. m. at Philadelphia, about $10_{4}^{\text {lh }}$ a. m. and $111_{4}^{1 /}$ a. m., at Key West, and about $10^{\text {b }}$ a. m. and $11 \frac{1}{2}{ }^{\mathrm{h}}$ a. m., respectively, at Los Angeles.

The needle crosses a second time the aterage magnetic meridian about $7^{1 \mathrm{~h}} \mathrm{p} . \mathrm{m}$. at the former place, and about $88^{\frac{1}{\mathrm{~h}}} \mathrm{p} . \mathrm{m}$. at the latter places, but these p. m. times are subject to considerable irregularity. The amount of displacement between the morning and afternoon elongations is called the diurnal range; it is about $8^{\prime \prime}$ on the average during the year at Philadelphia, about $5_{\frac{1}{2}}{ }^{\prime}$ at Key West, and abont $6 \frac{1}{3}^{\prime}$ at Los Angeles. This range is greater for northern stations than for southeru stations, and is also subject to an annual inequality, being more conspicnous in summer than in winter; thus, at Philadelphia, it reaches in August 12', but in November only 5^{\prime}, and at Key West it is in Angust 8^{\prime}, and in November 3^{\prime}; at Los Angeles, the ranges in these months are $83^{\prime \prime}$ and 4^{\prime}. This change from the maximum to the minimum and return is gradual. The solar diurnal variation is further subject to a periodic inequality related to the eleven-year cycle of the sun-spots. The diurnal range is least in sears of minimum spots; as in 1878 or 1889 , and is greatest in years of maximum sun spots, generally occurring about four years after the minima, as in 1883. In minimum years the range is about 0.8 and in maximum years about 1.3 of the arerage range. The daily variation appears at times intensified, at other times irregular and occasionatly, and especially in the winter season, there are days when it is obscnred or not recognizable.

The following table will be found useful for reducing observed declinations, taken at any time of the day. between $6 \mathrm{a} . \mathrm{m}$. and $6 \mathrm{p} . \mathrm{m}$., on any day of the year, to the average value of the day, or that value which would hare been obtained had hourly or continuous observations been made. The tabular values answer approximately to the middle epoch in the sun-spot cycle, and the nearest whole minute derived frem them will give a degree of accuracy quite sufficient in view of the ordinary irregularities in the diurnal motion itself.

The tabular quantities give the average deviations of the direction of the needle at the respective hours of the day from the direction that would have been obtained had the mean been taken of twenty-four hourly observations. The letter W indicates that the needle points to the westward of the daily average, the letter \mathbf{E} the reverse, whence the sign of the correction can be inferred whether the declination be westerly or easterly. Two sets of figures are giren; the upper one is the mean from observations at Toronto, Canada; Philadelphia, Pa.; and Madison, Wis.; and answers, therefore, for northern stations; the lower one is the mean from observations at Key West, Fla., and Los Angeles, Cal., and answers, therefore, for southern statious.

Table for reducing an observed declination to the average declination of the day.

Mean local time.	$6^{\text {h }}$ a. m.	$7^{\text {b }}$ a, m.	$8^{\text {L }}$ a. m.	$9^{\text {h }}$ a. m.	$10^{\text {h }} \mathrm{a}, \mathrm{m}$,	$11^{\text {h }}$ a. m.
December, January, February:	E.	E, ,	E.	E.	E.	W.
Northern stations	0.7	1.1	1.9	2.2	1.5	0.1
Sonthern stations. - - .	0.1	0.3	1.4	2.3	2.4	1.3 *
March, April, May:						
Northern 6tations	2.6	3. 8	4.4	3.5	1.2	1.6
Sonthurn stations.	1.4	2.7	3.2	2.6	1.2	0.4
June, July, August:						
Northern stations	4.0	5,6	5.7	4.5	1.7	1.6
Sonthern statioos.	2.1	3.5	3.6	2.4	0.3	1.5
September, October, November: Northern stations						
Northern stations Southern etations.	1.8 0.6	2.6 2.1	3.1	2.5 1.9	1.0 0.6	1.5 0.9

* East.

Table for reducing an observed deolination to the avcrage declination of the day-Cont'd.

The annual variation of the declination is so sinall that a mere mention here suffices; its amplitude is at most $1 \frac{1}{2}$ minutes of angular measure.

The lunar variations and inequalities.-These we likewise pass over briefly on account of their small amplitude or general minute effect. The principal inequality is the lunar diurnal variation, which exhibits the peculiarity of two maximum and two minimum values each lunar day. The rauge at Philadelphia is about $27^{\prime \prime}$ and at Torouto about $38^{\prime \prime}$. Other luwar jnequalities are generally of smaller order.

The secular variation of the magnetic declination is, as bas already been pointed out, a subject of great importance to the surveyor, especially when he is called upon to re-run old compass lines or to decide between conflicting claims as to the position of boundary lines marked out by compass many years ago, but the traces of which on the ground have become lost in the course of time. The most complete investigation of this remarkable change is contained in Coast and Geodetic Survey Report for 1888,* Appendix No. 7, and the tables here given of decennial values of the declination have beeu taken frum this appendix. The variation in question is most probably of a periodic character, requiring centuries for its complete development, whence its specific name; it is undoubtedly of a highly complex nature. As yet at no station has a complete cycle been observed or completed, nor do we know whether the needle will ever trace out a similar one in period, in amplitude, or in other particulars; heuce the uecessity of continuing systematic observations at a number of stations specially selected for following up the inquiry.

These observations will enable us in time to introduce any needed change in the law as hitherto observed and improve the expression of the same, or gain a deeper insight into the secular variation. The motion may be compared to that of an oscillation of a pendulum, which alternately comes to rest at its extreme elongations and moves fastest midway between these extremes. Smaller oscillations within the period have also been discovered. About the times of maximum deflections the needle seems to fluctuate about an average position, apparently stationary for several years to ordinary or coarsely-divided instruments; but soon a perceptible clange takes place, and the direction of motion is noticed to have slowly changed to one opposite to that followed before the statiouary epoch. The annual change increases year by year, until the motion reaches a maximum speed, after which it

[^15]gradually declines till the opposite stationary phase is attained, when it becomes once more zero.

This stately swing is gone through within our geographical limits in from about two hundred and fifty to about three hundred and fifty years. Thus, for exarnple, at Baltimore and vicinity the needle was observed to be stationary about 1680, the north end of the needle pointing then nearly 6° west; in 1802 it had reached the opposite phase and was observed to point nearly $\frac{10}{2}$ west; since that time the westerly motion has been kept up, and at present has already reached 4_{4}^{30} west.

As might be expected the range varies greatly with geographical position, and so does the epoch of the elougations: thus the last easterly extreme occurred earliest in Maine; later in Florida, Texas, and Mexico, and has just reached but not yet touched all parts of the Pacifie coast north of southern California; beyond the Straits of Fuca and for Alaska we have but little information. We have here at present a region or broad belt of no annual change or where the effect of secular variation is uil; it passes off and on the coast from the Strait of Fuca to near Point Conception, California, where it leaves the coast and stretches southward to the west of Lower California. On the other hand there is a region of no annual change but of opposite phase, and passing through Nora Scotia and New Brunswick. Between these two belts, and comprising the greater part of the United States, the effect of the secular variation is to increase west declination, or, what comes to the same thing, to decrease east declination, whereas on the Pacific coast there is still a narrow strip of land to the west of the belt first described, where the annual change is opposite, i.e., easterly declination is still slightly increasing.

The following table gives the latitude and longitude as well as the annual change of the declination for each station, and the next table the computed decennial values of the decliuation (and after 1850 for every fifth year), at all places where the observations were sufficiently numerous and of sufficient range to admit of the recognition of the law of secular variation :

Geographical position of stations and annual ohange of declination for 1890 and 1895.

+ signifles increasing west or decreasing east declination.

Name of places.	Latitude.	Longitnde west from Greenwioh.	Annnal change of declination.	
			For 1890.	For 1895.
Eastern group.	\bigcirc		,	,
Eastport, Me	4454.4	6659.2	+0.8	+0.2
Bangor, Me	4448.2	6846.9	+2.4	+1.9
Portland, Me	4338.8	7016.6	+2.6	+2.2
Buriington, Vt	4428.5	7312.0	+5.0	+3.8
Hanover, N. H	4342.3	7217.1	+4.4	+3.9
Chesterfield, N. H.	4253.5	7224.0	+4.3	+3.9
Rntland, V t	4336.5	7255.5	+4.9	+4.4
Portsmouth, N. II	4304.3	7042.5	$+3.2$	+2.7
Newbaryport, Mass	4248.9	7049.2	+2.6	+2.2
Salem, Mass	4231.9	$705 \% .5$	+3.6	+3.0
Boston, Mass	4221.5	7103.9	+2.2	+1.9
Cambridgc, Mass	4222.9	7107.7	+1.5	+1.2
Provincetown, Mass	4203.1	7011.3	+1.9	+1.4
Nantuokot, Mass .	4117.0	70 06.0 71	+1.2	+0.8
Providence, R. I ...	4150.2	7123.8	+4.4	+3.6

Geographical position of stations and annual change of dectination, etc.-Continued.

Name of placea.	Latitudo.	Longitude west from Greenwich.	Aunnal clango of dehnation.	
			Hor 1890.	For 1800.
- Eastern group-Continued.	\bigcirc -	\bigcirc -	,	,
Williamatown, Mas	4242.8	7313.4	+3.4	+3.0
Hartford, Conn	41 450.9	7240.4	$+3.5$	+3.3
New Haven, Comn	4118.5	7255.7	+3.8	+3.4
Albany, N . \mathbf{Y}.....	4230.2	7345.8	+3.0	$+2.5$
Oxford, N. Y	4220.5	7540.5	+3.7	+3.4
Cold Spting Harbor, N. Y.	4052.0	7328.0	+2.0	+2.3
New York City, N. \mathbf{Y}	4042.7	7400.4	+3.8	+3.8
Bethlaham, 13.	4030.4	7522.9	-14.0	+4.3
Naw Brunswick, N	4020.0	7420.8	$+2.2$	+1.8
Jamesburgh, N.J	4021.0	7427.0	+3.0	+3.3
Hatboro, Pa	4012.0	7507.0	+4.4	+3.3
Philadelphia, Pa	3058.9	7500.0	+4.4	$+4.4$
Harrlsburg, Pa.	4015.9	7852.0	+2.3	+1.8
Muntington, Pa	4031.0	7802.0	+4.1	+3.9
Chambershur, in, Pa	3955.0	7740.0	+4.9	+4.8
Baltimore, Md	3917.8	7637.0	+3.1	+2.8
Washington, D. C	3853.3	7700.6	+1.5	+1.2
Cape Henlopen, De	3846.7	7505.0	+4.0	+3.7
Williamslurgh, Va	3716.2	7642.4	+3.4	+3.2
Cape Henry, Va.	3655.0	7600.4	+3.0	+2.8
Naw Barne, N. C.	3508.0	7702.0	+3.0	+2.0
Cbarleaton, S. C	3246.6	7055.8	+2.9	+2.5
Savanual, Ga.	3204.9	8105.5	+3.0	+3.4
Milledgevillo, Ga	3304.2	8312.0	+3.7	+3.7
Midalle group.				
Sault do St. Maris, Mich	4629.9	8120.1	+4.1	+4.1
Dulnth, Minn., and Superier Cits, Wia.	$\left.{ }^{46} 9359.5\right\}$	$92\{04.5$	+1.5 (\%)	+1.0 ()
Milwankee, Wis	4302.5	8754.2	+5.4	+5.5
Picrrepunt Manor, N. Y	4341.5	7003.0	+4.0	+4.2
'loronta, Canada	4339.4	7023.6	$+3.8$	+4.4
Grand Haven, Mich	4305.2	8012.0	+8.0 (?)	(3)
Ypsilinti, Mich....	4.14 .0	8338.0	+3.1	+
Michisan City, 1ud	4143.4	8354.4	+3.5	+3.4
Buffalo, N. Y	4252.8	78.535	+4.5	+4.2
Dotroit, Mich	4220.0	8303.0	$+2.5$	+2.1
Eric, Pa.	4207.8	8005.4	+3.5	+3.2
Beaver, Pa	4044.0	8020.0	+3.8	+3.7
Chicago, $111 . .$.	4150.0	8730.8	+3.8	+3.7 +3.7
Cleveland. Obio	4130.4	8141.5	+2.0	+2.4
Omaha, Nebr	4115.7	9550.5	$+4.8$	+4.5
Denver, Colo.	3945.3	10450.5	+3.1	
Pittaburgh, Pa	4027.6	8000.8	+3.2	+3.4 +3.0
Marietta, Ohio Athers Ohio	3025.0	8128.0	+1.1.1	+3.8
Athera, Ohio ${ }^{\text {Cincinnati, Ohio }}$	39 39 390.0 00.4	8202.0 84 29.8	+3.3 +3.4	+3.0 +3.3
St. Lonis, Mo.	3838.0	9012.2		
Nashville, Teni	3608.9	8648.2	+4.0	+4.3
Florence, Ala	3447.2	8741.5	+3.2	+3.2
Mobile, Ala	3041.4	¢802.5	+3.9	+4.0
Ncw Orloana, La	2857.2	9003.0	+4.2	+4.3
San Antonio, Tex	2825.4	0820.3		
Key West, Fla.	2433.5	8148.5	+3.4	$\begin{aligned} & +3.8 \\ & +3.2 \end{aligned}$
Weatern group.				
El Paso, Tex.	3145.5			
San Diego, Unl ...	3242.1	11714.3	+2.6 +0.4	+3.0 +0.8
Santa Barbara, Cal	3424.2	11043.0	+0.4	+0.8 +1.1
San Eranciaco, Cal.	3836.1	12153.8	-0.0	-0.3
	3747.5	12227.3	-0.2	+0.1

Gengraphical position of stations and annual change of declination, eto.-Continued,

Name of placos.	Latitude.	Lougitude west from Groenwich.	A nnual change of declinstion.	
			For 1890.	For 1895.
Western group-Continued.		\bigcirc	,	,
Salt Lake City, Utah	4046.1	11153.8	$+2.5$	+3.2
Cape Mendocino Cal	4020.3	12424.3	+0.3	+0.6
Vsncouver, Wsah	4537.5	12239.7	+0.8	+1.3
Walls Walla, Wash	4604.0	11822.0	+1.0	+1.5
Cape Disappointment, Wash	4610.7	12402.8	-1.1	-0.7
Seattle, Wash	$4: 35.9$	12220.0	+0.8.	+1.3
Port Townsond, Wash	4807.0	12244.9	+2.0	+2.5
Neah Bay, Wash.	4821.8	12438.0	+0.3	+0.8
Sitka, Alaska	5702.9	13519.7	+2.7	+3.1
Port Mulgrave, Alaska	5933.7	13945.9	+8.8	+9.4
Port Etches, Alaska	6020.7	14637.6	+9.9	+10.5
St. Paul, Kodiak Island, Alaska	5748.0	15321.3	$+6.9$	+7.2
Captain's Harbor, Unalaske Island, Al	5352.6	16631.5	+2.4	+ 9.4
Port Clarence, Alaska.	6516.0	16650.0	+10.4	$+10.7$
Chamisso Island, Alaska	6613.0	16149.0	+10.2	+10.4

Table of ralues of magnetic declinations.
Compnted magnetio declination at each atation for every tenth year of the series, and after 1850 for every fifth year. A + sign signifiee westerly declination, a eign

RESULTS FOR EASTERN GROUP.

Missing Page
Table of values of magnetic declinations-Continued.
RESULTS FOR EASTERN GROUP-Continued.

*if 'quateas	
$\underset{\text { aefselut }}{9 \mathrm{~S}}$	
$\mid \text { quanqsurnin! }_{\text {ren }}$	
$-\operatorname{qiqa}$	
	(
	(1)
	 $\underset{+}{\infty}$
M	
$\frac{r^{\prime} N}{q u s i n g e r e f}$	
*S"N"pariei suot roquer gulids ploo	

Tabular values of magnetic dectinations.

$\underset{\text { (January 1) }}{\text { Year }}$	$\begin{aligned} & \text { Sanltde } \\ & \text { Ste. Marie, } \\ & \text { Mich. } \end{aligned}$	Dninth, Minn., and Superior City, Wis.	$\underset{\text { Wis. }}{\substack{\text { Milwankee } \\ \text { Wis. }}}$	Pierrepont Manor, -	Toronto, C̣anada	$\begin{aligned} & \text { Grand } \\ & \text { Havon, } \\ & \text { Mich. } \end{aligned}$	Mich. Ypsilanti,	Michigan City, Ind-	$\begin{aligned} & \text { Buffalo, } \\ & \text { N. X. } \end{aligned}$	$\underset{\substack{\text { Detroit, } \\ \text { Mich. }}}{ }$	Erie, Pa.	$\begin{gathered} \text { Beaver, } \\ \text { Pa. } \end{gathered}$	$\begin{gathered} \text { Chicago, } \\ \text { III. } \end{gathered}$	Cleveland, Ohio.
	-	\bigcirc	\bigcirc	0	0	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0
${ }^{10}$												
30													
40									.			-		
1750														
${ }_{70}^{60}$						
80												-0.42		
90	$+0.0$	+0.44.		${ }_{-0.2}^{+0.2}$	-0.85		-1.9 ${ }^{\text {a }}$
$\begin{array}{r} 10 \\ 20 \\ \hline \end{array}$									0.22 0.41 0.41	$\begin{array}{r}3.2 \\ \begin{array}{r}3.11 \\ 2.90\end{array} \\ \hline\end{array}$	0.52 0.39	1.35 1.28		1.7
$\begin{aligned} & 20 \\ & 30 \end{aligned}$	1.16			$+_{3.05}^{2.6}$		-5.0 5 5.2	3.85		- ${ }_{0}^{0.41}$	2.90 2.55	$\begin{array}{r}0.39 \\ -0.09 \\ \hline\end{array}$	1.28 1.11	-6.2	1.5 1.09
40	-1.04			$\begin{array}{r} 3.05 \\ +3.72 \end{array}$	${ }_{+1.32}$	-5.2	-2.25	-5.4	+1.35	-2.09	$+0.36$	-0.78		
1850 55							-1.44	-5.0		-1.56				
55 60	${ }_{0}^{0.57}$	9.9 10.02	7.2 6.9	4.96 5.41	${ }_{2}^{1.85}$	4.74 4.45	${ }_{0.62}^{1.03}$	${ }_{4.6}^{4.8}$	- 2.43	1.26 0.93	1.26 1.60	-0.06 +0.23	5.8 5.6	+0.13
${ }_{65}^{60}$	- $\begin{array}{r}0.34 \\ -0.07 \\ \hline\end{array}$	10.02 10.08	6.9 6.6	${ }_{6.87}^{\text {5.41 }}$	${ }_{2}^{2.17}$	4.45 4.11	0.62 -0.21 -0.21	${ }_{4.3}^{4.6}$	3.25	0.99 0.69	1.94	+0.54		0.40
70	$+0.21$	-10.11	${ }_{-6.2}$	+6.33	+2.66	-3.71	+0.18	-40	+3.67	-0.41	+2.30	+0.86	${ }^{-5.14}$	$+0.93$
1875	+0.52	-10.10	-5.8	+6.79	$+3.14$	-3.25	+0.55	-3.8	+4.09	-0.13	+2.65	+1.19	-4. 87	+1.20
80	0.88	10.06	5.4	7.23	3. 62	${ }_{2}{ }^{\text {. } 73}$	0. 89	3. 6	4.51	+0.13	2.99	1.52	4. 58	1. 45
85 90			5.0 4.5					3.2 2.9	4.91 5.30	0.37 0.58		1.85 2.18	4.27 3.96	${ }_{1}^{1.69}$
95	+1.9	-9.7	-4.1	+8.4	$+4.5$	-1.0	+1.7	-2.6	+5.66	+0.78	$+3.9$	+2.49	-3.8	+2.1

Tabular values of magnetid declinations-Continned.

Year (Jannary 1).	Omaha, Nebr.	Denver, Colo.	$\begin{gathered} \text { Pittsburgh, } \\ \text { Pa. } \end{gathered}$	Marietta, Ohio.	Athons, Ohio.	Cincinnati, Ohio.	St. Lonis, Mo.	Nashville, Tenn.	Florence, Ala.	Mobile, Ala.	New Orleans, La.	San An. tonio, Tox.	$\begin{gathered} \text { Key West, } \\ \text { Fla. } \end{gathered}$
	0	0	0	\bigcirc	0	0	0	0	0	0	0	6	-
1700											-2.3	-..-........	
20											2.4		
30											2.7		
40-							-	0.-.-.	-3.1	-	
1750											-3.7		
60											4.4		
70											5.1		
80 90					-4.0						5.8 -6.5		
1800					-4.1	-4.89				-5.81	-7.12		
10	-12.5			-2.9	4.1	6.01			-6.50	6. 30	7.63		
20	12.6			2.8	3.9	4.99		-6.7	6.58-	-6.71	7.96	-9.8	-6.86
30	12.6			2.7	3. 60	4.82	-8.9	6.0	6. 54	6.97	8.15	10.1	6. 50
40	-12.4		+0.18	-2.33	-3.15	-4.51	-8.6	-6.9	-6.37	-7,07	-8.16	-10.3	-6.03
1850	-12.0		+0.88	-1.86	-2.61	-4.08	-8.2	-6.7	-6.11	-6.09	-8. 60	-10.2	-5.47
55	11.8		0.96	1.57	2.31	3, 83	8.0	6.5	5. 83	6.90	7.86	10.2	5.17
60	11.5	-15.14	1. 26	1.27	2.00	3.57	7.7	6.3	5. 74	6.75	7. 66	10.1	4.85
65	11.22	15.02	1.58	0.94	1. 68	3. 28	7.4	6.1	5.53	6.57	7. 44	9,93	4. 63
70	$-10.90{ }^{\circ}$	-14.83	$+1.67$	-0.60	-I. 36	--2.99	-7.1	-5.76	-5.30	-6.36	-7.18	-9.75	4.21
1875	-10.56	-14.71	+2.18	-0,26	-1.04	-2.69	-6. 7	-5.46	-5.08	-6.12	-6.90	- 9.64	-3.88
80	10. 21	14.52	2.49	+0.10	0.73	2.39	6.4	6.13	4.81	5.81	6. 69	9.30	3. 57
85	9.83	14.30	2.78	0.45	0.43	2.09	6.0	4.78	4.55	5. 54	6.26	9.03	3. 26
90	9.46	14.08	3. 06	0.79	-0.14	1.80	5.6	4.40	4.28	6.23	5.91	8.7	2.96
95	-9.1	-13.8	+3.3	. +1.1	+0.1	-1.5	-5.3	-4.0	-4.0	-4.9	-5. 6	-8.4	-2.7

Tabular values of magnetic declinations.

It will be observed that the character of the secular variation is the same over large areas, though each place has apparently minor features peculiar to itself. In consequence of our vers imperfect data the dednced annual change (in minutes of arc) due to the action of the secular variation, can only claim to be a fair approximation for the several States and Territories at the present time.

In the following table the + sign indicates an increase of west declination, or its equivalent a decrease of east declination.

Table showing the annual change of the magnetio declination for the epoch 1890 and referring to the central part of each State, Territory, or subdivision.

Locality.	Annual change.	Locality.	Annual change.
	'		,
Alabama.	+3.5	Miesiesippi	+3.7
Alaska :		Miesoari...	4. 2
Dixon Entrance	1 (3)	Montana..	2 (?)
Sitka Bay.	3 (${ }^{1}$	Nebraska:	
Off Monat St. Elia	9 (\%)	Weetern part	
Arkaneas	3.3	Nevada....	2 (i)
California:		New Hampehire.	3.4
Northern part	0.5 (3)	New Jereey ...	3.5
Sonthern part	0.7 7 ?	New Mexico.	2.7
Connection		Now Yors:	
Connectio	3. 3	Long Ibland	3.3 3.9
District of Colombia	3.1	North Carolina	3.4
Florida:		North Dakota	3 (3)
Northweetern part.	3.6	Ohio...	
Peninaular.	3.4	Oregon:	
Greorsia.	3. 6	Weatern part.	
Idaho..	2 (3)	Eaetern part..	1.5(i)
Illinoio	4.0	Pemnoylvania.	3.9
Indiaoa.	3. 8	Rhonie Island.	3.4
Yndiaa Territory	3.0	South Carolina	
Iowa...	4.4	South Dakota.	
Kansas...	3.3	Tennergee...	
Kontucky	3. 3	Texas: North weat part	2.8
Maine:		Weatern part.	2.8 2.8
Western part.	2.5	Main part	,
Eastern part.	1.0	Utah.........	2.5
Maryland.	3.1	Vermont.	4.3
Massachugstis: Western part.		Virginia	2.3
Western part.	3.7	Washington:	
Eastern part..	2.2	Weotern part	
Michigan: Southers part		Webit Virginia.	1. 2.3
Northwestern par	3 (3)	Wisconsin....	3.5(?)
Minnesota	3. 5 (?)	Wyoming.	

It is to be hoped that before long we shall be in possession of sufficient material to render the above table more comprehensive and satisfactory. The numbers may be used for a few years (five) withont serious error, but they certainly need recomputing after the lapse of a few years.

Isogonic charts.-If for any epoch we connect by curves all positions where the needle was observed to have the same declination, we trace out the so-called isogonic lines. On the accompanying charts they are laid down for equal differences of 10 , every fifth line, for greater distinction, being heavier. Such cliarts need reconstruction from time to time, not only for the purpose of improvements, but in consequence of the ever changing direction of the magnetic force. Thus, for instance, the line of no declination, or agonic line, as such lines are called, but which have no other distinction (beyoud declination equal to zero), over any other isogonic line, is now seen to pass through the Strait of Mackinaw, Mich., Toledo, Ohio, and crossing the coast near Charleston, S, C. j
whereas about the years 1797 and 1803, when this same agonic line had its most northeasterly position on this coast, it passed near Buffalo, N. Y., Harrisburg, Pa., Annapolis, Md., to Cape Henry, Va. This and its neighboring lines will continue for some time to move south westward on the Atlantic coast.

Magnetic disturbances.-These irregular motions of the needle may not infrequently be a source of annoyance to the surveyor; they may occur at any time, and are, when taken individually, beyond our power of prediction, but when averages are taken of many thousands they are nevertheless found to be subject to precise laws.

Their presence is generally indicated by sudden deflections aud by rapid and great fluctuations in the direction of the needle, greatly exceeding all ordinary variations.

These deflections occur alternately on opposite sides of the normal position, and often take place simultaneously at distant regions of the globe; they may last from a few hours to a day, or even several days, and are frequently accompanied by auroral displays. These disturbances are found to be strictly under solar influence. Irrespective of direction of the disturbing force, the most disturbed hours of the day are frequently those between 7^{h} and 10^{h} a. m., and the least disturbed those between $2^{\text {h }}$ and 6^{h} p. m., but we can not bere enter more fully into this subject. The greatest number of disturbances occur in the months of August, September, and October, the least number in January and Jume, and the disturbances are most active in years of sunspot maxima, and least so in years of minima. In the United States (excepting Alaska) deflections on either side of the normal of $\frac{1}{4}^{\circ}$ are common; deflections of $\frac{1}{2} \circ$ may occasionally be noticed, but those exceeding 1° are rare, unless the place be near the northern boundary.[C. A. S., August 26, 1889.]

METHOD OF ASCERTAINING THE MAGNETIC DECLINATION OR VARLATION OF THE COMPASS.

The following chapter, on the subject of the declination of the magnetic needle, is extracted from the revised edition of the work on surveying by Dr. Charles Davies, a graduate of the Military Academy at West Point. The work itself will be a valuable acquisition to the deputy surveyor, and his attention is particularly invited to the following chapter, which sets forth the usual easy modes by which the true meridian and magnetic declination may be approximately ascertained; his attention is also called to more complete statements on the subject given in the work "A treatise on land-surveying, etc.," by. Dr. W. M. Gillespie, professor of engineering, Union College, in chapter treating of the declination of the magnetic needle. For more refined methods, he may consult Coast and Geodetic Survey Report for 1881, Appendix No. 8.

METHOD OF ASCERTAINING THE VARIATION.

"The best practical method of determining the true meridian of a place is by observing the north star. If this star were precisely at the point in which the axis of the earth, prolonged, pierces the heavens, then the intersection of the vertical plane passing through it and the place, with the surface of the earth, would be the true meridian. But the star being at a distance from the pole equal to 1030^{\prime} nearly,* it performs a revolution about the pole in a circle, the polar distance of which is 1° 30^{\prime};* the time of revolution is 23 hours and 56 minutes.
"To the eye of an observer this star is continually in motion and is due north but twice in 23 hours and 56 minutes; and is then said to be on the meridian. Now, when it departs from the meridian, it apparently moves east or west for 5 hours and 59" minutes, and then returns to the meridian again.
"When at its greatest distance from the meridian, east or west, it is said to be at its eastern or western elongation."
The following tablet shows the times of the eastern and western elongations for 1889 , computed for latitude 40° and for longitude 90° W. of Greenwich, also the times of culminations of Polaris; with directious for use for any year between 1889 and 1910; and for different latitudes.

Local mean (astronomical \ddagger) time of the culminations and elongations of Polaris in the year 1889.
[Computed for latitude $+40^{\circ}$ and longitude B^{n} west from Greonwich.]

Date.	Eastern elongation.	Upperenlmination.	Westera elongation.	Lower calmination.
$\begin{gathered} 1889 . \\ \text { Јад. } 1 \end{gathered}$	h. m. $0 \quad 30.2$	$\begin{array}{cc} h . & m . \\ 0 & 31.0 \end{array}$	$\begin{array}{cc} h . & m . \\ 12 & 25.7 \end{array}$	$\begin{array}{cc} h . & m . \\ 18 & 29.1 \end{array}$
15	$23 \quad 37.0$	$5 \quad 35.7$	1130.4	1733.8
Feb. 1	2220.0	486	10 23.3	$10 \quad 28.7$
15	21 34.8	$3 \quad 33.3$	$0 \quad 28.1$	$15 \quad 31.4$
Mar. 1	20 39,4	2 38.1	8 32. 8	14 30.2
15	19 44.4	1 4:3.0	$7 \quad 37.7$	$1: 341.1$
April 1	$18 \quad 37.4$	$0 \quad 30.0$	630.7	$12 \quad 34.1$
15	1742.4	23 37. 1	$5 \quad 35.7$	1139.0
May 1	$16 \quad 39.5$	2234.2	482.9	$10 \quad 36.1$
15	1544.6	21 39.3	$3 \quad 38.0$	O 41.2
Jnno 1	$14 \quad 37.9$	$20 \quad 32.7$	231.3	834.6
15	13 43.0	$19 \quad 37.8$	130.4	$7 \quad 39.7$
July 1	1240.4	18 35.2	$0 \quad 33.8$	6 \%7. 1
15	11.45 .5	17 40.3	23 35.0	542.2
Aug. 1	1039.0	$10 \quad 33.8$	$22 \quad 28.4$	436.7
A. 15	944.1	1538	21 33. 5	840.8
Sept. 1	837.5	14 32.3	$20 \quad 20.9$	234.2
15	7 42.6	13 37.4	19 32.0	138.3
Oct. 1	(39.7	12 31.5,	1829.1	0 \% 66.4
15	E 44.7	11 39.5	1784.1	23 \%7.6
Nov. 1	437.9	$10 \quad 32.7$	1627.3	$22 \quad 30.8$
15	342.7	9 37. 5	15 32.2	21 35, 6
Dec. 1	$2 \quad 39.7$	$8 \quad 31.5$	1420.2	20 : 30.6
15	144.4	7 39.3	1334.0	19 37. 3

It will be noted that for the tabular year two eastern elongations occur on January 10 and two western elongations on July 9 ; there are also two culminations on April 10 and on October 9.
The lower culmination either follows or precedes the upper culmination by 11 hours 58.1 minutes.
For other dates and positions than those implied by the table we need to apply the following corrections:
To refer the tabular times to any year subseruent to the tabular year (1889) add 0.33 minutes for every year. To refer the tabular times, corrected as above, to any year in a quadriemnium observe tbat for first year after a leap year the table is correct; for second year after a leap year add 0.9 minutes to the tabular value; for third year after a leap year add 1.7 minutes to the tabular value; for leap year,

[^16]and before March 1, add 2.6 minntes to the tabular value; for leap year from and after March 1, subtiact 1.2 minutes from the tabular value.

To refer to any calendar day other than the first and fifteenth of each month, subtract 3.94 minutes for every day between it and the preceding tabular day, or add 3.94 minutes for every day between it and the succeeding tabular day. The longitude correction will amount to 0.16 minutes for each hour.

To refer to any other than the tabular latitude and between the limits of 25° and 50° north, add to the time of west elongation 0.13 minutes for every degree south of 40° and subtract from the time of west elongation 0.18 minutes for every degree north of 40°; reverse these signs for corrections to times of east elongation.

It will be important to direct attention to the fact that the year 1900 is not a leap year, and this must be kept in view when dealing with dates from and after March 1 of that year. The twentieth century begins after the expiration of December 31, 1900.

The deduced tabular times may generally be depended upon with $n o$ greater error than 0.3 minute.

The following table exhibits the angle which the meridian pluue makes with the vertical plane passing through the pole-star when at its eastern or western elongation; this angle is called the azimuth of the star at elongation:

The preceding table is computed with the mean declination of Polaris for each year; a closer result will be had by applying to the tabular values the following correction, which depends on the difference of the mean and the apparent place of the star :

For middle of -	Lat. 250.	Lat. $\mathbf{4 0}^{\circ}$.	Lat. $50{ }^{\circ}$.	For middle of	Lat. $\mathbf{2 5}^{\circ}$.	Lat. 40°,	Lat. 50\%.
	,	1	'		,	,	,
January	-0.3	-0.4	-0.4	July	$+0.2$	+0.3	+0.3
February	-0.3	-0.3	-0.4	August	$+0.1$	+0.1	$+0.2$
March	-0.1	-0.2	-0.2	September	0.0	-0.1	-0.1
April	0.0	0.0	0.0	October	-0.2	-0.3	-0.3
May	$+0.2$	+0.2	+0.2	November	-0.5	-0.6	-0.7
June	+0.2	+0.3	+0.3	December	--0.6	-0.8	-0.9

The deduced tabular azimuth (counted from the north) may generally be depended upon with no greater error than $\pm 0^{\prime} . \underline{2}$.

TO FIND THE TRUE MERIDIAN WITH THE ENGINEER'S OR SURVEYOR'S TRANSIT.

Take a board, of about one foot square, paste white paper upon it, and perforate it through the center, the diameter of the hole being somewhat larger than the diameter of the telescope of the transit. Let this board be so fixed to a vertical staff as to slide up and down freely, and let a small piece of board, about three inches square, be nailed to the lower edge of it, for the purpose of holding a candle.

About twenty-five minutes before the time of the greatest eastern or western elongation of the pole-star, as shown by the tables of elongations, let the transit be placed at a convenient point and leveled. Let the board be placed about one foot in front of the instrument, a lamp or candle placed on the shelf at its lower edge; and let the board be slipped up or down, until the pole-star can be seen through the hole. The light reflected from the paper will show the cross hairs in the telescope.

Then, let the vertical spider's line be brought exactly upon the polestar, and if it is an eastern elongation that is to be observed, and the star has not yet reached the most easterly point, it will move from the line toward the east, and the reverse when the elongation is west.

At the time the star attains its greatest elongation, it will appear to coincide with the vertical spider's line for some time, and then leave it, in the direction contrary to 1 ts former motion.

As the star moves toward the point of greatest elongation, the telescope must be continually directed to it , by means of the tangent screw of the vernier plate; and when the star has attained its greatest elongation, great care should be taken that the instrument be not afterward moved.

Now, if it be not convenient to leave the instrument in its place until daylight, let a staff, with a candle or small lamp upon its upper extremity, be arranged át thirty or forty yards from the instrument, and in the same vertical plane with the axis of the telescope. This is easily effected, by revolving the vertical limb about its horizontal axis without moving the vernier plate, and aligning the staff to coincide with the vertical hair. Then mark the point directly uuder the transit; the line pass-
ing throngb this point and the staff, makes an angle with the true meridian equal to the azimuth of the pole-star.
From the table of azimuths, page 70, take the azimuth corresponding to the year and nearest latitude. If the observed elongation was east, the true meridian lies on the west of the line which has been found, and makes with it an angle equal to the azimuth. If the elongatiou was west, the true meridian lies on the east of the line; and, in either case, laying off the azimuth angle with the transit, gives the true meridian.

to find the true meridian with the dompass.

1. Drive two posts firmly into the ground, in a line nearly east and west; the uppermost ends after the posts are driven, being about three feet above the surface, and the posts about four feet apart; then lay a plank, or piece of timber three or four iuches in width, and smooth on the upper side, apon the posts, and let it be pinned or nailed, to hold it firmly.
2. Prepare a piece of board four or tive inches square, and smooth on the under side. Let one of the compass sights be placed at right angles to the upper surface of the board, and let a nail be driven through the board, so that it can be tacked to the timber resting on the posts.
3. At about twelve feet from the stakes, and in the direction of the pole-star, let a plumb be suspended from the top of an inclined stake or pole. The top of the pole should be of such a height that the pole-star will appear about six inches below it; and the plamb should be swang in a vessel of water to prevent it from vibrating.

This being done, about twenty minuteshefore the time of elongation place the board to which the compass sight is fastened on the horizontal plank, and slide it east or west until the aperture of the compass sight, the plumb line, and the star are brought into the same range. Then if the star depart from the plumb line move the compass sight east or west along the timber; as the case may be, until the star shall attain its greatest elongation, when it will continue behind the plumb line for several minutes, and will then recede from it in the direction contrary to its motion hefore it became stationary. Let the compass sight he now fastened to the horizontal plank. During this observation it will be necessary to have the plumb line lighted; this may be done by an assistant bolding a candle near it.
Let now a staff, with a candle or lamp upon it, be placed at a distance of thirty or forty yards from the plumb line, and in the same direction with it and the compass sight. The line so determined makes, with the true meridian, an angle equal to the azimuth of the pole-star; and from this line the variation of the needle is readily determined, even without tracing the true meridian on the ground.
Place the compass upon this line, turn the sights in the direction of it, and note the angle shown by the needle. Now, if the elongation at the time of observation was west, and the north end of the needle is on the west side of the line, the azimuth, plus the angle shown by the needle, is the true variation. But should the north end of the needle be found on the east side of the line, the elongation being west, the difference between the azimuth and the angle would show the variation, and the reverse when the elongation is east.

EXAMPLES.

It may be stated that for maguetic purposes a moderate degree of accuracy suffices in the determination of the meridian, and a correct knowledge of it within 1^{\prime} will in general fully suffice. It is difficult, even in our middle latitudes, to determine the magnetic meridian withiu the limit of 1^{\prime} on account of the continnous flactuations; hewce any greater accuracy than this in the astrouomic meridian would be useless.

A very near approximation to a true meridian, and consequently to a variation, may be had, by remembering that the pole-star very nearly reaches the true meridian when it is in the same vertical plane with the star Delta (δ) in the constellatiou Cassiopeia. Using the apparatus just described, place the "sight-board" in line with the plumb-line and the pole-star, and move it to the west as the pole star moves east,* until Polaris and Delta both appear upon the plumb-line together; the line throngh the point of sight and the plumb-line will be, very nearly and with sufficient accuracy, the true meridian. This method is practicable ouly when the star Delta is bolow the pole-star during the night; when it passes the meridian above the pole, it is too near the zenith to be of service, in which case the star Zeta (ξ), the last star but one in the tail of the Great Bear, may be used iustead.

Delta (δ) Cassiopeia is on the meridian below the pole-star at midnight about April 10, and is, therefore, the proper star to use at that date and for some two or three months before and after.

Six months later, the star Zeta (ζ), in the tail of the Great Bear, will supply its place, and is to be ased in precisely the same manner.

The diagram \dagger gives a representation, drawn to scale, of North Pole, Polaris, and the constellations Cassiopeia and Great Bear; and the line drawn through the star Delta (δ), of Cassiopeia, and Zeta (ζ) of the Great Bear represents those stars on the meridian with the polestar.

The method given in this article for finding the true meridian can not be used with advantage, on account of the haziness of the amosphere near the horizon at places below about 38° north latitude.

The foregoing methods for the determination of the true meridian and variation of the compass are excellent in themselves when available, as they answer the requirements of the surveyor and give results with all desirable precision. They do not require an aceurate knowledge of the time, which is their principal advantage. The relative mo-
tion of the stars employed, when near the meridian and the unchangeable azimuth of Polaris at elongation (so far as the surveyor is concerned), indicate with sufficient exactness the moment when the ob.

The diagram held vertically, with the right hand side of the page nppermost (the reader facing north) will represent the configuration of the coustellations with Polaris near eastern elongation at midnight about July 10 -inverted, it will show Zeta (ζ) of the Great Bear and Polaris on the meridian (the fornier below and the latter above the pole) at midnight about October 10 ; and held with left hand side uppermost the diagram will indicate relative situations for midnight about January 10, with Polaris near western elongation. The arrows indicate the direction of apparent motion. Zeta (ζ) of the Great Bear (also sometimes called the Great Dipper) was called Mizar by the ancient Arabians, and the small star near it Alcor. Mizar is the second star from the end of the handle of the dipper.
servation is to be made. Stormy weather, a hazy atmosphere, or the presence of clouds may interfere with or entirely prevent observation when the star is either at elongation or on the meridian, and both erents sometimes occur in broad daylight or at a late or otherwise inconvenieut hour. Under such circumstances a simple method, for use at any time (Polaris being visible), may be acceptable, aud can often be nsed by the surveyor when other methods fail.
determination of the azimuth of polaris, true meridian and
VARIATION OF THE COMPASS, AT ANY HOUR, THE CORRECT LOOAL MEAN TIME BEING KNOWN.

Many years ago a table was published giving azimuths of Polaris at stated times during one year, but as it was arranged for a kind of time with which surveyors are generally unacquainted and was explained in unfamiliar astronomical terms and required the use of tables and data not always accessible, it met with little favor and never came into general use.

In this article it is proposed to simplify the work, omit all technicalities requiring a knowledge of astronomy, and present the method, with two new and compact tables* adapted to common clock time, with directious for use so plain that any person of ordinary intelligeuce can understand aud apply them.

As the surveyor shonld have a perfectly clear idea of what is meant by Astronomical Time (used to simplify computations), and the Hour Angle of Polaris, these terms will now be explained.

