
homgrtes.

Sc. 27.94.

$$
\sum^{19 / 3}
$$

$$
\text { Tin } \quad 1,2=05^{8} m
$$

MANUAL
 OF

 SURVEYING INSTRUCTIONS

 SURVEYING INSTRUCTIONS}

FOH 111 E

SUREEY OF THE PUBLIC LANDS

OF' THE

UNITED STATES

AND

PRIVATE LAND CLATMS.

Prepared in eonformity with law muder the direc ion of TIIE COMHISSIONER OF THE/GENERAL LAND OFFICE.

JUNE 30, 1894.

WASIIN(iTON:
1891.

Department of the Interior,
 General Land Office, Washington, D. C., June 30, 1894.

Gentlemen:
The following instructions, including full and minute directions for the execution of surveys in the field, are issued under the anthority given me by sections 453,456 , and 2398 , United States Revised Statutes, and must be strictly complied with by yourselves, your office assistants, and deputy surveyors.

All directions in conflict with these instructions are hereby abrogated. In all official communications, this edition will be known and referred to as the Manual of 1894.

Very respectfully,
S. W. Lamoreut, Commissioner.

To Surveyors General of thb United States.

MANUAL OF SURVEYING INSTRUCTIONS.

HISTORY OF LEGISLATION FOR SURVEVS.

The present system of survey of the pmblic lands was inaugurated by a committee appointed by the Continental Congress, consisting of the following delegates:

on. Thos. Jefferson, Chairman	Virginia.
Hon. Hugh Williamson.	North Carolina.
Hon. David Howele	Phode Island.
Hon. Elbridge Gerr	Massacha
Hom. Jacor Read	South Caroliı

On the 7th of May, 1784, this committee reported "An ordinance for ascertaining the mode of locating and disposing of lands in the western territory, and for other purposes therein mentioned." This ordinance required the pubiic lands to be divided into "hmudreds" of ten geographical miles square, and those again to be subdivided into lots of one mile square each, to be numbered from 1 to 100 , commencing in the northwestern corner, and continuing from west to east and from east to west consecutively. This ordinance was considered, debated, and amended, and reported to Congress April 26,1785 , and required the surveyors "to divide the said territory into townships of 7 miles square, by lines ruming due north and sonti, and others crossing these at right angles. * * * The plats of the townships, respectively, shall be marked by subdivisions into sections of 1 mile square, or g. 40 acres, in the same direction as the external lines, and numbered from 1 to 49 .
And these sections shall be subdivided into lots of 320 aeres." This is the first record of the use of the terms "township" and "section."

May 3, 1785 , on motion of Hon. William Grayson, of Virginia, secouded by Hon. James Mouroe, of Virginia, the section respecting the extent of townships was amended by striking ont the words "seven miles square" and substituting the words "six miles square." The records of these early sessions of Congress are not very full or complete; but it does not seem to have occurred to the members mutil the Gth of May, 1785 , that a township six miles square could not contain 49 sections of 1 mile square. At that date a motion to amend was made, which provided, among other changes, that a township should contain 36 sections; and the amendment was lost. The ordinance as finally passed, however, on the 20th of May, 1785, provided for townslips 6 miles square, containing 36 sections of 1 mile square. The first public surveys were made under this ordinance. The to wnships, 6 miles square, were laid out in ranges, extending northward from the Ohio River, the townships being numbered from south to north, and the ranges from east to west. The region embraced by the surveys under this law forms a part of the present State of Ohio, and is usually styled "The

Seven Ranges." In these initial surveys only the exterior lines of the townships were surveyed, but the plats were marked by subdivisions into sections of 1 mile square, and mile corners were established on the township lines. The sections were numbered from 1 to 36 , commencing with No. 1 in the southeast corner of the township, and running from south to north in each tier to No. 36 in the northwest corner of the township, as shown in the following diagram:

36	30	24	18	12	6
35	29	23	17	11	5
34	28	22	16	10	4
33	27	21	$\frac{15}{}$	$\frac{9}{2}$	$\frac{3}{}$
32	26	20	14	8	2
31	25	19	13	$\frac{7}{7}$	1