The Civil Day, according to the customs of society, commences at midnight and comprises twenty-four hours from 1 midnight to the next following. The hours are counted from 0 to 12 from midnight to noon, after which they are again reckoned from 0 to 12 from noon to midnight. Thus the day is divided iuto two periods of 12 hours each ; the first of which is marked a. m., the last p. m.

The Astronomical Day, commences at noon on the Civil day of the same date. It also comprises twenty-four hours; but they are reckoned from 0 to 24 , and from the noon of one day to that of the next following.

The Civil day begins twelve hours before the astronomical day; therefore the firist period of the civil day answers to the last part of the preceding Astronomical day, and the last part of the Civil day corresponds to the first part of the Astronomical day. Thus, January 9, 2 o'clock p. m., Civil time, is also January 9, 2h, Astronomical time; and January 9, 2 o'clock a. m., Civil time is Jaunary 8, $14^{\text {b }}$ Astronomical time.

The rule, then, for the transformation of Civil time into Astronomical time is this: If the civil time is marked p.m., take away the designation p. m., and the astronomical time is had without further change; if the civil time is marked a.m., take one from the day and add twelve to the hours, remove the designation a. m., and the result is the astronomical time wanted.

The substance of the above rule may be otherwise stated as follows. When the survevor takes an observation during p. m. hours, civil time, he can say, the astronomical time is the hours and minutes passed since the noon of this day, and when observing in the a. m. hours he can say the astronomical time is the hours and minutes elapsed since the noon of yesterday, in either case omitting the desiguation a. m. or p. m., and writing for the day of the month that civil date on which the noon falls from which the time is reckoned. Finally, the astronomical time may be called the hours and minutes elapsed since the NOON Last Passed, the as. tronomical Date being that of the civil day to which the noon belongs. Thus, April $23,4.15 \mathrm{p}$. m., civil time, is April $234^{\mathrm{h}} 15^{\mathrm{m}}$, astronomical time, and April 23, 4.15 a. m., civil time, is April $2216^{\mathrm{h}} 15^{\mathrm{m}}$ astronomical time.

[^17]The survejor should thoroughly master this transformation* of the civil time into astronomical time, as it will be the first duty he will have to perform after observing Polaris out of the meridian.

Hour Angle of Polaris.-In Fig. 2, Diagram A, the full vertical line represents a portion of the meridian passing through the zenith Z (the point directly overhead), and intersecting the northern horizon at the north point N, from which, for surveying purposes, the azimuths are reckoned east or west. The meridian is pointed out by the plumb line when it is in the same plane with the eye of the observer and Polaris on the meridian, and a visual representation is also seen in the vertical wire of the transit when it bisects the star on the meridian.

When Polaris crosses the meridian it is said to culminate ; above the ${ }^{\prime}$ poles (at S), the passage is called the Upper Culmination, abbreviated U. U., in contradistinction to its Lower Culmination (at S^{\prime}), for which L. C. may be written. In this article h stands for hours and m for minutes.

In the diagram,-which the survejor may better understand by holding it up perpendicular to the line of sight when he looks towards the pole,-Polaris is supposed to be at S , where it is about noon on April 10th of each year, and it appears to revolve around the pole, in the direction of the arcows, once in every $23^{\mathrm{h}} 56^{\mathrm{m}}$. $1+$ of mean solar time; it consequently comes to and crosses the meridian, or culminates, nearly four minutes earlier each successive day. The apparent motion of the star being uniform, one quarter of the circle will (omitting fractions), be described in $5^{\mathrm{h}} 59^{\mathrm{m}}$, one half in $11^{\mathrm{h}} 58^{\mathrm{m}}$, and three quarters in $17^{\mathrm{h}} 57^{\mathrm{m}}$. For the positions s_{1}, s_{2}, s_{3}, etc., the angles ${S P s_{1}, ~}_{S_{2}} \mathrm{SP}_{2}, \mathrm{SPs}_{3}$, etc., are called Hour Angles of Polaris for the instant the star is at s_{1}, s_{2}, or s_{3}, etc., and they are measured by the arcs $\mathrm{Ss}_{1}, \mathrm{Ss}_{2}, \mathrm{Ss}_{3}$, etc., expressed (in these instructions) in mean solar (common clock) time, and are always counted from the upper culmination (at S) to the west, around the circle from $0^{\mathrm{h}} 0^{\mathrm{m}}$ to $23^{\mathrm{h}} 56^{\mathrm{m}} .1$, and may have any value between the limits named. The hour angles, measured by the arcs $\mathrm{Ss}_{1}, \mathrm{Ss}_{2}, \mathrm{Ss}_{3}, \mathrm{Ss}_{4}$, and Ss 5_{5}, are approximately $1^{\mathrm{h}} 8^{\mathrm{m}}, 5^{\mathrm{h}} 55^{\mathrm{m}}, 9^{\mathrm{h}} 4^{\mathrm{m}}, 14^{\mathrm{h}} 52^{\mathrm{m}}$, and $22^{\mathrm{h}} 4^{\mathrm{m}}$ respectively; their extent is also indicated by broken fractional circles about the poles. If the star is observed at any one of these points (or at any other point), and the local mean time noted, and from it the time of upper culmination be talken, the remainder will be the hour angle of Polaris as above defined. Therefore, in general: From the correct local mean time of observation subtract the time of upper culmination, the remainder will be the hour angle required.

Table I.

The time to be subtracted, mentioned in the preceding rule, may be taken from Table I, which gives to the nearest tenth of a miuute the local mean time of the upper culmination of Polaris, for the 1st and 15 th of each month, for several years to come, \ddagger with the necessary direction at the bottom of the tables for deducing the time for intermediate dates. The tabular times decrease, but not with entire uniformity

[^18]from January 1st nutil they become zero on the 10th of April; then, commeucing at $23^{\mathrm{h}} 56^{\mathrm{m}} .1$, the times again decrease until the following April, and so on, continnously. The quantity in the column following 1889, marked "Diff. for 1 day," is the decrease per day for the interval in which it is placed, and applies to all the years marked in the table. For any intermediate date the "Diff. for 1 day" is to be multiplied by the days elapsed since the preceding tabular date, and the product subtracted from the corresponding tabular time, to obtain the required time of culmination for the date under consideration. The table answers directly for 90° west longitude. For places east or west of the tabular meridian a small correction, dependent on the longitude, should be applied to the tabular time of culmination. This correction may be taken from the last line of Part III, and, with sufficient accuracy, for the tabular longitude which is nearest that of the station. Use the correction according to the direction placed over it. Δ few examples will illustrate the use of the table.

The required time may also be obtained by using the table in the opposite direction; by taking the tabular time for March 15 aud adding the reduction, as follows :

Tabular time U. C. of Polaris, 1892, March 15.	$1 \stackrel{\text { m. }}{42}$
Reduction for 12 days is $3^{\text {m}} .94 \times 12=47^{\text {I }} .3$ add	47.
	229.9
Correction for longitude 116°, (Part III), subtract.	0.3
Local mean time U. C. of Polaris, 1892, March 3.	6

In this case the two results are identical; generally, the derived value will be true to the nearest tenth of a minute. If the computation is made both ways the results will check each other.
The reduction for intermediate dates has been made for any number of days from 1 to 16, and the results inserted in Part II of the table, by the use of which the surveyor will be saved even the little work of making the above multiplication. The correction for longitnde may be subtracted (or added) mentally. When working from a preceding tabnlar date, and for a station west of longitude 90°, as both corrections are then subtractive, they may be added together mentally and their sum written down at once, and the whole work of the surveyor be thus reduced to a single subtraction. Thus, for the above example, look in Part II, under the proper tabular differences ($3^{\mathrm{m} .9 t}$), and opposite 2 days is the correction 7. 9 ; also, in Part III, is the correction for 116° longitude, $0^{m} .3$, the sum being $8 . \mathrm{m} 2$. The work is put down as follows:

[^19]The longitude correction being small may generally be omitted, and it will not be considered in the following examples.

Computing from a preceding date for days between April 11 and 15 of any year, the reduction in Part II will be greater than the tabular time of culmiuation, in which case $23^{\mathrm{h}} 56^{\mathrm{m}} .1$ must be added to the tabular time to make the subtraction possible.

$$
\text { 2. Required for a station in long. } 90^{\circ} \text { west the time of upper culmination of polaris }
$$ for $\Lambda_{\text {pril }} 14,1889$:

Working from a following tabular date for days between 9th and 15th of April, the sum will exceed $23^{h} 56^{\mathrm{m}} .1$, and when this occurs subtruct $23^{\mathrm{h}} 56^{\mathrm{m}} .1$ from the sum, and the remainder will be the required time.
3. Required, for a station in longitude 90° west, the time of U. C. of Polaris for April 10, 1889:

	h. m. ${ }_{\text {m }}$
Tabular time U. C. of Polaris, 1889, April 15th (Part 1)	2:3 37.1
Reduction for 5 days (Part II), add.	19.6

$$
\text { Local mean time U. C. of Polaris, 1889, April 10................................ } 0.6
$$

This example, worked like the last one, from the preceding date (A pril 1 1st) will give precisely the result above written. (See example in specineu field-notes, No. 4.) If to the above time of culmination we cild $23^{\mathrm{h}} 56^{\mathrm{m}} .1$ and then subtract 3.9^{m}, we receive $23^{\mathrm{h}} 52^{\mathrm{m}} .8$, the time of the second culmination on April 10th, since both occur within 24 hours of noon and, conseqnently, on the same day. This fact has been already mentioned. The U. C., to be used at any time, must always be the last one that occurs before the observation. In this instance it is, of course, the first one that occurs on the 10th.*

When the time of observation is less than the tabular time of culmination, the latter must be taken from the table for a date one day earlier. (See specimen field-notes Nos. 2 and 5 for examples.) The surveyor can determine when to take the time one day earlier by comparing his astronomical time of observation with the tabular times. Thus, for another example, suppose his time of observation is 1889 , November 7th, $8^{\text {n }} 24^{m} .0$. Looking at the table be will see the time given for either November 1st or 15 th is greater than $8^{\mathrm{h}} 24^{\mathrm{m}} .0$, and he will have to take out the time for November 6th, and thus obtain:

[^20][^21]
Table 1.

LOCAL MEAN (ASTRONOMICAL) TIME OF THE UPPER COLMINATION OF POLARIS, COMPUTED FOR LONGITUDE 6 HOURS (90°) WEST OF GREENWICH.
[The tabolar quantity for any date is the hours and minutes olapeed (measnred by a common clock or wateh) since the preceding noon. 1

For any other than the tabular day subtract from the tabalar time of culmination the product of the "Diff. for 1 day" by the number of daye elapeed.

Part III.—Oorrection of the tabular time for longitude.

Longitude.	63°	72°	81°	90°	990	$108{ }^{\circ}$	1170	127°
Correction.-----.-.-...-....	Add	Add	Add	Add	Sabtract	Subtract	Subtract	Subtract
	$\begin{aligned} & m . \\ & 0.3 \end{aligned}$	$\begin{aligned} & m . \\ & 0.2 \end{aligned}$	$\begin{aligned} & m .1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & m . \\ & 0.0 \end{aligned}$	$\begin{aligned} & m . \\ & 0.1 \end{aligned}$	m. 0.2	$\begin{aligned} & m . \\ & 0.3 \end{aligned}$	$\begin{aligned} & m . \\ & 0.4 \end{aligned}$

The foregoing examples embrace all cases which can occur in the use of Table I, and will be a sufticient guide for its application.

The vertical diameter SS', $^{\prime}$, Fig. 2, Diagram A, divides the apparent path of Polaris into two equal parts, aud for the star at any point s_{5} on the east side there is a corresponding point s_{1} on the west side of the meridian, for which the azimuth Nw_{w} is eqnal to the azimuth Ne. The arc $\mathrm{Ss}_{1} \mathrm{~S}^{\prime} \mathrm{s}_{5}$, taken from the entire circle (or $23^{\mathrm{h}} 56^{\mathrm{m}}$) leaves the are Ss_{5}, and its equal, Ss_{1}, may be used to find the azimuth Ne , which is equal to $N w$.

The hour angles entered in the following table include only those of the west half of the circle ending at S^{\prime}, and when an hour angle grcater than $11^{\mathrm{h}} 58^{\mathrm{m}}$ results from observation it is to be subtracted from $23^{\mathrm{l}} 56^{\mathrm{m}}$ and the remainder used as one of the arguments* for the table. The surveyor must not confound these two quantities. The hour angle itself always decides the direction of the azimuth and defines the place of the star with reference to the pole and meridiau, as noted at top of Table II.

Table II.

This table gives for various hour angles, expressed in mean solar time, and for even degrees of latitude from 30 to 50 degrees, the azimuths of Polaris during the remainder of this century, computed for average values of the north polar distance of the star-the argumeuts (reference numbers) being the hour angle (or $23^{\mathrm{h}} 56^{\mathrm{m}}$ minus the hour angle, when the latter exceeds $11^{\mathrm{h}} 58^{\mathrm{m}}$) and the latitude of the place of observation. The table is so extended that azimuths can be taken out by mere inspection and all interpolation avoided, except what can be performed mentally.
The hours of the hour angles are placed in the columns headed "Hours," on left of each page. The minutes of hour angles will be found in the columns marked "m.", and under the years for which they are computed, and they are included between the same heavy zigzag lines which enclose the hours to which they belong.

The hour angles are given to the nearest half minute of time. The occurrence of a period after the minutes of any hour angle indicates that its value is 0.5^{m} greater than printed, the table being so arranged to economize space.
The table is to be used as follows: Find the Hours of the hour anglet in the left hand column of either page; then, between the heavy lines which enclose the hours, find the minutes of the hour angle in the column marked at the top with the current ycar. On the same horizontal line with the mindtes, the azimuth will be found under the given latitude, which is marked at the top of the right hand half of each page. Thus, for 1892, hour angle $0^{\mathrm{l}} 40^{\mathrm{m}}$, latitude 42°; find 0^{h} on left hand page and under 1892 find 40^{m}, on tenth live from the top, and on same line with the minutes, under latitude 422°, is the azimuth $0^{\circ} 18^{\prime}$. For 1896, hour angle $7^{\mathrm{h}} 58^{\mathrm{m}}$, lat. 36°, the azimuth is $1^{\circ} 19^{\prime}$, found on 9 th line from bottom of right hand page.

For the year 1889, the hour angles for 1890 may be used and this has been done in the specimen field notes for the purpose of illustration. If the exact hour angle is not found in the table, the azimuth should be proportioned to the differeuce between the given and tabular valnes of the hour angle. Thus, if the hour angle, in the first of the above examples (for 1892), was $0^{\mathrm{h}} 42^{\mathrm{m}}$ instead of $0^{\mathrm{h}} 40^{\mathrm{m}}$, the azimuth would be the mean between $0^{\circ} 18^{\prime}$ and $0^{\circ} 20^{\prime}$, or $0^{\circ} 19^{\prime}$. In a similar manner

[^22]if the latitude is nearer an odd than an even degree the mean of the azimuth for the next greater and next less latitude will be used; thus, if in the above example for 1896, the given latitude was 37°, then the mean between $1^{\circ} 19^{\prime}$ and $1^{\circ} 21^{\prime}$, or $1^{\circ} 20^{\prime}$, would be the azimuth for latitude 37°. The table has been arranged to give the azimuths as above, by simple inspection, and it requires no written arithmetical work, all being done mentally. It will always be sufficient to take the nearest whole degree of latitude and use it as above directed, except for a few values near the end of the table, where the difference of azimaths, for 2° difference of latitude, amounts to 4 or 5 minutes of are; as for instance for 1890 , hour angle $7^{\mathrm{h}} 29^{\mathrm{m}}$, lat. $46^{\circ} 40^{\circ}$. Here, the latitude may be taken to the nearest half degree, (4610) and the corresponding azimuth is at once fonnd to be $1^{\circ} 42^{\prime}$. See another example in Specimen Field Notes, No. 4.

The attention of the surveyor is here called to the fact that he must always use one day of twenty-four hours, as the unit, when he subtracts the time of culmination from the time of observation. To illustrate, resume example 4.* The time of observation was found to be November 7th, $8^{\mathrm{h}} 24.0^{\mathrm{m}}$. Oue day is taken from the days and its equivalent; twenty-four hours added to the hours, making Nov. 6th $32^{\mathrm{h}} 24^{\mathrm{m}} .0$, without altering the time, and then the substraction is performed as usual. The resulting hour angle being greater than $11^{1} 58^{\mathrm{m}}$, must be taken from $23^{11} 56^{m}, t$ in order to use it in Table II, but it is the hour angle itself which decides the direction of the azimuth as before mentioned. The work may be set down as follows:

Local mean time of observation, 1889, Nov.	\xrightarrow{h}	$\begin{gathered} \text { m. } \\ 24.0 \end{gathered}$
Local mean time of U. C. of Polaris, 1889, Nov. 6.	10	13.0
Hour angle t of Polaris.	22	11.
Subtract from.	23	56
Argument for Table II.	1	45

The azimuth from Table II, for latitude 43°, is $0^{\circ} 47^{\prime}$ east, the tabular hour angle $1^{\mathrm{h}} 44^{\mathrm{m}} .5$ for 1890 , being used. For two similar examples, see Specimen Field Notes Nos. 2 aud 5.

If an hour angle comes out within one minute of either $0^{\mathrm{l}} 0^{\mathrm{m}}$ or $23^{\text {h }}$ 56^{m}, the observation may be regarded as having been taken with the star on the meridian above the pole, if within one minute of $11^{\mathrm{h}} 58^{\mathrm{m}}$, Polaris may be considered on the meridian below the pole at the time of observation.

At elongation, Polaris is nearly $5^{\mathrm{h}} 55^{\mathrm{m}}$ west (or east) of its position at upper culmination, and consequently if the hour angle for any observation comes out within five minutes of $5^{\mathrm{b}} 55^{\mathrm{m}}$ or $18^{\mathrm{n}} 1^{\mathrm{m}}$, the star may be assumed to be at elongation, west for the first and east for the second hour angle, and its azimuth may be taken from a preceding table, which gives its value at elongation from 1890 to $1910, \ddagger$ inclusive.

Should the surveyor wish the time of Lower Culmination, for use with the plumb line method, described on page 73, or for any other purpose, he will first determine the time of upper culmination for the date (Table I), and then subtract $11^{\mathrm{h}} 58^{\mathrm{m}}$ for the preceding lower culmination, or add $11^{\mathrm{h}} 58^{\mathrm{m}}$ for the lower culmination following the derived time for upper culmination, attending to the addition or subtraction of $23^{\mathrm{h}} 56^{\mathrm{m}} .1$, as directed on page 78.

[^23]The time to be used in making observations on Polaris out of the meridian should be as accurate as can be obtained. Looking at Table II, near the top, the surveyor will observe that for a difference of four minutes in the hour angle there is a change of about two minates in the azimuth, and consequently to obtain the azimuth to the nearest whole minute the true local time, upon which all depends, should be known within two minutes. If the sarveyor uses a solar instrument, he can readily determine the time for himself during the afternoon before observing Polaris, or during the morning after observation, and, without moving the hands of his watch, apply the necessary correction to his observed watch time, as exemplitied in Specimen Field Notes Nos. 2 and 4. If the surveyor uses standard railroad time, he must correct the same for the difference of longitude between his station and the standard meridian for which the time is given at the rate of four minutes of time for eaeh degree of the difference in arc. Thas, if the difference of longitude is $6^{\circ} 45^{\prime}$, the equivalent in time will be 27 minutes. The difference of longitude may be taken from a good map. If the surveyor knows how many rauges (of 6 miles each) are included between bis station and the standard meridian, the number of seconds taken from the 5th column of Table IX (opposite his latitude), multiplied by the number of ranges, will give the correction for longitude in seconds of time.* The correction is to be sub. tracted from the standard railroad time of observation when the surveyor's station is west of the standard meridian, and added when the station occupied is east of the standard meridian, to obtain local time. It makes no difference where the surveyor obtains the standard time, provided he gets it right.
Generally the surveyor will have only two or three simple additions or substractions to make, and ten minutes will be ample time in which to make the observation and perform the littlo computation required.

The foregoing examples, with those in the Specimen Field Notes and some attention to these directions, will enable the surveyor, after a little practice, to take out an azimuth from Table II in less time than he can derive a latitude and departure from a Traverse Table.

Note.-The azimuths entered in the following table were calculated with the mean North Polar Distance of Polaris for July 1, 1890, the assumed latitudes of the table and the hour angles for the year. These values having been tabulated, the process was reversed, and with the mean N. P. D. of the star, for the 1st of July of each of the remaining ten years of the series, the latitudes named and azimuths alreally determined, the corresponding hour angles were found. By this artifice the table (which, if computed for the same hour angles for each year, would cover twenty-two pages of this book), is here confined to two pages, and this without any sacrifice of precision, and with the additional advantage of presenting all the azimuths for eleven ycars at one opening of the book, an arrangement which will be appreciated by those surveyors who may have occasion to use it in the discharge of their professional duties.
[J. B. S.]

* See example, page 99.

Table II．－Aztmuths of Polaris
［The hour anglee are expressed in mean solar time．The oeourrenee of a period
［General Land Offloe，Sept．，1889．］

\begin{tabular}{|c|}
\hline \multicolumn{13}{|l|}{\multirow[b]{4}{*}{\begin{tabular}{l}
W．of \(N\) ．when hour angle ie lees than \(11^{\mathrm{h}} 58 \mathrm{~m}\) ． E．of N．Wheu hour angle ie greater than \(11^{\mathrm{n}} 58^{\mathrm{m}}\) ． \\
Argument，the atar＇s hoar angle（or \(23^{\mathrm{n}} \mathbf{5 6}^{\mathrm{m}}\) minus the etar＇s hour angle），for the year－
\end{tabular}}} \& \multicolumn{12}{|l|}{\multirow[t]{4}{*}{\begin{tabular}{l}
Polaris above the Pole： \\
To determino the true meridian the azimuth muet be laid off to tho east whea the hour angle is lens than \(11^{1 \mathrm{~h}} 58 \mathrm{~m}\) ，and to the west wheu greater than \(11^{\mathrm{n}} 58 \mathrm{Bm}\) ．
\end{tabular}}} \\
\hline \& \\
\hline \& \\
\hline \& \\
\hline \multirow[b]{3}{*}{\[
\begin{aligned}
\& \text { 它 } \\
\& \text { 总 }
\end{aligned}
\]} \& \multirow[b]{3}{*}{©} \& \multirow[b]{3}{*}{雩} \& \multirow[b]{3}{*}{宝} \& \multirow[b]{3}{*}{感} \& \multicolumn{2}{|l|}{\multirow[b]{3}{*}{覂}} \& \multirow[b]{3}{*}{} \& \multirow[b]{3}{*}{商} \& \multirow[b]{3}{*}{宫} \& \multirow[b]{3}{*}{\[
\stackrel{\dot{8}}{\stackrel{\circ}{\circ}}
\]} \& \multirow[b]{3}{*}{} \& \multicolumn{2}{|l|}{\multirow[b]{3}{*}{\[
\stackrel{\dot{\tilde{E}}}{\underline{E}}
\]}} \& \multicolumn{11}{|c|}{Azimuths for latitude－} \\
\hline \& \\
\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \[
\left\lvert\, \begin{gathered}
\circ \\
\mathbf{0}
\end{gathered}\right.
\] \& \[
32
\] \& 31 \& 36 \& 38 \& \[
40
\] \& \[
42
\] \& \[
44
\] \& 48 \& 48 \& \(\stackrel{\circ}{\circ}\) \\
\hline \multirow[t]{11}{*}{h．
0

0} \&

\hline \& $$
4
$$ \& 4 \& \[

$$
\begin{gathered}
m_{i} \\
\hline
\end{gathered}
$$

\] \& \& \& \& 4 \& \[

\left\lvert\, $$
\begin{array}{r}
r_{6} \\
4
\end{array}
$$\right.
\] \& \& \& 4 \& \& \& 20 \& 020 \& \& \& 20 \& \& \& 2 \& － 20 \& 0 \&

\hline \& $$
\begin{array}{r}
8 \\
12
\end{array}
$$ \& \[

$$
\begin{array}{r}
8 \\
12
\end{array}
$$
\] \& \& 8 \& \& \& ${ }_{12}^{8}$ \& \& \& \& 12 \& \& \& \& \& \& \& 3 \& \& \& \& \& \&

\hline \& 16 \& $$
\begin{aligned}
& 12 \\
& 16
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 12 \\
& 16
\end{aligned}
$$

\] \& \[

12

\] \& \& 16. \& \[

12

\] \& \[

$$
\begin{aligned}
& 12 . \\
& 16 .
\end{aligned}
$$

\] \& 12. \& \[

$$
\begin{aligned}
& 12 . \\
& 16 .
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 12 . \\
& 16 .
\end{aligned}
$$
\] \& 16 \& \& \& \& b \& \& \& \& \& \& ${ }^{6}$ \& 8 \&

\hline \& $$
\left\lvert\, \begin{array}{|l|}
20 \\
\hline 01
\end{array}\right.
$$ \& 20 \& \& \& \& \& 20. \& 20. \& \& 20. \& \& 21 \& \& \& \& \& \& \& \& \& \& 1 \& 10 \& 1

\hline \& $$
\begin{aligned}
& 24 \\
& 28 \\
& 00
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 24 \\
& 28 \\
& 28
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 24 \\
& 28
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 24 . \\
& 28 .
\end{aligned}
$$
\] \& \& \& 24. \& 24． \& \& \& ${ }_{2 月}^{25}$ \& ${ }_{29}^{25}$ \& \& \& \& \& \& 12 \& \& \& ${ }_{13}^{11}$ \& \& 12 \&

\hline \& ${ }^{32}$ \& ${ }_{32}$ \& \& 32. \& 32 \& \& 32. \& 32. \& 33. \& 33 \& 33 \& 33 \& \& 12 \& 13 \& 13 \& \& 14 \& 14 \& 16 \& 15 \& 16. \& 16 \& 7

\hline \& 36 \& 36 \& \& \& 36 \& \& 36. \& 37 \& 37 \& \& 37 \& 37 \& \& 14 \& 14 \& 15 \& 16 \& 15 \& 16 \& 16 \& 17 \& 16 \& 18 \& 0

\hline \& 40 \& \& \& \& \& \& 41 \& 41 \& 41 \& \& 41 \& 41 \& \& 15 \& \& 16 \& \& 17 \& 18 \& \& 19 \& \& \&

\hline \& 44 \& 44 \& 44. \& \& \& \& 45 \& 45 \& 45. \& 45. \& 45 \& 46 \& \& 17 \& 17 \& 18 \& \& 19 \& 19 \& \& 21 \& \& 23 \&

\hline \& $$
\left\lvert\, \begin{aligned}
& 48 \\
& 52
\end{aligned}\right.
$$ \& ${ }_{59}^{48}$ \& 48. \& 23． \& \& \& \& \& \& \& \& 50

54 \& \& \& \& \& \& \& \& \& 24． \& \& \&

\hline 0 \& 56 \& 56 \& 66. \& 56. \& \& \& \& \& \& \& ${ }_{58}$ \& 5 \& \& 22 \& 22 \& 23 \& \& 24 \& 25 \& 25 \& 26 \& \& 38 \& ，

\hline \multirow[t]{10}{*}{1} \& 0 \& \& \& \& \& \& \& \& \& \& \& \& \& 23. \& \& 24 \& 25 \& 26 \& ${ }^{26}$ \& 27 \& 28 \& 29 \& 311 \&

\hline \& $$
\begin{gathered}
6 \\
10
\end{gathered}
$$ \& \& \& \& \& \& \& \& \& \& 13 \& \& \& \& \& ${ }_{28}^{26}$ \& \& 288 \& ${ }_{31}^{88}$ \& ${ }_{3}^{29}$ \& 330 \& ${ }_{34} 1$ \& 3 \&

\hline \& 15 \& ${ }^{15} 5$. \& 115. \& 1 \& \& \& ${ }_{16 .}^{11 .}$ \& \& 17. \& \& 18 \& 18 \& \& \& \& \& \& \& 331 \& \& 335 \& \& 38． \&

\hline \& 20 \& 20. \& 20. \& 1 \& 21 \& 1. \& 21. \& 22 \& 22. \& 22. \& 23 \& \& \& 31 \& 31 \& 32 \& 33 \& 34 \& 35 \& ， \& ${ }_{3}$ \& \& \&

\hline \& 25 \& 25. \& 25. \& 26 \& 26 \& \& \& 27 \& 28 \& 28. \& 28. \& 28 \& \& 32 \& ${ }^{33}$ \& 34 \& \& 36 \& 37 \& \& 39 \& \& $4{ }^{2}$ \&

\hline \& $$
\begin{array}{|c|}
\hline 30 \\
34 .
\end{array}
$$ \& \[

\left|$$
\begin{array}{|l|}
300 \\
35
\end{array}
$$\right|

\] \& ${ }_{31}^{31}$ \& \[

$$
\begin{aligned}
& 31 . \\
& 36 .
\end{aligned}
$$

\] \& \& \[

$$
\begin{aligned}
& 31 . \\
& 36 .
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 32 \\
& 37
\end{aligned}
$$

\] \& \[

\left\lvert\, $$
\begin{aligned}
& 32 \\
& 37 .
\end{aligned}
$$\right.

\] \& \[

\left\{$$
\begin{array}{l}
33 \\
38
\end{array}
$$\right.
\] \& ${ }_{38}^{33 .}$ \& 34， \& \& \& \& \& ${ }_{38}^{36}$ \& \& \& 39 \& \& 42 \& \& ， \&

\hline \& 38. \& 40 \& 40. \& 41 \& 41 \& \& 42 \& 42. \& 43 \& \& 44 \& 44 \& \& \& \& 40 \& \& 42 \& 1 \& \& 46 \& \& ${ }_{4}^{47}$ \&

\hline \& 44. \& \& \& \& 46 \& \& 47 \& 47. \& \& \& 49 \& 49 \& \& 38 \& 40 \& 41 \& 42 \& 44 \& 45 \& d \& 48 \& 50 \& 52 \& 4

\hline \& 49. \& 50 \& \& \& 52 \& \& 52. \& \& \& \& \& 55 \& \& 41 \& 42 \& 43 \& 44 \& 46 \& 47 \& \& 50. \& \& \&

\hline \& 64. \& 55 \& \& \& 67 \& \& 57 \& \& \& \& 6， \& \& \& 43 \& 44 \& 45 \& \& 47 \& \& \& ， \& \& \&

\hline \& 59. \& ${ }^{6}$ \& \& \& \& \& \& \& \& \& \& \& \& 45 \& 46 \& 47 \& 48 \& 40 \& 51 \& \& 54 \& 500 \& 0 5s＇ \&

\hline \multirow{10}{*}{2} \& \& 10. \& 11 \& 1． \& \& \& ${ }^{8}$ \& 1 \& 14 \& 9. \& 10 \& 10 \& \& ${ }^{46}$ \& \& 40 \& \& 61 \& 63 \& \& 58 \& 561 \& \&

\hline \& \& \& \& \& \& \& 12 \& 13. \& \& 14. \& 5 \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \& $$
19 .
$$ \& 15 \& 16 \& \& 17 \& \& \& 18. \& 19 \& ${ }_{25}^{20}$ \& \[

\underset{20}{20 .}
\] \& \& \& 50 \& \& \& \& \& \& \& \& 2 \& \& 8

\hline \& $$
\begin{array}{|l|}
19 . \\
24
\end{array}
$$ \& ${ }_{25}{ }^{2}$. \& 26 \& ${ }_{26}{ }^{21}$ \& \& \& \& \[

$$
\begin{array}{|l}
24 \\
29
\end{array}
$$

\] \& ${ }_{30}^{24 .}$ \& \& \[

\left\lvert\, $$
\begin{aligned}
& { }_{31}^{26}
\end{aligned}
$$\right.
\] \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \& $$
\begin{array}{|c|}
\hline 29 \\
29 . \\
\hline
\end{array}
$$ \& ${ }^{30 .}$ \& 31 \& 31. \& 32 \& \& 33. \& 34. \& 35 \& ${ }^{35} 5$ \& 36 \& 37 \& \& \& \& \& \& \& \& \& \& \& \&

\hline \& \& \& 36 \& \& 38 \& \& 38. \& 39， \& 40 \& 41 \& 41. \& 42 \& \& 66 \& \& \& \& 2 \& $$
{ }_{8}^{6}
$$ \& \& 8 \& 10 \& 13 \& 16

\hline \& 39. \& 40. \& 41 \& 42 \& \& \& \& 44. \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \& 44. \& 45. \& 48 \& 47 \& 48 \& \& 49 \& 49. \& 50. \& 51. \& $$
\begin{aligned}
& 47 \\
& 53 \\
& \hline
\end{aligned}
$$ \& 53 \& \& ${ }_{59} 1$ \& 159 \& 2 \& \& 5 \& \& \& 11. \& \& 17 \& 20

\hline \& 49. \& 50. \& 51 \& 52 \& 53. \& \& 54 \& 55 \& 56 \& 67 \& 57 \& 58 \& \& － \& \& \& \& 7 \& \& \& 13 \& 16 \& 16 \& 22

\hline \& 54. \& 55. \& 56. \& 57 \& 68. \& \& 59 \& － \& 1 \& \& ${ }^{3}$ \& \& \& 2 \& \& 5 \& \& \& 10 \& \& 15 \& 17 \& 20 \&

\hline 2 \& 69. \& \& \& \& \& \& 4. \& 5. \& 6. \& 7. \& 8. \& \& \& 8 \& 4 \& 6 \& \& 10 \& 12 \& \& 16 \& 19 \& \& 26

\hline \multirow[t]{9}{*}{3} \& \& \& \& \& \& \& \& \& \& \& 15 \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \& 11. \& 12. \& 13. \& 14. \& \& \& \& $$
18
$$ \& \& \& 21. \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \& $$
\begin{array}{|c|}
17 \\
17
\end{array}
$$ \& 18. \& 19. \& 21 \& 23 \& \& 23 \& 24. \& \& \[

$$
\begin{array}{|l|}
20 . \\
27
\end{array}
$$
\] \& 28 \& ${ }_{29}^{29}$ \& \& \& \& 11 \& \& \& ${ }_{17}^{15}$ \& \& \& \& \&

\hline \& $$
\left.\begin{array}{|c|}
23 \\
29
\end{array} \right\rvert\,
$$ \& ${ }_{30}^{24 .}$ \& ${ }_{32}^{26}$ \& \& \& \& \& 31 \& \& \& 35 \& 30 \& \& \& 11 \& 13 \& 14 \& 16 \& 19 \& ， \& 24 \& 27 \& \& 34

\hline \& \& \& 32 \& \& \& \& 36 \& 37. \& 39 \& 40 \& 41. \& 43 \& \& 11 \& 13 \& 14 \& 16 \& 18 \& \& \& 5 \& ， \& \&

\hline \& 36. \& 38 \& 39 \& 40. \& 42 \& \& 43. \& 45 \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \& 43. \& 45 \& 46. \& 47. \& 49 \& 9. \& 51 \& 52. \& \& 65． \& 57. \& \& \& \& \& \& \& \& \& \& \& \& \& 38

\hline \& 50. \& 62 \& 53. \& \& \& \& \& \& \& 3 \& \& \& \& ${ }_{15}^{14}$ \& \& \& \& \& 24 \& \& 30 \& 32 \& \& 48

\hline \& 59. \& 1 \& 2. \& 4 \& \& \& 8 \& 10 \& 12 \& 13. \& 16. \& 17. \& \& 17 \& \& 21 \& \& \& 27 \& \& \& ${ }_{36} 3$ \& \& 4

\hline \multirow[t]{4}{*}{3
4
4
4} \& 9. \& 4 \& 13 \& 15 \& 7. \& 7. \& 10 \& 21. \& 23. \& 26. \& 26 \& 30 \& \& 19 \& \& 23 \& 2 \& 27 \& \& \& 35 \& 38 \& 43 \&

\hline \& 19. \& 21. \& ${ }^{23}$ \&

\hline \& 29. \& 32 \& 34 \& ${ }^{36}$ ． \& 40 \& \& ${ }_{42}{ }^{1}$ \& ${ }_{45}^{38}$ \& ${ }_{48}^{35}$ \& 60． \& 54 \& ${ }_{5}^{43}$ \& \& 22 \& \& \& \& \& \& \& \& \& \&

\hline \& 44 \& 47． \& 50 \& 53 \& 67. \& \& \& \& \& \& \& 23 \& \& 24 \& \& 28 \& \& \& 35 \& \& \& \& \&

\hline 8 \& \& \& \& 11 \& 17 \& \& 20. \& 29 \& 37 \& 50. \& \& \& \& 20 \& \& 30 \& \& \& \& \& \& \& \& 86

\hline \multirow[t]{2}{*}{$$
\begin{array}{|l|}
\hline 8 \\
5
\end{array}
$$} \& \[

$$
\begin{aligned}
& 19 \\
& 59
\end{aligned}
$$
\] \& 25. \& 32 \& 41. \& \& \& \& \& \& \& \& \& \& 27 \& \& 31 \& \& \& \& \& \& \& \&

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& 291 \& 1501 \& 32 \& \& 371 \& \& \& 471 \& \& \&

\hline
\end{tabular}

(For the u8o of land surveyors).

after minutes of an hour angle indicates that its valne is 0 m .5 greater than printed.]
[Arranged and compnted hy J. B. S.]

Table III.

AZIMOTHS OF THE TANGENT TO THE PARALLEL.

[The azimath is the smallest angle the tangent makes wilh the trae meridian and always measnred from the north and towarde the tangential points.]

Lat1tude.	1 mile.			2 miles.			3 mlles .			4 miles.			5 mlles.			6 mlles .		
-	-	,	"	-	,	"	\bigcirc	1	"	-	,	"	-	1		\bigcirc	,	
30	89	59	30	89	58	59.9	89	58	29.9	89	57	50.8	89	57	29.9	89	56	
31	89	59	28.8	89	58	57.5	89	58	26.3	89	57	55.0			23.8	89		
32		59	27.5	89	58	55.0		58	22.5	89	57	56.0	89		17.6	88		45.0
33	89	59	28.2	89	58	52.6	89	58	18.7	89	57	44.9	89	57	11. 2	88	56	37.4
34	89	59	24.9	89	58	49.9	89	58	14.8	89	57	39.7	89	57	04.6	89	56	29.6
35	89	59	23.0	89	58	47.2	89	58	10.8	89	57	34. 4	89	56	58.0	89		21.6
36	89	59	22.2	89	58	44.4	89	58	68.8	89	57	28.9	89	56	51.1	89	56	13.4
37	89	59	20.8	89	58	41.0	89	58	02.5	89	57	23.3	89	66	44.1	89	56	65.0
38	89	59	19.4	88	58	38.8		57	58.2	89	57	17.5	89	56	36.9	89	56	50.3
39	89	69	17.9	89	58	35. 8	89	57	53.7	89	57	11.0	89	50	20.6	89	55	
40	89	59	16.4	89	58	32.8	89	57	49.2	89	57	05. 5	89	56	21.9	89	55	38.3
41	89	59	14.8	89	58	29.6	89	57	44,4	89	56	59.3	89	51	14. I	89	55	28.9
42	89	59	13.2	89	58	28.4	89	57	30.6	80	58	52.8	88	50	06. 0	89	56	19,2
43	89	50	11.5	89	68	23.1	89	57	34.6	89	56	46.2	88	55	57.7	80	56	09.?
44	89	59	09.8	89	58	19.6		67	29.5	89	50	39.3	89	55	49.1	89		58.9
45	89	59	08.0	89	58	15.1	89	57	24.1	89	56	32.1	89	55	40.2	89	54	48.2
46	89		08.2	89	68	12.4	89	67	18.6	89	56	24.8	89	55	31.0	89	64	37.2
47	89		-04.3	89	58	08. 8		57	12.9	89	56	17.1	89	55	21.4	89	64	25.7
48	89	69	02.3	89	58	04.6		57	06.9	88	66	09.2			11.5	99		13.8
49	89	69	06. 2	89	58	00.5		57	60.7	89	56	00.9	89	55	01.2	89	54	01. 4
50	89	58	58.1	89	57	56.2	89	56	64.3	89	55	52.6	89	54	50.5	89	63	48.5
LatI- tude.	7 mlles.			8 mlles.			9 mlles.			10 mlles.			11 milles.			12 mlleg .		
-	\bigcirc	,	"	\bigcirc	,	"	c	,	"	0	1	"	\bigcirc	,	"	\bigcirc	,	"
30	89	68	29.8	89	55	59.8	89	55	29.8	89	54	59.7	89	64	29.7	89	63	59.7
31	89	56	21.3	89	55	50.0	89	55	18.8	89	54	47.6	89	54	16.3	89	53	45.1
32	89	56	12.5	89	55	40.6	89	55	67.6	89	54	35.1	89	54	02. 6	89	53	36.1
33	89	58	03.8	89	55	29.9	89	54	56.1	89	54	22.3	89	53	48.5	89	53	14.8
34	80	55	54.5	89	55	19.4	89	54	44.4	89	54	09.3	89	53	34.2	89	52	59.1
35	89	55	45.2	89	55	08.8	89	54	32.3	89	53	65.8	89	53	19.5	89	62	43.1
36	89	55	35.6	89	54	67.8	89	64	20.0	89	53	42.3	89	53	04.5	88	52	28.7
37	89	65	25.8	89	54	46.6	89	54	07.4	80	53	28.2	89	52	49.1	89	52	09.8
38	89	55	15.7	89	54	35.1	89	53	54.5	89	53	13.9	89	\%2	33.2	89	51	52.0
39 40	889	65	65.4 54.7	89 89	54	23.3 11.1	888	53 53	41.2 27.6	89 89	52	69.1 43.8	898	52	17.0 00.2	89	51	34.9 18.6
41	89	54	43.7	89	53	58.6	88	53	13.4	89	52	28.2	89	51	43.0	89	56	57.8
42	89	54	32.4	89	53	45.6	89	52	58.8	89	52	12.0	89	51	25.2	89	50	38.4
43	89	54	20.8	89	53	32.3	89	52	43.8	89	51	55.4	89	51	06.0	89	$6{ }^{6}$	18.5
44	89	54	68.7	89	53	18.5	89	52	28.4	89	61	38.2	89	50	48.0	88	49	57.8
45	89	53	56.3	89	53	04.3	89	52	12.3	89	51	26.4	89	50	28.4	89	49	36.4
46	89	53	43.4	89	62	49.5	89	51	65.7	89	61	61.9	89	50	08.1	89	49	14.8
47	89	53	30.0	89	52	34.3	89	51	38. 6	89	50	42.9	89		47.2	88	48	51.4
48	89	53	18.1	89	52	18.4	89		20.7	89	56	23.0	89	49	25.3	89	48	27.6
49	89	63	01.7	89	52	01.9	89	51	62.1	89	50	02.4	89	49	02, 0	89	48	02.8
50	89	62	46.6	88	51	44.7		50	42.8	88	49	46.9	89		39.0		47	37.1

Table III, Azimuths of the tangent to the parallel, gives for each degree of latitude from 30° to 50°, the angle which the tangent makes with the true meridian at distances of $1,2,3$, etc., miles from the tangential point.
Diagram A, Fig. 1, shows a base line, or standard parallel (supposed to be in Latitude $43^{\circ} \mathrm{N}$.), and one township north of the parallel, the lines of which are purposely thrown out of their true positions in order to more clearly exhibit the effect of convergency of meridians in modifying the dimensions and shape of townships when snrveyed in accordance with present practice.