The surveys were made under the direction of the Geographer of the United States.
The act of Congress approved May 18, 1796, provided for the appointment of a surveyor general, and directed the survey of the lands northwest of the Ohio River, and above the mouth of the Kentncky River, "in which the titles of the Indian tribes have been extinguished." Under this law one half of the townships surveyed were subdivided into sections "by rumning through the same, each way, parallel lines at the end of every two miles, and by making a corner on each of said lines at the end of every mile," and it further provided that "the sections shall be numbered, respectively, begimning with the number one in the northeast section and proceeding west and east alternately, throngh the township, with progressive numbers till the thirty-sisth be completed." This method of numbering sections, as shown by the following diagram, is still in use:

6	5	4	3	2	1
7	8	9	10	11	12
15	17	16	15	14	13
19	20	21	22	23	24
30	29	25	27	26	25
31	32	33	34	35	36

The act of Congress approved May 10,1800 , required the "townships west of the Muskingum, which ${ }^{*} *^{*}$ are directed to be sold in quarter townships, to be subdivided into half sections of three hundred
aud twenty acres each, as nearly as may he, by ruming parallel lines through the same from east to west, and fiom south to north, at the distance of one mile from each other, and marking corners, at the distance of each half mile, on the lines running from east to west, and at the distance of each mile on those ruming from south to north.
And the interior lines of townships intersected by the Muskingum, and of all the townships lying east of that river, which have not been heretofore actually subdivided into sections, shall also be rum and marked. * * * And in all cases where the exterior lines of the townships thms to be subdivided into sections or half sections shall exceed, or shall not extend, six miles, the excess or deficiency shall be specially noted, aud added to or deducted from the western and northern ranges of sections or half sections in such townships, according as the error may be in rumning the lines from east to west or from south to north."

The act of Congress approved February 11, 1805, directs the subdivision of the public lands into quarter sections, and provides that all the corners marked in the public surveys shall be established as the proper corners of sections, or subdivisions of sections, which they were intended to designate, and that corners of half and quarter sections not marlied shall be placed, as nearly as possible, "equidistant from those two corners which stand on the same line." This act further provides that "The boundary lines actually run and marked * * * shall be established as the proper boundary lines of the sections or subdivisions for which they were intended; and the length of such lines as returned by * * * the surveyors * * * shall be held and considered as the true length thereof, and the bomdary lines which shall not have been actually run and marked as aforesaid shall be ascertained by running straight lines from the established comers to the opposite corresponding corners; but in those portions of the fractional townships, where no such opposite or corresponding corners have been or can be fixed, the said bomdary line shali be ascertained by running from the established corners due north and sonth or east and west lines, as the case may be, to the * * * external boundary of such fractional township."

The act of Congress approved April 25, 1812, provided "That there shall be established in the Department of the Treasury an office to be denominated the General Land Office, the chief officer of which shall be ralled the Commissioner of the General Land Office, whose duty it shall be, under the direction of the head of the Department, to smperintend, exerute, and perform all such acts and things touching or respecting the public lands of the United States, and other lands patented or granted by the United States, as have heretofore been directed by law to be done or performed in the office of the Secretary of 5 tate, of the Secretary and Register of the Treasmry, and of the Secretary of War, or which shall hereafter by law be assigned to the sairl office."

The act of Congress approved April 24, 1820, provides for the sale of public lands in half quarter sections, and requires that "in every case of the division of a quarter section the line for the division thereof shall run north and south * * * and fractional sections, containing 160 acres and upward, shall, in like mamner, as nearly as practicable, be subdivided into half quarter sections, under such rules and regulations as may be prescribed by Ne Secretary of the Treasury; but fractional sections containing less than 160 acres shall not be divided."

The act of Congress approved May 24,1824 , provides "That whenever, in the opinion of the President of the United States, a departure
trom the ordinary mode of supseying land on any river, lake, bayon, or water comse would promote the phblie interest, he may direct the smrveyor general in whose district such land is sitnated, and where the change is intended to be made, under such mes and regulations as the President may prescribe, to canse the lands this situated to be survered in tracts of two acres in width, fronting on any river, bayon, lake, or water course, and muning back the depth of forty acres."