If run with a transit, the direction of the tangent at right angles to the true meridian at the starting point, T, should be accurately determined by a sufticient number of observations on Polaris at elongation, and carefully prolonged, by back and foresights, in a straight line. At the half mile and mile points the offsets are measured in the proper direction and correct length, the azimuths being taken from Table III and the offsets from Table IV (or Table V, which is more convenient for the surveyor when off sets are long),-and the corner should be established on the parallel of latitude $\mathrm{B}-\mathrm{T}$, passing through the point of beginning.
The bearing of the tangent continually decreases, and at any mile point its azimuth taken from 90° leaves a quantity which is called the convergency of the meridians, which, for the six-mile point, is the angle marked K OF on the diagram between the true meridian O-F and the perpendicular K-O, which is, of course parallel to the true meridian T-E through the tangential point.

One-half of the convergency, K O F, taken from 90°, leaves the angle (given under " 3 miles" in Table III), which the straight line, connecting the township corners, supposed to be in the same latitude, makes with the true meridian, and its bearing is always north of west (or east); thus the line $\mathrm{E}-\mathrm{F}$ bears $\mathrm{N} .89^{\circ} 57^{\prime} \mathrm{W}$. from E , and the retarn course is N. $89 \circ 57^{\prime} \mathrm{E}$. To call the last-named bearing south $89^{\circ} 57^{\prime}$ east is manifestly incorrect.

When standard parallels or E. and W. township lines are run with a solar compass, or a transit with solar attachment, and the instrument is in perfect adjustment (as it always should be), and the stations are at equal distances, the line will have nearly the curvature of the parallel and almost coincide with it, but it will always have a tendericy to ran to the south to the amount of the off-set between stations (Table IV), repeated as many times as the instrument is set, unless correction for departure from the parallel of latitude is made at every station occupied. If the distances between the stations are unequal, the line will approximate to the form of the parallel, and generally with sufficient accuracy to be considered as having the same curvature as the parallel of latitude itself.

Table IV.
OFF-SETS FROM TANGENT TO PARALLEL.
[Offeets in feet.]

Latitude.	1 mll .	2 miles.	3 mifes.	4 miles.	5 miles.	6 mites.
\bigcirc	Feet.	Feet.	Feet.	Feet.	Feet,	Feet.
30	0.39	1.54	3.47	6.17	9.64	13.88
31	0.40	1.60	3.61	6.42	10.03	14. 44
82	0.42	1.67	3. 78	6.67	10.42	16.02
83	0.43	1.73	3. 90	6. 93	10.82	15. 60
34	0.45	1.80	4.05	7.20	11.25	16. 20
35	0.47	1.87	4.20	7.47	11. 68	16. 81
36	0.48	1.94	4. 36	7.75	12. 11	17.41
37	0.50	2.01	4.52	8.04	12. 57	18. 09
38	0.52	2.08	4.69	8.33	13.02	18.75
39	0.54	2.18	4. 88	8. 08	13.49	19.43
40	0.56	2.24	5.03	8.95	13.98	20.11
41	0.58	2.32	5.21	9.27	14.48	20.85
42	$0.6)$	2.40	5. 40	9.59	14.99	21. 59
43	0.82	2. 48	5. 59	9.93	15.52	22. 35
44	0.64	2.57	5.78	10.29	16.07	23.14
45	0.67	2.66	5. 99	10.05	16. 64	23.96
46	0.69	2.76	6. 20	11.02	17. 21	24. 80
47	0. 71	2.85	6. 42	11.41	17. 83	25.68
48	0.74	2.85	6. 65	11.82	18.47	26. 58
49	0.76	3.06	6. 88	12.24	19.12	27. 54
50	0.79	3.17	7.12	12. 68	10.80	28.52
Latltude.	7 miles.	8 miles.	9 miles.	10 mlles .	11 miles.	12 miles.
\bigcirc	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.
80	18.89	24.67.	31.23	38.55	46.65	55.52
31	19.66	25.68	32.49	40.12	48.54	67.77
32	20.44	20.69	33.78	41.71	50.47	00.06
33	21. 23	27.74	35.10	43.34	52.44	82. 41
34	22.05	28.80	36. 45	45.00	54.45	64. 80
35	22.89	29.89	37.83	46.71	50.62	67.26
36	23.74	31.01	39.25	48. 45	58.63	68.77
37	24. 62	32. 16	40.70	50.24	60.79	72.35
38	25.52	33.33	42.19	\$2.08	63.02	75.00
39	26. 44	34.54	43. 71	53.07	65. 30	77.71
40	27.40	35.78	45.29	55. 91	67. 65	80.51
41	28.37	37.06	46. 90	57.91	70.07	83.39
42	28.38	38.38	48.57	59.97	72.56	88.35
43	30.42	39.74	50.29	62.09	75. 13	89.41
44	31.50	41.14	52.07	64.28	77.78	82.57
45	32.01	42.59	53.91	66. 55	80.53	95. 84
46	33.76	44.10	55.81	88.90	83. 37	98. 22
47	34.05	45.65	57.78	71.34	86.32	102. 72
48	36.19	47.27	59.83	73.88		106.36
49	37.48	48.95	61.96	76.49	92. 55	110.15
50	38.82	50.70	64.17	70.22	95.86	114. 08

For the purpose of illustration, the south boundary of the township represented by Diagram C is supposed to be a straight line, and this is done in order to provide a variety of bearings to illustrate the application of Table VI, and to give emphasis to the requirement that all random section lines running approximately east and west must be run parALLEL to the south boundary of the tier of sections to which they belong, and that TRUE lines, for fractional sections, must be run in the same manner and not necessarily east (or west) as heretofore directed. Random lines will be ran east (or west) when the south boundary is so run.
For various reasons the boundaries on the north and south of townships are not always truly east and west lines; many are run crooked and some of them may, by accident, be rua straight. Consequently, there seems to be no impropriety in assuming the soath boundary of the township, Diagram O, to be a straight line with the bearings indi-

Table V.
offremt from tangent to parallel.
[Off-sets in chains.]

Latitude.	1 mile.	2 mlles .	3 miles.	4 mlles .	5 miles.	6 mlles.
\bigcirc	Chains.	Chains.	Ohains.	Ohains.	Chains.	Chains.
30	0.006	0.023	0.053	0.09	- 0.14	0.21
31	0.006	0.024	0.055	0.10	0.15	0. 22
32	0.006	0.025	0.057	0.10	0.16	0.23
33	0.007	0.026	0.059	0.10	0.16	0.24
34	0.007	0.027	0.061	0.11	0.17	0.25
35	0.007	0.028	0.064	0.11	0.18	0.25
36	0.007	0.029	0.066	0.12	0.18	0.28
37	0.008	0.031	v. 068	0.12	0.19	0.27
38	0.008	0.032	0.071	0.13	0.20	0. 28
39	0.008	0.033	0.074	0.13	0.20	0.29
40	c. 008	0.034	0.076	0. 13	0.21	0.30
41	0. 009	0.035	0.079	0.14	0.22	0.32
42	0.009	0. 036	0.082	0.14	0.23	0.33
43	0.009	0.038	0.085	0.15	0.24	0.34
4	0.010	0.039	0.088	0.16	0.24	0.35
45	0.010	0.040	0.091	0.16	0.25	0.36
46	0.010	0.042	0.094	0.17	0.26	0.37
47	0.011	0.044	0.097	0.17	0.27	0.39
48	0.011	0.045	0.101	0.18	0.28	0.40
49	0.012	0.046	0.104	0.19	0.29	0.42
50	0. 012	0.048	0.108	0.19	0.30	0.43
Latitude.	7 mlles.	8 milles.	9 mlles.	10 mlles.	11 miles.	12 miles.
$\stackrel{\square}{30}$	Chains. ${ }^{\text {0 }}$ (29	Chains. ${ }_{0}$	Chains. ${ }_{0} \mathbf{0 . 4 7}$	Chains. ${ }_{\text {0. }}$	Ohains. 0.71	Ohains. ${ }^{\text {a }} 8.84$
31	0.30	0.39	0.49	0.60	0.74	0.88
32	0.31	0.40	0.61	0.63	0.76	0.91
33	0.32	0.42	0.53	0.65	0. 79	0.95
34	0.33 0.35	0. 43	0.55	0.68	C. 82	0.98
		0.4	0.57	0. 20	0.8	1.02
36	0.36	0.47	0.59	0.73	0.89	1.06
37	0.37	0.48	0.61	0.75	0.91	1. 10
	0.38	0.50	0.64	0.78	0.95	1.14
39	0.40	0.52	0.66	0.81	0.99	1.18
40	0.41	0.54	0.68	0.84	1.02	1.22
41	0.43	0.56	0.70	0.87	1. 06	1. 26
42	0.44	0.58	0.73	0.90	1.09	1.31
43	0.46	0.60	0.75	0.93	1.14	1.35
44	0.48	0.62	0.79	0.97	1.18	1.40
45	0.49	0.64	0.81	1.00	1. 22	1.45
46	0.51	0.66	0.84	1.04	1. 26	1. 50
47	0.53	0.68	0.87	1.07	1.31	1.56
48	0.55	0.71	0.91	1.12	1.35	1.61
49	0.57	0.74	0.93	1.16	1.40	1. 67
50	0.59	0.77	0.97	1. 20	1.45	1. 73

cated on the line E-F, and north of it, as represented on Diagram A, Fig. 1.

If the south boundary is a true east and west line, as it should be, then of course all the random lines will be run east (or west) as indicated in T. 1 N. of Diagram A.

The above assumption of a straight line for a township boundary, merely for the purpose of illustration, is not to be construed as authority for so running the north or south boundaries, or as in any manner changing present practice in the survey of township exteriors, but it is the purpose of Diagram C, and Specimen Field-Notes, No.5, to so amend directions for subdividing as to secure a record of the survey which will truly represent the work upon the ground, and give the bearings of lines, governed by the true meridian, as required by law.

Table VI．
Table showing the difference in latitude and departure in running 80 ohains at any course from 1 to 60 minutes．

VI．A．

Minutes．	Links．	Minates．	Links．
1	21	31	727
2	$4{ }^{3}$	32	742
3	7	33	77
4	97	34	797
5	11\％	35	81年
6	14	36	84
7	161	37	867
8	$18 \frac{1}{4}$	38	888
9	21	39	91
10	231	40	93 z
11	25%	41	95\％
12	28	42	98
13	301	43	1007
14	32.	44	102 ${ }^{\text {a }}$
15	35	45	105
16	371	46	107\％
17	39%	47	109\％
18	42	48	112
19	$44 \frac{1}{3}$	49	$114 \frac{1}{2}$
20	468	50	$116 \frac{9}{8}$
21	49	51	119
22	$51 \frac{1}{4}$	52	$121 \frac{1}{8}$
23	5.38	53	123等
24	56	54	126
25	587	55	1288
26	608	56	130ㄹ
27	63	57	133
28	$65 \frac{1}{8}$	58	1354
$\stackrel{29}{30}$	${ }_{70}^{67}$	${ }_{60} 69$	${ }_{140}^{137}$
30	7		140

VI．B．

Links．	Minutes．	Links，	Minutes．
27	1	721	31
$4{ }^{4}$	${ }_{3}^{2}$	748	32
7		77	33
91	4	797	34
11震	5	81\％	35
14	6	84	36
$16 \frac{1}{8}$	8	$86 \frac{1}{8}$	${ }_{38} 7$
$18 \frac{3}{4}$	8	888	38
21	9	91	39
231	10	937	40
25 妾	11	954	41
28	12	98	42
301	13	1007	43
32	14	102\％	44
35	15	105	45
37\％	16	107\％	46
39\％	17	109 ${ }^{\text {厓 }}$	47
42	18	112	48
443	19	1148	49
468	20	116	50
49	21	119	51
511	22	121	52
53.3	${ }^{23}$	1238	53
56	24	126	54
581	25	1288	5.5
60 年	26	130%	56
63	27	133	57
657	28	1355	58
67\％	29	$137{ }^{\text {2 }}$	59
70	30	140	60

Random bearings，determined as above directed，are actually the true bearings of the lines and are so used for running fractional true lines． Any deviation from random bearings，derived from the application of the falling［Table VI］，changes the random bearing by an amount due to unavoidable errors，and should give for a final result a bearing as near the true bearing as the field work will permit．A true bearing means the angular deviation from the true meridian in contradis－ tinction to the magnetic bearing，or angle made with the magnetic meridian．A true line is to be anderstood to refer to the line upon which the corners are established．

Table VI［ A and B ］is used to determine the return from the random course by the following rules，the meridians being regarded as parallel．

I．－If the random line is run east or west，subtract the falling［in minutes of are］from 90° ，reverse the departure letter，and name the meridianal letter N．or S．，like the falling．
II.-When the random coarse is nearly east and west, take the sum of the random course and closing error [in minntes of arc], if they are of the same name-that is, both north or both south-but their difference when of different names; in either case changing the meridional and departure letters of the random line. [This is easily remembered by bearing in mind the initial letters of Sum and Same and Difference and Different].
III.-In any case when the sum exceeds 90°, the return course is found by subtracting said sum from 180° and retaining the meridional letter of the random course unchanged. It the sum is exactly 90°, the return course is evidently west [or east] to the starting point.

THE RANDOM AND TRUE LINE AND USE OF THE VARIATION.

In the article entitled "method of subdividing," directions have been given to ran east and west random lines parallel to the south boundary of the tier of sections to which they belong, instead of due east as given in former editions of these instructions. In many instances the south boundary of townships to be subdivided are found to depart, sometimes considerably, from the trueeastand westline, or parallel of latitude, which they are supposed to follow. The present instructions are intended to reduce the falling of the random to the smallest practicable amount and to show at once how much the random linedeparts from the true line, instead of complicating its departure with the deviation of the south bonidary. When the south boundary makes a comparatively large angle with the parallel, the random line, if run due east, necessarily falls at a considerable distance north or south of the objective corner, and it appears tohave been the practice of some surveyors to tarn around the compass box until the north end of the needle points to the north mark, and to call the resulting reading of the vernier the variation. Thus, many old plats give the variation on east and west lines one value throughout, and on the north and south lines another uniform variation, the two differing by ten or fifteen minates, or even more. In other instances two lines, making an angle of one or two degrees with each other, will be run, for example, north, and the variation recorded as differing by the angle between them. By this practice neither the magnetic nor the true bearing is given, and what is called the variation is simply an arbitrary angle, which may in some cases be the variation by accident, but oftener something else. The bearing of the soulh bonndary will be the same from one end to the other if correctly run, and its bearing is of course the true bearing of east and west section lines if the corners are at the proper distance from said boundary. Therefore, for the sake of nniformity, it necessarily follows that the bearing of random lines should be the same as that of the south boundary of the tier of sections to which they belong and the lines are to be so run.

When the lines are run as above directed, that portion of the falling due to deviation of the south boundary no longer enters into consideration and the limit for the closing error may be consistently reduced to the limit allowed on exterior lines, or fifty links per mile, and this change has been made in the prescribed limits (on page 40), which are, even after this reduction, much greater than good work will ever require.

The variation, when once properly determined, is to be set off on the variation arc, which should then be clamped and notagain moved until natural causes-such as dinrnal change or local attraction-require it to be corrected. Whenever any change in the variation is made on
the instrument, all particulars relating thereto must be recorded, as illustrated in Specimen Field Notes.

The compass used as above directed will always give the bearing from the true meridian or the true bearing of any point, or of any line upon which the compass is directed.

Tables VII and VIII.

These tables, which require no special description, are useful for converting linear into angular, and angular into linear, measures, as well as for determining the convergencies and divergencies of the meridians, on the speroidal surface of the earth. As the tabular values are given in chains, the tables will be found convenient for the surveyor's use. The following rules and examples will illustrate their application :

1. Given the latitudes of any two places on the same meridian, to find the distance between them.

Rule.-Find from Table VII the length of a degree of the meridian at each latitude, and take half their sum for the mean length of a degree. Then say, as 60^{\prime} minutes is to the difference of latitude, so is the mean length of a degree to the distance required.

The latitude of the north boundary of Wyoming is $45^{\circ} \mathrm{N}$., and that of the 1st Standard Parallel South, Montana, $45^{\circ} 26^{\prime} 4^{\prime \prime} .08$; what is the meridional distance between them?

Chains. Chains.
As $60^{\prime}: 26^{\prime} 4^{\prime \prime} .08: 5524.02: 2400$, the distance required.
2. Given the distancie between any two places on the same meridian, and the latitude of one of them, to find the difference of latitude.

Rule.-Find from Table VII the length of a degree of the meridian, in the given latitude, and also in that differing from it, by the meridional distance, converted into arc at the rate of 52 seconds per mile, and take half their sum for the mean length of a degree. Theu sas, as the mean length of a degree is to the meridional distance, so is 60 minutes to the difference of latitude required.

The latitude of the north boundary of Wyoming is $45^{\circ} \mathrm{N}$. ; what is the latitude of the 1st Staudard Parallel South, Montana, the meridional distance being 30 miles?

> Chains. Chains.
> As $5524.02: 2400:: 60^{\prime}: 26^{\prime} 4^{\prime \prime} .08$, the difference of latitude required.
3. Given the longitudes of any two places, on the same parallel, in a given latitude, to find the distance between them.

Rule.-Find from Table VIII the length of a degree of longitude in the given latitude; and say, as 60 minutes is to the difference of longitude, so is the length of a degree of longitude to the distance required.

The longitude ot the Willamette Meridian is $122^{\circ} 44^{\prime}$, and that of east boundary of Range 6 east, $121^{\circ} 59^{\prime} 31^{\prime \prime}$; what is the distance between them, on the Base Line, in latitude $45^{\circ} 30^{\prime}$?
4. Given the distance between any two places on the same parallel, in a given latitude, to find their difference of longitude.

Rule.-Find from Table VIII the length of a degree of longitude in the given latitude; and say, as the length of the degree of longitude is to the given distance, so is 60 minutes to the difference of longitude.

The longitude of the Willamette Meridian is $122^{\circ} 44^{\prime}$; what is the difference of longitude to east boundary of Range 6 east, the distance on the Base Line, in latitude $45^{\circ} 30^{\prime}$, being 36 miles?

Chains. Chains.
As $3884.81: 2880:: 60^{\prime}: 44^{\circ} 29^{\prime}$, the difference of longitude required.
5. Given the distance between two meridians, on any parallel, in a given latitude, to find the convergency of the meridians for any distance north of that parallel.

Rule.-Find the length of a degree of longitude, at each latitude, by the foregoing rules; and say, as the greater of the two lengths is to their difference, so is the given distance to the convergency required.

The distance between the Principal Meridian and first Range Line west is 6 miles, in latitude $42^{\circ} 39^{\prime} 12^{\prime \prime}$; what is the convergency of the two range lines at the Base Line, the meridional distance being 24 miles?

Chains. Chains. Chains. Chains.
As 4075.67 : "2. $71:: 480: 2.67$, the convergency required.
6. Given the distance between two meridians, on any parallel in a given latitude, to find the divergency of the meridians for any distance south of that parallel.

Rule.-Find the length of a degree of longitude, at each latitude, by the foregoing rules; and say, as the less of the two lengths is to their difference, so is the given distance to the divergency required.

The distance between the Principal Meridian and first Range Line on the Base Line in latitude 43°, is 5 miles 77.33 chains; what is the divergency of the two range lines at the parallel $42^{\circ} 39^{\prime} 12^{\prime \prime}$, the meridional distance being 24 miles :

Chains. Chains. Chains. Chains.
As 405\%. $96: 22.71:: 477.33: 2.67$, the divergency required.

Tablez VII.
LENGTH OF A DEGREE OF LATITUDE.

罟	290	30°	81°	32°	33°	$34{ }^{\circ}$	85°	38°	37°	38°	男
,	Ohains.	Chaine.	Ohains.	Ohains.							
0	5509. 15	5509.97	5510.82	5511.67	5512.55	5513.44	5514.34	5515.25	5516.18	5517.11	0
1	09. 16	09.09	10.83	11. 68	12.58	13.45	14.35	15. 27	16. 19	17.13	1
2	00.17	10.00	10.84	11. 70	12. 68	13.47	14. 37	15. 28	10.21	17.14	2
3 4 4	09.19 09.20	10.01 10.03	10.88 10.87	11.72.	12.59	13.48 13.50	14.38 14.40	15.31	16.24	17.16 17.17	3 4
5	00.21	10.04	10.89	11.75	12.62	13.61	14.42	15.33	16.25	17.19	5
6	09.23	10.06	10. 90	11.78	12.64	13. 63	14.43	15.34	16.27	17.20	4
7	00.24	10.07	10.01	11. 78	12.65	13. 54	14.45	15.36	16.28	17.22	7
8	00.25	10.08	10.93	11.78	12. 67	13. 56	14.46	15.38	16.30	17. 23	8
9	09.27	10.10	10.04	11.81	12.68	13.67	14.48	15. 39	16.32	17.25	I
10	09.28	10.11	10.96	11. 82	12.70	13.59	14.49	15. 41	16.33	17.27	10
11	09.30	10.13	10.97	11.83	12.71	13.60	14. 61	15.42	16.35	17.28	11
12	09.31	10.14	10.98	11. 85	12.73	13.62	14. 52	15.44	16.36	17.30	12
13	09.32	10.15	11.00	11. 88	12. 74	13. 63	14.54	15.45	16.38	17. 31	13
14	08.34	10.17	11.01	11.88	12.78	13.65	14.55	15.47	16.39	17.33	14
15	09.35	10.18	11.03	11.89	12.77	13.66	14. 67	15.48	16.41	17.34	15
16	09.36	10.19	11.04	11.01	12. 79	13. 68	14.58	15. 50	10.42	17.36	16
17	09.38	10.21	11.06	11.92	12.80	13. 69	14. 60	15.51	16.44	17.38	17
18	09.38	10.22	11.07	11.94	12.81	13. 71	14. 61	15. 53	16.46	17.30	18
19	00.41	10.24	11.08	11.05	12.83	13,72	14. 63	15. 54	18.47	17.41	19
20	09.42	10.25	11.10	11. 96	12.84	13. 74	14. 84	15. 68	16.49	17.42	20
21	09.43	10.26	11.11	11.98	12.80	13.75	14.66	15.57	16.50	17.44	21
22	09.45	10.28	11.13	11.99	12.87	13.77	14.67	15. 59	16.52	17.45	22
23	09.46	10.29	11.14	12.01	12. 88	13.78	14.69	15. 61	16.53	17.47	23
24	09.47	10.31	11.16	12.02	12.00	13.80	14.70	15. 62	16.55	17.49	24
25	09.40	10.32	11.17	12.04	12.92	13.81	14. 72	15.64	16.56	17.50	25
26	09. 50	10.33	11.19	12.05	12. 93	13.83	14.73	15. 65	16.58	17.62	26
27	09. 51	10.35	11.20	12.07	12. 05	13. 84	14. 75	15.67	16.60	17. 53	27
28	09.53	10.36	11.21	12.08	12.06	13.86	14.76	16.68	16.61	17.55	28
29	09.54	10.38	11.23	12.10	12.08	13.87	14.78	15. 70	-16.63	17.50	29
30	09.58	10.39	11.24	12.11	12.99	13.89	14. 79	15. 71	16.64	17.58	30
31	09. 57	10.41	11. 26	12.12	13.01	13. 90	14. 81	15.73	16. 66	17.60	31
32	09.58	10.42	11.27	12.14	13. 02	13. 02	14.82	15. 74	16.67	17.61	32
33	00.60	10.44	11. 29	12. 15	13.04	13. 83	14.84	15. 76	16. 69	17.63	33
34	09.61	10.45	11.30	12.17	13.05	13. 95	14.86	15. 77	16.70	17.64	34
35	09. 63	10.46	11.31	12.18	13.07	13.96	14.87	15.79	16.72	17.68	35
36	09.64	10.48	11.33	12. 20	13.08	13. 98	14.89	15.81	16.74	17.87	36
37	09.65	10.49	11.34	12.21	13.10	13.09	14.00	15.82	16.75	17.69	37
38	09. 67	10.50	11.36	12. 22	13. 11	14. 01	14. 82	15. 84	16.77	17.71	38
39	09.68	10. 52	11.37	12.24	13.13	14.02	14.93	15.85	16.78	17.72	39
40	03. 69	10. 53	11.39	12.26	13.14	14. 04	14. 05	15. 87	16. 80	17.74	40
41	C9. 71	10.55	11. 40	12.27	13.16	14. 05	14.96	15. 88	16.81	17. 75	41
42	09.72	10.56	11. 42	12.29	13. 17	14.07	14. 98	15. 90	16.83	17. 77	42
43	09.74 08.75	10.57 10.58	11.43 11.44	12.30	13.18 13.20	14.08	14. 99	$15.01{ }^{\circ}$	18.84	17.78	43
44	00.75	10.50	11. 44	12. 31	13. 20	14. 10	15.01	15.93	16.86	17.80	44
45	00.78	10.60	11.46	12. 33	13.21	14.11	15. 02	15. 84	16.88	17.82	45
48	09.78	10. 62	11.47	12.34	13.23	14. 13	15. 04	15.98	16.89	17.83	46
48	09.70	10.63	11. 49	12.36	13. 24	14.14	15. 05	15.98	16. 91	17.85	47
49	09.82	10.66	11.52	12.39	13.27	14.17	15.08	10.01	16.84	17.86	48
50	09.83	10. 67	11. 53	12.40	13. 29	14. 10	15. 10	16.02	16.05	17.89	50
51	09. 85	10.69	11.54	12.42	13. 30	14.20	15. 11	16.04	16. 97	17.91	51
52 53 8	09.86 09.87	10.70 10.72	11.56	12.43	13.32	14.22	15. 13	16. 05	16.08	17.93	52
53 64	09.87 09.89	10.72 10.73	11.57 11.58	12.45 12.46	13.33 13.35	14.23 14.25	15.15	16.07	17.00 17.02	17.84 17.96	53 54
55	09. 90	10.74	11. 80	12. 48	13.38	14.26	15.18	16.10			
66	c9. 92	10.76	11.62	12.49	13.38	14. 28	15. 19	16.11	17.05	17.08	6\%
57 58	00. 93	10.77	11.63	12.51	13.39	14. 29	15. 21	16. 13	17.06	18.00	57
68 58	09.94 09.96	10.79 10.80	11.85	12.52	13.41	14.31	15.22	16.15	17.08	18. 02	58
				12.53	13.42	14.32	16.24	16.16	17.09	18.04	58
60	5509.97	5510.82	6511.67	5512.55	5513.44	5514.34	5515.25	5516.18	5517.11	5518.05	60

Table VII.

LENGTH OF A DEGREE OF LATITUDE.

莮	390	40°	41°	42°	43°	44°	450	40°	47°	48°	岗
,	Ohains.	Chains.	Chains.	Ohains.	Ohains.	Chains.	Chains.	Chains.	Chains.	Ohains.	
0	5518. 05	5519.00	5519.96	5520.92	5521.88	5522.85	5524.81	5524.78	5525. 75	65\%6. 72	0
1	18. 07	19.02	19.97	20.93	21. 80	22.86	23.83	24.80	25. 77	26. 73	1
2	18.08	19.03	19.99	20.95	21.91	22.88	23.85	24.82	25.78	28.75	2
3	18. 10	19.05	20.00	20.96	21. 93	22.89	23. 80	24.83	25.80	${ }^{26.76}$	3
4	18.11	19.06	20.02	20.98	21.94	22.91	23.88	24.85	25.82	26.78	4
5	18. 13	19.08	20.04	21.00	21.96	22. 93	23. 90	24.80	25. 83	26. 80	5
6	18.15	19.10	20.05	21.01	21.98	22. 94	23. 91	24.88	25.85	26.81	6
7	18. 16	19.11	20.07	21.03	21.99	22.96	23.93	24.90	25.86	26. 83	7
8	18. 18	19.13	20.08	21.04	22.01	22.98	23.94	24. 91	25.88	26.84	8
9	18. 19	19.14	20.10	21.06	22.02	22.99	23.96	24.93	25.90	20.88	4
10	18. 21	19.16	20.12	21.08	23.04	23.01	23.98	24.94	25.91	26. 88	10
11	18. 22	19.18	20.13	21.09	22.06	23.02	23.99	24.96	25.93	26.89	11
12	18. 24	19.19	20.15	21.11	22.07	23.04	24.01	24.98	25.94	26.91	12
13	18. 20	19. 21	2016	21.12	22.09	23.06	24.02	24.99	25.96	26.92	13
14	18.27	19.22	20.18	21.14	22.11	23.07	24.04	25.01	25.98	26.94	14
15	18. 29	19.24	20.20	21.16	22.12	23.09	24.06	25.03	25.99	26.96	15
16	18.30	19.25	20.21	21.17	22. 14	23.10	24.07	25.04	26.01	26.97	16
17	18.32	19.27	20.23	21.19	22.15	23.12	24.09	25.06	26.02	28.89	17
18	18.34	19.29	20.24	21. 20	22.17	23.14	24.11	25.07	26.04	27.00	18
19	18.35	19.30	20.26	21.22	22.19	23.15	24.12	25.09	26.06	27.02	19
20	18.37	19.32	20.28	21.24	22.20	23.17	24. 14	25. 11	26.07	27.04	20
21	18.38	19.33	20.29	21. 25	22.22	23.19	24.15	25.12	26. 09	27.05	21
22	18. 40	19.35	20.31	21.27	22.23	23.20	24.17	25.14	26.10	27.07	22
23	18. 41	19.37	20.32	21.29	22. 25	23.22	24. 19	25.15	26.12	27.09	23
24	18. 43	19.38*	20.34	21.30	22.27	23.23	24.20	25.17	26.14	27.10	24
25	18.45	19.40	20.36	21.32	22. 28	23.25	24.22	25. 19	26.15	27.12	25
26	18.46	19.41	20.37	21. 33	22. 30	23.27	24.23	25. 20	26.17	27.13	26
27	18.48	19.43	20.39	21.35	22.31	23. 28	24.25	25.22	26.19	27.15	27
28	18.49	19.45	20.40	21.38	22. 33	23. 30	24.27	25. 23	26.20	27. 17	28
29	18.51	10.46	20.42	21.38	22.35	23.31	24.28	25. 25	26.22	27.18	29
30	18.53	19. 48	20.44	21.40	22. 36	23.33	24.30	25.27	26.23	27.20	30
31	18.54	19.49	20.45	21.41	22.38	23.35	24.32	25.28	26.25	27.21	31
32	18.56	19.51	20.47	21.43	22.40	23. 36	24. 33	25.30	26.27	27.23	32
33	18.57	19.53	20.48	21.45	22. 41	2338	24.35	25.32	26.28.	27.25	33
34	18.59	19.54	20.50	21.46	22.43	23.40	24.36	25.33	26.30	27.26	34
35	18. 60	19. 56	20.52	21.48	22.44	23.41	24.38	25.35	26.31	27.28	35
36	18. 62	19.57	20.53	21.49	22.46	23. 43	24.40	25.36	26. 33	27.29	36
37	18. 64	19.59	20. 55	21.51	22. 48	23.44	24.41	25.38	26. 35	27. 31	37
38	18. 65	19.60	20.56	21.53	22.48	23.46	24.43	25.40	26.36	27.33	38
39	18.67	19.62	20.58	21.54	22.51	23.48	24.44	25.41	26.38	97.34	39
40	18. 68	19.64	20.60	21.56	22.52	23.49	24.46	25.43	26.39	27.36	40
41	18.70	19.65	20.61	21.57	22. 54	23. 51	24.48	25.44	26.41	27.37	41
42	18.72	19.67	20.63	21.59	22.56	23. 52	24.49	25.46	26.43	27. 39	42
43	18.73	19.68	20.64	21.61	22.57	23.54	24.61	26.48	26. 44	27.41	43
44	18. 75	19.70	20.66	21.62	22.59	23.56	24.52	25.49	26.46	27.42	44
45	18.76	19.72	20.68	21.64	22.60	23. 57	24.54	25. 61	26.47	27.44	45
46	18.78	19.73	20.69	21.65	22.62	23.59	24. 56	25.52	26.49	27.45	46
47	18. 79	19.75	20. 71	${ }^{21.67}$	22.64	23.60	24.57	25.54	26.51	27.47	47
48	18.81	19.76	20.72	21. 98	22. 65	23. 62	24. 59	25. 56	26. 52	27.49	48
49	18.83	19.78	20.74	21.70	22. 67	23.64	24.61	25.57	26.54	27.50	49
50	18. 81	19.80	20.78	21.72	22. 69	23. 65	24.62	25. 59	26. 56	27.52	50
51	18.86	19.81	20.77	21.74	22.70	23.67	24.64	25.61	26.57	27.63	51
52	18.87	19.83	20.79	21.75	22.72	23.69	24.65	25. 62	26.59	27.65	52
53	18.89	19.84	20.80	${ }^{21.77}$	22.73	23.70	24. 67	25. 64	26. 60	27.57	53
54	18.91	19.86	20.82	21.78	22.75	23.72	24.69	25. 65	20.62	27.58	54
55	18. 92	19.88	20. 84	21.80	22.77	23.73	24. 70	25.67	25.64	27.60	55
56	18.94	19. 89	20.85	21. 82	22. 78	23.75	24.72	25. 69	26.65	27.61	56
57	18.95	19.91	${ }_{20}^{20.87}$	21.83	22. 80	23.77	24.73	25. 70	26.67	27.63	57
	18.97 18.98	19.92 19. 94	20.88 20.90	21.85 21.86	${ }_{22.81} 82$	23. 78	24.75	25.72	26. 68	27.65	58
59	18.98	19.94	20.90	21.86	22.83	23.80	24.77	25. 73	26. 70	27.66	59
00	5519.00	5519. 96	5520.92	5521.88	6522.85	5523.81	5524.78	6525. 75	6526. 72	5527. 68	60

Table VIII.
Length of a degree of longitude.

葛	29°	30°	31°	32°	$33{ }^{\circ}$	34°	35°	36°	37°	88°	罵
,	Ohains.	Chains.	Ohains.	Ohains,	Ohains.	Ohains.	Ohains.	Ohains.	Ohaing.	Ohains.	
0	4843. 17	4795.82	4747.01	4686. 75	4645.06	4591.86	4637.45	4481.56	4124. 20	4865. 68	0
1	42.40	85. 62	46. 19	85. 00	44. 18	81. 06	36. 53	80.61	23.33	04. 64	1
$\stackrel{1}{2}$	41.62	84.22	45.30	93.65	43. 32	00.18	35. 61	78.67	22. 36	63.70	2
3	40.84	93.42	44.53	94. 20	42.44	80. 20	34.69 33.77	78.73 77.78	21.40 20.43	62.72 61.73	3 4
4	40.06	02. 61	43.71	93.35	41.57	88.37	33.77	77.78	20.48	81.73	4
5	39.28	01.81	42.88	02.60	40.	87.47	92.84	76.84	10.40	80.74	5
0	38.50	01.01	42. 06	81. 65	39. 82	80. 67	81.82	75.89	18.49	69.75	6
7	37.72	90.20	41.22	00.80	38.84	85.67	81.00	74. 85	17.53	68.78	7
8	30.84	89.40	40. 39	89.84	38.06	84.77	30.68	74. 00	16. 66	67.77	8
0	36.16	88.59	30. 56	89.09	37.18	83.87	29.15	73. 05	15.68	66.77	1
10	85.38	87.79	38.78	88.24	80.31	82.97	28.23	72. 11	14.62	55.78	10
11	34.60	88.98	37.90	87. 38	35.43	82.67	27.30	71.16	13. 65	4.79	11
12	33. 82	86.18	87.07	86.53	34.55	81.17	26.38	70.21	12.08	63.80	12
13	33. 64	85.37	36.24	86.67	33.68	80.26	25.40	69.20	11.71	62.81	13
14	32.28	84.56	35.41	84.82	32.80	79.36	24.53	68.32	10.74	61. $\mathrm{B1}$	14
15	31.47	83.78	84. 58	83.96	81.92	78.46	23.60	67.37	00. 77	50.82	15
16	30.69	82.05	33.75	83.11	81.04	77.56	22. 68	66.42	08. 80	49.83	16
17	20.91	82.14	32. 92	82.25	30. 16	76. 65	21.76	65.47	07. 82	48. 813	17
18	29.12	81.33	32.08	81.40	29.28	75.75	20.83	64.52	6. 85	47.84	18
19	28.34	80.52	31. 25	80.54	28.40	74.8.5	10.00	63.67	06.88	46.84	10
20	27.56	78.71	30.42	79.68	27.52	73.04	18. 87	62.82	4.01	5. 85	20
21	20.77	78.80	29.58	78.82	26.04	73.04	18.64	61.67	03.03	44. 85	21
22	25. 98	78.09	28.75	77.97	25.75	72.13	- 17.11	00.72	62.06	43.85	
23	25. 20	77.28	27.62	77.11	24.87	71. 23	16. 19	59.77	01. 08	42. 86	${ }_{24}$
24	24.41	78.47	27.08	78.26	23.98	70. 32	16.26	58.81	01.01	41.86	24
25	23. 82	75.68	26. 25	75.39	23. 11	88.41	14.33	67. 88	4400. 04	40.88	25
29	22. 83	74.85	25.41	74.53	22. 22	68.51	13. 40	66. 01	4308. 08	39.87	26
27	22. 06	74.64	24.57	73.67	21.34	67.60	12. 47	65.96	88. 08	88.87	27
28	21. 26	73.22	23.74	72.81	20.45	66.60	11. 34	65. 60	87.11	37.87	28
29	20.47	72.41	22.80	71.95	10.57	65.78	10. 61	54.05	86. 13	38.87	29
30	18.68	71.80 70.78	22.08	71.00	18. 69	64.88 83.97 8.97	09. 67	63.09 52.14	85.18 04.18	36.87 34.87	
31	18. 89	70.78	21.22	76.22	17. 80	63.97 63.06	08.74 07.81	52.14 51.19	04.18 93.20 80.18	34.87 83.87	82
34	18.52	68. 34	18.71	67.64	15.14	81.24	05. 84	40.27	81.25	31.87	34
35	15.73.	67.53	17.87	66. 77	14.20	60. 33	05. 01	48.32	00.27	30.87	35
36	14.84	06.71	17.03	65.91	13.37	50.42	04. 08	47. 36	89.29	20.87	36
37	14. 15	65. 80	16. 18	65.05	12.48	58.51	03.14	48.41	88.31	28. 87	37
38	13. 35	65.68	16. 35	64.18	11.69	57.60	02.21	46. 45	87. 38	27.87	88
39	12.56	64.26	14.61	63.32	10.70	56.68	61. 28	44.49	80. 35	28.87	34
40	11.77	63.44	13.87	62.45	09.81	55.77	4500.34	43.53	85. 37	26.86	40
41	10.08	62.52	12. 82	61. 59	08.93	64.80	4429.40	42.57	84, 30	24.88	41
42	10. 18	61.81	11. 88	60.72	68.04	53.95	98.47	41. 62	83.41	$28 . \mathrm{kB}$	42
43	69. 38	60.99	11. 14	58.85	67.15	63.03	${ }^{07.53}$	40. 68	82.42	22.85	4
44	08. 58	60.17	10. 30	68.90	60.20	62.12	96. 50	3H. 70	81.44	21.85	44
45	07.80	59.35	09.45	58.12	05. 30	61.21	95.66	38.74	80.48	20.86	45
46	07.10	58. 53	08. 61	57.25	04.47	50.28	94.72	37.78	78.48	10.84	48
47	00. 21	57.71	67.76	50.38	03.68	40. 38	03.78	36.82	78. 41	18. 84	47
48	65. 41	56. 80	08.92	55. 51	62. 60	48. 46	92.84	35. 86	77.51	17.83	48
49	04.81	56.07	68.67	54.65	01.80	47.56	01.81	34.80	76. 68	16. 82	40
50	03.82	65.25	05.29	63.78	00.90	40.63	96.87	33.83	75. 54	16.82	50
51	03.62	54. 43	04.38	52. 01	4600. 01	4 4 .71	00.63	82.97	74.60	14. MI	81
52	62.22	53.60	03.54	52.04	4593.12	44.80	89.69	32.01	73. 57	18. 80	52
58	01.42	52. 78	62.68	51.17	98. 22	48. 88	88.16	81.04	72.59	12.80	38
54	4800.62	51.96	01.84	50.30	87.33	42. 06	87.21	80.68	71.60	11.70	51
55	4798. 82	51.13	01.00	40.42	88.44	42.04	80.27	20. 12	70.62	10.78	55
56	90.02	50.31	4700. 15	48. 55	96. 54	41.13	85.82	28.15	90.63	09.77	54
57	98. 22	49.49	4808.30	47. 68	94.61	40.21	84.38	27. 19	${ }^{68.64}$	08.78	57
58	97.42	48. 66	88.48	48.81	98.75	89.29	88.44	26. 22	b7. 68	07. 75	58
59	88.6	47.84	97. 00	. 8	82.85	38.37	82.50	25.28	06.67	00.74	59
60	4705.82	4747.01	4886. 75	4645.08	4591.88	4637.46	4481. 56	4424.20	4365.68	4306.78	60

Table VIII.

LENGTH OF A DEGREE OF LONGITUDE.

+	39°	40°	41°	42°	43°	44°	45°	46°	47°	48°	苟
,	Ohains.	Ohains.	Ohains.	Ohains.	Chains.	Ohains.	Ohains.	Ohains.	Ohains.	Ohains.	
0	4305.73	4244.47	4181.91	4118. 06	4052.96	3886.62	3919.05	38E0. 28	3780.33	3700.22	0
1	04.72	43.44	80.85	16. 99	51.87	85.50	17. 91	49.12	79.15	08.03	1
2	03.71	42.41	79.60	15.91	60.77	84.38	16. 78	47.97	77.98	06.83	2
3	02.70	41.37	78.75	14.84	49.67	88.27	15.64	46.81	76. 80	05. 63	3
4	01.69	40.34	77.69	13.78	48.58	82.15	14.50	45. 65	75.63	04.44	4
5	4300.68	39.31	76.64	12. 69	47.48	81.03	13.36	44.50	74.45	03.24	5
${ }^{6}$	4299.67	38.27	75.58	11.61	48.38	79. 91	12.23	43.34	73.27	02.05	6
7	98.65	37.24	74.52	10.53	45.28	78.79	11.09	42.18	72. 00	3700.85	7
8	97.64	38.20	73. 47	09. 46	44. 19	77. 68	09. 95	41. 02	70.92	3699. 65	8
9	96.63	35.17	72.41	08.38	43.09	76.56	08.81	39.86	69.74	98.46	0
10	95.61	34.13	71.36	07.30	41.99	75.44	07.87	38. 70	68.56	97.26	10
11	94.60	33.10	70.30	08.22	40.89	74.32	06.53	37. 54	67. 38	98.06	11
12	93.69	32.06	69.24	05.14	39.79	73.20	05.39	36.38	66. 20	94. 86	12
13	92.67	31.02	68.18	04.07	38. 69	72.08	04.25	35. 22	65.02	93.66	13
14	91.68	29.09	67.12	02. 99	37. 69	70.96	03.11	34.06	63.84	92.46	14
15	90.54	28.95	68.07	01.31	36. 49	69. 84	01.97	32. 90	82.66	91.26	15
16	89.52	27.91	65.01	4100.83	35. 39	68.72	3900.83	31.74	81.48	90.06	16
17	88.61 87.49	26.87	63.95	4099.75	34. 29	67.59	3899. ${ }^{98}$	- 30.58	60.30	88.80	17
10	86.48	24.80	61.83	97.58	32.09	65.35	97.40	28.26	57.94	86.46	19
20	85.46	23.76	60.77	96.50	30.98	64. 23	96.26	27.09	66.78	85.29	20
21	84.44	22.72	59.71	95.42	29.88	63.11	95.12	25. 93	55. 57	84.06	21
22	83. 42	21.68	58.65	94.34	28.78	61.98	93.97	24.77	54.39	83.86	22
23	82.40	20.64	57. 58	93.26	27.67	60.86	92.83	23. 60	63.21	81.66	23
24	81.39	19.60	56. 62	92.17	26.57	59.73	91.68	-22.44	52.02	80.46	4
25	80.37	18.56	55.46	91.09	25.47	68.61	${ }^{9} 9.54$	21.28	50.84	79.25	25
26	79.35	17.62	64.40	90.01	24.36	57.49	89.40	20.11	49.68	78.05	26
27	78.33	16.48	53.44	88.92	23.26	56.36	88.25	18.95	48.47	78.85	27
28	77.31	15.43	52.27	87.84	22.15	55.24	87.11	17.78	47.29	75. 64	28
29	76.29	14. 38	51.21	86.75	21.05	54.11	85.96	16.62	46.10	74.44	20
30	75.27	13.35	50.14	85. 67	19.94	52.98	84.81	15.45	44. 92	73.24	30
31	74.24	12.31	49. 08	84.58	18.84	51.86	83.67	14. 29	43. 73	72.03	31
32	73.22	11.26	48.02	83.50	17.73	50.73	82.52	13.12	42.55	70.83	32
33	72.20 71.18	10.22 0.18	46.95 45.89	82.41 81.33	15.62	49.60 48.48	81.37 80.23	11.95	41.30 40.18	69.62	33
35	70.16	08.13	44.82	80.24	14.41	47.35	79.08	09.62	38.99	87.21	35
36	69.13	07.09	43.75	79.15	13.30	46.22	77.93	08.45	37.80	66. 01	36
37	68.11	06.04	42. 69	78.07	12. 19	45.09	76.78	07.28	36. 62	64.80	37
38	87.09	05.00	41. 62	76.98	11.09	43.96	75.63	06.11	35. 43	63.59	38
39	66.06	03.95	40.55	75.89	09.98	42.83	74. 48	04.95	34.24	82.39	30
40	65.04	02.90	39. 49	74.80	08.87	41.71	73.34	03.78	33.05	61.18	40
41	64.61	01.86	38.42	73.71	07.76	40.58	72.19	02.61	31.86	59.97	41
42	62.99	4200. 81	37.35	72. 62	06.65	39.45	71.04	01.44	30.67	58.76	42
43	61.96	4199.76	36.28	71.53	05.54	38. 32	69.89	3800.27	29.48	57.56	43
44	60.93	98.72	35. 21	70.44	04.43	37.18	68.74	3799. 10	28.30	58.35	44
45	59.91	97.67	34.14	69.35	03.32	36. 05	67.68	97.93	27.11	55.14	45
48	58.88	96. 62	33. 08	68.26	02.21	34. 92	66.43	96. 76	25. 92	53.93	46
47	57.85	95.57	32. 01	87.17	4001.10	33.79	65. 28	95.59	24.73	52.72	47
48	56.83	94.52	30.93	66. 08	3999. 98	32.66	64.13	94.41	23. 63	61.51	48
49	55.80	93.47	29.86	64.39	98.87	31.53	62.98	93.24	22.34	50.30	49
50	54.77	92.42	28.79	63. 90	97.78	30.39	61.82	92.07	21.15	49.09	50
51	53.74	91.37	27.72	62.81	96.65	29.26	60.67	90.90	19.06	47.89	51
52	52.71	90.32	28. 65	61.71	95. 63	28.13	59.52	89.72	18.77	46.67	52
53	51.68	89.27	25.58	60.62	94.42	26.99	58.36	88.55	17.58	45.46	53
54	50.66	88.22	24.51	59,53	93.31	25.88	57.21	87.38	18.38	44.25	54
55	49.63	87.17	23.43	58.43	92.19	24.73	56.06	86.20	15. 19	43.03	55
56	48. 59	${ }_{86}^{86.12}$	22. 36	57.34	91.08	23.59	54.90	85.03	14.00	41.82	56
57	47.56	85.07	21.29	56.25	80.96	22.48	53.75	83.86	12.80	40.61	57
59	46.53 45.50	84.02 82.96	20.21 19.14	55.15 54.06	88.85 87.73	21.32 20.19	52.59 51.44	82.68 81.51	11.61	39.40	58
60	4244. 47	4181.91	4118.06	4052.96	3986.62	3919.05	3850.28	3780.33	3709. 22	3636.37	00

Table IX.

Convergency of meridians. The second column contains the convergence, measured on the parallel, for two meridians six miles long and six miles apart, for the latitude of their middle points which is given in the first column. For other than the tabular latitudes the distance may be obtained by simple proportion. The third column contains the angle of convergency. See Diagram A, Fig. 1.
The convergency between any two meridians whose lengths are equal to their mean distances apart may be found by the following proportion:
The square of the tabular meridional length (six miles) is to the square of the given length of meridians as the tabular convergency is to the convergency required.

Thus, for two meridians three miles long and three miles apart, in latitude 44°, we have: As $6^{2}: 3^{2}:: 70.1$ links : 17.52 links, the couvergency.

The convergency of equal length of meridians in the same latitude are proportional to their distance apart; thus, the convergency for five ranges (meridians 6 mls . long) in latitude 38° is, $56.8 \mathrm{lks} \times 5=2.84$ chains.

TABLE IX.
Convergency of meridians six miles long and six miles apart. Also, differenoe of longitude for one range.

Lat Itnde.	Convergency.		Difference of longitude per range.	
	On the parallel.	Angle.	In arc.	In time.
-	Links.	1 1	11	Seconds.
80	41.9	30	$6 \quad 0.36$	24.02
81	43.6	37	6 4. 02	24.27
32	46.4	315	67.93	24. 53
33	47.2	323	612.00	24.80
34	49.1	3.30	616.31	25. 09
35	50.9	338	620.95	25.40
86	52.7	346	625.00	25.71
37	54.7	355	630.59	26.04
38	56.8	44	635.81	26. 39
39	58.8	413	641.34	26. 76
40	60.0	422	647.13	27.14
41	63.1	481	653.22	27. 55
42	65.4	441	659.62	27.97
43	67.7	451	$7 \quad 6.27$	28.42
44	70.1	51	713.44	28.90
45	72.0	512	720.93	29. 39
46	75.2	523	728.81	29.92
47	77.8	534	7 37. 10	30.47
48	80.6	546	745.70	31.05
49	83.5	559	755.12	31.67
50	88.5	612	$8 \quad 4.90$	32.33

The above rules may be used to find the convergency for lengths of meridians more than 6 miles long. Take the preceding example, 5 . Find from Table IX the tabular convergency for latitude $42^{\circ} 49^{\prime} 36^{\prime \prime}$,equal to 67.3 links, and from the proportion, $6^{2}: 24^{2}:: 67.3$ links : 1076.8 links, the convergency for two meridians 24 miles long and 24 miles apart. Then for two meridians si.x miles apart divide 1076.8 links by 4 , the quotient, 2.69 chains, is the convergency required, which agrees closely with the result obtained by the preceding rule.

Another proportion for finding the convergency is this: The cosines of the latitudes are to each other as the lengths of the intercepted parallels.

Thus, for example 5, we have cos. $42^{\circ} 39^{\prime} 12^{\prime \prime}$: cos. $43^{\circ}:$: 480 chs. : 477.32 chs., which proportiou may be computed with natural cosines, or more expeditiously, by logarithms, as follows:

Log. cos. $42^{\circ} 39^{\prime} 12^{\prime \prime}$	a. c. 0.133437
Log. cos. 43°	9.864127
Log. 480 chains	2.681241
Log. 477.32 chs.	2.67

The difference 2.68 chs., is the convergency required.
This method does not take into account the spheroidal shape of the earth, but regards it as a perfect sphere and is sufficiently exact for surveying purposes.

Columns 4 and 5 contain differences of longitude for one range in are and time. The tabular value in last column multiplied by the number of ranges between any two points in the same latitude, gives the difference of their local times. Thus, for a station 20 ranges west of the standard meridian for mountain time (105° longitude), in latitude 47°, the difference in time is $30^{\mathrm{s}} .47 \times 20=10^{\mathrm{m}} 9^{\circ} .4$.
SPECIMEEN FIELD NOTES. No. 1.
TITLE PAGE.
(See Diagram B.)
FIELD NOTES
OF THE SURVEY OF THE
THIRD STANDARD PARALLEL NORTH
through
Range No. 21 East
OF THE
PRINCIPAL BASE AND MERIDIAN
in the
TERRITORY OF MONTANA,
As surveyid by
RICHARD ROODS,U. S. DEPUTY SURVEYOR,
UNDER HIS CONTRACT No. 97, DATED JULY 10, 1889.
[Second Page.]

NAMES AND DUTIES OF ASSISTANTS.

Peter Long	inman.
John Short	Chainman.
Eli Mark	Chainman.
Whlliam Tally	Chainman
George Sharp	Axeman.
Adam Dull	Axeman.
James Banner	Flagman.

INDEX.

PRELIMINARY OATHS OF ASSISTANTS.

Abstract

We, Peter Long, John Short, Eli Marker, and Willian Tally, do solemnly swear that we will well and failhfnlly execute the duties of chain carriers; that we will level the chain upon even and uneven ground, and plumb the tally pins, either by sticking or dropping the same ; that we will report the true distance to all notable objects, aud the true lengths of all lines that we assist in measuring, to the best of our skill and abrlity, and in accordance with instructious given ns , in the survey of the third standard parallel north, through range No. 21 east, of the principal base and meridian, in the Territory of Montana.

Peter Long, Chainman. John SHort, Chainman. Eli Markir, Chainman. William Tally, Chainman.

Subscribed and sworn to before me this 2d day of August, 1889. [SEAL.]

William Martin, Notary Public.

We, 'George Sharp and Adam Dull, do solemnly swear that we will well and trnly perform the dnties of axemen, iu the establishment of corners and other duties, according to instructions given us, and to the best of our skill and ability, in the survey of the third standard parallel north, through range No. 21 east, of the principal base and meridian, in the Territory of Montana.

George Sharp, Axeman. Adam Dull, Axeman.

Subscribed and sworn to before me this 2d day of Angust, 1889. [SEAL.]

William Martin, Notary Public.

I, James Banner, do solemnly swear that I will well and truly perform the duties of flagman, according to instructions given me, to the best of my skill and ability, in the survey of the third standard parallel north, through range No. 21 east, of the principal base and meridian, in the Territory of Montana.

James Banner, Flagman.
Subscribed and sworn to before me this 2d day of August, 1889.

Third standard parallel north, through range No. 21 east.

Note.-For the parpose of illustration the hour angle is taken from
Table I for the year 1890. The deputy is not required to use the above
method to determine the variation. He can observe at olongation of
Polaris if he wishes to do so, but must determine the true meridian, at be-
ginning of survey, and record the time of his observation and the magnetic
bearing of the star.

I begin at the standard cor. to townships 13 north, ranges 20 and 21 east, which is a post, 4 inches square, marked -
S. C., T. 13 N., on N.;
R. 21 E., S. 31, on E., and
R. 20 E., S. 36, on W. faces, with $\sigma_{\text {n }}$ notches on N., E., \& W. faces, and pith $24 \times 18 \times 12$ ins. crosswise on each line, N., E., and W'. of past, 6 ft . dist., and mound of earth aronnd post. Thence I rnu east, ou S. boundary sec. 31 .

Va. $19^{\circ} 15^{\prime} \mathrm{E}$.
18.00 Ascend
48.00
18.00
40.00 A point about 200 ft . above township cor., top of ridge.

Set a sandstone $1 \varepsilon \times 8 \times 5$ ins. 12 ins. in the gronnd, for standard $\frac{1}{6 e c}$. cor., marked S. C. $\frac{1}{2}$ on N. face, dug pits $1 \% \times 1 \diamond \times 12$ ins. E. and W. of stone, $5 \frac{1}{\mathrm{f}} \mathrm{ft}$. dist., and raised a mound of earth $1 \frac{1}{2} \mathrm{ft}$. high, $3 \frac{1}{2} \mathrm{ft}$. lane alongside ; thence over high, rolling prairio.
57.00

Enter pino timber.
80. 00 Set a sandstone, $24 \times 10 \times 7$ ins., 18 ins. in the ground, for standard cor. to secs. 31 and 32 , marked S. C., with 5 notches on E and 1 notch on W. edges; from which

A pine, 12 ins. diam., bears N. 77° E., 41 lks. dist., marked T. 13 N. , R. 21 E., S. 32, B. T.;

A pine, 18 ins. diam., bears N. 50° W., 20 lks. dist., marked T. 13 N., R. 21 E., S. 31, B. T.;

A pine, 7 ins. dliam., bears S. 30° W., 119 lks . dist., marked T. 13 N., R. 21 E., S. C., S. 31 \& :3, B. 'T.

Third standard parallel north, through range No. 21 east-Continued.

Chains.	Land high, monntainous, 38 ohs. hilly, and rolling, 42 chs. Soil sandy, gravel, and rooky ; 4th rate. Timber, pine, 23 ohs.; mostly dead and fallen.
	At $10 \mathrm{a} . \mathrm{m}$. the variation has docreased 4^{\prime} by diurnal change. * East, on S. bonndary een. 32. Through timber, $\text { Va. } 19^{\circ} 11^{\prime} \mathrm{E} \text {. }$
3.75	
21.85	Ravine, course S. 20° E., about 20 ft . deep.
40.00 59.00	Set a sandstone, $18 \times 14 \times 5$ ins., 12 ins. in the ground, for standard 4 sec. cor., marked S. C., \ddagger on N. faoe, and raised a monnd of stone, $\dagger \frac{1}{2} \mathrm{ft}$. high, 2 ft. base, alongside. Pits impraoticable.
59.00	Top of ridge, about 100 ft . high.
80.00	Ravine, course S., about 40 ft . deep.
	Set a post, $4 \frac{f}{f}$ f. long, 4 ins. square, with marked stoue, 12 ins. iu the ground, for standard cor. to secs. 32 and 33, marked- S. C., T. 13 N., R. 21 E., on N.; S. 33 on E., and S. 32 on W. faces, with 4 notches on E. and 2 notches on W. faces, and raised a mound of earth 2 ft . high, $4 \frac{1}{3} \mathrm{ft}$. base, around post. Land, high and mountainous, 48 ohs. Soil, sandy, gravelly, aud rooky ; 4th rate. Timber, pine and fir, 80 obs. ; mostly dead and fallen; some thick nodergrowth same. August $22,1889$.
	East, on S. boundary sec. 33. Through timber. $\text { Va. } 19^{\circ} 15^{\prime} \mathrm{E} \text {. }$
3.50	Old Indian trail, course N. $10^{\circ} \mathrm{W}$.
6.00	Leave scattering and enter heavy timber.
13.50	Leave heavy timber, enter high, open prairie.
21.40	Old Indiau trail, course S. $70^{\circ} \mathrm{W}$.
30.00	Ascend.
40.00	Set a sandstone $14 \times 10 \times 5$ ins., 10 ins. in the ground, for standard \ddagger seo. cor., marked S. C., $\frac{7}{}$ on N. face, and raised a monnd of stone $1 \frac{1}{2} \mathrm{ft}$. high, $2 \frac{1}{2} \mathrm{ft}$. base, alongside. Pits impracticable.
45.10	Old Indian trail, course $\mathrm{N} .70^{\circ} \mathrm{W}$.
53.00	Top of ridge, abont $300 \mathrm{ft}. \mathrm{high} ,\mathrm{conrse} \mathrm{N}. 30^{\circ} \mathrm{E}$.
$\begin{aligned} & 69.00 \\ & 80.00 \end{aligned}$	Leave prairie, enter timber.
	Set a saudstone, $20 \times 15 \times 3$ ins., 15 ins. in the gronud, for standard cor. to secs. $33 \& 34$, marked S. C., with 3 notches nn E. and W. edges; from which A pine, 8 ing. diam., bears N. 891° E., 88 lks dist., marked T. 13 N., R. 21 E., S. 34, B. T.; A pine, 7 ins. diam., bears N. 74° W., 6 lks . dist. ; marked T. 13 N., R. 21 E., S. 33, B. T.; A pine, 9 ins. diam., bears S. $44^{\circ} \mathrm{W} ., 62 \mathrm{lks}$ dist.; marked T. $13 \mathrm{~N} .$, R. 21 E., S. C., S. 33 \& 34, B. T. Land, high and monatainous, 20 chs. Soil, eandy and rooky; 4th rate. Timber, pine and fir, 24.50 che., with some thick nudergrowth of eame; 9 chs.
	East, on S. bonndary sec. 34. Throngh timber. $\text { Va. } 19^{\circ} 15^{\prime} \mathrm{E} .$
9.40	Enter aspen thioket.
13.80	Ravine, abont 12 ft . deep, and leave thicket. Ascend.
23.84	A pine 12 ins. diam. ou line, marked with two notches ou E. and W. sides.

[^24]

Third stindard parallol north through range No. 21 east-Continued.

$\begin{gathered} \text { Cbains. } \\ 80.00 \end{gathered}$	Set a post, $4 \frac{\mathrm{ft}}{} \mathrm{l}$ long, 4 ins . equare, with marked stone, 12 ins. in the ground, for standard cor. to Tps. 13 N., Rs. 21 and 22 E., marked- S. C., T. 13 N ., on N. ; R. 22 E., S. 31, on E., and R. 21 E., S. 36, on W. faces; with 6 notohes on N., E., and W. faces; and raised a mound of earth $2 \frac{\mathrm{f}}{\mathrm{ft}}$. high, 5 ft . base, arourd post. Land, high, mountainous, and rolling. Soil, sandy and rocky; 4th rate. Timber, pine; thick undergrowth same; 80 chs. August 24, 1889.

GENERAL DESCRIPTION.

This line runs over the east slope of the Little Snowy Mountains. The townships on each side are rough and brokea, but contain large groves of pinie and fir timber of fair quality, and some springe and small streams of pure clear water.

Richard Roods.
United States Deputy Surveyor.

FINAL OATHS FOR SURVEYORS.

LIST OF NAMES.

A list of the names of the individuals employed by Ricbard Roods, U. S. deputy surveyor, to assist in ranning, measuring, and marking the lines and corners deecribed in the foregoing field notes of the survey of the third standard parallel north, throngh range No. 21 east of the principal base and m ridian, in the Territory of Montana, showing the respective capacities in which they acted.

FINAL OATHS OF ASBISTANTS.

We hereby certify that we assisted Richard Roods, United States depaty sarveyor, in surveying all those parts or portions of the third staadard parallel north throngh range No. 21 east of the principal base and meridian in the Territory of Montana, as are represented in the foregoing field-notes as having been survebed by him and under his direction; and that said survey has been in all respects, to the best of ourknowledge and belief, well and faithfully surveyed, and the corner monnments established according to the instruotions furnished by the United States surveyor-general for Montana.

> Peter Long, Chainman.
> John Short, Chainman. ELI MARKER, Chaimman. WILLAM TALLY, Chainman. GEORGE SHARP, Axeman. ADAM DULL, Axeman. JAMES BANNER, Flagman.

Sabscribed and sworn to before mo this 1st day of September, 1889.
[seal.]
William Martin, Notary Public.

TINAL OATH OF UNITED STATES DEPUTY SURVEYOR.

I, Richard Roods, United States doputy surveyor, do aolomnly swear that in pursuanco of a contract received from A-B-, Unitod States gurveyor-general for Montana, bearing date of the tenth day of July, 1889, I have well, faithfully, and truly, in my own propar person, and in strict confornity with the instructions furnished by the United States surveyor-general for Montana, the Manual of Surveying Instructions, and the laws of the United States, surveyed all those parts or portions of the third standard parallel north throngh range No. 21 east of the prineipal binis and meridian in the State of Montana, as are represented in tho foregoing field-notes as having been surveyed by me and ouder my direction; and I do farther solemmly hwear that all the cornors of haid survoys have beeu entablishod and perpetnated in etrict aecordance with the manal of printed instructions, the sjexial indiructions of the United States surveyor-general for Montana, and in the sperific manner deнcribed in tho field-notes, and that the forcgoing aro the true field-notes of such survey; and should any fraud be detected I will suifer the penalty of perjury nuder tho provisions of an act of Congress approved Augnst 8, 1846.

Richain Roods, U. S. Deputy Surveyor.

Subscribed hy said Richard Roods and aworn to bofore me this 1st day of Scptember, 1889 .
[seal.]
$\stackrel{\Delta-\mathrm{B}}{\mathrm{B}}-\mathrm{B}$,
U. S. Surveyor-Gicneral for Montana.

SPECIMEN FIELD NOTES.-No. 2.

(See diagram B.)

Nute. - This specimen shows only the body of the field-notes of the survey of the sixth guide meridian east, through township No. 16 north of the base line in the State of Montana. The oaths and other portions omitted would be of like natnre to those shown in Specimen Field Notes, No. 1.

Sixth guide meridian east through township No. 16 north.

Chaine.	Survey oommenced September 2, 1889, with a Burt's improved solar compass with telescopio attachment. At the corner to townships 15 and 16 N., ranges 24 and 25 E., in lat. $47^{\circ} 6^{\prime}$ N., long. $108^{\circ} 32^{\prime}$ W., on the night of September 2, 1889, I take an observation on Polaris, in accordance with instruotione contained in the Manual, and at $6^{\mathrm{b}} 34^{\mathrm{m}}$ p.m. (my watch being $4 \mathrm{~m}^{\mathrm{ma}}$ fast of local mean time), I find the magnetio bearing of the star to be N. $17^{\circ} 24^{\prime}$ W. I drive a picket on the line thus established 4 chs. N. of the corner. Astrouomical local mean time by watch, September 2. \qquad h. m. Watch fast \qquad \qquad Correct local mean time of observation, September $2 . . .$. .- Local mean time of U. C. of Polaris (Table I), September 1 ... Which, taken from time of obs.," leaves the hour angle of Po- laris.-.. 1557.2 Sulbtract from \qquad Argumentt for Table II \qquad Azimuth of Polaris for lat. 47° (Table II). \qquad North end of needle \qquad The sum is the variation $19^{\circ} 0^{\prime}$,east. Which is also the mean declination by table in the Manual (page 56). I lay ofif the azimath $1^{0} 36^{\prime}$ to the west \ddagger and mark the true meridian so found. September 2, 1889.
10.00	At 7 a. m., September 3, I take the magnetic bearing of the true meridian established last night, and find the variation to be $19^{\circ} 6^{\prime}$ east at the corner above mentioned, which is a post 4 ins. square, marked - T. 16 N., S. 31, on N. E.; R. 25 E., S. 6, on S. E.; T. 15 N., S. 1, on S. W., and R. 24 E., S. 36, on N. W. faces, with 6 notches on each edge, and pits N., S., E., and W. of post, 6 ft . dist., and mound of earth around post. Thence I run North, bet. secs. 31 and 36. $\text { Va. } 19^{\circ} 6^{\prime} \mathrm{E} \text { : }$ Dry channel, 10 lke. wide, conrse E.
40.00	Set a sandstone $18 \times 10 \times 3$ ins. 12 ins. iu the gronnd for $\frac{1}{8}$ sec. cor. marked $\frac{1}{4}$ on W. face; dug pits $18 \times 18 \times 12$ ins. N. and S. of stone, $5 \frac{1}{2} \mathrm{ft}$. dist., and raised a monnd of earth $1 \frac{1}{8} \mathrm{ft}$. high, $3 \frac{1}{2} \mathrm{ft}$. base, alongside.
42.60	Stream 6 lks . wide, conrse N. $70^{\circ} \mathrm{W}$.
55.50	Enter timber.
56.45	Ravine about 30 ft . deep, course S. $80^{\circ} \mathrm{W}$. , and ascend.
60.70	Top of ridge about 50 ft . above ravine, and descend.
72.40	Foot of ridge about 50 ft . below top, course E. and W.

[^25]| $\begin{gathered} \text { Chaids. } \\ 80.50 \end{gathered}$ | Set a saudstone $18 \times 11 \times 3$ ins. 12 ins, in the ground for cor. to sees. 25 , 30, 31, and 36, marked with 5 notches on N. and 1 notch on S. edges ; from which
 A pine, 6 ins. diam. bears N. 62° E., 41 lks . dist., marked T. 16 N., R. 25 E., S. 30 B. T.;
 A pine, 18 ins. diam., bears S. 411_{4}° E., 93 lks . dist., marked J. 16 N., R. 25 E., S. 31 B. T.;
 A pine, 12 ine. diam., bears S. $833^{\circ} \mathrm{C}$., 109 lks ., dist., marked T . 16 N., R. 24 E., S. 36 B. T.;
 A pine, 11 ins. diam., bears N. 47° W., 45 lks . dist., marked T. 10 N., R. 24 E., S. 25 B. T.
 Land, rolling.
 Soil, sandy and clay-2d and 3d rate.
 Timber, pine; large and good quality, with some thick undergrowth of same; 24.50 chs . |
| :---: | :---: |
| | North, bet. secs, 25 and 30. Va. $19^{\circ} 6^{\prime} \mathrm{E}$. Throngh timber. |
| 2.75 | Descend. |
| 7.00 | Leave timber. |
| 18.90 | Point about 40 ft . below last cor.; deep cut channel; stream 12 lks . wide; course N. $75^{\circ} \mathrm{W}$. |
| 40.00 | Set a sandstone $15 \times 11 \times 6 \mathrm{ins} 10 ins.$. in the ground for $\frac{1}{4}$ sec. cor., marked $\frac{1}{4}$ on W. face ; dug pits $18 \times 18 \times 12 \mathrm{ins}$. N. and S. of stone, $5 \frac{\mathrm{ft}}{\mathrm{ft}}$ dist., and raised monnd of earth $1 \frac{1}{2} \mathrm{ft}$. high, $3 \frac{1}{2} \mathrm{ft}$. base, alongside. |
| 45. 00 | Enter bottom. |
| 80.00 | Set a post $4 \frac{1}{2} \mathrm{ft}$. long, 4 ins. square, with marked stone 12 ins. in the ground for cor. to secs. 19, 24, 25, and 30, marked-
 T. 16 N., S. 19, on N. E. ;
 R. 25 E., S. 30, on S. E.;
 R. 24 E., S. 25, on S. W., and
 S. 24 on N. W. faces, with 4 notches on N. and 2 notches on S. edges; dig pits $18 \times 18 \times 12$ ins. in each sec. $5 \frac{\mathrm{y}}{\mathrm{ft}}$. dist., and raised mound of earth 2 ft . high, $4 \frac{1}{2} \mathrm{ft}$. base, around post.
 Land, rolling and level.
 Soil, south 45 chs., clay and sandy-2d rate; north 35 chs.-1st rate. Timber, pine, of good quality; 7 chs. |
| | At $10.30 \mathrm{a}, \mathrm{m}$. the variation has been diminished 4^{\prime}, by diurnal change. North bet. secs. 19 and 24.
 Va. $19^{\circ} 2^{\prime}$ E. * |
| 35.40 | Dry channel, 20 lks . wide, course E. |
| 40.00 | Set a sandstone $16 \times 8 \times 4$ ins. 11 ins. in the gronnd, for sec. cor., marked $\frac{1}{4}$ on W. face; dug pits $18 \times 18 \times 12$ ins. N. and S. of stone, 51 ft. dist., and raised a monnd of earth $1 \frac{1}{3} \mathrm{ft}$. high $3 \frac{1}{2} \mathrm{ft}$. base, alongside. |
| 42.45 | Ford's Creek, 25 lks . wide, course E, and enter willow brush. |
| 47.30 | Bend in Ford's Creek, course N. 25° W., to avoid which and save two crossings, I off-set W. 2.00 chs., thence N. on off-set line 7.40 chs., thence E. 2.00 chs. to line. |
| 54.70 | On line on N. side of bend, conrse of creek at this point N. $85^{\circ} \mathrm{E}$. and leave willow brush. |
| 61.45 | Dry channel, 25 lks . wide, conrse S. $82^{\circ} \mathrm{E}$. |
| 80.00 | Set a sandstone $18 \times 10 \times 4$ ins. 12 ins. in the gronnd, for cor. to secs. 13 , 18, 19, and 24, marked with 3 notches on the N. and S. edges; dug pits $18 \times 18 \times 12$ ins. in each sec., $5 \frac{1}{4} \mathrm{ft}$. dist., and raised a mound of earth 2 ft. high, $4 \frac{1}{3} \mathrm{ft}$. base, alongside.
 Land, nearly lovel hottom.
 Soil, sandy loam and clay-1st and $2 d$ rate.
 No timber. Thick willow and box elder brush along Ford's Creek. |

"The variation must not be ehanged without stating the reason therefor,

Sixth guide meriduan east, through township No. 16 north-Continued.

Chains.	North bot. secs. 13 and 18. Va. $190{ }^{\prime}{ }^{\prime} \mathrm{E}$.
8.00	Leave bottom and ascend gradially.
33.00	A poiut about 40 ft . above bottom, top of lo
38.00	Ravine, about 15 ft . deep, course E. aud asceud gradually ovar rolling ground.
40.00	Set a sandstone $14 \times 10 \times 4 \mathrm{ins} .10 \mathrm{ins}$. in the ground for $\frac{1}{4}$ sec. cor., marked年 on W. face ; dug pits $18 \times 18 \times 12$ ins. N. and S. of stone, $5 \frac{1}{2}$ ft. dist., and raised mound of earth $1 \frac{1}{\frac{2}{2}} \mathrm{ft}$. high, $3 \frac{3}{2} \mathrm{ft}$. base, alongside.
60.60	Top of low ridge, about 60 ft . high, and descend.
80.00	Set a post, $4 \frac{1}{2} \mathrm{ft}$. long, 4 ins. square, with marked stone, 12 ins. in the ground, for cor. to sees. 7, 12, 13, and 18, marked- T. 16 N., S. 7, on N. E.; R. 25 E., S. 18, on S. E.; R. 24 E., S. 13 , on S. W., and S. 12, on N. W. faces, with 2 notehers on N. and 4 notches on S . edges; dug pits $18 \times 18 \times 12$ ins. in each sec., $5 \frac{1}{2} \mathrm{ft}$. dist., and raised Land rolling. a mound of earth, 2 ft . high, $4 \frac{1}{2} \mathrm{ft}$. base, around post. Soil, sandy and clay loam; 2d rate. No timber. September 3, 1889.
	At 9 a. m., September 4, I find the magnetic bearing of my line run yosterday to be S. 190 $4^{\prime} \mathbf{E}$. North, bet. secs. 7 and 12. $\text { Var. } 19^{\circ} 4^{\prime} \mathrm{E} \text {. }$ Ascend gradually.
3. 40	A point about 20 ft . above last cor. top of low ridge, and descend.
39. 50	Stream 3 lks, wide, course E., and ascend over rolling ground.
40.00	Set a sandstone, $18 \times 6 \times 5$ ins. 12 ins., in the ground, for $\frac{1}{6}$ sec. cor. marked $\frac{1}{4}$ on W. face; dug pits $18 \times 18 \times 12$ ins. N. and S. of stone, $5 \frac{\mathrm{ft}}{\mathrm{ft}}$ dist., aud raised a mound of earth $1 \frac{1}{\frac{1}{2}} \mathrm{ft}$. high, $3 \frac{1}{4} \mathrm{ft}$. base, alongsido.
71.00	Descend steep bluff.
71.85	A point about 40 ft . below top of bluff ; stream 10 lks . wide, course E., and enter bottom land.
77.00	Leave bottom land and ascend bluff, course S. $87^{\circ} \mathrm{E}$.
80.00	A point about 40 ft . above bottom, and set a sandstone $30 \times 8 \times 4$ ins. 23 ins. in the ground for cor. to secs. 1, 6, 7, and 12, marked with 1 noteh on N. and 5 notches on S. edges; dug pits $18 \times 18 \times 12$ ins. in each sec. $5 \frac{1}{2} \mathrm{ft}$. dist., and raised a mound of earth 2 ft . high, $4 \frac{1}{2} \mathrm{ft}$. base, alongside. Land rolling. Soil, sandy and clay; 2d rate. No timber.
	North, bet. secs. 1 and 6. Va. $19{ }^{\circ} 4^{\prime} \mathrm{E}$.
18.60	Stream 4 lks . wide, course E.
40.00	Set : sandstone, $30 \times 9 \times 4$ ins., 23 ins. in the ground, for $\frac{1}{6}$ sec. cor., marked \ddagger on W. face; dug pits $18 \times 18 \times 12$ ins. N. and S. of stone, $5 \frac{1}{2}$ ft . dist., and raised a mound of earth $1 \frac{1}{2} \mathrm{ft}$. high, $3 \frac{1}{2} \mathrm{ft}$. base, alongsidl.
61.00	Stream, 81 lks . wide, course S. $40^{\circ} \mathrm{E}$.
78.42	Intersect the fourth standard parallel north at a point 6.95 chs. E. of the standard cor. to secs. 35 and 36 , T. 17 N., R. 24 E., at which point I seta post $4 \frac{1}{d t}$. long., 4 ins. square, with marked stone, 12 ins. in the ground, markod- C.C., T. 16 N., on S. ; R. 25 E., S. 6, on E., and R. 24 E., S. 1, on W. faces, with 6 uotches on S., E., and W. faces; dug pits $24 \times 18 \times 12$ ins. crosswise on each line, S., E., and W. of post, 6 Land, level. ft . dist., and raised a mound of earth $2 \frac{1}{\mathrm{f}} \mathrm{ft}$. high, 5 ft . base, around post. Soil, sandy loam; 1st and 2d rate. No timber.
	September 4, 1889.

GENERAL DESCRIPTION.

Townships 16 N., Rs. 24 and 25 E., are generally rolling table lands, producing an abundant growth of grass, aud there is a large anount of good bottom land along Ford's Croek and its tributaries. Abont 2 miles oast of the closing cor. is a lake some two miles wide by $2 \frac{1}{2}$ miles long, lying in Tps. 16 and 17 N., R. 25 E.

Richiard roods,
U. S. Deputy Surveyor.

September 4. 1889.

SPECIMEN FIELD NOTES.-No. 3.

(See Diagram B.)

Note.-These specimon field notes show only the body of the field notes of the survey of the west aud north boundaries of T. 13 N., R. 24 E., of the base aud principal meridian, in the Territory of Montana, it being assumed that the south and east boundaries of said township have been previously established by runuing the thrd staudard parallel north and the sixth guide meridian east. The oaths and other portions omitted would be of like nature to those shown in Specimen Fiold Notes No. 1, it being remembered that only one set of chainmen is required in the survey of township lines.

Exterior Boundaries T. 13 N., R. 24 E.

Chaius.	Survey commenced September 21st, 1889, with a Burt's improved solar compass, with telescopie attachment. At the standard corner to Tps. 13 N., Rs. 23 and 24 E., in Latitude $46^{\circ} 48$ N., Long. $108^{\circ} 45^{\prime} \mathrm{W} .$, I observe Polaris at its eastern elongation at i^{h} $19^{19} \mathrm{p} . \mathrm{m}$. aud find its magnetic bearing to be N. $16^{\circ} 57^{\prime} \mathrm{W}$. North end of needle.. $16^{\circ} 57^{\prime \prime}$ east, The azimuth by table in Manual is. \qquad $1^{\circ} 53^{\prime}$ east. The sum is the variation*. \qquad $\overline{18^{\circ} 50^{\prime}}$ east. I lay off the azimuth to the vest, tand mark the true meridian so determined by driving a picket 3.50 chs. north of the corner. September 21, 1889.

Note.-The time of the elongation is fonnd by table and rulos on page 68, and the Azimnth by table on page 70. Interpolate back to 1889.

At \& a. m., Sept. 23d, I fiud the magnetic bearing of the line established last night to be N. $18^{\circ} 53^{\prime} \mathrm{W}$., and (by the table on page 55 of the Manual), the mean declination is $18^{\circ} 50^{\prime}$ east.
1 begin at the standard cor. to Tps. 13 N., Rs. 23 and 24 E., which is a post 4 ins. square, marked-
S. C. T. 13 N., on N. ;
R. 24 E., S. 31, on E., and
R. 23 E., S. 36, on W. faces, with 6 notches on N., E., and W. faces, and pits, $24 \times 18 \times 12$ ins., crosswise on each line. N. E. and W. of post 6 feet dist., and mound of earth around post. Thence I ran
North, between secs. 31 and 36.
Va. $18^{\circ} 53^{\prime} \mathrm{E}$.
Descend over rough, broken ground.

1. 50 Ravine abont 20 ft . deep, conrse N. 80° E., and ascend.
15.00
30.00
35.60
40.00

Top of hill abont 50 ft . above ravine, and descend.
Head of ravine, course N. 30° E.
Descend abruptly.
A point abont 150 ft . below top of hill-foot of broken bluff; course E . and W., and set a sandstone, $16 \times 16 \times 6$ ius., 11 ins. in the ground, for $\frac{1}{\frac{1}{2}}$ sec. cor., marked $\frac{1}{4}$ on W. face, and raised a mond of stone $1 \frac{1}{2} \mathrm{ft}$. high, 2 ft . base, alongside. Pits impracticable.
42.00

Stream, 4 lks. wide, conrse E., and ascend.
47.00 Top of ridge abont 80 ft . above stream, and descend.
55.35 Ravine about 30 ft . deep, conrse S. 8° E.
61.95 A point about 150 ft . below top of ridge. Spring brancb, 4 lks . wide, course S. $70^{\circ} \mathrm{E}$., ascend.
74.50 A point about 150 ft . above stream, and enter timber.
80.00 Set a sandstone, $24 \times 15 \times 8$ ins., 18 ins. in the ground for cor. to secs. 25 , 30,31 , and 36 , marked with 5 notches on N. and 1 notch on S. edges; from which

A pine, 5 ius. diam., bears N. $22 \frac{1}{3}^{\circ}$ E., 30 lks . dist., marked T. 13 N., R. 24 E., S. 30, B. T.;

	A pine, 12 ins. diann., bears $\mathbb{S} .27 \frac{1}{2}^{\circ}$ E., 87 lles dist., marked T. 13 N., R. 24 E., S. 31, B. T.; A pine, 10 ins. diam., boars S. $1^{0} \mathrm{~W} ., 40 \mathrm{lks}$. dist., markol T. $13 \mathrm{~N} .$, R. 23 E., S. 36, B. T.; A pine, 17 ine. diam., bears N. 42° W., 65 lks . dist., markod T. 13 N., R. 23 E., S. 25, B. T. Land, mountainous, rough, and broken. Soil, sandy and stony; 4th rate. Timber, pine, 5.50 ch ., and ootton wood along streams.
	North, bet. secs. 25 and 30. Va. $18^{\circ} 53^{\prime} \mathrm{E}$. Descend through timber.
8.85	Ravino abont 10 ft . deep, courso N. $70{ }^{\circ} \mathrm{E}$.
19.00	A point about 175 ft . below cor., ravino about 60 ft . deep, course S. 80° E., and ascend.
21.00	Leave timber.
24.00	A point about 100 feet above ravine, top of hill, and descond gradually over rolling ground.
40.00	Set a sandstone, $16 \times 13 \times 3$ ins., 11 ins . in the ground, for $\frac{1}{2}$ sec. cor., marked side. Pite impracticable.
75.50	Spring branch, 21 ks . wide, course E., and ascend.
80.00	A point about 40 ft . above strean, and sot a post 4 ft . long, 4 ins squaro, with marked etone 12 ins . in the ground for cor. to sece. 19, 24,95 , and 30 , marked- T. 13 N., S. 19, on N. E. ; R. 24 E., S. 30 , on S. E.; R. 23 E., S. 25 , on S. W., and S. 24, on N. W. faces, with 4 notchee on N. and 2 notches on S. edges, and raised a mound of earth, 2 ft . high, $4 \frac{1}{1} \mathrm{ft}$. base, around post. Land, hilly, rongh, and broken. Soil, sandy and rocky; 4th rate. Timber, pine, 21.00 cibe, and undergrowth eame.