The act of Congress approved May 24,1830 (secs. 2412, 2113, R. S.), provides for the fine and imprisomment of any person obstructing the survey of the pmblic lands, and for the protection of surveyors, in the discharge of their ofticial duties, by the United States marshal, with sufficient force, whenever necessary.

The atet of Congress approved Annil 5, 1832, (lirected the smbdivision of the pmblic lands into guarter quarters: that in erery case of the division of a half quarter section the dividing line should run cast and west; and that fractional sections shomb be subdivided under rules and regulations prescribed by the Secretary of the Treasury. Under the latter provision the Secretary directed that fuctional sections containing less than 160 acres, or the resiluary portion of a frational section, after the subdivision into as many quarter quarter sections as it is susceptible of, may be subdivided into lots, each containing the quantity of a guarter quarter section, as nearly as practicable, by so laying down the line of sublivision that they shall be 20 chains wide, which distances are to be marked on the plat of subdivision, as are also the areas of the guarter quarters and residuary fractions.

The last two acts above mentioned provided that the corners and confentsof half-quarter and quarter-quarter sections should be ascertained, as nearly as possible, in the manner and on the principles directed and prescribed in the act of Congress approved February 11, 180.5.

The act of Congress approved July 1, 1836, provided for the reorganization of the feneral Land office, and that the executive duties of said offere "shall be subject to the supervision and control of the Commissioner of the Gemeral Land Ofice muter the direction of the President of the United States." The repealing clanse is, "That such provisions of the act of the twenty-lifth of April, in the year one thonsand eight limedred and twelre, chtitled 'Anact for the establishment of a femeral Land Oftice in the Department of the Treasmy, and of all acts anemdatory thereof, as are ineonsistent with the provisions of this act, be, and the same are hereby, repealed."

From the wording of this act it wonld appear that the control of the General Lam Olfice was removed from the Treasury Department, and that the Commissioner reported directly to the President; but, as a matter of fact, the Secretary of the Treasmry still had supervisory control, for the act of Congress apmoved Mareh 3,184 , hy which the Department of the Interior was establisherl, provided, 6That the Secretary of the Interion shall perform all the duties in relation to the General Land Office, of smpervision and appeal, now dischared by the Secretary of the Theasmy * * *." By this act the Gemeral Lamd Oftice was transfered to the Dopartment of the Jnterior, where it still remans.

In 1855 at manal of instrmetions to surverors seneral was prepared,
 John M. Moore, then principal clerk of surveys, and the art of fomeress
 mamal of instrmetions relating to the publie surveys, prepared at the Cenemal Lamd Offee, and bearing the date Febrnary twenty-second, eighteen hundred and fifty-fire, the instructions of the Commissioner
of the General Land Office, anil the special instructions of the surveron genema, when not in conlict with said minted manal or the instuctions of said Commissioner. shall be taken and deemed to be a part of every contract for survering the pmblic lands of the United States."

The instructions contained in this volme are issued moder the anthority giren in the clanse in said act proviling that "The instructions of the Commissioner of the General Land office * * * shall be taken and deemed to be a part of every contract for surveying the public lands of the Thited States."

The following comprises so much of the general lavs relating to the smrey of the pmblie domain as it is deemen necessary to incorporate in this volnme, reference being made by chapter and section to the codilication of the P'nblic Land Lawr. prepared pmenant to acts of Congless appoved March 3,189 and June 16, 1850, ant by section number to the Revised Statutes of the United States.

EXISTINGLAND LAWS.-CIAPTER TWO.

THE GENESAL LAND OTITCE.