At 11 a. m., Sept. 23rd, the variation has dininished 3^{\prime}, by diurnal ohange.* North, bet. socs. 19 and 24. Va. $18^{\circ} 50^{\prime} \mathrm{E}$.
Descend gradually.
A point abont 40 ft . below cor. Spring branch, 31 ks . wide, conrse $\mathbf{S} .80^{\circ} \mathrm{E}$.
A point about $501^{\prime t}$. above stream, top of ridge, course E. and W., and descend ovor rolling ground.
Set a sandstone, $14 \times 14 \times 4$ ins., 10 ins. in the ground, for $\frac{1}{4}$ sec. cor., marked $\frac{1}{4}$ on W. face, and raised a mound of stone, $1 \frac{1}{4} \mathrm{ft}$. high, 2 ft . base, alongside. Pits impracticable.
Stream, 4 lke. widc, course E.
Stream, 4 lke. wide, course S. 70° E.
Set a sandstone, $24 \times 18 \times 6$ ins., 18 ins. in the ground, for cor. to secs. 13 , 18, 19 , and 24, marked with 3 notches on N. and S. odges; dug pits, $18 \times 18 \times 12$ ins., in each sec., $5 \frac{1}{2} \mathrm{ft}$. dist., and raised a mound ot earth, 2 ft . high, $4 \frac{1}{2} \mathrm{ft}$. base, alongside.
Land, brolsen and rolling.
Soil, rocky and sandy loam; 2d and 3d rato.
Some scattering pino along streams, with willow and rose brush.

North, bet. secs. 1:3 and 18.
Va. $18^{\circ} 50^{\prime} \mathrm{E}$.
Over rolling ground.
Set a sarrdstone, $18 \times 14 \times 3 \mathrm{ins} ., 12 \mathrm{ins}$. in the groand, for $\frac{1}{4}$ seo. cor., marked $\frac{1}{2}$ on W. frec ; dng pits, $18 \times 18 \times 12$ ins., N. and'S. of stone, $5 \frac{1}{2} \mathrm{ft}$. dist., and raisod a mound of earth, $1 \frac{1}{8} \mathrm{ft}$. high, $3 \frac{1}{\mathrm{f}} \mathrm{ft}$. base, alongside.

[^26]Exterior Boundaries T. 13 N., R. 34 E.-Continued.

$\begin{gathered} \text { Chains. } \\ 80.00 \end{gathered}$	Set a post, 4 ft . long, 4 ius. square, with marked stono, 12 ins. in the grouud, for cor. to secs. 7, 12, 13, and 18, marked- T. 13 N., S. 7, on N. E.; R. 24 E., S. 18 , on S. E.; R. 23 E., S. 13, on S. W., and S. 12, on N. W. faces, with 2notches on N. and 4 notches on S. edges; dug pits, $18 \times 18 \times 12$ ins., in each sec., $5 \frac{1}{2} \mathrm{ft}$. dist., and raised a mound of earth, 2 ft . high, $4 \frac{1}{\mathrm{f}} \mathrm{ft}$. base, around post. Land, rolling. Soil, sandy loam; 2d rate. No timber. September 23, 1889.
40.00	The magnetic bearing of the last line run is S. $18^{\circ} 51^{\prime}$ E. at $7 \mathrm{a} . \mathrm{m}$., Sept. 24th. North, bet. secs. 7 and 12. Va. $18^{\circ} 53^{\prime}$ E. Set a sandstone, $16 \times 12 \times 3$ ins., 11 ins. in the ground, for $\frac{1}{4}$ sec. cor., marked $\frac{1}{4}$ on W. face ; dug pits $18 \times 18 \times 12$ ins. N. and S. of stone, $5 \frac{1}{2}$, ft. dist., and raised a mound of earth, $1 \frac{1}{3} \mathrm{ft}$. high, $3 \frac{1}{2} \mathrm{ft}$. base, alongside.
54.00 80.00	Stream, 7 lks. wide. course N. $50^{\circ} \mathrm{E}$. Set a post, 4 ft. long, 4 ins. square, with marked stone, 12 ins. in the ground, for cor. to secs. 1, 6, 7, and 12, marked- T. 13 N., S. 6, on N. E.; R. 24 E., S. 7, on S. E.; R. 23 E., S. 12, on S. W., and S. 1, on N. W. faces, with 1 notch on N. and 5 notches on S. edges; dug pits, $18 \times 18 \times 12$ ins., in each sec., $5 \frac{1}{2} \mathrm{ft}$. dist., and Land, rolling. raised a mound of earth, 2 ft . high, $4 \frac{1}{2} \mathrm{ft}$. base, around post. Soil, sandy loam; 2d rate. No timber; willow brush along stream.
$\begin{aligned} & 34.00 \\ & 40.00 \end{aligned}$	North, bet. secs. 1 and 6. Va. $18^{\circ} 53^{\prime}$ E. Stream, 6 lks. wide, course E. Set a sandstone, $22 \times 8 \times 3$ ins., 16 ins. in the ground, for $\frac{1}{4}$ sec. cor., marked $\frac{7}{4}$ on W. face; dug pits $18 \times 18 \times 12$ ins. N. and S. of stone, $5 \frac{1}{2} \mathrm{ft}$. dist., and raised a mound of earth, $1 \frac{1}{2} \mathrm{ft}$. high, $3 \frac{\mathrm{ft}}{\mathrm{ft}}$ base, alongside.
80.00	Set a post, $4 \frac{1}{2} \mathrm{ft}$. long, 4 ins. square, with marked stove, 12 ins. in the ground for cor. to Tps. 13 and 14 N., Rs. 23 and 24 E., Inarked- T. 14 N., S. 31, on N. E.; R. 24 E., S. 6 , on S. E.; T. 13 N., S. 1, on S. W., and R. 23 E., S. 36, on N. W. faces, with 6 notches on each edge; dug pits, $24 \times 18 \times 12$ ins., crosswise on each line, N., S., E., and W. of post, 6 ft dist., and raised a mound of earth, $2 \frac{1}{\frac{1}{8}} \mathrm{ft}$. high, 5 ft . base, around post. Land, rolling. Soil, saudy loam; 2d rate. No timber.

At 9 a. m., Sept. 24th, the magnetic bearing of line bstween secs. 1 and 6 is S. $18^{\circ} 52^{\prime} \mathrm{E}$.
From the cor. to Tps. 13 and 14 N., Rs. 23 and 24 E., I run east on a random line, between said townships, the variation of mg compass bsing 18° $5 भ^{\prime}$ E. I set temporary half-mile and mile corners at each 40 and 80 chains, and find the township line to be 5 miles 77 chs . and 95 lks . long,

[^27]| Chains. | and the falling to be 45 lks . N. of the cor. to Tps. 13 and $14 \mathrm{~N} .$, Rs. 24 and 25 E . The correction for the true line will therefore be 7t lks. sonth, and 2.05 chs . west, per mile, and its course will be N. $89^{\circ} 57^{\prime} \mathrm{W}$.
 From the cor. to Tps. 13 and 14 N., Re. 24 and 25 E., which is a post, 4 ins. square, marked-
 T. 14 N., S. 31, on N. E.;
 R. 25 E., S. 6, on S. E.;
 T. 13 N., S. 1, on S. W., and
 R. 24 E., S. 36, on N. W. faces, with 6 notehes on each edge and pits N., S., E., and W. of post, 6 ft . dist., and mound of earth aronnd post. I run
 N. $89^{\circ} 57^{\prime}$ W. on a true line bet. secs. 1 and 36.
 Va. $18^{\circ} 52^{\prime}$ E.
 Over very nearly level ground. |
| :---: | :---: |
| 9.28 | Stream, 10 lks . wide, course ${ }^{\text {S }}$. |
| 20.40 | Same stream, course N. $30{ }^{\circ} \mathrm{E}$. |
| 40.00 | Set a red sandstone, $18 \times 10 \times 6$ ins., 12 ins. in the ground, for $\frac{1}{4}$ sce. cor., marked \ddagger on N. face; dug pits, $18 \times 18 \times 12$ ins., E. and W. of stone,
 sido. |
| 80,00 | Sst a sandstone, $18 \times 14 \times 6$ ins., 12 ins. in the ground, for cor. to secs. $1,2,35$, and 36 , marked with 1 notch on E. and 5 notches on W. enges; dug pits, $18 \times 18 \times 12$ ins., in each sec., $5 \frac{1}{2} \mathrm{ft}$. dist., and raised a mound of earth, 2 ft . high, $4 \frac{1}{2} \mathrm{ft}$. base, alongside.
 Land, levol.
 Soil, rich loam ; 1st class.
 No timber. |

N. $89^{\circ} 57^{\prime}$ W. on a true line bet. socs. 2 and 35.

Va. $18^{\circ} 52^{\prime}$ E.
Over nearly level ground.
Set a sandstone, $16 \times 10 \times 5$ ins., 11 ins. in the ground, for 1 soc. cor., marked $\frac{1}{4}$ on N. face; dug pits, $18 \times 18 \times 12$ ius., E. and W. of stone, $5 \frac{1}{2}$ ft. dist., and raised a mound of earth, $1 \frac{1}{2} \mathrm{ft}$. high, $3 \frac{1}{2} \mathrm{ft}$. base, alongside.
S. fork of Spring Croek, 15 lks . wide, course N. $40^{\circ} \mathrm{E}$.

Set a post, 4 ft . long, 4 ins. square, with marked stone, 12 ins . in the ground, for cor. to secs. 2, 3, 34, and 35, marked-
T. 14 N., S. 35 , on N. E. ;
R. 24 E., S. 2, on S. E.;
T. 13 N., S. 3, on S. W., and
S. 34, on N. W. faces, with 2 notches on E. and 4 notches on W. edges; dug pits, $18 \times 18 \times 12$ ins., in each sec., $5 \frac{1}{2} \mathrm{ft}$. dist., and raised a mound of earth, 2 ft . high, $4 \frac{1}{\mathrm{ft}}$. base, around post.
Land, level.
Soil, rich loam ; 1st rate.
No timber.
September 24, 1889.

At $8 \mathrm{a} . \mathrm{m}$. Sept. 25th, the magnetic boaring of the last line run is $\mathrm{N} .71^{\circ}$ $10^{\prime} \mathrm{E}$., and the variation is $18^{\circ} 53^{\prime} \mathrm{E}$.
N. $89^{\circ} 57^{\prime}$ W. on a true line, bet. secs. 3 and 34.

Va. $18^{\circ} 53^{\prime} \mathbf{E}$.
18. 60

Ascend gradually.
Enter pine timber, in open greve, course N. $9^{\circ} \mathrm{W}$.
Set a sandstone, $18 \times 18 \times 6$ ins., 12 ins. is the ground, for $\frac{1}{4}$ sec. cor., marked $\frac{1}{2}$ on N. face; from which

A pine, 12 ins. diam., bsars N. 23° W., 89 lks . dist., marked $\frac{1}{4} \mathrm{~S}$. ,,$~$
No other tree in limits; raiser a mound of stone, $1 \frac{1}{3} \mathrm{ft}$, high, 2 ft . bass, alongside the corner. Pits impracticable,

Exterior Boundaries T. 13 N., R. $\because \pm$ E.-Continued.

$\begin{gathered} \text { Chains. } \\ 80.00 \end{gathered}$	A point about 150 ft . above last seo. cor. and set a sandstone, $18 \times 8 \times 6$ ins., 12 ins. in the ground, for cor. to secs. $3,4,33$, and 34, marked with 3 notches on E. and W. edges ; from which A pine, 36 ins. diam., lears N. 45° E., 82 lks. dist., marked T. 14 N., R. 24 E., S. 34, B. T.; A pine, 14 ins. diam., hears S. 24° W., 110 lks. dist., marked T. 13 N., R. 64 E., S. 4, B. T. No other trees within limits; raised a mound of stone, $1 \frac{1}{8} \mathrm{ft}$. bigh, 2 ft. base, alongside the corner. Land, slightly undulating. Soil, sandy loam; 2d rate. Timber, pine of fine quality; 61.40 chs.
11. 60	N. $89^{\circ}{ }^{57 \prime}$ W. on a true line, bet. secs. 4 and 33. Va. $18^{\circ} 53^{\prime}$ E. Spring branch, 6 lks. wide, conrse N. $2^{\circ} \mathrm{E}$.
24. 50	Leave timber.
40.00	Set a sandstone, $20 \times 10 \times 4$ ins., 15 ins. in the ground, for $\frac{1}{4}$ sec. cor., marked $\frac{1}{2}$ on . face, and raised a mound of stone, covered with earth,* $1 \frac{1}{2} \mathrm{ft}$. high, $3 \frac{1}{2} \mathrm{ft}$. base, alongside.
76.30	Spring branch, 2 liks. wide, course S. $30^{\circ} \mathrm{W}$.
80.00	Set a post, 4 ft . long, 4 ins. square, with marked stone, 12 ins. in the gronnd, for cor. to secs. 4, 5,32 , and 33 , marked- T. 14 N., S.. 33 , ou N. E. ; R. 24 E., S. 4, on S. E. ; T. 13 N., S. 5 , on S. W., and S. 32, on N. W. faces, with 4 notches on E. and 2 notches on W. edges; dug pits, $18 \times 18 \times 12$ ins., in each sec., $5 \frac{1}{2} \mathrm{ft}$. dist., and raised a mound of earth, 2 ft . ligh, $4 \frac{\mathrm{l}}{} \mathrm{ft}$. base, around post. Land, nearly level. Soil, sandy loam; 2d rate. Timber, pine; 24.50 chs.

At 11 a. m., Sept. 25th., the variation has de reased 7^{\prime} by diurnal change. N. $89^{\circ} 57^{\prime} W$. on a true line, bet. secs. 5 and 32 .

Va. $18^{\circ} 46^{\prime}$ E.
36.10

Spring branch, 2 lks . wide, course S. $25^{\circ} \mathrm{W}$.
Set a post, 3 ft. long, 3 ins. square, with marked stone, 12 ins. in the ground, for $\frac{1}{4}$ sec. cor., marked $\frac{1}{4} \mathrm{~S}$. on N . face; dug pits, $18 \times 18 \times 12$ ins., E. and W. of post, $5 \frac{1}{2} \mathrm{ft}$. dist., and raised a mound of earth, $I_{\frac{1}{2}} \mathrm{ft}$. high, $3 \frac{1}{2} \mathrm{ft}$. base, around post.
Set a sandstone, $18 \times 12 \times 6$ ins., 12 ins. in the ground, for cor. to secs. 5,6 , 31, and 32, marked with 5 notches on E. and 1 notch on W. edges; dug pits, $18 \times 18 \times 12$ ins., in each sec., $5 \frac{1}{2} \mathrm{ft}$. dist., and raised a mound of earth, 2 ft . high, $4 \frac{1}{3} \mathrm{ft}$. base, alongside.
Land, level.
Soil, sandy loam ; 2d rate.
No timber.
N. $89^{\circ} 57^{\prime}$ TV. on a true line, bet. secs. 6 and 31.

Va. $18^{\circ} 46^{\prime} \mathrm{E}$.
40.00
77.95

Set a sandstone, $22 \times 10 \times 3$ ins., 16 ins, in the ground, for $\frac{1}{4} \mathrm{sec}$. cor.. marked $\frac{1}{4}$ on N. face; dug pits, $18 \times 18 \times 12$ ins., E. and W. of stoue, $5 \frac{1}{3}$ ft. dist., and raised a mound of earth, $1 \frac{1}{2} \mathrm{ft}$. high, $3 \frac{1}{2} \mathrm{ft}$. base, alongside.
The cor. to Tps. 13 and 1-1 N., Rs. 23 and 24 E.
Land, Ievel.
Soil, sandy loam;2d rate.
No timber.
September 25, 1889.
2 miles 26 chs. and 90 liks. of these lines run over mountainons lands, or through timber.

Latitudes, departures, and closing crrors.

*The departure column in which the convergency is to be placed will depend on tho direction of the survey.

GENERAL DESCRIPTION.

The northwestern portion of this township is rongh, hilly, and broken. The remainder consists of rolling land, with much rich bottom land along Spring Creek and its numerous tributaries. On the hilly and rolling land are large groves of pine timber. There is one settler near the center of the township. The township should be subdivided.

Richard Roods, J. S. Deputy Surveyor.

Resurvey of a portion of the exterior boundaries of T. 25 N., R. 2 W., Willamette meridian, Washington.

Chains.	Survey commenced April10, 1889, with a light mountain transit made by W. \& L. E. Gurley, and provided with a solar attachment. At the standard cor. to Tp. 25 N ., Rs. 1 aud 2 W ., in latitude $47^{\circ} 40^{\prime} \mathrm{N}$. and longitude $123^{\circ} \mathrm{W}$., I observe Polaris at $7^{7 \mathrm{~h}} 26^{\mathrm{m}} \mathrm{p}$. m . by my wateh, which is $3 \frac{1}{2}$ miuntes slow of local mean time, and liud the magnetic bearing of the star is N. $23^{\circ} 53^{\prime} \mathrm{W}$. Astronomical* time by wateh April $10 \ldots \ldots .{ }_{7}^{h_{2}^{2}} \underset{2}{m} .0$ Watch slow, add... 3.5 Correct local mean time of observation \qquad \square Tabular time U. C. of Polaris (Table I) April 1. $=729.5$ Reductiont for 9 days, $3 \mathrm{~m} .93 \times 9=35^{\mathrm{m}} .4$, subtract \qquad \qquad Local mean tine U. C. of Polaris, April 10. \qquad which, taken from time of observation, leaves hour angle of Polaris Azimuth of Polaris for lat. $47^{\circ} 40^{\prime}$ (Table II). \qquad North end of needle \qquad \qquad 2353 east The difference is the variation. \qquad 2209 east I lay off the azimuth to the east and drive a picket on the trie meridian so determined, 4 chs. north of the cor. The mean variation is $22^{\circ} 9^{\prime}$ east. April 10, 1889.

At 8 a. m., April 11th, the line established last night bears N. $22^{\circ} 14^{\prime} \mathrm{W}$. by compass, and the variation is $22^{\circ} 14^{\prime}$ east at this time.
In subdividing this township I commence by running nortlu on a blank line on the east bonndary of sec. 36, va. $22^{\circ} 14^{\prime}$ E., aod at 40 chs. I tind the $\frac{1}{4} \mathrm{sec}$. cor. to be N. 80° E. 16 lks . dist., and at $\varepsilon 0 \mathrm{chs}$. the sec. cor. to be E. 30 lks . dist. I therefore continue the true line north, find that no portion of this east houndary is in alignment, and that many of the coruers are nearly obliterated, but that the cor. to Tps. 25 and $26 \mathrm{~N} .$, Rs. 1 and 2 W., is due north of the starting cor. As T. 25 N., R. 1 W., has not been snbdivided, and, consequently, no subdivision lines have been closed on either side of this east boundary, I resurvey the same as follows:
Finding the standard cor. to Tps. 25 N., Rs. 1 and $2 \mathrm{~W} .$, was a post greatly decayed, and with the marks nearly obliterated, I destroy all traces of old cor. and re-establish it as follows:
Set a post, $4 \frac{1}{\mathrm{ft}} \mathrm{ft}$ long, 4 ins . sqnare, 24 ins. in the ground, for standard cor. to Tps. 25 N., Rs. 1 and 2 W., marked-
S. C. T. 25 N., on N. ;
R. 1 W., S. 31, on E., and
R. 2 W., S. 36, on W. faces, with 6 notches on N., E., and W. faces; from which
A black oak, 20 ins. diam., bears N. 37° E., 27 lks . dist., marked T. 25 N., R. 1 W., S. 31, B. T.;
A burr oak, 24 ins. diam., bears N. 43° W., 35 lks. dist., marked T. 25 N., R. 2 W., S. 36, B. T.;
A maple, 18 ins. diam., bears S. 27° W., 39 lks dist., marked S. C.T. 25 N., Rs. 1\& 2 W., B. T.

Thence I run
North, bet. secs 31 and 36 . Va. $22^{\circ} 14^{\prime} \mathrm{E}$.
Through timber.

[^28]Chains
1.00 Brook, 5 lks . wide, course N. W.
18.00 Foot of hill, course N. W. and S. E.
20.00 Top of hill, about 50 ft . high.
40.00 Set a sandstone, $20 \times 8 \times 4 \mathrm{ins}$, 15 ins. in the gronnd, for $\frac{1}{4}$ sec. cor., marked $\frac{1}{4}$ on W. side; dug pits, $18 \times 8 \times 12$ ins., N. and S. of stone $5 \frac{1}{2} \mathrm{ft}$. dist., and raised a monnd of earth, $1 \frac{1}{2} \mathrm{ft}$. high, $3 \frac{1}{2} \mathrm{ft}$. base, alongside.
From this point the old $\frac{1}{4} \mathrm{sec}$. cor., which is a decayed stake, with marks almost obliterated, bears N. 80° E., 16 lks . dist. I destroyed this stako, and also the marks on the stomp of a beech tree, described as a bearing tree in the field notes of original survey. No traces conld bo found of poplar tree described as bearing tree in said field notcs.
Descond.
57.00
72. 60
80.00

A brook, 10 lks . wide, course N. 40° E.
Set a post, 4 ft . long, 4 ins. sqnare, 2 ft . in the ground, for cor. to secs. 25 , 30, 31, and 36, marked-
T. 25 N., S. 30 , on N. E. ;
R. 1 W., S. 31, on S. E.;
R. 2 W., S. 36 , on S. W., and
S. 25 , on N. W. faces, with 5 notches on N. and 1 notch on S. edges; from which
A birch, 24 ins. diam., bears N. 30° E., 18 lks . dist., marked T. 25 N., R. 1 W., S. 30, B. T.;

A white oak, 16 ins. diam., bears S. 25° E., 60 lks . dist., marked T. 25 N., R. 1 W., S. 31, B. T.;

A white oak, 14 ins. diam., bears S. 80° W., 93 lks . dist., marked T. 25 N., R. 2 W., S. 36, B. T.;
A poplar, 15 ins. diam., bears N. 60° W., 82 lks . dist., marked T. 25 N., R. 2 W., S. 25, B. T.

From this cor. the old sec. cor., a decayed post, bears E. 30 lks . dist. I dostroyed this post, and also the marks on old bearing trecs.
Land, rolling and level.
Soil, N. and S. parts rich loam; 1st rate; middle part sandy; 2d rate. Timber, beech, poplar, white oak, and birch.

At $10 \mathrm{a} . \mathrm{m}$. , April 11 th , the variation has decreased 3^{\prime} by dinrnal change. North, het. secs. 25 and 30.

Va. $22^{\circ} 11^{\prime}$ E.
Throngh timber.
A maple, 16 ins. diam., on line, marked with 2 notches on N. and S. sides.
An elm, 18 ins. diam., which 1 mark $\frac{1}{4}$ S., on W. side, for $\frac{1}{4}$ sec. cor., from which

A poplar, 30 ins. diam., bears N. 30° E., 100 lks . dist., marked $\frac{1}{4} \mathrm{~S}$. , B.T.

A beech, 13 ins. diam., bears $\mathrm{S} .24^{\circ}$ W., 30 lks . dist., marked $\frac{1}{4} \mathrm{~S} .$, B. T.

From this point a post, the old $\frac{1}{4}$ sec. cor., boars N. 7,0 E., 100 lks. dist. I destroyed this post, and also marks on the old bearing trees, a beech and poplar.
A white oak, 16 ins. diam., on line, marked with 2 notches on N. and S. sides.
Set a post, 4 ft . long, 4 ins. square, 24 ins. in the ground, for cor. to secs. 19, 24, 25, and 30, marked
T. 25 N., S. 19 , on N. E. ;
R. 1 W., S. 30, on S. E.;
R. 2 W., S. 25, on S. W., and
S. 24, on N. W. faces, with 4 notches on N. and 2 notches on S. edges; from which
A beech, 18 ins. diam., bears N. $30^{\circ} \mathrm{E} ., 74 \mathrm{lks}$. dist., marked T. 25 N., R. 1 W., S. 19 , B. T.

A poplar, 26 ins. diam., bears S. 40° E., 281 ks . đist., marked T. 25 N., R. 1 W., S. 30, B. ' 'r.

A lurr oak, 16 ins. diam., bears S. 80° W., $: 3 f 1 \mathrm{ks}$. dist., marked T. 25 N., R \because W., S. 25, B. T.;

Chains.	A white oak, 16 ins. diam., bears N. 45° W., 36 lks. dist., marked T. 25 N., R. 2 W., S. 24, B. T. From this point the old sec. cor., a post, bears N. 50° E., 40 lks. dist. I destroyed this post, and also tho marks on old bearing trees. Land rolling. Soil, rich loam; 1st rate. Timber, beech, walnut, elm, and white oak.
	North, bet. secs. 19 and 24. Va. $22^{\circ} 11^{\prime} \mathrm{E}$. Through timber, gradually deseending.
22.10	A white walnut, 24 ins. diam., a line tree marked with 2 notehes on N. and S . sides.
40.00	Set a post, 3 ft . long, 3 ins. square, 2 ft . in the ground, for f sec. cor., marked $\frac{1}{4}$ S. on W. face; from which An ash, 10 ins. diam., bears S. 40° E., 60 lks . dist., marked $\frac{1}{4} \mathrm{~S} .$, B. T.; An ash, 12 ins. diam., bears N. 6° W., 13 lks. dist., marǐed $\frac{1}{4} \mathrm{~S} .$, B. T.' From this point the old $\frac{1}{4}$ sec. cor., a post, bears S. 10 E., 45 lks . dist. I destroyed this post, and also the marks ou old bearing trees.
44.00	Foot of slope, about 80 ft . below last soc. cor. Road from Williamsburg to Astoria, course E. and W.
50.00	Elk Creek, 130 lks. wide, shallow at this point, and gentle current, general course W.
56.40	Brook, 10 lks. wide, course S. W.
65.20	Leave creek bottom, and enter upland, course E. and W.
72.00	A hickory, 14 ins. diam., a line tree marked with 2 notches on N. and S. sidos.
80.00	Set a granite bowlder, $20 \times 12 \times 4$ ins., 15 ins. in the ground, for cor. to secs. 13, 18, 19, and 24, marked with 3 notehes on N. aud S. sides, and raised a mound of stone, $1 \frac{1}{2} \mathrm{ft}$. high, 2 ft . base, alongside. Pits impracticable. From this point the old sec. cor., a limestone, bears N. $20^{\circ} \mathrm{E} ., 16 \mathrm{lks}$ dist. I destroyed marks on this stone. Fonnd stumps of trees, which had probably been established as bearing trees at date of origiual survey, but could not distingnish any marks on same. Land, rolliug and level. Soil, rich loam; 1st rate. Bottom is not subject to inondation. Timber, walnut, beech, maple, ash, and hickory. April 11, 1889.
	At $10.30 \mathrm{a} . \mathrm{m} .$, April 12 th , the last line run bears $\mathrm{S} .2 z^{\circ} 9^{\prime} \mathrm{E}$. by compass. North, bet. secs. 13 aud 18. Va. $22^{\circ} 9^{\prime} \mathbf{E}$. Through timber.
12.30	A white oak, 16 ins. diam.
21.00	Foot of high broken ridge, abont 200 ft . above creek bottom, course E. aud $\mathrm{N} . \mathrm{W}$.
30.40	Top of ridge, abont 75 ft . high, descend abruptly.
40.00	Set a limestone, $16 \times 10 \times 4$ ins., 11 ins. in the ground, for $\frac{1}{6}$ sec. cor., marked \ddagger on W. side, from which A cherry, 8 ins. diam., bears N. $30^{\circ} \mathrm{W} ., 161 \mathrm{ks}$. dist., marked $\frac{1}{2} \mathrm{~S}$., B. T. A cherry, 10 ins. diam., bears S. 60° W.. 801 ks . dist., marked $\frac{1}{4} \mathrm{~S}$., B. T. I could find no traces of old $\frac{\frac{7}{4}}{}$ sec. cor., but found au old cherry tree marked for bearing tree, and obliterated marks on same.
44. 00	A burr oak, 30 ins. diam.
59.00 80.00	Foot of descent about 300 ft . below top of ridge, and asceud. Set a post, 4 ft . long, 4 ins. square, 24 ins. in the ground, for cor. to secs. 7, 12, 13, and 18, marked- T. 25 N., S. 7 , on N. E. ; R. 1 W., S. 18, on S. E.; R. 2 W., S. 13 , ou S. W., and S. 12, on N. W. faces, with 2 notches on N. and 4 notches on S. faces; from which

```
Chains.
A．hickory， 18 ins．diam．，bears N． \(40^{\circ}\) E．， 14 lks，dist．，marked＇I＇． 25 N．，R． 1 W．，S．7，B．T．；
A maple， 12 ins．diam．，bears \(S .42^{\circ}\) E．， 23 lks ．dist．，marked I＇． 25 N．， R．1 W．，S．18，B．T．＇；
A beech， 16 ins．diam．，bears S． \(36^{\circ}\) W．， 16 lks ．dist．，marked T． \(2 / 5\) N．， R． 2 W．，S．13，B．＇T．＇；
A hickory， 20 ins．diam．，lears N． \(39^{\circ}\) W．， 38 lks．dist．，marked T． 25 N．，R． 2 W．，S．12，B．T．
The old sec．cor．，a post，was lying on the ground near this cor． 1 destroyed this post．The bearing trees are those described in the field nutes of orig－ inal survey，and were all newly marked．
Land（except S． 21.00 chs．）high，broken，and menutainous．
Soil，sandy and rocky ；3d and 4 th rate．
Timber，beech，lickory，maple，and hlack－jack．
```

North，bet．secs． 7 and 12.
Va． $22^{\circ} 9^{\prime} \mathrm{E}$ ．
Through tixuber．

13． 10

A black oak， 16 ins．diam．，on line，marked with 2 notches on N．and S．sides． Set a limestone， $20 \times 8 \times 4$ ins．， $1 .$, ins．in the ground，for $\frac{1}{6}$ sec．cor．，marked $⿻ 木 一 ⿱ 䒑 未$ on W．side，fiom which

An elm， 14 ins．djam．，bears S． $40^{\circ} \mathrm{W} ., 1 \mathrm{ll} \mathrm{lks}$. dist．，marked $\frac{1}{4} \mathrm{~S} ., \mathrm{B} . \mathrm{T} . ;$
An elm， 11 ins．diam．，bears N． 230 W．， 421 ks ．dist．，marked 4 S．， 13 ．T．
from this point，the old $\frac{1}{d} \mathrm{sec}$ ．cor．，a post bears N． $750 \mathrm{~W} ., 60 \mathrm{lks}$ dist．I destroyed this post，and also the marks on old bearing trees．
A point about $100 \mathrm{ft}^{\prime}$ ．above last sec．cor．，and foot of monntain，course E ． and N．W．
A granite rock in place， $2 \times 6 \times 10 \mathrm{ft}$ ．，above ground，which 1 marked for cor． to secs．1，6，7，and 12，with a crosh（ X ）at exact cor．point，and 1 notch N ．and 5 notches S．of cross．
This rock is en the top of the monntain，about 300 ft ．above foot．Fire lias destroyed all traces of tho old sec．cor．and bearing trees．
Land，mountainons and broken．
Soil，stony and rocky；4th rate．
Timber，hickory，oak，beech，and ash．
The fire above referred to was confined to a space of about 30 acres on the summit of the monntain．

At 1 p．m．；April 12th，the variation has decreased 6^{\prime} ly diumal change．
North，bet．secs． 1 and 6.
Va． $22^{\circ} 3^{\prime} \mathrm{E}$ ．
Descend abruptly．
A black oak， 16 ins．diam．，a line tree marked with 2 notches on N．and S． sides，aud enter timber．
A peint about eze fcet below summit；foot of monntain．
An ash， 1% ins．diam．，a line tree marked with 2 notches on N．and S．sides． Edge of ravine，about 40 ft ．deep．
Bottem of ravine，and set a limestone， $18 \times 7 \times 4$ ins．， 12 ins．in the ground，for $\frac{1}{4}$ sec．cor．，marked $\frac{1}{1}$ on W．side，from which

A poplar， 16 ins．diam．，hears N． 40° E．， 34 lks．dist．，marked $48 .$, B．T．；
A poplar， 14 ins．diam．，bears S． $13^{\circ} \mathrm{W}$ ．， 22 lks ．dist．，marked $\frac{1}{} \mathrm{~S} ., \mathrm{B} . \mathrm{T}$ ．
From this point the old t sec．coir，a post，bears S． $80^{\circ} \mathrm{W} ., 101 \mathrm{ks}$. dist．in destroycd this post，and after a careful examination of all the trees within limits was nnable to distinguish any marks made for bearing trees．
Leave timber，and enter open prairie，course E．and N．W．
At this point 1 found the old township cor．a clarrerl stake，with re－ mains of trench and mound．As Tp． 26 N．，Rs． 1 and 2 W．，had both been subdivided，I could not change the lecation of this cor．，and there－ fore re－established it，as follows：
Set a post， $4 \frac{1}{2} \mathrm{ft}$ ．long， 4 ins．square， 24 ins ．in the ground，for cor．to T＇ps． 25 and 26 N．，Rs． 1 and 2 W ．，marked－

T． 26 N．，S．31，on N E．；

SPECIMEN FIELD NOTES. No. 5.

TITLE PAGE.
(See Dlagram C.)

FIELD NOTES
OF THE SURVEY OF THE
\section*{SUBDIVISION AND MEANDER LINES}
OF
Townselp No. 6 North, Range No. 34 East, of the
PRINCIPAL BASE AND MERIDIAN
in the
STATE OF MONTANA, as surveyed by
ROBERT ACRES, U. s. DEPUTY sURVEYOR,
- UNDER HIS CONTRACT, No. 87, DATED MARCH 22, 1889.

Survey commenced August 5, 1889.
Survey completed August 20, 1889,
[Second page.]

NAMES AND DUTIES OF ASSISTANTS.

Petere Lo	(Jatum:m.
John Short	Chainman.
George Sharp	Axerman.
Adam Dull	Axeman.
James Ban	.Flagman.

INDEX.

Townahip 6 north. J. 34 east.

Meanders of Fellowntone River

Nors.-Whan practicable, the diagram will show meander lines with the page references written apen them.

PRELIMINARY OATHS OF ASSISTANTS.

We, Peter Long and John Short, do solemnly swear that we will well and faithfnlly execute the duties of chain carriers; that we will level the chain over even and uneveu ground, and plumb the tally pins either by sticking or dropping the same; that we will report the true distance to all notable objecte, and the true lengths of all lines that we assist in measuring, to the best of our skill and ability, and in accordauce with instructions given us in the survey of the subdivision and meander lines of Township No. 6 north, of Range No. 34 oast, of the principal base and meridian in the State of Montana.

Peter Long, Chainman. John Short, Chainman.

Subscribed and sworn to before me this second day of August, 1889.
Henry Doolittle,
[seal.]
Notary Public.
We, George Sharp and Adam Dnll, do solemnly swear that we will well and and truly perform the duties of axemen in the establishment of corners and other dnties, according to instructions giveu us, and to the best of our skill and ability, in the survey of the subdivision and meander lines of Township No. 6 north, of Range No. 34 east, of the principal base and meridian in the State of Montana.

George Sharp, Axeman. adam Dull, Axeman.

Subscribed and sworn to before me this second day of August, 1889.
Henry Doolittle,
[seal.]
Notary Public.
I, James Banner, do solemnly swear that I will well and truly perform the duties of flagman according to instructions given me, to the best of my skill and ability, in the survey of the subdivision and meander lines of Township No. 6 north, of Range No. 34 east, of the principal base and meridian in the State of Montana.

James Banner, Flagman.
Snhscribed and sworn to before me this second day of August, 1889.
Henry Doolittle,
[beal.]
Notary Public.

Subdivisions T. 6 N., R. 34 E.

Chains.

Survey commenced Angust 5, 1889, with a railrotd compass having a 5 , -inch neeale, \dot{a} revolving eompass box and variation ure roading lo singrle minutos, a divided oircle for monsuring angles indepondent of the vosille, reading by two opposito verniers to singlo miuntos and provided with a teloscopic attachment.
Preliminary to commencing the subdivision of this towuship I go to the cor. of Ts. 5 aod 6 N ., Rs. 34 aud 35 E ., which is a sandstone firmly sot and $9 \times 8 \times 4$ ins. above ground, marked with 6 notchos on each elgo and having a mound of stone, $1 \frac{1}{\mathrm{f}} \mathrm{ft}$. high, 2 ft . baso, alongside. At this cerner I verify tho adjustments of my compass and lind them correct. Lat. $46^{\circ} 15^{\prime}$ N., Long. $107^{\circ} 24^{\prime} \mathrm{W}$.
Having set the instrument over the conter of the townsbip corner, I diruet the telescope to Polaris, and at $10^{\text {h }}$., $23^{3 n}$. p. m., local mean timo of eastern elongation," find its magnetic hearing to be N. $16^{\circ} 39^{\prime} \mathrm{W}$.

North end of needle....... $16^{\circ} 39^{\prime}$ cast.
The azimuth of Polarist.. $1^{\circ} 51^{\prime}$ east.
The sum is the variation. $18^{\circ} 30^{\prime}$ east.
I now lay off by the horizoutal limb the azimuth of the star 1051^{\prime} to the west and for future reference mark the true meridian, so dotormined by driving a pickot ou the line 3 chains north of the township corner.

August 5, 1889.

Note.-In determining the variation as above iudicated the depnty is supposed to have followed the directious given on page 71, but he is at liberty to ascertain its value by any corroct mothod which may be available, providod he states exaetly how it is donc. The rocord of the observations must not be omittod in these field notes unless the contract onder which the deputy is working inclndes staudard or oxterior lines, surveyed by himself, passing through the corner undor considoration, and in that case he is to ascertain the variation by taklug the magnetio bearing of his own established line and will make a record of tho timo, place, and observations.
To computs the time of elongation of Polaris, soe table, page 68, and following rulos.

At 7.30 a. m., August 6th, I place the compass on the line ostablished last night and fiud its magnetio boaring to be N. $188^{\circ} 3 i^{\prime}$ W., aml after allowing 6^{\prime} for dinrnal oliange (as por table on page 55 of priuted instrnetious, find tho mean declination to be $18^{\circ} 30^{\prime}$ E.
From the tow oship corner I run north on oast boundary of sec. 36. Va. $18^{\circ} 36^{\prime} \mathrm{E}$.
And at 35 chains find moandor cor on lino on right bank of main channel of Yellowstone River. I set a flag on lide on opposite bank and measare a base line east 2.50 chs. to a point from which the flag boars N. $9^{\circ} \mathrm{W}$. , and the distance acrossis, cot. $9^{\circ} \times$ bane or $6.314 \times 2.50=15.78$ chs., and the whole distance from township cor. 50.78 chs.; continue same line to 80.04 chs., where I find the cor. to secs. 25 anil 36 on E . boundary of township, 2 links east of my line. The bearing of the range line is therofore north, agreeing with the notos supplied by the Survoyor-Grnoral.
I now return to the SE. cor. of township and agaiu take the maguetic hearing of the range line, whioh I linl to bo N. $18^{\circ} 33^{\prime}$ W. (at 9.45 A. M.).
Thence I run N. $89^{\circ} 57^{\prime}$ W. along S. boundary of sec. 36.
Va. $18^{\circ}: 33^{\prime}$ E.
At 39.98 find \ddagger sec. cor. 2 lks . south, and at 79.97 find the cor. to нecs. 35 and 361 link north of my line. The true course of the south bonudary of sec. 36 is thereforo as abovo stated.
With the above-named true bearings the subdivision lines of the eastern tier of sections will be run as roquired by the printed instrnetions, and my chaining practically agrees with the orignal survey.

Note.-If the line rin north from the township eornor is fonnd to fall cast or west of thes sec. cor. at end of first mile, the falling will bo usted and

[^29]Subdivisions T. 6 N., R. 34 E.—Continued.

Abstract

Chains. the true bearing of range line deduced therefrom will bo the bearing for all N. and S. sec. lines in the township, including the random lines in N. tier of secs. which close on corners common to 4 sectious. In a similar manner the true course of the sonth boundary, determined from the falliug at 80 ohains, will be the random bearing of E. and W. section lines in east tier of fections. For the random bearings of other E. and W. sec. lines see remarks on page 88 referring to Table III and the bearings on Diagram A, Fig. 1.

I commence at the corner to secs. $1,2,35$, and 36 on the sonth boundary, which is a sandstone, $8 \times 8 \times 2 \frac{1}{2}$ ins., above gronnd, firmly set, with 1 notch on E. and 5 notches on W. edge, and pits, $18 \times 18 \times 12$ ins., in each sec. $5 \frac{1}{2}$ feet dist., with wound of earth, 2 ft . high, $4 \frac{1}{2} \mathrm{ft}$. base, alongside. From a back-sight on the south boundary of sec. 36 , I dy off at this cor. an angle of $90^{\circ} 02^{\prime}$ to the north, which gives tho direction of the true meridian, and which I find has (at 10 A. M.) a magnetic bearing of N. $18^{\circ} 30^{\prime} \mathrm{W}$.

Note.--The above is the method to be parsued when much local attraction exists (as here supposed), and is the better plan to follow under all circumstances when a common compass is used. The direction of the true meridian being carried forward by back and fore sights, the needle is not depended opon at any time. If the south houndary is a due east and west line, the angle to laid off will be 90°; if the south bonndary appproximates to the parallel of latitude the angle to be laid off will he equal to the bearing if the boundary runs south of west, and equal to 180° minus the bearing when the bonndary runs north of west, as in this case. It should be remembered that the south bonndary on Diagram \mathbf{C} is supposed to be a straight line. See Diagram A, Fig. 1, and remarks on page 88. If a Solar apparatus is used the true meridian is obtained by direct observation. The course to be pursued in any particular case will depend upon the instrument used and existing conditions.

Thence I run N.

North, bet. secs. 35 and 36.
Va. $18^{\circ} 30^{\prime} \mathrm{E}$.
5.00 Wire fence, conrse E. and W.

Enter scattering timber. Alexander's honse bears N. $31^{\circ} \mathrm{W}$.
Leave scattering timber.
Set a post, 3 ft . long, 3 ins. square, with marked stoue, 12 ins. in the ground, for $\frac{1}{4}$ sec. cor., marked $\frac{1}{4} \mathrm{~S}$. on W. side; dug pits, $18 \times 18 \times 12$ ins., N. and S . of post, $5 \frac{1}{2} \mathrm{ft}$. dist., and raised a mound of earth, $1 \frac{1}{2} \mathrm{ft}$. high, $3 \frac{1}{3}$ ft. base, around post.
Alexander's house bears S. $533^{\circ}{ }^{\circ} \mathrm{W}$.
53. 82 Right bank of the Yellowstone River. Set a post, 4 ft . long, 4 ins. square, with marked stove, 12 ins. in the ground, for meander oor. to fractioual secs. 35 and 36 , marked M. C. on N. side, and
T. 6 N., on S. ;
R. 34 E., S. 36, on E., and
S. 35 , on W. faces; dug pit, 3 ft . square, 12 ins . deep, 8 lks . S. of post, and raised mound of earth 2 ft . high, $4 \frac{1}{2} \mathrm{ft}$. base, around post.
There being an island on line on N. side of channel, I send a flag across, and set it on line het. secs. 35 and 36 , on bar S. of island. I then go across to Hlag and run a base line W. 11.13 chs. to a point from which meander cor. on right banls bears $\mathrm{S} .37^{\circ} 50^{\prime} \mathrm{E}$., which gives for distance across the river to edge of bar, cot. $37^{\circ} 50^{\prime} \times$ base, or $1.288 \times 11.13=14,34$ chs. I then run north from flag 66 lks . to south bank of island, making the whole distance $53.82+14.34+0.66$ chs. or
To south bank of island, which point I established by setting a post, 4 ft . long, 4 ins. square, with marked stone, 12 ins. in the ground, for meander cor. to fractional secs. 35 and 36 on S. bank of island, marked M. C. on S. side, and
T. 6 N., on N. ;
R. 34 E., S. 36 , on E., and
S. 35 , on W. faces; dug pit, 3 ft . square, 12 . ins. deep, 8 lks . N. of post, and raised a mound of earth, 2 ft , high, $4 \frac{7}{7} \mathrm{ft}$. base, around post.

$\begin{gathered} \text { Chains. } \\ 72.50 \\ 80.00 \end{gathered}$	Thence continne on line across island, enter brush. Loave brush, enter timber. Set a post, 4 ft. long, 4 ins. square, with marked stone, 24 ins. in the ground, for cor. to secs. 25, 26,35 , and 36 , marked- T. 6 N., S. 25, on N. E.; R. 34 E., S. 36 , on S. E.; S. 35 , on S. W., and S. Dif, on N. W. facos, with 1 notch onS. and E. edges, from whioh A cotton wood, 12 ins. diain., bears N. $124^{\circ} \mathrm{E}$., 180 Iks. dist., marked T. 6 N., R. 34 E., S. 25 , B. T. A cottonwood, 18 ins. diam., bears S. 82° E., 154 1ks. dist., marked T. 6 N., R. 34 E., S. 36, B. T. A cottouwood, 10 ins. diam., bears S. $29 \frac{1}{2}^{\circ} \mathrm{W} ., 56 \mathrm{lks}$. dist., marked T. 6 N., R. 34 E., S. 35, B. T. A cottonwood, 10 ins. diam., bears N. $46 \frac{1}{1}^{\circ} \mathrm{W} ., 119$ liss. dist., marked T. Land, level. 6 N., B. 34 E., S. 26, B. T. Soil, rich loam; 1st rate. Timber, cotton wood and willow, 18.50 chs. ; undergrow th same, 3.68 chains.

S. $89^{\circ} 58^{\prime}$ E. on a random live bet. sees. 25 and 36.

$$
\text { Va. } 18^{\circ} 30^{\prime} \mathrm{E}
$$

This line is wholly on the island.
79.54

Intersect the east boundary of the to waship 31 ks . N. of the cor. to secs. $25,30,31$, and 36 , which is a post, 4 ft . long, 4 ins. square, firmly set in the ground, marked-
T. 6 N., S. 30 , on N. E. ;
R. 35 E., S. 31, ou S. E.;
R. 34 E., S. 36 , on S. W., and
S. 25, on N. W. faces, with 5 notches on N. and 1 noteh on S. edges,
which

from which

A cottonwood, 20 ins. diam., bears N. 301° E., 166 liss. dist., marked T. 6 N., R. 35 E., S. 30, B.' T.

A cottonwood, 24 ins. diam., bears S. 39° E., 67 lks. dist., miluked T. 6 N., R. 35 E., S. 31, B. T.
A cottonwood, 14 ins. diam., Jears S. 891° W., 170 lks . dist., marked T: 6 N., R. 35 E., S. 36, B.'T.
A cottonwood, 16 ins. diam., bears N. 23° W., 40 lks. dist., narked T.
6 N., R. 34 E., S. 25, B. T. Thence I rinn
N. $89^{\circ} 57^{\prime}$ W. on a true line bet. secs. 25 and 36 , with samo va.
13.50
18.50
28.00
34.00
39.77
45.50
50.20
58.00
78.21
79.54

Leave brush.

Enter timber.
Leave timber.
Set a post, 3 ft . long, 3 ins. square, with marked stone, 12 ins. in tho ground for $\frac{1}{2}$ seo. cor., marked $\frac{1}{4} \mathrm{~S}$. on N. face; dug pits, $1 \times 18 \times 12$ ins., E. and W. of post, $5 \frac{1}{2} \mathrm{ft}$. dist., and raised a mound of earth, $1 \frac{1}{\frac{1}{2}} \mathrm{ft}$. high, $3 \frac{\mathrm{ft}}{\mathrm{ft}}$.
base, around post.
base, around post.
Enter timber and brush.
Leave timber and brush.
Enter timber.
A cottonwood, 20 ins. diam., a line tree marked with 2 notches on E. and
W. sides.
The cor. to seos. $25,26,35$, and 36 .
Land, level.
Soil, alluvial ; 1st rate.
Timber, cottonwood and willow; nndorgrowth same, 32.24 ehs.
August 6, 1889.

[^30]* Parallel to south boundary of soo. 35. For romaluder of this line seo page 135 ,

Subdivisions T. 6 N., R. 34 E.—Coutinued.

$\begin{gathered} \text { Chains. } \\ 3.50 \\ 4.83 \end{gathered}$	Leave timber. West bank of island on river. Set a sandstone, $12 \times 12 \times 5$ jns., 8 ins. in the ground, for meander cor. to fractional secs. 26 and 35 , marked M. C. on W. side, from which a donble cotton wood, 16 ins. diam., bears N. $78{ }^{\circ} \mathrm{E}$. 157 lks . dist., marked T. 6 N., R. 34 E., S. 26, M. C., B. T. A cottonwood, 18 ins. diam., bears S. $29 \frac{1}{2}^{\circ}$ W., 140 llis. dist., marked T. 6 N., R. 34 E., S. 35, M. C., B. T. Note.-The remainder of this line is to be run from cor. to secs. 26, 27, 34, and 35. The line is run parallel to south boundary of sec. 35 , not necessarily east or west.
	I now return to the cor. to secs. 25, 26, 35, and 36, whence I run North, bet. sees. 25 and 26, Va. $18^{\circ} 30^{\circ} \mathrm{E}$. Throngh timber aud brush.
3.64	North bank of island. Set a post, 4 ft . long, 4 ins. square, with marked stove, 12 ins. in the ground, for meander cor. to fractional secs. 25 and 26 , marked M. C. on N. face and T. 6 N. on S.; R. 34 E., S. 25, on E., and S. 26, on W. faees; from which A cottonvood, 8 ins. diam., bears S. 521° E., 581 lks dist., marked T. 6 N., R. 34 E., S. 25, M. C., B. T. A cottonwood, 10 ins. diam., bears S. $31^{\circ} \mathrm{W} ., 1031 \mathrm{lss}$. dist., markerl T. 6 N., R. 34 E., S. 26, M. C., B. T. From this meander cor. on island I run north on bar 3.60 cbs. to water's edge, and send flagacross to left bank of river, and sat it on liuo bet. secs. 25 and 26. I then run a base line east on bar 3.00 chs. to a point whence flag bears N. $55^{10} \mathrm{~W}$., which gives for distance across, cot. $551^{\circ} \times$ base or $0.694 \times 3=2.08$ chs. The whole distance fron cor. to secs. $25,26,35$, and 36 will therefore be $3.64+3.60+2.08$ chs., making
9.32	To flag on left bauk. This point I establish by setting a sandstone, $22 \times$ 10×5 ins., 16 ins. in the ground, for meander cor. to tractional secs. 25 and 26 , marked M. C. on S. side, and raised a mound of stoue, $1 \frac{1}{2} \mathrm{ft}$. high, 2 ft . base, alongside. Pits impracticable. Thence I run north on line over level bottom.
40.00	Set a sandstone, $16 \times 14 \times 4$ ins., 11 ins., in the ground, tor $\frac{1}{4}$ sec. cor., marked $\frac{1}{4}$ on W. face; dug pits, $18 \times 18 \times 12$ ins., N. and S. of stone $5 \frac{1}{2} \mathrm{ft}$. dist., and raised a monnd of eartb, $1 \frac{1}{2} \mathrm{ft}$. bigh, $3 \frac{1}{2} \mathrm{ft}$. base, alongside.
59. 70	Telegraph line, course S. $55^{\circ} \mathrm{E}$.
78.20	Road to Miles City, course N. W. and S. E.
80.00	Set a sandstone, $36 \times 8 \times 5$ ins., 27 ins. in the gronnd, for cor. to secs. 22 , 24, 25, and 26, marked with 2 notches on S. and 1 notch on E. edges; dng pits, $18 \times 18 \times 12$ ins., in each sec. $5 \frac{1}{2} \mathrm{ft}$. dist., and raised a mound ot earth, 2 ft. high, $4 \frac{1}{2} \mathrm{ft}$. base, alongside. Land, level. Soil, alluvial bottom; 1st rate. Timber, cottonwood on island, 3.64 chs.

S. $89^{\circ} 58^{\prime} \mathrm{E}$. on a random line bet. secs. 24 and 25.

Va. $18^{\circ} 30^{\prime}$ E.
Set temporary $\frac{1}{4}$ sec. cor.
Intersect east boundary of township 7 lks . N. of cor. to secs. 19, 24, 25, and 30 , which is a post, 4 ins. square, marked-
T. 6 N., S. 19, on N. E.;
R. 35 E., S. 30, on S. E.;
R. 34 E., S. 25 , on S. W., and
S. 24, on N. W. faces, with 4 notches on N. and 2 notches on S . edges, and pits, $18 \times 18 \times 12$ ins., in each see. $5 \frac{1}{2} \mathrm{ft}$. dist., and mound of earth, 2 ft . high, $4 \frac{1}{2} \mathrm{ft}$. base, aronnd post.

Thence I run

N. $89^{\circ} 55^{\prime} \mathrm{W}$. on a true line het. secs. 24 and 25 , with same va.

Set a sandstone, $22 \times 10 \times 3$ ins., 16 ins. in the ground, for $\frac{1}{2}$ sec. cor., marked $\frac{1}{4}$ on N. face, and raised a mound of stone, $1 \frac{1}{2} \mathrm{ft}$. high, 2 ft. base, alongside. Pits impracticable.

Chains.

46. 60
57.10

7!. 90
21.00
40.00
73. 71
7.). 00
80.00

Alkali creak, dry, courso E.
Set a sandstone, $16 \times 10 \times 4$ ins., 11 ins. in the gromind, for cor. to secs. 13 , 14, 23, and 24, narked with 3 notehes ou S. and 1 notch on E. edges; dug pits, $18 \times 18 \times 1 \because 2$ ins., in cach sec., $5 \frac{1}{2}$ ft. dist., and raised a mound of wirth, 2 ft . high, 4 It. bise, alonggido.
Land, gently rolling and level.
Soil, partly:unial and alkali; 1st and 3d rate.
A few scattering cottonwoods on creek.

Note.-The variation having bern delsminerl, the va. are will be set to indicate its amount and will not, bo moved aritiu unloss an actual change (of sufficient naquilude to be appraiable) talkes place, either by reason of local attraction or diurnal change. In eithes cadere, when alteration of the roadiug of ya. vernier is required and mald, the rasom for the siance will be stated in the notes, and the place, amount of change, hour of the day and the date will be given.
If a change of drection is required it is to be attained ly altering the bearing, not the varialion.

At $2 \mathrm{p} . \mathrm{m}$. Angust 7, cliurnal cliange has decreased the variation hy 5^{\prime}. S. $89^{\circ} 58^{\prime} \mathrm{E}$. on a random line bet. secs. 13 and 24.

Va. $180{ }^{2} \mathbf{n}^{\prime} \mathrm{E}$.
40.00
79.80
37.80

Set temporary $\frac{1}{4}$ sec. cor. in dry ereek.
Intersect east boundary of towaship at cor. to secs. 1:, 18, 19, and 24,
which is a sandstone, $5 \times 8 \times 4$ ins., above ground, firmly set, narked
with :3 notches on N. and S . edges, and monnd of stone, $1 \frac{1}{2} \mathrm{ft}$. high, 2 ft .
luabe, alongside.
Thence I rmo
N. $89^{\circ} 58^{\prime}$ W. on a true line loot. sees. 13 ann 24 , with same va.

Over sage-hrush plain.
39.90

Enter alkali creek, dry, course S. E., then rs in creek.
The corner point being io ereck, at a point 30 lks . N. on N. bank of -creek, I set a post, 3 ft . lonin, 3 ins. बquare, with luarked stome, 12 ins. in the ground, for witness cor. to $\frac{1}{2}$ sec. cor., marked W. C. $\frac{1}{2} \mathrm{~S}$. on N. face; Jug pits, $18 \times 18 \times 12$ ins. E. and W. If post, $5 \frac{1}{\frac{1}{2}} \mathrm{ft}$. dist., and raised a momnd of earth, it ft . high, $3 \frac{\mathrm{f}}{\mathrm{ft}} \mathrm{f}$. base, aroumel post.
41. 30
79. 80

Le:tvo creek, course N. L.
The ror. क्ष нrers. $13,14,83$, and 24 .
Land, level.
Sroil, alkali, and sandy loarn; 21 rate.
A few scattering cotton woods on ereek.

Note.-If the deputy is condident lisis own work is correct, inn increase or decrease of length of \mathbf{E}. and \mathbf{W}. lines ans le proceeds north will indicate an erroneous or cronked range line, and if discrepancius exceed limits prescribed on page 40 the deputy will examine and if necessary, retrace the

Subdivisions T. 6 N., R. 34 E.-Continued.

Chains.	entire east boundary, in order to locate the error; he will then correct tho range line if practicable, but if subdivisions have been made closing on east boundary, he will report the facts to the Surveyor-General and await his instructions.
	At $2.30 \mathrm{p} . \mathrm{m}$. the line bet. seos. 23 and 24 bears S. $18^{\circ} 35^{\prime}$ E., by compass. Soure local attraction at this corner. North, bet. secs. 13 and 14. Va. $18^{\circ} 35^{\prime} \mathrm{E}$.
33. 50	Leave bottom and ascend.
35.50	Top of bench about 50 ft . high, course N. E., thence over gently rolling ground.
40.00	Deposited a marked stone, 12 ins. in the ground, for 4 sec. cor.; dug pits, $18 \times 18 \times 12$ ins., N. and S. of cor., $5 \frac{1}{2} \mathrm{ft}$. dist., and raised a mound of earth, $1 \frac{1}{2} \mathrm{ft}$. high, $3 \frac{1}{2} \mathrm{ft}$. base, over it. In N. pit drove stake, 2 ft . long, 2 ins . square, 12 ins. in the ground, marked $\frac{1}{4} \mathrm{~S}$. on W . face.
68. 00	Foot of bluff, about 150 ft . high, conrse E., and ascend.
74.00	Top of bluff, enter pine timber, and thence descend along rocky slope, sloping westerly to
80.00	A point about 100 ft . below top of bluff. This point falling on a flat rock in place, I marked a cross (\times) at exact cor. point for cor. to secs. 11, 12, 13, and 14, with 4 notches S. and 1 notcli E., and raised a mound of stone, $1 \frac{1}{2} \mathrm{ft}$. high, 2 ft . base, alongside. Pits impracticablè. From corner point A pine, 10 ins. diam., bears N. 15° E., 27 lks . dist., marked T. 6 N., R. 34 E., S. 12, B. T. A pine, 10 ins. diam., bears S. 42° E., 46 Iks. dist., marked T. 6 N., R. 34 E., S. 13, B.' 'T. A pine, 6 ins. diam., bears S. 5° W., 86 lks dist., marked T. 6 N., R. 34 E., S. 14, B. T. A pine, 9 ins. diam., bears N. 15° W., 90 lks. dist., marked T. 6 N., R. 34 E., S. 11, B. T. Land, 33.50 chs. bottom, remainder broken. Soil, alluvial and rocky; 1st and 4th rate. Timber, pine, 6.00 chains. August 7, 1889.
	By a back-sight* on line bet. secs. 13 and 14, from cor. to secs. 11, 12, 13, and 14, at 7 a. m., August 8, I find its magnetic beaning to be S. $18^{\circ} 34^{\prime}$ E. and the variation $18^{\circ} 34^{\prime} \mathrm{E}$. S. $89^{\circ} 58^{\prime} \mathrm{E}$. on a random line bet. secs. 12 and 13. Va. $18^{\circ} 34^{\prime} \mathrm{E}$.
40.00	Set temporary $\frac{1}{4}$ sec. cor.
80.00	Intersect E. boundary of township, 14 lks N. of cor., to secs. 7, 12, 13, and 18, which is a post, 4 ins. square, marked- T. 6 N., S. 7, on N. E. R. 35 E., S. 18 , on S. E.; R. 34 E., S. 13 , on S. W., and S. 12 , on N. W. faces, with 2 notches on N. and 4 notches on S. edges, and mound of earth, 2 ft . high, $4 \frac{1}{2} \mathrm{ft}$. base, around post. Thence I ran N. $89^{\circ} 52^{\prime} \mathrm{W}$. on a true line bet. secs. 12 and 13 , with same va.
37.00	Conleé, about 30 ft . deep, course S. W., thence over rolling ground.
40.00	Set a post, 3 ft. long, 3 ins. square, with marked stone, 12 ins. in the ground, for $\frac{1}{3}$ sec. cor., marked $\frac{1}{4}$ S. on N. face, and raised a monnd of stone, $1 \frac{1}{2} \mathrm{ft}$. high, 2 ft . base, alongside. Pits impracticable.
52.00	Conleé, 100 ft deep, course S. E.
57.00	West side of coulee, thence ascend.
66. 00	Top of ridge about 125 ft . high, course S ., thence over rolling ground.
80.00	Euter timber aud commence descending.
	The cor. to secs. 11, 12, 13, and 14.
	Land, rolling and broken.
	Soil, stony; 4th rate. Timber, pine; 5 chs.

"Lo obtain the true meridian and variation when no solar apparatus is attached to the instrument.

Subdivisions T. 6 N., R. 34 E.-Continued.

Chains. North, het. sece. 11 imd 12.
Va. $18^{\circ} 34^{\prime} \mathrm{L}$.
11.00 Top of table-land, about 30 ft. above last cor., and loave timbr, thence over rolling ground.
40.00 Deposited a marked ntone, 12 ins. in the gromin, for 4 sec. cor.; dug pits, $18 \times 18 \times 12$ ins., N. and s, of cor., $5 \frac{1}{2}$ Ti. dist., and raisod a monnd of earth, $1 \frac{1}{2} \mathrm{ft}$. high, $3 \frac{1}{4} \mathrm{ft}$. Laso, over il. In N. pit druve stake, 2 ft . long, 2 ins. squtare, 12 ins, in the ground, marked $\frac{1}{8} \mathrm{~S}$. on W. face.
Strean, 6 lks wide, emmess S. E.
80.00 Set a sandstone, $20 \times(; \times 5$ ius., 15 ins. in the gromnd, for cor. to mecs. 1 , 2, 11, and 12, marked with 5 notchos on S. intil 1 notch on E. widgen; dug pits, $18 \times 18 \times 12$ ins., in eacb nec., $5 \frac{1}{2}$ H.. dist., and caised a mound of earth, ${ }^{2} \mathrm{ft}$. high, $4 \frac{1}{2} \mathrm{ft}$. ljase, alongside.
Land, rolling.
Soil, sandy; 3d rate.
Timber, pine; 11 chas.
At 10 a. m. Aughst 8, at cor, to $1,2,11$, and 12 , diurnal change han reduced va. by $4^{\prime \prime}$.
S. $89^{\circ} 58^{\prime}$ E. on a random line bet. secm. 1 :und 12.

Va. $18^{\circ} 30^{\prime}$ E.
40.00 Set temporary $\frac{1}{4}$ sec. cor.
80.00 Intersect \mathbf{E}. boundary of townthip at 22 lks . N. of cor. to sucs. 1, (f, 7, and 12 , which is a sandstone, $5 \times 6 \times 5$ ins., aloove qromnl, unarkell with 1 notch on N . and 5 notches on S. edges, and mound if elume, $1 \frac{1}{2}$ ft. high, 2 ft . base, alongside. Pits impracticable.
Thence I run
N. $89^{\circ} 49^{\prime} \mathrm{W}$. on a true line bet. sech. I and l2, with name va.
10.00 Foot of ridge enter timber and anceod.
14. 50 Top of ridge albont 100 ft . high, course N. E.
16. 50 Descend about 75 ft . to
30.50 Coule6, about 12 ft . deep, course N. E.
40.00 Set a sandstone, $18 \times 14 \times 3$ ins., 12 ins. in the ground, for $\frac{1}{4}$ sec. cor., markerl $\frac{1}{3}$ on N . fane; from which

A pine, 12 ins. diam., bears N. 250 W., 2i lks. dist., marks:l $\frac{1}{2} \mathrm{~S} ., \mathrm{lB}$. T°.
43.00 Conlé, abont 18 ft . deep, course N. k.
50.50 Coulé, abont 15 ft. deep, course N. E.
58.50 Coule6, about 100 ft . deep, course N. W.
71.00 Leave pine timber and ascend.
80.00 The cor. to нers. 1, 2, 11, and 12.

Land, rolling aod broken.
Soil, sandy and rocky; 3ll and 1th rale.
Timber, pine, of excellent quality; 61 clis.
North, on a random line bet. secs. 1 and 2.
Va. $18^{\circ} 30^{\circ} \mathrm{E}$.
40. 00

Set temporary $\frac{1}{4}$ нec. cor.
79.77 Intersect north boundary of township at 21 lks . west of ror. to werc. 1 , 2, 35, and $3 f$, which is a sandstome, $5 \times \times \times 4$ ins, atmer gromen, wilh pita, $18 \times 18 \times 12$ ins., in each mec., $\frac{5}{2}$ ft. disu., and mommif ofarth, 2 ft . high, $4 \frac{1}{2} \mathrm{ft}$. base, alongsile.
Theace I run
S. 0. 09^{\prime} W. od a trie line het. нisis. 1 . and 2 , with sames va.

Over rolling ground.
19.50

Coule e, abaut gh ft. deep, conrse S. W.

:39. 40 Cunlec, alout 20 ft . lerp, curне \$. W.
39.77 A pioc, 7 ins. diametar, in canler, which I marked $\frac{1}{4}$ S. on W. face for $\frac{1}{z}$

79.77 The vur. to necm. $1,2,1.1$, and 1%.

Land, rolling.
Soil, sandy and alkali; 3d rato.
Timber, scattering pines in couleer.
August 8, 1889.

Subdivisions T. 6 N., R. 34 E.—Continued.

Chaing. From the cor. to secs. 2, 3, 34, and 35, on the south boundary of the township, which is a post, 4 ins. square, markedT. 6 N., S. 35, on N. E. ; R. 34 E., S. 2, on S. E.;
T. 5 N., S. 3 , on S. W., and
S. 34, on N. W. faces, with 2 notches on E. and 4 notches on W. edges, and mound of earth, 2 ft . high, $4 \frac{\mathrm{ft}}{\mathrm{ft}}$ base, around post; I take a back-sight* to flag on $\frac{1}{4}$ sec. cor. S. bdy. sec. 35, and lay off to the north an augle of $90^{\circ} 01^{\prime}$, which gives the true meridian. Its magnetic bearing is N. $18^{\circ} 34^{\prime}$ W. at 62 . m., August 9, thence l run
North, bet. secs. 34 and 35.
Va. $18^{\circ} 34^{\prime} \mathrm{E}$.

Over level bottom.

40.00 Set a sandstone, $24 \times 14 \times 3$ ins., 18 ins. in the ground, for $\frac{1}{4}$ sec. cor., marked $\frac{1}{4}$ on . face; dug pits, $18 \times 18 \times 12$ ins., N. and S. of stone, $5 \frac{1}{2} \mathrm{ft}$. dist., and raised a mound of earth, $1 \frac{1}{2} \mathrm{ft}$. high, $3 \frac{1}{2} \mathrm{ft}$. base, alongside.
80.00 Set a post, 4 ft . long, 4 ins. square, with marked stone, 12 ins. in the ground, for cor. to secs. 26, 27, 34, and 35, marked-

$$
\text { T. } 6 \text { N., S. } 26 \text {, on N. E.; }
$$

R. 34 E., S. 35, on S. E.;
S. 34, on S. W., and
S. 27, on N. W. faces, with 1 notch on S. and 2 notches on E. edges; dug pits, $18 \times 18 \times 12$ ins., in each sec., $5 \frac{3}{2} \mathrm{ft}$. dist., and raised a mound of earth, 2 ft . high, $4 \frac{1}{2} \mathrm{ft}$. base, alongside.
Land, level.
Soil, alluvial bottom; 1st rate.
No timber.

As a portion of the line bet. secs. 26 and 35 bas been run N. $89^{\circ} 58^{\prime}$ W. \dagger from the cor. to secs. $25,26,35$, and 36 , I run
S. $89^{\circ} 59^{\prime}$ E. \dagger on a true line bet. secs. 26 and 35.

Va. $18^{\circ} 34^{\prime}$ E.

Over level bottom.

Deposited a marked stone, 12 ins. in the ground, for $\frac{4}{4}$ sec. cor. $;$ dug pits, $18 \times 18 \times 12 \mathrm{ins} ., \mathrm{E}$. and W. of cor., $5 \frac{\mathrm{t}}{\mathrm{t}} \mathrm{ft}$. dist., and raised a mound of earth, $1 \frac{1}{2} \mathrm{ft}$. high, $3 \frac{1}{2} \mathrm{ft}$. base, over it. In E. pit drove a stake, 2 ft . long, 2 ins. square, 12 ins. in the ground, marked $\frac{1}{4} \mathrm{~S}$. on N. face.
Left bank of Yellowstone River. Set a sand stone, $20 \times 10 \times 6$ ins., 15 ins. in the ground, for meauder cor. to fractional sees. 26 and 35 , marked M. C. on E. face, and raised a mound of stone, $1 \frac{1}{2} \mathrm{ft}$. high, 2 ft . base, alongside. Pit impracticable.
In order to get the distance to meander corner across the river, which bears N. 89° E., I run a base N. 1° W. 3.00 chs. to a point whence meander cor. on island bears S. 66° E., which gives for distance, tan. $65^{\circ} \times$ base, or $2.145 \times 3=6.43$ chs.
The length of the line bet. secs. 26 and 35 is as follows:

Laud, level.
Soil, alluvial bottom; 1st rate.
Timber, cottonwood; 3.50 chs. on island.

[^31]
Subdivisions T. 6 N., R. $3 \pm$ E.--Continued.

Chains.	I now return to the cor. to secs. 26,27, 34 and 35 , and run North, bet. sece. 26 and 27. Va. $18^{\circ} 34^{\prime} \mathrm{E}$.
	Over gently rolling ground.
26.30	Telegraph line, course N. E.
40.00	Set a post, 3 ft. long, 3 ins. square, with marked stone, 12 ins. in the ground, for $\frac{1}{6}$ sec. cor., marked $\frac{1}{}$ S. on W. face; dug pits, $18 \times 18 \times$ 12 ins., N. and S. of post, $5 \frac{1}{2} \mathrm{ft}$. dist., and raised a monnd of earth, $1 \frac{1}{2} \mathrm{ft}$. high, $3 \frac{1}{4} \mathrm{ft}$. base, around post.
49. 50	Spring branch, 1 lk . wide, course S. 80° E. From this point a spring of pure cold water, about 2 ft . diam., bears N. 70° W., 2.36 chs. dist.
$\begin{aligned} & 57.40 \\ & 80.00 \end{aligned}$	Road to Miles City, course N. E.
	Set a post, 4 ft . long, 4 ins. square, with marked stone, 12 ins . in the ground, for cor. to secs. $22,23,26$, and 27 , marked- T. 6 N., S. 23, on N. E. ; R. 34 E., S. 26, on S. E.; S. 27, on S. W., and S. 22, on N. W. faces, with 2 notchee on S. and E. edges; dug pite, $18 \times 18 \times 12 \mathrm{ins}$., in each sec., $5 \frac{1}{2} \mathrm{ft}$. dist., and raised a mound of eartb, 2 ft . high, $4 \frac{1}{4} \mathrm{ft}$. base, around post. Land, gently rolling. Soil, sandy; 2d rate. No timber.
	S. $89^{\circ} 59^{\prime}$ E., on a random line, bet. secs. 23 and $2(4)$ $\text { Vá. } 18^{\circ} 34^{\prime} \mathrm{E} \text {. }$
40.00 80.00	Set temporary $\frac{1}{4}$ sec. cor. Intersect N. and S. line 7 lks . N. of cor. to secs. 23, 24, 25, and 26. Theuce I run N. $89^{\circ} 56^{\prime}$ W. on true line bet. secs. 23 and 26 , with same va. Over rolling ground.
1.60	Road to Miles City, course S. 50° E.
40.00	Set a sandstone, $14 \times 10 \times 6$ ins., 9 ius. in the ground, for $\frac{1}{4}$ see. cor., marked \ddagger on N. side; dug pits, $18 \times 18 \times 12$ ins., E. and W. of stone, $5 \frac{1}{2} \mathrm{ft}$. dist., and raisod a mound of earth, $1 \frac{1}{2} \mathrm{ft}$. high, $3 \frac{1}{2} \mathrm{ft}$. base. :alongricle.
54.00	Road to Miles City, course N. E.
80.00	The cor. to secs. 22, 23, 26, and 27. Land, gently rolling. Soil, sandy; 2d rate. No timber.

At $10 \mathrm{a} . \mathrm{m}$. diurnal change has rednced the va. 2^{\prime}.
North, bet. secs. 22 and 23.
Va. $18^{\circ} 32^{\prime}$ E.
Over rolling ground.
40.00 Deposited a marked stoue, 12 ins. in the gromnd, for $\frac{1}{4}$ sec. cor.; dug pits, $18 \times 18 \times 12$ ins., N. and S. of cor., $5 \frac{1}{8} \mathrm{ft}$ dist., and raised a mound of earth, $1 \frac{1}{2} \mathrm{ft}$. high, $3 \frac{1}{2} \mathrm{ft}$. base, ovor it. In N. pit drove stako, 2 ft . long, 2 ins. square, 12 ins. in the ground, marked $\frac{1}{5}$. on W. face. Thence ascond to
56.00 Top of table-land, about 40 ft abovo $\frac{1}{1}$ sec. cor.
63.00 Old military road, course S. E.
80.00 Sot a sandstone, $20 \times 14 \times 3$ ins., 15 ins. in the gromed, for cor. to secs. 14 ,

15, 22, and 23, marked with 3 notches on S . and 2 notches on E. udges;
dug pits, $18 \times 18 \times 12$ ins., in each soc., $5 \frac{1}{2} \mathrm{ft}$. dist., and raised a monnd of
earth, 2 ft . high, $4 \frac{1}{3} \mathrm{ft}$. base, alongside.
Land, rolling and table.
Soil, sandy; 2d rate.
No timber.

Subdivisions T. 6 N., R. 34 E.-Coutinued.

Chains.	S. $89^{\circ} 59^{\prime}$ E. on a random line bet. seos. 14 and 23. Va. $18^{\circ} 32^{\prime}$ E.
40.00	Set-temporary-4sec. cor.
79.84	Intersect N . and S . line 14 lks . N. of cor. to secs. 13, 14, 23, and 24. Thence I run
	N. $89^{\circ} 53^{\prime}$ W. on a true line bet. seos. 14 and 23 , with same va.
10.00	Alkali Creek, dry, course S. E., ascend about 30 ft . to
18.80	Top of table land
39.92	Set a sandstone, $18 \times 12 \times 4$ ins., 12 ins. in the ground, for $\frac{1}{4}$ sec. cor., marked $\frac{1}{4}$ on N . face, and raised a mound of stone, $1 \frac{1}{2} \mathrm{ft}$. high, 2 ft . base, along-
70.50	side. Pits impracticable.
79.84	Old military road, course S.
	The cor. to secs. $14,15,22$, and 23.
	Land, table, Soil, sandy ; 2d and 3d rate.
	August 9, 1889.
	At 8 a. m., Aug. 10, the line between secs. 22 and 23 has a magnetic bearing of S. $18^{\circ} 32^{\prime} \mathrm{E}$. North, bet. secs. 14 and 15. Va. $18^{\circ} 32^{\prime} \mathrm{E}$.
11.00	Enter pine timber and ascend to
22.00	Top of small hill, about 30 ft . high and nearly conical in shape. Descend to
31.00	Foot of hill, and leave timber.
33.00	Old military road, four wagou tracke, course N . W.
40.00	Set a eandstone, $15 \times 15 \times 3$ ine., 10 ins. in the gronnd, for $\frac{1}{4}$ sec. cor., marked \ddagger onW. face; dug pite, $18 \times 18 \times 12$ ins., N. and \mathcal{S}. of stone, $5 \frac{1}{2} \mathrm{ft}$. dist., and raised a monnd of earth, $1 \frac{1}{2} \mathrm{ft}$. higl, $3 \frac{1}{2} \mathrm{ft}$. base, alongeide.
41.80	Commence ascending.
43.90	Top of table-land, about 50 ft . above last $\frac{1}{4} \mathrm{sec}$. cor. Thence over nearly level land to
80.00	Set a post, 4 ft . long, 4 ins. square, with marked stone, 12 ing. in the ground, for cor. to secs. 10, 11, 14, and 15, marked- T. 6 N., S. 11, on N. E.; R. 34 E., S. 14, on S. E.; S. 15, on S. W., and S. 10, on N. W. faces, with 4 notches on S. and 2 notches on E. edges; dug pits, $18 \times 18 \times 12$ ins., in each eec., $5 \frac{1}{2} \mathrm{ft}$. diet., and raised a mound of earth, 2 ft . high, $4 \frac{1}{2} \mathrm{ft}$. base, around post. Land, rolling and table. Soil, sandy and gravelly; 3d rate. Timber, pine ; 20.00 chs.
	At $10.30 \mathrm{a} . \mathrm{m}$. the needle has returned to its mean place. S. $89^{\circ} 59^{\prime}$ E. on a raudom line bet. sece. 11 and 14. Va. $18^{\circ} 30^{\prime} \mathrm{E}$.
40.00	Set temporary $\frac{1}{4} \mathrm{sec}$. cor.
80.00	Intersect N. and S. line 23 lks . N. of cor. to secs. 11, 12, 13, and 14. Theuce I run
	N. $89{ }^{\circ} 49^{\prime}$ W., on a true line, bet. secs. 11 and 14, with same va.
11.86	Edge of luluff about 75 ft . high, course N. and S.
14.00	Foot of bluff, leave scattering pine timber, descend gradually.
40.00	Deposited a marked stone, 12 ins. in the ground, for $\frac{1}{4}$ sec. cor.; dug pits, $18 \times 18 \times 12$ ins., E. and W. of cor., $5 \frac{1}{2} \mathrm{ft}$. dist., and raised a mound of earth, $1 \frac{1}{2} \mathrm{ft}$. high, $3 \frac{1}{4} \mathrm{ft}$. base, over it. In E. pit drove stake, 2 ft . long, 2 ins. equare, 12 ins. in the ground, marked $\frac{1}{4} \overline{\mathrm{~S}}$. on N. face.
80.00	The cor. to secs. 10, 11, 14, and 15. Land, table and broken. Soil, gravelly; 3d rate. Timber, scattering pine. August 10, 1889.

Chains.

At cor. to secs. 10, 11, 14, and 15, by back-sight on line bet. secs. 14 ana 15,] find its mag. bearing to be S. $18^{\circ} 35^{\prime}$ E., at 8 a. m., August 12.
North, bet. secs. 10 and 11.
Va. $18^{\circ} 35^{\prime} \mathrm{E}$.
26.00
34.00
40.00
42.00
43.25 Top of ridge, about 40 ft . high, and about 500 ft . above last eec. cor. Descend abrnptly.
44. 00 Foot, about 30 ft . below top, and aecend over broken ground.
51.10

Enter heavy pine timber.
80.00

A point about 900 ft . above last sec. cor. Set a sandstone, $24 \times 6 \times 4 \mathrm{ins}$., 18 ins. in the ground, for cor. to secs. $2,3,10$, and 11, marked with 5 notches on S . and 2 notches on E. edges, from which

A pine, 15 ins. diam., bears N. $67 \circ$ E., 30 lks. dist., marked T. 6 N., R. 34 E., S. 2, B. T.

A pine, 27 ins. diam., bears S. 23° E., 67 lks. dist., marked T. 6 N., R. 34 E., S. 11, B. T.

A pine, 12 ins. diam., bears S. 47° W., 110 lkg . dist., marked T. $6 \mathrm{~N} .$, R. 34 E., S. 10, B. 'T'.

A pine, 16 ins. diam., bears N. 50° W., 82 lks. dist., marked T. 6 N., R. 34 E., S. 3, B. T.

Land, mountainous and broken.
Soil, rocky ; 4th rate.
Timber, pine; 28.90 chs .
54.00 chs. of line run over monntaiuous land.

At $9.30 \mathrm{a} . \mathrm{m}$. August 12, dinrnal change has diminished the variation \mathfrak{Z}^{\prime}. S. $89^{\circ} 59^{\prime}$ E. on a random line bet. secs. 2 and 11.

Va. $18^{\circ} 33^{\prime} \mathrm{E}$.
40.00

Set temporary $\frac{1}{4}$ sec. cor.
Intersected N. and S. line at cor. to eece. 1, 2, 11, and 12. Thence I run N. $89^{\circ} 59^{\prime} \mathrm{W}$. on a true line bet. sece. 2 and 11 , with same va.

Over rolling ground.
Foot of spur.
9.50
20.00
40.00
50.00
55.65
58.90
61.70
68.00
80.00
40.00
80.10

Stream, 4 1ks. wide, course S. E., and enter timber.
Set a sandstone, $16 \times 8 \times 4$ ins., 11 ins. in the ground, for $\frac{1}{4} \mathrm{sec}$. cor., marked \ddagger on N. face, from which

A pine, 18 ins. diam., bears N. 17° E., 48 lks . dist., marked $\frac{1}{4}$ S., B. T.
A pine, 14 ins. diam., bears N. 40 W., 63 lks. dist., marked $\frac{1}{4}$ S., B. T. Ascend abruptly.
Top of ascent.
Descend into deep ravine.
Bottom of ravine about 100 ft . deep, and ascend.
Acroes ravine, thence over roagh, broken ground through timber to
The cor. to secs. 2, 3, 10, and 11.
Land, mountainoue and broken.
Soil, rocky; 4th rate.
Timber, pine; $60.00 \mathrm{ch} \theta$.
72.08 chs. of line run over mountainous land.

Diurnal change has diminished the variation 3', at 11 a. m., Aug. 12.
North on a random line bet. secs. 2 and 3.
Va. $18^{\circ} 30^{\prime} \mathrm{E}$.
Set temporary $\frac{1}{2}$ sec. cor.
Intersect N. boundary of township 25 lks . W. of cor. to secs. 2, 3, 34, and
35 , which ie
A post, 4 ins. square, marked
T. 7 N., S. 35, on N.E.;
R. 34 E., S. 2, on S. E.;
T. 6 N., S. 3, on S. W., and

Sub̈divisions T. 6 N., R. 34 E.-Continued.

Chains.	S. 34, on N. W. faces, with 2 notches on E. and 4 notches on W. edges, and mound of stone, $1 \frac{1}{4} \mathrm{ft}$. high, 2 ft . base, around post. Thence I run S. $0^{\circ} 11^{\prime}$ W. on a true line bet. secs. 2 and 3, with same va. Over open gronnd.
4.80	Top of spar leave open ground and enter heavy pine timber, descend abruptly.
40.10	A pine, 16 ins. diam., which I mark $\frac{1}{4}$ S. on W. face, for $\frac{1}{4}$ sec. cor., from which A pine, 14 ins. diam., bears S. 40° E., 78 lks . dist., marked $\frac{1}{4}$ S., B. T. A pine, 20 ins. diam., bears N. $70^{\circ} \mathrm{W} ., 24 \mathrm{kks}$ dist., marked $\frac{1}{4}$ S., B. T.
80.10	The cor. to secs.2,3,10, and 11. This cor. is about 850 ft . below the top of the spur. Land, monntainons and broken. Soil, rocky; 4th rate. Timber, pine; 75.30 chs. Whole line rans over mountainous land. August 12, 1889.
	From the cor. to secs. 3, 4, 33, and 34 on the S. bonndary, of the township, which is a sandstone, $7 \times 8 \times 3$ ins., above ground, with 3 notches on \mathbf{E}. and W. edges, and mound of stone, $1 \frac{1}{2} \mathrm{ft}$. high, 2 ft . base, alongside, I take a back-sight on S. bonndary sec. 34 and lay off a right angle to the north, which gives the true meridian, and its magnetic bearing at 1 p.m. Angnst 13, is N. $18^{\circ} 23^{\prime} \mathrm{W}$.; thence I ran North, bet. secs. 33 and 34. Va. $18^{\circ} 23^{\prime}$ E. Over bottom land.
40.00	Set a post, 3 ft . long, 3 ins. sqnare, with marked stone, 12 ins. in the gronnd, for $\frac{1}{1}$ sec. cor., marked $\frac{1}{2}$ S. on W. face; dug pits, $18 \times 18 \times 12$ high, $3 \frac{1}{3} \mathrm{ft}$. base, aronnd post.
45.00	Stream, 8 liks. wide, conrse S. 88° E., joins another stream about 20 chs. E. of line. Entêr meadow.
65.00	Leave meadow.
76.00	Stream, 81 lks . wide, conrse S. $34^{\circ} \mathrm{E}$. , joins first stream.
80.00	Set a post, 4 ft . long, 4 ins. sqnare, with marked stone, 12 ins. in the gronnd, for cor. to secs 27, 28, 33, and 34, marked- T. 6 N., S. 27, on N. E.; R. 34 E., S. 34 , on S. E.; S. 33, on S. W., and S. 28, on N. W. faces, with 1 notch on S. and 3 notches on E. edges, dug pits, $18 \times 18 \times 12$ ins., in each sec., $5 \frac{1}{2}$ ft. dist., and raised a mound of earth, 2 ft . high, $4 \frac{1}{2} \mathrm{ft}$. base, around post. Land level. Soil, rich, black loam; 1st rate. No timber.
40.00	East on a random line bet. secs. 27 and 34. Va. $18^{\circ} 23^{\prime}$ E. Set temporary $\frac{1}{4}$ sec. cor.
79.87	Intersect N. and S. line 5 lks . N. of cor. to secs. 26, 27, 34, and 35. Thence I ran N. $89^{\circ} 58^{\prime}$ W. on a true line bet. secs. 27 and 34, with same va. Over bottom land.
39.93	Deposited a marked stone, 12 ins. in the ground, for $\frac{1}{6}$ sec. cor.; dug pits, $18 \times 18 \times 12$ ins., E. and W. of cor., and raised mound of earth, $1 \frac{1}{2} \mathrm{ft}$. high, $3 \frac{1}{2} \mathrm{ft}$. base, over it. In E. pit drove stake, 2 ft . long, 2 ins. $\operatorname{square,~}$ 12 ins. in the ground, marked $\frac{1}{2}$ S. on N. face.
79.87	The cor. to secs. 27, 28, 33 , and 34. Land, level. Soil, rich, black loam; 1st rate. No timber.

Subdivisions T. 6 N., R. 34 E.-Dontinued.

```
Chaine. Local attraction has increased va, 2', at 2 p. m., Aug. 13.
    North, bet. secs. 27 and 28.
        Va. \(18^{\circ} 25^{\prime}\) E.
        Over bottom land.
    2.00
    Creek, 7 lks . wide, course S. W.
    3.00 Same creek, course S. E.
    20.00 Telegraph line, course E.
    26.00 Road to Miles City, course N. E.
    40.00 Set a sandstone, \(17 \times 10 \times 3\) ins., 11 ins. in the ground, for \(\frac{1}{2}\) sec. cor.,
        marked \(\frac{1}{4}\) on W. side; dug pite, \(18 \times 18 \times 12\) ins., N . and S. of stone, \(5 \frac{1}{2} \mathrm{ft}\).
        dist., and raised a mound of earth, \(1 \frac{1}{2} \mathrm{ft}\). bigh, \(3 \frac{\mathrm{ft}}{} \mathrm{ft}\). base, a longside.
    80.00 Set a sandstone, \(22 \times 6 \times 4\) ins., 15 ins. in the ground, for cor. to secs. 21,
        22, 27, and 28, marked with 2 notches on 8 . and 3 notches on E. edges;
        dug pits, \(18 \times 18 \times 12\) ins., in each sec., \(5 \frac{1}{2} \mathrm{ft}\). dist., and raised a mound of
        earth, 2 ft . high, \(4 \frac{1}{2} \mathrm{ft}\). base, alongeide.
    Land, lovel.
    Soil, rich, hlack loam; 1st rate.
    No timber.
    East on a random line bet. secs. 22 and 27 .
        Va. \(18^{\prime} 25^{\prime} \mathrm{E}\).
    Set temporary \(\frac{1}{4}\) sec. cor.
    79.80
    Intersect N. and S. line, 3 lks . N. of cor. to secs. 22, 23, 26, and 27.
    Theuce I run
    N. \(89^{\circ} 59^{\prime} \mathrm{W}\). on a true line bet. sece. 22 and 27 , with same va.
    Over gently rolling ground.
    Small coulé, abont 2 ft . deep, conrse S. E.
    Thence over level land.
39.90
Enter ewamp.
    Set a sandstone, \(20 \times 14 \times 3\) ins., 15 ine. in the ground, for \(\frac{1}{4}\) sec. cor.,
        marked \(\frac{1}{2}\) on W. face ; dug pits, \(18 \times 18 \times 12\) ins., N. and S. of stone \(5 \frac{1}{2} \mathrm{ft}\).
        dist., and raised a mound of earth, \(1 \frac{1}{2} \mathrm{ft}\). high, \(3 \frac{1}{2} \mathrm{ft}\). baso alongside.
62.00
    Leave swamp, thence over gently rolling ground.
    Old military road, course N. W.
    Deposited a marked stone, 12 ins. in the ground, for cor. to secs. 15,16 ,
        21 , and 22 ; dug pits, \(18 \times 18 \times 12\) ins., in each sec., \(5 \frac{4}{\mathrm{ft}}\). dist., and raised
        a mound of earth, 2 ft . high, \(4 \frac{1}{2 f t}\). base, over it. In S. E. pit drove
        stake, 2 ft . Iong, 2 ins. square, 12 ins. in the gronud, marked-
            T. 6 N., S. 15, on N.E.;
            R. 34 E., S. 22, on S. E.;
            S. 21, on S. W., and
            S. 16, on N. W. faces, with 3 notches on S. and E. edges.
Land, gently rolling and swamp.
Soil, sandy and wet loam ; \(2 d\) rate.
No timber.
        Note.-Swamp can be drained into Yellowstone River.

East on a randon line bet. secs. 15 and 22.

Subdivisions T. 6 N., R. \(3 \pm\) E.—Continued.
\begin{tabular}{|c|c|}
\hline Chains. & N. \(89^{\circ} 54^{\prime}\) W. on a true line bet. secs. 15 and 22, with same va. Over table-land. \\
\hline 11.26 & Edge of table-land, descend about 40 ft . \\
\hline 18.00 & Foot oỉ descent, thenco over gently rolliug ground. \\
\hline 39.83 & Set a sandstone, \(16 \times 14 \times 5\) ins., 11 ins. in the ground, for \(\frac{1}{6}\) sec. cor., marked \(\frac{1}{4}\) on N. face, and raised a mound of stone, \(\frac{1}{2} \mathrm{ft}\). base, 2 ft . high, alongside. Pits impracticable. \\
\hline \multirow[t]{4}{*}{79.66} & \begin{tabular}{l}
The cor. to secs. 15, 16,21, and 22. \\
Land, rolling and table. \\
Soil, sandy; '2d rate. \\
No timber.
\end{tabular} \\
\hline & \begin{tabular}{l}
* Note.-In mý camp, N. E. \(\frac{1}{3}\) sec. 16 , which is S. \(50^{\circ}\) W., 20 els. from cor. to secs. 9, 10, 15, aud 16, I observe Polaris at \(9^{\mathrm{h}} 52^{\mathrm{m}}\) p. m., the local mean time for castern elongation, compnted from table on page 68 of printed instrnctions, and mark the point nnder instrument. . I duive a picket 2 chs. N. on the true meridian, determined by laying off the Azimnth of Polaris, \(1^{\circ} 51^{\prime}\) to the west. \\
August 13, 1889.
\end{tabular} \\
\hline & * Note.-At 6.30 a. m., Augnst 14, I take the magnetic bearing of the line established last night, and find it to be N. \(18^{\circ} 37^{\prime}\) W., which, corrected by the table on page 55 of printed instructions, gives for the mean declination \(18^{\circ} 32^{\prime}\) east. \\
\hline & \begin{tabular}{l}
At corner to secs. 15, 16, 21, and 22 I find the magnetic bearing of line het. secs. 21 and 22 to be S. \(18^{\circ} 34^{\prime}\) E. at 7 a. m., Angust 14. \\
North, bet. secs. 15 and 16. \\
Va. \(18^{\circ} 34^{\prime}\) E. \\
Over gently rolling ground.
\end{tabular} \\
\hline 40.00 & Set a sandstone, \(16 \times 12 \times 3\) ins., 11 ins. in the ground, for \(\frac{1}{4}\) sec. cor., marked \(\frac{1}{4}\) on W. face; dug pits, \(18 \times 18 \times 12\) ins., N. and S. of stone, \(5 \frac{1}{3} \mathrm{ft}\) dist., and raised a mound of earth, \(1 \frac{1}{2} \mathrm{ft}\). high, \(3 \frac{1}{2} \mathrm{ft}\). baise, alongside. Wells's house bears N. \(45^{\circ}\) W., 6.00 chs. dist. \\
\hline 50.00 & Easterly eud of pond bears W. about 10 chs. dist. \\
\hline \multirow[t]{2}{*}{80.00} & \begin{tabular}{l}
Set a sandstone, \(20 \times 6 \times 5\) ins., 15 ins. in the ground, for cor. to secs. 9,10 , 15, and 16, marked with 4 notches on S. and 3 notches on E. edges ; dug pits, \(18 \times 18 \times 12 \mathrm{ins}\)., in each sec., \(5 \frac{1}{3} \mathrm{ft}\). dist., and raised a mound of earth, 2 ft . high, \(4 \frac{1}{3} \mathrm{ft}\). base, alongside. \\
Land, rolling. \\
Soil, sandy ; 2d rate. \\
No timber.
\end{tabular} \\
\hline & East on a random line het. secs. 10 and 15.
\[
\text { Va. } 18^{\circ} 34^{\prime} \mathrm{E} \text {. }
\] \\
\hline 40.00 & Set temporary \(\ddagger\) sec. cor. \\
\hline 79.70 & \begin{tabular}{l}
Intersect N. and S. line at 3 lks . N. of cor. to sece. 10, 11, 14, and 15. Thence I run \\
N. \(89^{\circ} 59^{\prime} \mathrm{W}\). on a true line bet. eecs. 10 and 15 , with same va. Over nearly level table-land.
\end{tabular} \\
\hline 23. 34 & Edge of table-land, descend about 50 ft . \\
\hline 28.60 & Enter rolling ground. \\
\hline 39.85 & Set a sandstone, \(20 \times 10 \times 16,15 \mathrm{ins}\). in the gronnd, for \(\frac{1}{4}\) sec. cor., marked \(\frac{1}{4}\) on N. face; dug pits, \(18 \times 18 \times 12\) ins., E. and W. of stone, \(5 \frac{1}{2}\) ft. dist., and raised a mound of earth \(1 \frac{1}{3} \mathrm{ft}\). high, \(3 \frac{1}{2} \mathrm{ft}\). base, alongside. \\
\hline 79.70 & The cor, to sece. \(9,10,15\), and 16. \\
\hline & \begin{tabular}{l}
Land, rolling and table. \\
Soil, sandy and gravelly; 2d and \(3 d\) rate.
\end{tabular} \\
\hline
\end{tabular}
* The observations here recorded are required when the depaty uses magnetic apparatus ouly. If solars are used in subdividing the observation at this place may be omitted.

Chains
- Over rolling ground, ascending.
5.40 Enter timber, thence over broken ground.
20.90 Ravine about 20 ft . deep, course S. W.
27. 00 Foot of steep ascent.
40.00 Set a samdstone, \(24 \times 15 \times 4\) ins., 18 ins. in the ground, for \(\frac{7}{4}\) sec. cor., marked \(\frac{1}{4}\) on \(W\). face; from which

A pine, 12 ins. diam., bears S. \(75^{\circ}\) E., 90 lks . dist., marked \(\frac{7}{4}\) S., B. T.
A pine, 11 ins. diam., bears N. \(55^{\circ}\) W.', 30 lks. dist., marked \(\frac{1}{4}\) S., B. T.

East on a random line bet. secs. 3 and 10.
Va. \(18^{\circ} 34^{\prime}\) E.
79.80
12.77
39.90
62.18
66. 60
79.80

North, bet. secs. 9 and 10. Va. \(18^{\circ} 34^{\prime} \mathrm{E}\). point about 100 ft . above last sec. cor., set a post, 4 ft . long, 4 ins. square, with marked stone, 24 ins. in the ground, for cor. to secs. 3,4 , 9 , and 10 , marked-
T. 6 N., S. 3, on N. E. ;
R. 34 E., S. 10 , on S. E. ;
S. 9, on S. W., and
S. 4, on N. W. faces, with 5 notches on S. and 3 notches on E. edges, from which
A pine, 17 ins. diam., bears N. \(23^{\circ}\) E., 78 lks. dist., marked '1'. 6 N., R. 34 E., S. 3, B. T.;

A pine, 14 ins. diam., bears S. \(47^{\circ}\) E., 43 lks. dist., marked T. 6 N., R. 34 E., S. 10, B. T.;

A pine, 20 ins. diam., bears S. \(10^{\circ} \mathrm{W} ., 16 \mathrm{lks}\). dist., marked T. 6 N., R. 34 E., S. 9, B. T.;

A pine, 10 ins. diam., bears N. \(73^{\circ}\) W., 82 lks. dist., marked T. 6 N., R. 34 E., S. 4, B. T.

Land, rolling and broken.
Soil, sandy and rocky; 3d and 4th rate.
Timber, pine ; 74.60 chs.

Set temporary \(\ddagger\) sec. cor.
A point about 700 ft . above last sec. cor. and intersect N . and S . line 30 1 ks . N. of cor. to secs. 2, 3, 10, and 11.
Thence I run
N. \(89^{\circ} 47^{\prime}\) W. on a true line bet. secs. 3 and 10 , with same va.

Descend steep west slope of spar of mountain over broken groand and through heavy pine timber.
Pine, 30 ins. diam.
A pine, 28 ins. diam., which I mark \(\frac{1}{4}\) S. on N. face for sec. cor.; from which

A pine, 16 ins. diam., bears \(S .42^{\circ}\) E., 30 lks. dist., marked \(\frac{1}{4} \mathrm{~S}\)., B. T.
A pine, 40 ins. diam., bears N. \(23^{\circ}\) E., 78 lks. dist., marked \(\frac{1}{3} \mathrm{~S} ., \mathrm{B} . \mathrm{T}\).
Pine, 20 ins. diam., a line tree marked with 2 notches on E. and W. sides. Pine, 24 ins. diam., a line tree marked with 2 notches on \(\mathbf{E}\). and W. sides. The cor. to secs. 3, 4, 9, and 10.
Land, mountainous.
Soil, rocky ; 4th rate.
Timber, pine ; 79.80 chs .
Whole line runs over monntainous land.
At 10.30 a . m. August 14, the va. has been diminished by diurnal change, 4.' North on a random line bet. secs. 3 and 4.

Va. \(18^{\circ} 30^{\prime}\) E.
Set temporary \(\frac{1}{4}\) sec. cor.
Intersect N . bonndary of townsbip, 23 lks . W. of cor., to secs. 3, 4, 33, and 34 , which is a sandstoue, \(5 \times 8 \times 6\) ins., above ground, marked with 3 notches ou E. and W. edges, with mound of stone, \(1 \frac{1}{2} \mathrm{ft}\). high, 2 ft . base, alougside.
Thence I run
S. \(0^{\circ} 10^{\prime} \mathrm{W}\). on a true line bet. secs. 3 and 4, with same va.

Alongside of west slope of spur of mountain, over broken ground.
Enter timber.


\footnotetext{
* See note on page 129.
}
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{Chains} & \begin{tabular}{l}
S. 29, on N. W. faces, with 1 notch on S. and 4 notches on E. edges; dug pits, \(18 \times 18 \times 12\) ins., in each eec., \(5 \frac{1}{2}\) ft. dist., and raised a mound of earth, 2 ft . high, \(4 \frac{1}{2} \mathrm{ft}\). base, around post.' \\
Land, level. \\
Soil, rich, black loam; 1st rate. \\
No timber.
\end{tabular} \\
\hline & N. \(89^{\circ} 59^{\prime}\) E. on a random line bet. secs. 28 and 33. Va. \(18^{\circ} 35^{\prime}\) E. \\
\hline 40. 00 & \begin{tabular}{l}
Set temporary d sec. cor. \\
Intersect N aod S line 3 lks, N of cor to oecs 27,2
\end{tabular} \\
\hline \multirow{2}{*}{79: 50} & \begin{tabular}{l}
Thence I run \\
Weat on a true line bet. secs. 28 and 33, with same va.
\end{tabular} \\
\hline & Over level lottom. \\
\hline 39. 75 & Set a sandstone, \(20 \times 8 \times 5\) ios., 15 ins. in the ground, for \(\frac{1}{5}\) sec. cor., marked \(\frac{1}{4}\) on N. face; dug pits, \(18 \times 18 \times 12\) ins., E. and W. of stone, \(5 \frac{1}{2}\) ft. dist., and raised a mound of earth, \(1 \frac{1}{\frac{1}{f}} \mathrm{ft}\). high, \(3 \frac{1}{\mathrm{t}} \mathrm{ft}\). base, alongside. \\
\hline 43.50 & Creek, 8 lks. wide, course S. E. \\
\hline \multirow[t]{4}{*}{79.50} & The cor. to secs. 28. 29, 32, and 33. \\
\hline & Land, level. \\
\hline & \begin{tabular}{l}
Soil, ricl, black loam. \\
No timber.
\end{tabular} \\
\hline & \begin{tabular}{l}
I now return to the \(\frac{1}{4}\) sec. cor. between secs. 28 and 33 and run south in sec. 33 on a trie line, \\
Va. \(18^{\circ} 35^{\prime}\) E. \\
Creek, 8 lks. wide, course S . E.
\end{tabular} \\
\hline \multirow[t]{4}{*}{24. 200} & To shore of the small lake previonsly mentioned, bank, 8 ft . high, where I set a limestone, \(19 \times 12 \times 6\) ins., 15 ins . in the ground, for meander cor. on uorth shore of lake, marked- \\
\hline & \begin{tabular}{l}
M. C. on s. face; dug a pit, 3 ft . \(8 q\) nare, 1 ft . deep, 8 lks . N. of stone, \\
Land, level. \\
Soil, rich black loam. \\
No timber.
\end{tabular} \\
\hline & Note.--The meanders of this lake follow the subdivisions. \\
\hline & \begin{tabular}{l}
At \(10 \mathrm{a} . \mathrm{m}\). , August 15, va. has been diminished \(5^{\prime}\) by dinrnal change. North, bet. secs. 28 and 29.
\[
\text { Va. } 18^{\circ} 30^{\prime} \mathrm{E} .
\] \\
Over level bottom.
\end{tabular} \\
\hline 16. 30 & Ascend about 10 ft , and thence over rolling ground. \\
\hline 40.00 & Sot a sandstone, \(18 \times 16 \times 3\) ins., 12 ius. in the ground, for \(\frac{1}{2}\) sec. cor., marked \(\frac{1}{}\) on W. face; dug pits, \(18 \times 18 \times 12\) ine., N . and S. of stone, \(5 \frac{1}{4} \mathrm{ft}\). dist., and raised a mound of earth, 17 ft . high, \\
\hline 44. 00 & Telegraph line, course E. \\
\hline 48.10 & Roar to Milos City, course E. \\
\hline 53.50 & Creek, 4 lks . wide, course S. E. Its source, a epring of clear water, about 6 ft. diam., bears N. \(80^{\circ}\) W., 3.25 chs dist \\
\hline 80.00 & \begin{tabular}{l}
Set a post, 4 ft . long, 4 ins, square, with marked stone, 12 ins. in the ground, for cor. to 8ocs. 20, 21, 28, and 29, marked- \\
T. 6 N., S 21, on N. E.; \\
R. 34 E., S. 28, ou S. E.; \\
S. 29, on S. W., and \\
S. 20, on N. W. faces, with two notches on S. and 4 noteles on E. edges; dug pits, \(18 \times 18 \times 12\) ins., in each sec., \(5 \frac{1}{7} \mathrm{ft}\), dist., and \\
 \\
Land, level and rolling. \\
Soil, black loam and sandy; 1st and \(2 d\) rate. \\
No timber.
\end{tabular} \\
\hline
\end{tabular}

\section*{Subdivisions T. 6 N., R. 34 E.—Coutinued.}

Chains. N. \(89^{\circ} 59^{\prime}\) E. ou a raudom lino bet. secs. 21 and 23. Va. \(18^{\circ} 30^{\prime}\) E.
Set temporary \(\frac{1}{4}\) sec. cor.
Intersect N. and S. line 2 lks. N. of cor. to socs. 21, 次, 27, and 28.
Thence I run
West on a true ling bet. secs. 21 and 28 , with same va.
Over level bottom land.
Set a sandstone, \(20 \times 20 \times 4\) ins., 15 ins., in the ground, for \(\frac{1}{4}\) sec. cor., marked \(\frac{1}{4}\) on N. face; dug pits, \(18 \times 18 \times 12\) ins., E. and W. of stone, \(5 \frac{1}{8}\) ft . dist., and raised a mound of earth, \(1 \frac{1}{2} \mathrm{ft}\). high, \(3 \frac{1}{2} \mathrm{ft}\). base, alongside. The cor. to secs. \(20,21,28\), and 29.
Land, rolling and level.
Soil, sandy and black loam; 1st and 2d rate.
No timber.
North, bet. secs. 20 and 21.
Va. \(18^{\circ} 30^{\prime} \mathrm{E}\).
Over rolling ground.
Deposited a marked stone, 12 ins. in the ground, for \(\frac{1}{4}\) sec. cor.; dug pits, \(18 \times 18 \times 12\) ius., N. and S. of cor., \(5 \frac{1}{3} \mathrm{ft}\). dist., and raised a mound of earth, \(1 \frac{1}{2} \mathrm{ft}\). high, \(3 \frac{1}{2} \mathrm{ft}\). base, overit. In N. pit drove stake, 2 ft . long, 2 ins. square, 12 ins. in the ground, marked \(\frac{7}{4} \mathrm{~S}\). on W . face.
80.00 Set a sandstone, \(18 \times 15 \times 3\) ins., 12 ins. in the ground, for cor. to secs. 16, 17, 20, and 21, marked witn 3 notches on S. and 4 notches on E. edges; dug pits, \(18 \times 18 \times 1:\) ius., in each sec., \(5 \frac{1}{3} \mathrm{ft}\). dist., and raised a mound of earth, 2 ft . high, \(4 \frac{1}{3} \mathrm{ft}\). base, alongside.
Land, rolling.
Soil, sandy; ©d rate.
No timber.
N. \(89^{\circ} 59^{\prime}\) E. on a random line between secs. 16 and 21.

Va. \(18^{\circ} 30^{\prime}\) E.
40.00

Set temporary \(\frac{1}{4}\) sec. cor.
79.72

Intersected N. and S. line at cor. to secs. 15, 16, 21, and 22.
Thence I run
S. \(89^{\circ} 59^{\prime} \mathrm{W}\). on true line bet. secs. 16 and 21 , with same va.

Over rolling ground.
3.00

Old military road, course N. W.
39.86
79. 72

Set a post, 3 ft . long, 3 ins. \(8 q u a r e\), with marked stone, 12 ins. in the ground, for \(\frac{1}{4}\) sec. cor., markel \(\frac{1}{4} \mathrm{~S}\). on N. face ; dug pits, \(18 \times 18 \times 12 \mathrm{ins}\).,
E. and W. of post, \(5 \frac{1}{2} \mathrm{ft}\). dist., and raised a mound of earth, \(1 \frac{1}{2} \mathrm{ft}\). high, \(3 \frac{1}{2}\) ft. base, around post.
The cor. to secs. 16, 17, 20, and-21.
Land, rolling.
Soil, sandy; 2d rate.
No timber.
At 3 p. mi., Aug. 15, the va. has been reduced \(4^{\prime}\) by diurnal change.
From the cor. to secs. 16, 17, 20, and 21 I run
S. \(89^{\circ} 59^{\prime}\) W. on a true line bet. secs. 17 and 20 , knowing that it will strike the easterly shore of Lin's Lake in less than 80 chs.

Va. \(18^{\circ} 26^{\prime}\) E.
Over rolling ground, descending.
15.00 Telegraph line, conrse N., soon bends to N. W.
20.00
40.00
43.24

Road to Williamsburg, course N.
Set a sandstone, \(19 \times 11 \times 4\) ins., 14 ins. in the ground, for 4 sec. cor., marked \(\frac{1}{4}\) on N. face; dng pits, \(18 \times 18 \times 12\) ins., E. and W. of stone, \(5 \frac{1}{2}\) ft . dist., and raised a monnd of earith, \(1_{\frac{1}{2}} \mathrm{ft}\). high, \(3 \frac{1}{2} \mathrm{ft}\). basc, alongside.
East bank of Lin's Lake. Set a sandstone, \(30 \times 15 \times 8\) ins., 22 ius. in the ground, for meauder cor, to fractional secs. 17 and 20 , marked M. C. on west side, and raispd a mound of earth, 2 ft . high, \(4 \frac{1}{2} \mathrm{ft}\). base, alongside.
Land, rolling.
Soil, sandy; 2d rate.
No timber.
\begin{tabular}{|c|c|}
\hline Chains. & \begin{tabular}{l}
North, bet. secs. 16 and 17. \\
Va. \(18^{\circ} 26^{\prime}\) E.
\end{tabular} \\
\hline & Over rolling ground. \\
\hline 40.00 & Set a sandstone, \(20 \times 12 \times 4\) ins., 15 ins. in the ground, for \(\frac{1}{4}\) sec. cor., marked \(\frac{1}{d}\) on W. face; dug pits, \(18 \times 18 \times 12\) ins.. N. and S. of stone, \(5 \frac{1}{\frac{1}{3}} \mathrm{ft}\). dist., and raised a mound of earth, \(1 \frac{1}{2} \mathrm{ft}\). high, \(3 \frac{1}{2} \mathrm{ft}\). base, alongside. From cor., Wilkie's house bears N. \(80^{\circ} \mathrm{W}\). \\
\hline 44. 60 & A creek, 4 lks . wide, course S. W. Wilkie's house, bears S. \(65^{\circ} \mathrm{W}\). West erly end of pond, area about 50 acres, bears N. E., about 15 cles. dist. \\
\hline 80.00 & \begin{tabular}{l}
Set a post, 4 ft . long, 4 ins. square, with marked stone, 12 ins. in the ground, for cor. to secs. 8, 9, 16, and 17, marked- \\
T. 6 N., S. 9 , ou N. E. ; \\
R. : 4 E., S. 16 , on S. E. ; \\
S. 17, on S. W., and \\
S. 8, on N. W. faces, with 4 notches on S. and E. edges ; dug pits, \(18 \times 18 \times 12\) ins., in tach sec., \(5 \frac{1}{2} \mathrm{ft}\). dist., and raised a mound of earth, 2 ft . high, \(4 \frac{1}{2} \mathrm{ft}\). base, alongside. \\
Land, rolling. \\
Soil, sandy; 2d rate. \\
No timber.
\end{tabular} \\
\hline & N. \(89^{\circ} 59^{\prime}\) E. on a random line bet. secs. 9 and 16. Va. \(18^{\circ} 26^{\prime}\) E. \\
\hline 40.00 & Sot temporary \(\frac{1}{\text { dec. cor. }}\) \\
\hline 79.90 & \begin{tabular}{l}
Intersect N . and S. line 20 lks . S. of cor. to secs. 9, 10, 15, and 16. \\
Thence I run \\
S. \(89^{\circ} 50^{\prime} \mathrm{W}\). on a true line bet. secs. 9 and 16 , with same va. Over rolling ground.
\end{tabular} \\
\hline 39.95 & Set a post, 3 ft . long, 3 ins. square, with marked stone, 12 ins. iu the ground, for \(\frac{1}{6}\) sec. cor., marked \(\frac{1}{2}\) S. on N. face; dug pits, \(18 \times 18 \times 12\) ins., E. and W. of post, \(5 \frac{1}{\frac{1}{2}} \mathrm{ft}\). dist., and raised a mound of earth, \(1 \frac{1}{2} \mathrm{ft}\). high, \(3 \frac{1}{3} \mathrm{ft}\). base, around post. Northerly side of pond bears S. about 6.00 ehains. \\
\hline \multirow[t]{3}{*}{79.90} & The cor. to secs. \(8,9,16\), and 17 . \\
\hline & \begin{tabular}{l}
Land, rolling. \\
Soil, sandy; 2d rate.
\end{tabular} \\
\hline & No timber. \\
\hline
\end{tabular}

At 4.30 p. m., August 15, the variation has increased \(2^{\prime}\) by diurnal change.
North, bet. secs. 8 and 9 .
Va. \(18^{\circ} 28^{\prime}\) E.
Over rolling ground.
Edge of limestone quarry, about 30 ft . deep, to avoid which I run west on an offset line 1.00 ch ., thence north 2.50 chs., thence east 1.00 ch . to
On line on north side of quarry. Set a limestone, \(30 \times 12 \times 8\) ins., 22 ins. in the ground for witness cor. to \(\frac{1}{4}\) sec. cor., marked W. C. \(\frac{1}{2}\) on W. side, and raised a mound of stone, \(1 \frac{1}{2} \mathrm{ft}\). high, 2 ft . base, alongside. Pitsimpracticable.
Set a limestone, \(24 \times 8 \times 4\) ins., 18 ins. in the ground, for cor. to secs. 4, 5, 8, and 9, marked with 5 notches on S . and 4 notchos on E . edges ; dug pits, \(18 \times 18 \times 12\) ius., in each sec., \(5 \frac{1}{2} \mathrm{ft}\). dist., and raised a mound of earth, 2 ft . high, \(4 \frac{\mathrm{f}}{\mathrm{ft}} \mathrm{f}\). base, alongside.
Land, rolling.
Soil, sandy and light; 2d and 3d rate.
No timber.
August 15, 1889.

At \(7 \mathrm{a} . \mathrm{m}\). ., Angust \(16, \mathrm{I}\) find the last line run bears \(\mathrm{S} .18^{\circ} 35^{\prime} \mathrm{E}\). (magnetio bearing).
N. \(89^{\circ} 59^{\prime} \mathrm{E}\). on a random line bet. sees. 4 and 9.

Va. \(18^{\circ} 35^{\prime} \mathrm{E}\).
79.84

Set temporary \(\frac{1}{4}\) sec. cor.
Interseet \(N\), and \(S\). line 5 lks . S . of cor. to secs. 3, 4, 9, and 10.
Thence I ruu
S. \(899^{\circ} 57^{\prime} \mathrm{W}\). on a true line bet, secs. 4 and 9 , with same va.
\begin{tabular}{|c|c|}
\hline Chains. & Ove \\
\hline 31.74 & Wood road, course N. \(20^{\circ} \mathrm{E}\). Porter's house bears N. \(40^{\circ} \mathrm{E}\). \\
\hline 39.92 & Set a limestone, \(16 \times 12 \times 4\) ins., 11 ine. in the ground, for \(\frac{1}{4}\) sec. cor., marked \(\frac{1}{4}\) on N. side ; dug pits, \(18 \times 1-\times 12\) ins., E. and W. of stone, \(5 \frac{1}{2}\) ft . dist., and raised a mound of earth, \(1 \frac{1}{\mathrm{f}} \mathrm{ft}\). high, \(3 \frac{1}{2} \mathrm{ft}\). base, alougsido. \\
\hline \multirow[t]{2}{*}{79.84} & \begin{tabular}{l}
The cor. to secs. 4, 5, 8, and 9. Land, rolling. \\
Soil, sandy and light; 2d and 3d rate. \\
No timber.
\end{tabular} \\
\hline & \begin{tabular}{l}
North on a raudom line bet. socs. 4 and 5. \\
\(\mathrm{Va} .18^{\circ} 35^{\prime} \mathrm{E}\). \\
Set temporary \(\frac{1}{4}\) seo. cor.
\end{tabular} \\
\hline 79. 96 & \begin{tabular}{l}
Intersect N. houndary of township 19 lks . W. of cor. to secs. 4, 5, 32, and \\
33 , which is a post, 4 ins square, marked- \\
'Ts. 7 N., S. 33, on N. E. ; \\
R. 34 E., S. 4, on S. E.; \\
T. 6 N., S. 5 , on S. W., and \\
S. 32, on N. W. faces, with 4 notches on E. and 2 notches on W. edgee, aud mound of earth, 2 ft . high, \(\frac{4}{2} \mathrm{ft}\). base, arond post. \\
Thence I run \\
S. \(0^{\circ} 8^{\prime}\) W. on a true line bet. secs. 4 and 5 , with same va. \\
Over rolling ground.
\end{tabular} \\
\hline 39.96 & Set a standstone, \(18 \times 10 \times 6\) ins., 12 ins. in the ground, for \(\frac{1}{2}\) soc. cor., marked \(\frac{1}{4}\) on W. face, and raised a mound of earth, \(1_{\frac{1}{2}} \mathrm{ft}\). high, \(3 \frac{1}{2} \mathrm{ft}\). base, alongside. \\
\hline 79.96 & \begin{tabular}{l}
The cor. to sece. 4, 5, 8 , and 9 . \\
Land, rolling. \\
Soil, sandy and light; 2d and 3d rate. No timber.
\end{tabular} \\
\hline
\end{tabular}

At 10.30 a. m., Angust 16, the variation has decreased \(3^{\prime}\) by diurnal change. From the cor. to secs. 5, 6, 31, and 32, on the south boundary of the township, which is a sandetone, \(5 \times 8 \times 4\) ins. above ground, marked with 5 notches on E . and 1 notch on W. edges, with mouud of earth, 2 ft . high, \(4 \frac{1}{2} \mathrm{ft}\). hase, alongside.

\section*{I run}

North, bet. secs. 31 and 32.
Va. \(18^{\circ} 32^{\prime} \mathrm{E}\).
Over table laud.
Indian trail, course N. \(65^{\circ} \mathrm{W}\). and S. \(50^{\circ} \mathrm{E}\).
Set a sandstone, \(16 \times 12 \times 6\) ins., 11 ins. in the ground, for \(\frac{1}{4}\), sec. cor., marked \(\frac{1}{4}\) ou W. face; dug pits, \(18 \times 18 \times 12 \mathrm{ins}\)., N. and S. of stone, \(5 \frac{1}{2} \mathrm{ft}\). dist., and raised a mound of earth, \(1 \frac{1}{2} \mathrm{ft}\). high, \(3 \frac{1}{3} \mathrm{ft}\). base, alongside.
From this cor. a cor. of James Parker's desert-land claim, a post, 8 ins. equare, with mound of stone around post, marked J. P. D. L. C. 2, bears S. \(20^{\circ}\) E., 1.45 chs. dist. The land included in this claim was unsurveyed at date of location.
Set a eaudstone, \(20 \times 14 \times 6\) ins., 15 ins. in the gronnd, for cor. to secs. 29, 30,31 , and 32, marked with 1 notch on \(S\). and 5 notches on E. edges; dug pits, \(18 \times 18 \times 12\) ins., in each sec., \(5 \frac{1}{2} \mathrm{ft}\). dist., and raised a mound of earth, 2 ft . high, \(4 \frac{1}{2} \mathrm{ft}\). base, alongside.
Land, level, table.
Soil, sandy; 2d and 3d rate.
No timber.

This evening I go to the S. W. cor. of the township,* in lat. \(46^{\circ} \mathrm{N}\). , long. \(107^{\circ} 31^{\prime}\) W., set my compass over its center, with the limh and vernier clamped at zero, and before nightfall direct the telescope to a flag on cor. to secs. 25, 30,31 , and 36 , which is plainly visible. After dark I loosen the clamp of veruier plate and direct the telescope to Po-
*This observation, here given as an illustration, properly belongs to subdivision of T. 6 N., R. 33 E.
\begin{tabular}{|c|c|}
\hline Chains. & \begin{tabular}{l}
laris and at 7 h 27 m m . m., local mean timet, the reading is \(1^{\circ} 31^{\prime}\) east of the range line. The magnetio bearing of the star is \(\mathrm{N} .16^{\circ} 57^{\prime} \mathrm{W}\). \\
Local astronomical ne:n timo of observation is 1889, August 16 \\
Tabular local mi. t. U, C. of Polaris, August \(15{ }^{\prime \prime}\) (Table I), subtract \(\qquad\) \\
Diff. is Hour Angle of Polaris at obs. \\
Subtract from. \(\qquad\) \\
Argument \(\dagger\) for Table II \(\qquad\) \\
Azimuth of Polaris for lat. 46. (Tab. II). \(\qquad\) Reading of vernier . \(\qquad\) \\
The diff. is the true boaring of W. bdy. soc. 31......... \\
Azimuth of Polaris. \\
N. end of needle
\(\qquad\)
\(\qquad\) \\
Sum is the variation at this time \(\qquad\) \\
As I do not know oxactly how much to allow for diurnal change, the meau declination will be determined at tho sec. cor. above named, wheo I reach that point.
\end{tabular} \\
\hline
\end{tabular}

August 16, 1889.

At 7 a. m., Angust 17, the magnetio bearing of last line run (luet. secs. 31 and 32) is S. \(18^{\circ} 34^{\prime} \mathrm{E}\).
N. \(89^{\circ} 58^{\prime}\) E., ou a random line bet. secs. 29 and 32.

Va. \(18^{\circ} 34^{\prime}\) E.
79. 60 Intersect \(N\). and S. line 9 lks . S. of cor. to secs. 28,29 , 32, and 33. Thence

Set temporary \({ }_{4}^{1}\) sec. cor. I run
S. \(89054^{\prime}\) W. on a true line bot. secs. 29 and 3:, with same va. Over bottom land.
11.00

Commence ascent to table land.
15.00 Top of table land about 70 ft . high.
28.50 From this point a spring, about 2 ft . dian., lvears S. about 3 chs. dist.

From spring a stream flows S. E.
Set a saudstone, \(17 \times 8 \times 6\) ins., in the ground, for \({ }_{4}\) sec. cor., marked 1 on N. face; dug pite, \(18 \times 18 \times 12\) ins., E. and W. of cor:, \(5 \frac{1}{2}\) ft dist., and raised a monnd of earth, \(1 \frac{1}{2} \mathrm{ft}\). high, \(3 \frac{1}{2} \mathrm{ft}\). loase, alongside. From this point a post, 8 ins. square, with mound of stone around post, marked J. P. D. L. C. 4 for cor. to James Parker's desert-land claim, boars S. \(177^{\circ}\) E., 64 lks. dist.
79. 60 The cor. to secs. 29, 30, 31, and 32.

Land, table and bottom.
Soil, sundy and black loam; 1st and 2d rate.
No timber.
S. \(89^{\circ} 58^{\prime} \mathrm{W}\).

West on a random line bet. secs. 30 and 31 .
\[
\text { Va. } 18^{\circ} 34^{\prime} \mathrm{E} \text {. }
\]

Set temporary \(\frac{1}{4}\) sec. cor.
Intersect west boundary of towuship 3 lks . N. of cor. to secs. 25, 30, 31,
and 36, which is a post, 4 ft . long, 4 ins. squaro, marked-
T. 6 N., S. 30 , on N. E.;
R. 34 E., S. 31, on S. E.;
R. 33 E.,S. 36 , on S. W.;
S. 25, on N. W. faces, and with 5 notifins on N. aud 1 notch on S. edges, with nound of stone, \(1 \frac{1}{8} \mathrm{ft}\). high, \(\because \mathrm{ft}\). base, around post.
Note,-From this corner at 8 a. m. I take the magnetio bearing of the S. W. cor. of the township suld find it to be S. \(18033^{\prime}\) E.; its true bear-

\footnotetext{
* See pages 78 and 81 ,
}

\section*{Subdivisions T. 6 N., R. 34 E.-Continued.}


\footnotetext{
*This observation, here given as an illustration, properly belongs to subdivision of T. 6 N., R. 33 E.
}

\section*{Subdivisions T. 6 N., R. 34 E.—Continued.}
```

Chains. S. $89^{\circ} 58^{\prime}$ W. on a random line bet. seos. 19 and 30.
Va. $18^{\circ} 30^{\prime} \mathrm{E}$.
40.00 Set tęmporary t sec. cor.
79.10 Intorsect west boundary of township at cor. to sces. 19, 24, 25, and 30,
which is a post, 4 ins. square, marked-
T. 6 N., S. 19 , on N. E.;
R. 34 E., S. 30 , on S. E.;
R. 33 E., S. 25 , on S. W., and
S. 24, on N. W. faces, with 4 votches on N. aud 2 notches on S. odges,
and mound of stone covered with oarth, 2 ft . high, $4 \frac{1}{2} \mathrm{ft}$. base,
around post.
Thence I run
N. $89^{\circ} 58^{\prime}$ E. on a true line bet. secs 19 and 30 , with same va.
Over rolling ground.
39.10 Set a samdstone, $18 \times 12 \times 8$ ins., 12 ins. in the ground, for $\frac{1}{4}$ sec. cor., marked
Set a sandstone, 18×1.
and raised a mound of earth, $1 \frac{1}{2} \mathrm{ft}$. high, $3 \frac{1}{2} \mathrm{ft}$. base, alongside.
79. 10 The cor. to secs. 19, 20, 29, and 30.
Land, rolling.
Soil, sandy; $2 d$ rate.
No timber.

```

North, bet. secs. 19 and 20.
Va. \(18^{\circ} 30^{\prime}\) E.
Over rolling ground, descending.
Set a sandstone, \(20 \times 11 \times 6\) ius., 15 ins . in tha ground, for 7 sec. cor., marked \(t\) ou W. face; dng pits, \(18 \times 18 \times 12\) ins., N. and S. of atono, \(5 \frac{1}{2} \mathrm{ft}\). dist., and raised a mound of carth, \(1 \frac{1}{2} \mathrm{ft}\). high, \(3 \frac{1}{4} \mathrm{ft}\). baso, alongside.
South bank of Liu's Lako. Sot a post, 4 ft . Iong, 4 ius. square, with marked stone, 12 ins. in the ground, for meander cor. to fractional secs. 19 and 20, marked M. C. on N. side, and
T. 6 N., on S. ;
R. 34 E., S. 20, on E., and
S. 19, on W. faces; dug pit, 3 ft. sq., 12 ins. deep, 8 lks. S. of post, and raised a mound of earth, 2 ft. high, \(4 \frac{1}{4}\) ft. base, around post.
Land, rolling.
Soil, sandy; 2d rate.
No timber.
August 17, 1889.
At the cor. to secs. \(8,9,16\), and 17 , 1 find the magnetic bearing of line bet. secs. 16 and 17 to be \(S .18^{\circ} 35^{\prime \prime} E\). at \(7.30 \mathrm{a} . \mathrm{m}\). August 19, and run \(\mathrm{S} .69^{\circ} 59^{\prime} \mathrm{W} .{ }^{\prime \prime}\) on a true live bet. sces. 8 and 17.

Va. \(18^{\circ} 35^{\prime} \mathrm{E}\).
Over rolling ground.
Telegraph line, course N. \(60^{\circ} \mathrm{W}\). and S.
Set a sandstone, \(16 \times 11 \times \Varangle\) ins., 11 ins. in the gronad, for \(\frac{1}{6}\) sec. cor., marked \(\frac{1}{4}\) on N. face; dng pits, \(18 \times 18 \times 12\) ins., E. and W. of stone, \(5 \frac{1}{2} \mathrm{ft}\). dist., and raised a mound of earth, \(1 \frac{1}{3} \mathrm{ft}\). high, \(3 \frac{1}{2} \mathrm{ft}\). base, alongside.
Road to Williamsburg, course N. W. and S. E.
Set a sandstooe, \(24 \times 11 \times 6\) ins., 18 ins. in the ground, for cor. to neres. 7 , 8,17 , and 18, marked with 4 notches on S. and 5 notches on E. edges; dug pits, \(18 \times 18 \times 12\) ias., in oacli sec., \(5 \frac{1}{y} \mathrm{ft}\). dist., and raised a mound of earth, 2 ft . high, \(4 \frac{1}{\mathrm{f}} \mathrm{ft}\). base, alougside.
Land, rolling.
Soil, sandy ; "2d rate.
No timbor.
South, bet. sece. 17 aud 18.
Va. \(18^{\circ} 35^{\prime} \mathrm{E}\).

\section*{Over even ground, descending.}

North bauk of Lia's Lako. Set a sandstono, \(24 \times 10 \times 8\) ins., 18 ins. in the ground, for moander cor. to fractional socs. 17 aud 18 , narked M. C. on S. side, and raised a mound of stone, \(1 \frac{1}{2} \mathrm{ft}\). high, 2 ft . base, alongside. Pit impracticable.

\footnotetext{
* Parallel to S. boundary, sse. 32.
}

Subdivisions T. 6 N., R. 34 E.—Continued.
\begin{tabular}{|c|c|}
\hline Chaing. & \begin{tabular}{l}
Land, nearly level. \\
Soil, sandy and black loam; 1st and 2d rate. No timber.
\end{tabular} \\
\hline 40.00 & \begin{tabular}{l}
S. \(89^{\circ} 58^{\prime}\) W. on a random live bet. secs. 7 and 18. \\
Va. \(18^{\circ} 35^{\prime}\) E.; \\
Set temporary \(\frac{1}{1}\) sec. cor.
\end{tabular} \\
\hline 78.20 & \begin{tabular}{l}
Intersect W. boundary of township 2 lks. N. of cor. to secs. 7, 12, 13, and 18, \\
which is a post, 4 ins. square, marked- \\
T. 6 N., S. 7, on N. E.; \\
R. 34 E., S. 18, ou S.E.; \\
R. 33 E., S. 13, on S. W., and \\
S. 12 , on N. W. faces, with 2 notches on N. and 4 notches on S.edges, \\
Thenoe I run and mound of earth, 2 ft . high, \(4 \frac{1}{2} \mathrm{ft}\). base, around post. \\
N. \(89^{\circ} 57^{\prime}\) E. on a true line bet. seos. 7 and 18 , with same va. \\
Over gently rolling ground.
\end{tabular} \\
\hline 5.50 & Telegraph line, course N. E. and S. W. \\
\hline 6. 60 & Railroad, course N. E. aud S. W. \\
\hline 16.10 & Methodist church bears \(\mathrm{S} .45^{\circ} \mathrm{E}\). \\
\hline 18.20 & Intersect W. boundary line of town of Williamshurg. N. W. cor., which is a post, 12 ins. square, marked "T. S. 3," with mound of stone around post, bears N. 40 chs. S. W. cor., which is a post, 12 ins. square, marked "T. S. 4," with mound of stone around post, bears S. 29.75 chs. \\
\hline 19.10 & Center of street, course N. and S. \\
\hline \(\underline{21.45}\) & Methodist church bears S. \(13 \frac{1}{2}^{\circ} \mathrm{W}\). \\
\hline 25.00 & Center of street, course N. and S. \\
\hline 30.00 & Center of street, course N. and S. \\
\hline 30.10 & Episcopal church bears N. \(10^{\circ} \mathrm{W} ., 4.50\) chs. dist. \\
\hline 35.00 & Center of Main street of Williamsburg, course N. and S. Court-house bears N. \\
\hline 38.20 & Set a sandstone, \(18 \times 15 \times 5\) ins., 12 ins. in the ground, for \(\frac{1}{6}\) sec. cor., marked \(\frac{1}{2}\) on N. face; dng pits, \(18 \times 18 \times 12\) ius., E. and W. of stone, \(5 \frac{1}{2} \mathrm{ft}\), dist., and raised a mound of earth, \(1 \frac{1}{2} \mathrm{ft}\). high, \(3 \frac{1}{2} \mathrm{ft}\). base, alougside. \\
\hline 40.00 & Center of street, course N. and S. \\
\hline 45.00 & Center of street, course N. and S. \\
\hline 50.00 & Center of street, course N. and S. \\
\hline 55.00 & Intersect E. boundary line of town of Williamsburg. N. E. cor., which is a post, 12 ins. square, marked "T. S. 2," with mound \({ }^{\circ}\) of stone around post, bears N. 40 chs. S. E. cor., which is a post, 12 ins. square, marked T.S. 1," with mound of stone around post, bears S., 7.35 chs. \\
\hline \multirow[t]{2}{*}{78. 20} & \begin{tabular}{l}
The cor. to secs. 7, 8, 17, and 18. Land, rolling. \\
Soil, sandy; 2d rate. \\
No timber.
\end{tabular} \\
\hline & \begin{tabular}{l}
At \(10 \mathrm{a} . \mathrm{m}\). August 19, the variation has decreased by diurnal change \(4^{4}\). North, bet. secs. 7. and 8. \\
Va. \(18^{\circ} 31^{\prime} \mathrm{E}\). \\
Over rolling ground.
\end{tabular} \\
\hline 30.40 & Telegraph line, course W. \\
\hline 30.50 & Road to Williamsburg, course E. and W. changes to S. E. about 10 chs. E. ot line. \\
\hline 40.00 & Set a limestone, \(20 \times 15 \times 8\) ins., 15 ins. in the ground, for sec. cor., marked \(\frac{1}{4}\) on W. face ; dug pits, \(18 \times 18 \times 12\) ins., E. and W. of post, \(5 \frac{1}{2}\) ft . dist., and raised a mound of earth, \(1 \frac{1}{3} \mathrm{ft}\). high, \(3 \frac{1}{2} \mathrm{ft}\). base, alongside. \\
\hline 80.00 & \begin{tabular}{l}
Set a sandstone, \(15 \times 15 \times 6\) ins., 10 ins. in the ground, for cor. to secs. 5 6,7 , and 8 , marked with 5 notches on \(S\). and E. edges, and raised a mound of stone, \(1 \frac{1}{2} \mathrm{ft}\). high, 2 ft . base, alongside. Pits impracticable. Land, rolling. \\
Soil, sandy ; 2d rate. \\
No timber.
\end{tabular} \\
\hline
\end{tabular}


Meanders T. 6 N., R. 34 E.

Meanders of the right bank of the Fellowstone River, up stream:-
I commence at the meander cor. to fractional secs. 31 and 36 , on the east houndary of the township, which is a saudstone, \(8 \times 10 \times 5\) ins, above ground marked M. C. on N. side, with pit, 3 ft. sq., 1 ft . deep, 8 lks . S. of stone, with mound of earth, 2 ft . high, \(4 \frac{1}{2} \mathrm{ft}\). baso, alongside. At noon, August 9 , the magnetic bearing of east boundary of sec. 36 is S. \(18^{\circ} 27^{\prime} \mathrm{E}\). Thence I run with meanders in sec. 36 .

Va. \(18^{\circ} 27^{\prime} \mathrm{E}\).
Bauk, 20 ft. high.
S. \(65 \frac{1}{\circ}^{\circ}\) W. 4.00 chs.
S. \(781^{\circ}\) W. 7.40 " Lower end of bar bears N. \(15^{\circ}\) W. ahout 5.00 chs. dist.
S. \(63{ }^{\circ} \mathrm{O}\) W. 7.60" At 6.60 chs. leave bluff bank; bank, 15 ft . high.
S. \(893^{\circ} \mathrm{O}\) W. 8.40 "
N. \(72{ }^{\circ}\) W. 10.00 "
N. \(60^{\circ}\) W. 7.60 "
N. \(334^{\circ}\) W. 4.70 "
N. \(50{ }^{\circ}{ }^{\circ}\) W. 7.80 "
N. \(60^{\circ}\) W. 4.80 "
N. \(721^{\circ}\) W. 3.80 "
N. \(78 \frac{1}{2} \circ\) W. \(4.80 "\)
S. \(77 \frac{1}{2}{ }^{\circ}\) W. 3.50 "
N. \(80 \frac{1_{2}^{\circ}}{}{ }^{\circ}\) W. \(\cdot 5.00\)
N. \(71^{\circ}\) W. 2.40 "
N. \(251^{\circ}\) W. 2.40 "
N. \(71 \mathrm{I}^{\circ} \mathrm{W} .3 .50\) " Low bank, 3 ft . high.
N. \(76 \neq \mathrm{W} .1 .40\) " To meander cor. to fractioual secs. 35 and 36.

Land, 18 chs. W. part bluff; remainder level bottom.
Soil, black loam and sandy; 1st and 2d rate.
No timber.

Thence in sec. 35.
Va. \(18^{\circ} 27^{\prime}\) E.
In dense brush and scattering timber.
S. \(82^{\circ}\) W. 3.00 chs.
S. \(75 \frac{3}{0} 0 \mathrm{~W} .3 .30 "\)
S. \(65^{\circ}\) W. \({ }_{2.30}{ }^{3}\)
S. \(35 \frac{1}{2}^{\circ}\) W. 11.00 " At 6.00 chs. leave brush. At 7.50 chs. Curran's honse bears S. 1.50 chs. At end of course, enter Alexander's field, fence cọurse \(S\).
S. \(381^{\circ}\) W. 5.60 "
S. \(46 \frac{1}{2}{ }^{\circ} \mathrm{W} . \quad 9.00\) "
S. \(54 \frac{1}{2} \circ\) W. 5.00 "
S. \(444^{\circ}\) W. \(2.00 "\)
S. \(65^{\circ}\) W. \(2.60{ }^{6}\) at 50 lks . mouth of slough, 2.00 chs. wide.
S. \(554^{\circ} \mathrm{W} .8 .70 "\)
S. \(55 \frac{1}{2} \circ\) W. 2.80 "
S. \(488^{\circ}\) W. 5.80 " Leave scattering timber.
S. \(561^{\circ}\) W. 8.70 " Banks, 4 ft. high.
S. \(404^{\circ}\) W. 16.12 " (At \(1 \gtrless .20\) chs. leave brush. Head of slough 1.00 ch . wide) to meander cor. to fractional secs. 2 and 35 on S. boundary of township, which is a sandstone, \(20 \times 10 \times 8\) ins., marked M. C. on west face

Land, level bottom.
Soil, black loam; 1st rate.
Timber and dense brush, cottonwood and willow, together 56.50 chs.

Meanders of island contained in secs. 25, 26, 35 and 36.
This island is partly in this township and partly in T. 6 N., R. 35 E. I go to the point for meander cor. to fractional secs, 31 and 36 on the sonth side of island, and finding cor. has been washed away, I re-established it as follows: I go to a cotton wood tree on line, which is described in field notes of the survey of the east boundary of this township as being 26.23 chs. S. of cor. to secs. \(25,30,31\), and 36 , and run S. 3.02 chs. to south bank of island, making altogether 29.25 chs. instead of 29.70 chs. as stated in said notes. At this point
Set a post, 4 ft . long, 4 ins. square, 12 ins. in the ground, for meander cor. to fractional secs. 31 and 36 , marked-
T. 6 N., on N.;
R. 35 E., S. 31, on E. ;
M. C., on S., and
R. 34 E., S. 36 , on W. faces, dug pit, 3 ft. sq., 1 ft . deep, 8 lks . N. of post, and raised mound of earth, 2 ft . high, \(4 \frac{1}{2} \mathrm{ft}\). base, around post.
I find the magnetic bearing on the east boundary to be N. \(18^{\circ} \% 5^{\prime} \mathrm{W}\). at 1 p. m. August 7.

Thence I run with meanders in sec. 36.
Va. \(18^{\circ} 25^{\prime} \mathrm{E}\).
Through dense brush, up steam, banks 10 ft . high.
S. \(70 \frac{1}{3}^{\circ}\) W. 2.40 chs. Lower end of bar bears S .
S. \(86^{\circ}\) W. 3.00 " Leave brush.
N. \(81^{\circ}\) W. 8.50 "
N. \(68 \frac{1}{2}\) W. 7.00 " at 1.00 ch . enter timber and brush.
N. \(733^{\circ}\) W. 7.30" At 7.00 chs. leave timber and brush.
N. \(84^{\circ}\) 'W. 3.40 " At 1.50 chs. center ofhead of slough, 3.00 chs. wide.

At end of course, head of bar bears S. Enter brush.


Enter timber, loave brnsh.
N. \(621^{\circ}\) W. 8.20 "
4.80 "
N. \(88 \frac{1}{3}^{\circ}\) W. 5.40 " Leave timber.
S. \(80^{\circ}\) W. 9.60 " At 1.25 chs., mouth of slongh, 2 chs. wide. At 2.50 chs, enter dense brush, and leave brush at end of course.
N. \(888^{\circ}\) W. 3.75 "
(At 2.00 chs., center of head of slongh, 2.50 chs. wide) to meander cor. to fractional secs. 35 and 36 on S. W. end of island. Land, level.
Soil, alluvial ; 1st rate.
Timber and lurush, cottonwood and willow; 71.70 chs.
Thence in sec. 35.
Va. \(18^{\circ} 25^{\prime}\) E.
Along low bank.
S. 790 W. 6.70 chs.
N. \(151^{\circ}\) W. 3.90 "
N. \(74^{\circ}\) W. 3.40 "
N. 17 tan \(^{\circ}\) K. 3.80 "
N. \(50^{\circ}\) E. 2.59 " To meander cor. to fractional secs. 26 and 35.

Land, level.
Soil, alluvial; 1st rate.
No timber.
At \(3.30 \mathrm{p} . \mathrm{m}\). August 7 the va. has increased by diurnal change \(3^{\prime}\).
Thence in sec. 26 .
Va. \(1^{80} 28^{\prime} \mathrm{E}\).
N. 52 gi E. 6.05 chs. To meander cor. to fractional secs. 25 and 26. Land, level.
Soil, alluvial; 1st rate.
No timber.

\section*{Meanders T. 6 N., R. 34 E.—Continued.}

\section*{Meanders of island oontained in secs. 25, 26, 35 and 36-Continued.}

Thence in sec. 25.
Va. \(18^{\circ} 28^{\prime}\) E.
Enter brush ; bank, 5 ft. high.
N. \(64^{\circ}\) E. 2.50 chs.
N. 6930 E. 8.80 " At 5.00 chs. leave brusb, enter heavy timber.


N. \(33^{\circ}\) E. 2.30 "


N. \(45 \frac{1}{2} \frac{\mathrm{E}}{} \mathrm{E} . \quad 4.60\) " \(\quad\) Bank, N.
N. \(611^{\circ}\) E. 17.00 "
N. \(741^{\circ}\) E. 11.00 "
 E. bonndary of township, which is a sandstone, \(8 \times 12 \times 8\) ins., above ground, marked M. C. on N. face, from which
A cottonwood, 10 ins. diam., bears S. 28 W., 20 lks. dist., marked T. 6 N., R. 34. E., S. 25, M. C., B.'T.

A cottonwood, 8 ins. diam., bears S. \(45^{\circ}\) E., 30 lks . dist., marked T. 6. N., R. 35 E., S. 30, M. C., B. T.

Land, level.
Soil, allnvial; 1st rate.
Timber and brush, cottonwood and willow; 102.49 obs.
This island has a rich alluvial soil, and is generally covered with fine cottonwood timber.

August 7, 1889.

\section*{Meanders of the left bank of the Yellowstone River, down stream.}

At \(11.30 \mathrm{a} . \mathrm{m}\). August 9, the magnetic bearing of line between secs. 34 and 35 is N. \(18^{\circ} 30^{\prime} \mathrm{W}\).
I commence at the meander cor. to fractional secs. 2 and 35 , on S . bonndary of township, which is a sandstone, \(5 \times 15 \times 2\) ins., above ground, marked M. C. on E. face, with a mound of stone, 11 ft . high, 2 ft . base, alongside.
Thence I ran witb meanders in sec. 35.
\(\nabla\) a. \(18^{\circ} 30^{\prime} \mathrm{E}\).
Bank 6 ft . high.
N. \(47{ }^{\circ}\) E. 2.80 chs.
N. \(377^{\circ} \mathrm{E}\) E. 6.30 "
N. \(31^{\circ}\) E. 5.50 "
N. \(311^{\circ} \mathrm{O}\) E. 6.40 "
N. \(384^{\circ}\) E. 7.10 " Bar in river bears S. \(20^{\circ}\) E. 1 ch. dist.
N. \(27^{\circ}\) E. 2.70 "
N. \(53 \frac{1}{1}^{\circ}\) E. 4.00 "
N. \(47 \mathrm{I}^{\circ} \mathrm{E}\) E. 4.90 "
N. \(51{ }^{\circ 0}\) E. 6.00 "
N. \(547^{\circ}{ }^{\circ}\) E. 12.00 ."
N. \(524^{\circ}\) E. 6.00 "
N. \(477^{\circ} \mathrm{O}\) E. 3.90."
N. \(40 \frac{10}{\circ}\) E. 8.50 " ait 7.00 chs. enter dense willow brush.
N. \(284^{\circ}\) E. 7.60 "
N. \(31^{\circ}\) E. 3.70 "
N. \(15{ }^{10}\) E. \(9.20 "\)
N. \(33{ }^{3}{ }^{\circ}\) E. 3.80 "
N. \(50{ }_{4}^{\circ} \mathrm{E} .6 .42\) " To meander cor. to fractional secs. 26 and 35.

Land, level.
Soil, allnvial ; lst rate.
No timber. 12.80 chs. of dense willow brush.

Meanders T. 6 N., R. 34 E.-Continued.

Meanders of the Left Bank of the Yellowstone Rivar, etc.-Continned.
At \(2.30 \mathrm{p}, \mathrm{m}\). the variation has been reduced by diurnal change, \(2^{\prime}\).
Thence in sec. 26.
Va. \(18^{\circ} 28^{\prime}\) E.
N. \(59^{\circ}\) E. 4.80 chs.
N. \(45 \frac{1}{2}^{\circ}\) E. 7.80 "
N. \(49^{\circ}\) E. 2.05 " To meander cor. to fractional secs. 25 and 26.

Land, level.
Soil, alluvial; 1st rate.
No timber or brush.

Thence in sec. 25.
Va. \(18^{\circ} 28^{\prime}\) E.
N. \(658{ }^{8}{ }^{\circ}\) E. 7.40 chs.
N. \(63^{10}\) E. 5.30 "
N. \(61 \stackrel{1}{\circ}\) E. 12.00 " At 7.00 chs. head of slough, 2 chs. wide.
N. \(40 \dot{t}^{\circ}\) E. 5.60 "
N. \(35^{\circ}\) E. 7.70 "
N. 749 E. 2.50 "
N. \(1 \frac{1}{2} \circ\) W. 2.70 " At 1.90 chs. mouth of slough, 1.50 chs. wide.
N. \(41 \frac{1}{2}^{\circ}\) E. 9.00 "
N. \(35^{\circ}\) E. \(1.70{ }^{\prime}\)
N. \(41^{\circ}\) E. 4.60 "
N. \(401^{\circ}\) E. 5.60 " At 1.00 cli. enter cottonwood timber.
N. \(544^{\circ}\) E. 3.00
\(\mathrm{N} .54{ }^{\circ}\) E. 3.00 "
N. 49 g' E. 2.60 "
\(\begin{array}{lll}\text { N. } 624^{\circ} & \text { E. } 11.30 & " \\ \text { N. } 711^{\circ} & \text { E. } & 5.50 \\ \text { " }\end{array}\)
S. 87 \(1^{\circ}\) E. 13.00 "
N. \(671^{\circ}\) E. 0.80 " To meander cor. to fractional secs. 25 and 30 on E.
boundary of township, which is a sandstone, \(6 \times 12 \times 6\) ins., above ground, marked M. C. on S. face, from which
A cottonwood, 4 ins. diam., bears N. \(73^{\circ}\) E., 48 lks . dist., marked T. 6 N., R. 35 E., S. 30 , M. C., B. T.

A cottonwood, 24 ins. diam., bears N. \(27^{\circ}\) W., 185 Iks . dist., marked T. 6 N., R. 34 E., S. 25, M. C., B. 'Г.

Land, level.
Soil, alluvial; 1st rate.
44.00 chs. of fine cotton wood timber.

August 9, 1889.

Meanders of a small lake in section 33.
1 commence at the meander corner on the north side of the lake, which is a limestone, \(4 \times 12 \times 6\) ins., above gronud, firmly set, marked-
M. C. on S. face, with a pit, 3 ft . \(8 q .1 \mathrm{ft}\). rleep, 8 lks . N. of stone, and mound of earth, 2 ft . high, \(4 \frac{1}{2} \mathrm{ft}\). base, alongside.
The magnetic bearing of 4 S . C. bet. socs. 28 and \(3: 3\) is N. \(18^{\circ} 35^{\prime}\) W. at 4 p. m., August 15.

Thence I run with meanders in sec. 33. Va. \(18^{\circ} 35^{\prime} \mathbf{E}\).
S. \(53^{\circ}\) E. 17.75 chs. To outlet to lake, 10 1ks. wide, course N. E. S. \(3^{\circ}\) E. 13.00 "
S. \(01^{\circ}\) W. \(7.00{ }^{\circ} \quad\) Enter timber, bears S. W. and N. E.
S. \(70^{\circ}\) W. 15.70 " To meander corner on south sido of lake previonsly
N. \(63^{\circ}\) W. 10.00 " \(\begin{gathered}\text { described. } \\ \text { Leave timber at } 8.00 \\ \text { chs., bears N. and } S .\end{gathered}\)
N. \(13^{\circ}\) W. 21.00 "At 6.50 chs. clear stream of water, 8 lks. wido enters lake from N. \(70^{\circ}\) W. Along this line we discovered remarkable fossil remains of animals well worthy the attention of natiralists.
N. 520 E. \(17.30{ }^{*}\) To tho place of beginning.

Meanders，T， 6 N．，R． 34 E．－Continued．

Meanders of a small lake in section 33－Continued．
This is a beautiful lake，with well defined banks 6 to 10 feet high． The water is about 14 feet deep．
Land，rolling．
Soil，1st rate．
August 15， 1889.

Meanders of easterly ond of Lin＇s Lake in secs．17，18，19，and 20.
I find the west boundary of fractional sec． 19 has a magnctic bearing of S ． \(18^{\circ} 34^{\prime}\) E．at 7 a．m．，August 20．The variation is therefore \(18^{\circ}{ }^{\prime} 35 \mathrm{~W}\) ．
1 commence at the meander cor．to fractioual secs． 19 aud 24 on west boundary of township，which is a post， 4 ft ．Iong， \(4 \mathrm{ins} . \operatorname{sq}\) ．，marked M．
C．on N．face，with
T． 6 N．，on S．；
R． 34 E．，S．19，on E．，aryd
R． 33 E．，S． 24 ，on W．faces；from which
A cottonwood， 24 ins．diam．，bears S． \(45^{\circ}\) W．， 11 Iks．dist．，marked T． 6 N．， R． 33 E．，S．24，M．C．，B．T．
A cottonwood， 20 ins．diam．，bears S． \(57^{\circ}\) E．， 14 Iks．dist．，marked T． 6 N．， R． 34 E．，S．19，M．C．，B．T．
Thence I run with meanders in scc． 19.
Var． \(18^{\circ} 35^{\prime}\) E．
Through cottonwood timber．Bank， 3 ft ．high．
S． \(59^{\circ}\) E． 8.80 chs．
S． \(461^{\circ}\) E． 3.40 ＂Leave timber．
S． \(44 \frac{1}{2}{ }^{\circ}\) E．2．40＂
S． 43 里 \(^{\circ}\) E． 5.70 ＂
S． \(43^{\circ}\) E． \(4.40 "\)
S． \(46 \frac{1}{2}^{\circ}\) E． 5.80 ＂
S． 52 車 \(^{\circ}\) E． \(5.80{ }^{\prime}\)
S．53q9 E． 4.50 ＂
S． \(707^{\circ} \mathrm{E} . \quad 5.50 "\)
S． \(751^{\circ}\) E． 3.00 ＂
S． \(88 \frac{1}{2}\) E． 4.00 ＂
N． \(78^{\circ}\) E． 9.60 ＂At 6.00 chs．Smith＇s louse bears S．， 50 lks ．dist．
S． \(88 \frac{1}{2}^{\circ}\) E． 6.50 ＂
S． \(724^{\circ}\) E． 6.70 ＂
S． \(71 \frac{1}{4}\) E． 14.00 ＂To meander cor．to fractional secs． 19 and 20.
Land，level．
Soil，sandy loam ；2d rate．
Timber，cottonwood； 12.20 chs．

Thence in sec． 20.
\[
\text { Va. } 18^{\circ} 35^{\prime} \mathrm{E}
\]

N． \(89^{\circ}\) E． 6.20 chs．
N． \(554^{\circ}\) E． \(11.50{ }^{4}\)
N．3210 E． 9.90 ＂
N． 48 最 E． 6.40 ＂
N． \(31{ }^{\circ}{ }^{\circ}\) E． 5.00
N． \(244^{\circ}\) E． 3.90
N．22 \({ }^{\circ}\) E． 2.10
N． \(33^{\circ}\) E． 2.40
\(\begin{array}{lll}\text { N．} \\ \text { N．} & 52 \frac{18}{3} & \text { E．} \\ \text { E．} & 3.40 & 3.30\end{array}\)＂To meander cor．to fractional secs． 17 and \(\mathfrak{2 0}\) ．
Land，level．
Soil，sandy loam；2d rate．
No timber．

\section*{Meanders T. 6 N., R. 34 E.-Continued.}
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
Meanders of easterly end of Lin's Lake, etc.-Continned. \\
At 10 a. m., Aug. 20, the variation has been decreased \(5^{\prime}\) by diurnal change. Thence in sec. 17. \\
Va. \(18^{\circ} 30^{\prime} \mathrm{E}\).
\end{tabular} \\
\hline & \begin{tabular}{l}
Thence in sec. 18. \\
Va. \(18^{\circ} 30^{\prime}\) E. \\
N. \(388^{\circ}{ }^{\circ}\) W. 15.00 chs. \\
N. 63 gi̊ W. 5.00 " \\
S. \(84^{\circ}\) W. 13.00 " \\
S. \(611^{\circ}\) W. 19.00 " \\
At 10.28 chs. S. E. cor. town of Williamsburg. At 3.08 chs. center of street, conrse N. At 8.79 chs. center of street, course N . At 14.49 chs. center of street, course N. \\
S. \(43^{\circ}\) W. 13.00 " At 0.94 chs. center of main street, course N. At 8.27 chs. center of street, course N. \\
S. \(55 \frac{1}{2}^{\circ}\) W. \(4.00{ }^{\circ}\) At 2.15 chs. center of street, course N. \\
S. \(74 \frac{30}{9}\) W. 4.70 " At 4.53 chs . S. W. cor. town of Williamsburg. \\
S. \(85 \frac{1}{2}^{\circ}\) W. 5.60 " \\
N. \(881^{\circ} \mathrm{W} .12 .47\) "To meander cor. to fractional secs. 13 and 18 on W. boundary of township, which is a sandstone, \(30 \times 12 \times 8\) ins., marked M. C. on S face, with mound of earth, 2 ft . high, \(4 \frac{1}{2} \mathrm{ft}\). base, along side. Land, level. \\
Soil, sandy loam ; 2d rate. \\
No timber. \\
August 20, 1889.
\end{tabular} \\
\hline & 7 miles 36 chs. and 82 lks . of the subdivision lines run over mountainous land, or through timber; and 3 miles 59 chs. and 69 links of the meander lines run through timber or dense brush. \\
\hline
\end{tabular}

\section*{GENERAL DESCRIPTION.}

This township contains nearly every variety of land from plains to mountaius, and the soil ranges from alkali to rich loam. The soil of the bottom land along the Yellowstone River aud on the island is generally rich, black loam, capable of producing abundant crops withoot irrigation. The soil of the remaining portion of the township, except the alkali flat in secs. 23 and 24, and the mountainous land, can nearly all bs classed as second rate, is covered with an abundaut growth of rich and nutritious grasses, and will produce crops without irrigation. In the southwestern portion of the township only the grass is more scanty, and irrigation may benecessary.
Cottonwood timber is found along the Yellowstone River, ou the island, and some seattering along the creeks. The mountain is covered with a denss growth of pine and fir timber, many of the tress being very large.
There is one limestone quarry in secs. 8 and 9 which affords excellent building stones, and, from surface indications, it is probable that large bodiss of limestone and sandstone underlie other portions of the township. Iron ore was found in sec. 3.
The mean declination for the plat, the a verage of three observations, is \(18^{\circ} 30^{\prime}\) east.
The township is well watered by the Yellowstone River, which runs through the southeastern portion, and many small springs and brooks. The sastern sud, comprising only a small portion of Lin's Lake, is included in this to waship. This lake is about 10 miles long, and its greatest width about 4 miles. The water is clear and pure, and varies in depth from 10 to 200 feet.
The town of Williamsburg is the county seat of Custer Coanty, contaius a courthouse, two churches, two hotels, several stores, and about 50 dwelling-honses. Its estimated population is 300 .
There are two settlers in s8c. 35, and one each in secs. 4, 16, 17, 19, and 25.
James Parker has fencedi a portion of his dessrt-land claim iu sec. 32, and is boring an artesian well to bring water upon it.

Robert Ackes, U. S. Deputy Surveyor.

\section*{FINAL OATHS FOR SURVEYS.}

\section*{LIST OF NAMES.}

A list of the namss of the individuals employed by Robert Acres, U. S. depaty sarveyor, to assist in running, measuring, and marking tho lines and corners descmbed in the foregoing field-notes of the sarver of the snbdivision and meander lines of township No. 6 north, of range No. 34 east of the principal base and meridian, in the Stats of Montana, showing the respective capacities in which they acted:


\section*{FINAL OATHS OF ASSISTANTS.}

We hereby certify that we assisted Robert Acres, U. S. deputy survevor, in surveying all those parts or portions of the subdivision and meander lines of township No. 6 north, of range 34 east of the principal base and meridian, State of Montana, as, are represented in the foregoing field-notes as having been surveyed by him and under his direction; and that said survey has besn in all respects, to the best of our knowledge and belisf, well and faithfolly surveyed, and the corner monuments established, according to the instractions furnished by the U. S. surveyor-general for Montana.

> Peter Long, Chaimman. JoHn SHort, Chainman. George Sharp, Axeman. adam Dull, Axeman. James Banner, Flagman.

Subscribed and sworn to bsfore ms this twenty-third day of August, 1889. [seal.]

\section*{FINAL OATH OF U. S. DEPUTY SURVEYOR.}

I, Robert Acres, U. S. deputy surveyor, do solemnly swear that in pursuance of a contraet received from A-B-U. S. eurveyor-gencral for Montana, bearing date of the twenty-second day of March, 1889, I have well, faithfully, and truly, in my own proper person, and in strict conformity with the instructions furnisked by the U. S. surveyor-general for Montana, the manual of surveying instractions, and the laws of the United States, surveyed all those parts or portion of the subdivision and meander lines of township No. 6 north, of range No. 34 east of the principal base and meridian, in the State of Montana, as are represented in the foregoing fieldnotes as having been surveyed by me and under my directions; and I do further solemnly swear that all the corners of eaid surves have been established and perpetuated iu strict accordance with the surveying manual, printed instructions, the epecial written instructions of the U. S. surveyor-general for Montana, and in the specific manner described in the field-notes, and that the foregoing are the true fieldnotes of sach survey, and should any fraud be detected I will suffer the penalty of perjury under the provisions of an act of Congress approved August 8, 1846.

Robert Acres,
U. S. Deputy Surveyor.

Subscribed by aaid Robert Acres, and aworn to before me this thirty-firet day of August, 1889.
[sEaL.]
\[
\mathrm{A}-\mathrm{B}=
\]
J. S. Surveyor-General for Montana.

To each of the original field-books, the surveyor-general will append his offictal approval, according to the following form, or so varied as to suit the facts in the case:

> Office of the U. S. Surveyor-General, Helena, Montana, September 1, 1889.

The foregoing field-notes of the survey of [here describe the survey], executed by Robert Acres under his contract No. 87, dated March 22, 1889, having been critically examined, the necessary corrections and explanations made, the said field-notes, and the eurveys they describe, are hereby approved.
J. S. Surveyor-General.

To the copies of the field-notes transmitted to the General Land Office the surveyorgeneral will append the following certificate:

I certify that the foregoing transcript of the field-notes of the survey of the [here describe the character of the surveys, whether meridian, base line, standard parallel, exterior township lines, or subdivision lines, and meanders of a particular township], in the State [or Territory] of ............................, has been correctly copied from the original notee on file in this office.
U. S. Surveyor-General.

\section*{PRIVATE LAND OLAIM SURVEYS.}
1. Before ordering any survey of a private land claim the survevorgeneral will receive full instructions from this office, by which he will be governed in issuing his instructions to the depaty. The instructions to the deputy must be entered in extenso at the commencement of the field notes of such survey.
2. The instruments used in the survey of private land claims must be the same as those required for the survey of public lands, and must be registered and tested in like manner at the surveyor-general's office previous to the deputy's commencing work; and the instructions for the survey of public lands must, as far as applicable, be strictly observed in the survey of private land claims.
3. The true magnetic variation must be noted at the beginning point of each survey and at each angle thereof, and wherever the variation of the needle is observed to change along the line the same must be noted and the reasons therefor stated, if known.
4. At the end of each mile along a boundary the character of the soil and amount of timber, grass, etc., will be stated; and the date of each day's work in the field must be noted at the end of the record thereof.
\(\bar{j}\). The requirements in the "Summary of objects and data required to be noted," as set forth in the instructions for the survey of public lands, must be observed by the deputy in the survey of private land claims. Where practicable, bearings must be taken from at least two points on the line to all prominent or atherwise notable objects in the vicinity, and where only one bearing can be taken the estimated distance must be noted.
6. At the beginning point upon the out boundaries of each grant survey a corner must be established of the same character, size, and materials as prescribed for township corners upon the lines of the survey of pnblic lands, except that only two pits will be dug, one on each side of the corner, on the line. Upon the side of such corner facing the claim the initial letters of the name of the grant, and immediately under the same the letters "Beg. Cor. I" (for beginning corner ove) wust be neatly cut, chiseled, or affixed.

7 Each of the mile corners or stations of survey must be established in the manner prescribed for the establishment of section corners upon the lines of public surveys, except that they will be narked on the side facing the grant with the initials of the grant and the number of the station or mile, as the case may be; and ouly two pits will be dug, one on each side of the corner, on the line.
8. Where mile corners are established, except upon meandered portions of the line, half-mile corners will also be established in the manner prescribed for the establishment of quarter-section corners upon the
lines of public surveys, except that they will be marked upon the side facing the grant with the initials of the grant.
9. Such other marks, in addition to those above described, will be placed upon the corners as may be required by the surveyor-general in his special written instructions.
10. As far as practicable bearings and distances must be taken from each of the corners or stations to two or more trees, or prominent natural objects, if any, with'n a convenient distance, in the same manner as required in the instructions for the survey of public lands, and such trees or objects must be marked with the initials of the grant, and underneath same the letters "B. T." or "B. O.," as the case may be.
11. Witness corners will be established, where necessary, in the same manner as required in the instructions for the survey of public lands.
12. In all cases where the lines of the grant boundary surveys intersect the established lines of survey of public lands or private land claims the course and distance from such point of intersection to the nearest corner on the line of the prior survey must be carefinlly run, measured, and noted, and whenever necessary such corner must be re-established.
13. The survey of a private land claim must always be connected by a line actually run and measured in the field with some corner of the public surveys, if any such have been established within a distance not exceeding two miles from any point on the boundary lines of the private land claim.
14. Boundaries or portions of boundaries of previonsly established grant surveys, which also form a portion of the bonndaries of the claim to be surveyed, will be adopted so far as common to both grants, but no payment will be made for such common boundaries unless it is necessary to re establish same.
15. The field notes must embrace a full, clear, and concise statement of the reasons why each boundary is established.
16. A general description of each tract must be given at the end of the field notes of the survey of same, which description must embrace a brief statement of the main features of the tract surveyed, character of the land, timber, and other natural growth, kinds of mineral, if any, population of towns and settlemunts, characteristics of monntains, streams, springs, etc., and such other data as may be of importauce.
17. The deputy must particularly note all facts relative to present inhabitancy of the land and designate all tracts occupied by actual setthers or residents.
18. The depaty surveyor must return with the field notes a topographical map or plat of the survey. As far as practicable all objects described in field notes, and the main features of the tract surveyed, including towns, streams, mountains, roads, etc., must be protracted on such plat as accurately as possible.
19. The tield-note books must embrace a list of assistants, and preliminary and final oaths, as required in the instructions for the survey of public lands.
20. The depnty will note all objections to his survey that may be brought to his knowlenge, and the surveyor-general will promptly report to this office all complaints made to him and send up all protests tiled in his office, together with a full report thereon.
21. Official plats of the survey of private land claims will not be furnished to any person until the cost of surveying and platting same shall have been paid to the United States.```


[^0]:    *Here state whether city property, improved or unimproved, or improved farms or unimproved lands, and where sitnated.
    $\dagger$ Here describe the natnre of the property; whether bonds, stocks, merchandiso, etc.

[^1]:    * See methol of subdividing and remarks under the heading "Table III. Azimuths of the tangent to the parallel."
    $\dagger$ Taking the latitude does not necessarily prove the correctness of adjustmeuts.

[^2]:    *The adjustments shonld be rerified daily when the instrument is in use.

    + See R. S. 2395, sec. 99, par. 6 (page 11).

[^3]:    Tree Corner with Bearing Trees.

    Sec. 8. A-, - ins. diam., which I marked (e. g.)
    P. 2 W. S. 31, on E. and

[^4]:    * To consist of not less than four stones. Mound to be at least $1 \frac{1}{\frac{1}{2}} \mathrm{ft}$. high, with 2 ft. base.
    †See "Miscellanenas," sec. 4, page 32.

[^5]:    SEC. 5. Set a post 4 ft . long, 4 ins. square, 24 ins. in
    Pat with Bearing Trees. the ground, for Standard Cor. to (e. g.) Secs. $35 \& 36$, marked
    S. U. T. 5 N., R. 3 W., on N.
    S. 36, on E. and

[^6]:    *See "Miscellaneous," sec. 4, page 32.

[^7]:    *See "Miscellaneous," sec. 4, page 32.

[^8]:    "See " Miscellaneous," see. 4, page 32.

[^9]:    *For mound of stone "covered with earth," the height and base will be the same as for mound of earth.

[^10]:    * Soe diagram A, Fig. 1.
    $\dagger$ See Tables III, IV, and V, and Diagram A, Fig. 1.
    $\ddagger$ Or a less distance.

[^11]:    " Page 18.

[^12]:    * See page 40.
    $\dagger$ In the table, meanderable lines of new surveys will be left blank.

[^13]:    * On page 55 .

[^14]:    *In scientific treatises on terrestrial magnetism the term maguetic deolination is always used in order to avoid any confusion which would arise when treating of such motions of the needle as the diurnal, annual, and secular variations.
    $\dagger$ The Coast and Goedetic Survey Report for 1888, Appendix No. 7, it is expected, will soon pass throngh the press.

[^15]:    * Still in MS. in the hauds of the printer.

[^16]:    * In 1890 and latitude $40^{\circ}$, for about $5^{\mathrm{h}} 55^{\mathrm{m}}$ easterly and $6^{\mathrm{h}} 03^{\mathrm{m}}$ westerly.
    + Computed at the Coast and Geodetic Snrvey Office, as was also the table of azimuthe.
    $\ddagger$ Counted from noou and from zero to twenty-four hours.

[^17]:    * Computed and arranged in the General Land Office, by J. B. Shinn, of the Surveying Division.

[^18]:    * The change can always be made mentally, no written work being required. Table I might be easily altered to give the times by the civil count marked A. M., and P. M., but such an arrangement would greatly extend and complicate the following rules and examples, and correspondingly inorease the chances for making mistakes.
    $\dagger$ The exact time is 23 hours, 56 minntes, 4.09 secends.
    $\ddagger$ The surveyor can extend the table to the year 1910 by following directions in artiole on "Magnetio Declination, page 68." The values for 1893 were so computed.

[^19]:    
    Reduction, (Part II), and correction for long, (Part III), subtract.........
    Local mean time U. C. of Polaris, March 3, 1892
    229.6

[^20]:    4. Time of U. C. of Polaris, \} h. m. (10 $32^{\mathrm{m}} .7$, less $19^{\text {min. }} 7$ from Part II) $\}$ 1889, Novemlwr 6th................... 10 13.0
    which, being earlier than 1889, November 7th.................................... 824.0
    may be subtracted from it.
[^21]:    *The second culmination occurs 7 m .2 before noon of April 11 th, and consequently in broad daylight.

[^22]:    "A term used to designate reference numbers. tSee rule on page 76, above "Table I."

[^23]:    * Page 78.
    † See page 80, second paragraph.
    $\ddagger$ See table prepared in office of U. S. Coast and Geodetic Survey; article on Magnetic Declination, page 70.

[^24]:    * The reason for cbange of val to le stated. See table page 55.
    t See foot-ńote, p. $\because 2$,

[^25]:    *Take one day from September 2 and add its equivalent, 24 hrs ., to the time, making September $1,30^{\mathrm{h}} 29 \mathrm{~m} .5$, then substract. See page 78, example 4, also page 81, $\dagger$ See foot note page 80.
    $\ddagger$ See precepts at top of Table II.

[^26]:    *The reason for changing the var. mnst ulways be given.

[^27]:    *The reason for changing the var. must always be given.

[^28]:    * See page 75 and font-note, page 76.
    $\dagger$ May be traken durectly rote Part IL of Table I.
    t See precepts at top of Table IL.

[^29]:    * See table on pago 08.
    + Aee table on page 70; interpolate back to 1889.

[^30]:    As the line bet. secs. 26 and 35 is fractional, I run
    N. $899^{\circ} 58^{\prime}$ W.* on a true line bet. secs. 26 and 35. Va. $18^{\circ} 30^{\prime} \mathrm{E}$.

[^31]:    * This method should be followed when the instrament is not provided with a eolar attachment, or when one can not be used. See note on page 129.
    $\dagger$ These two bearings will have the samo angolar value when the south boundary is run on a parallel of latitude or approximates to a parallel.