SEC. S2. The Commissioner of the Gemeral hand oftien slall perform, under the direfthen of the ferretary of the Interior. all exeralive daties appertanine to the survering amb sale of the pablic latals of the l'nited States, or in anywise mepecting such publice lands; and. also, such as relate to private taims of lands. ami the issning of patents for all grants of land inder the anthority of the fowermment. (R.s., 453.)
SEC. 35. All retums relative to the pmblic lands shall he math to the Commissioner of the Gemeral Land (Hite ; and he wall have power to andit and settle all public accomits relative (a the public lands; and upon

Returns and accounts relthe settlement of any such accomits he shall certify the balance. and transmit the accome with the comphers and certificate to the First Comptroller of the Treasury fur his examination amd decision therem. (lis.s. lati.)
sec. 38. Ipan the discontinuance of ans survering district the antherity, powers, and duties in relation to the survey, resurver, or sublivision of lands therein, and all matters and things comecterl theretwith, as donmistos of oner to perform previonsly exereised ly the surveror-general, shall be vested in te.
and devolved upon the Commissiner of the Gempal Land (ftice: and deputy surrefors or other ageuts muld his direction shall have free access to any field-notes, majs, records, and mber papers turned orer to the anhoritics of any state pursuant to law, for the purpose of making eopies thereof, withont charge of any kint. (1.s., 2419, 2220.)
sEC. 45. The Commissioner shall approve all contrants for the Approvat of arresing consurvey of the public lands. (R.s... tracto.
SEC. 16. The instructions issied ley the Commissioner of the fien- Commissioners inatructions (rall Land oftice not in comilict with latw shall be diesned part of deemed part of contract four every contract for surveving the mblic lants. (R.s.. 2.?
\therefore sc: (i1. The Comnissioner, under the direction of the secretary of the Interior, is anthorized to enforee and carry into execution every part of the power of Commissioner to jublie land laws not otherwise specially provided for. (1. S., 21īs.) nake regulations.

CHAP少にTHRER.

SURVETS AND SURYEYORS

[^0]Sec. 84. Everysurvesor-general shall, before entering on the duties of his office, Bond of surveyor-general. execute and deliver to the Secretary of the Interior a bond, with good and sufficient security, for the penal sum of thirty thousand dollars, conditioned for the faithful disbursement, according to law, of all public money placed in his hands, and for the faithfnl performance of the duties of his office; and the President has dtscretionary authority to require a new bond and additional security, under the direction of the Secretary of the Interior, for the lawful disbursement of public moneys. (R.S., 2215, 2216.)

SEC. 85. The commission of each surveyor-geueral shall cease and expire in four Durstion of ofice. years from the date thereof, unless sooner vacated by death, resiguation, or removal from office. (R.S., 2217.)

Scc. 86. Every surveyor-general, except where the President sees cause otherwise to determine, is anthorized to continue in the uninterropted disContimance of duties sud cliarge of his regular official duties after the day of expiration of bond after expiration of commiss:on. his commission and until a new commission is issned to him for the same office, or until the day when a successor enters upon the duties of such office; and the existing ofticial bond of any ofticer so acting shall be deemed good and sufficient and in force until the date of the approval of the new bond to be given by him, if recommissioned, or otherwise, for the additional time he may so continue officially to act, pursuant to the authority of this section. (R. S., 2222.)

SEc. 87. Whenever the surveys and records of any surveying district are completed the surveyor-general thereof shall be reqnired to deliver over to Tranver of papers snd dis- the secretary of state of the respective States, including such surenntinuance of office in case of cumpleted surveys. veys, or to such other officer as may be anthorized to receive them, all the field-notes, maps, records, and other papers appertaining to land titles within the same; and the office of surveyor-general in every such district shall thereafter cease and be discontinued. (R. S., 2218.)
sec. 88. In all cases of discontinuance, as provided in the precerling section, the authority, powers, and duties of the surveyor-generalin relation to
Devolution of powers the survey, resurvey, or subdivision of the lands therein, and all upon Commassioner in case ol dig ontimuance. matters and things connected therewith, shall be vested in and devolved upon the Commissioner of the General Land Office. (R.
S., 2219.)

SEc. 89. Under the anthority and direction of the Commissioner of the General Land Office any deputy surveyor or other agent of the United Free wreas to public rer- States shall have free access to any such field-notes, maps, recorils, ords delivered to States, and coudition of such delivery. and other papers for the purpose of taking extracts therefrom or making copies thereof without charge of any kind; but no transfer of such public records shall be made to the anthorities of any State mintil snch state has provided by law for the reception and safe-keeping of such public records, and for the allowance of free access thereto by the authorities of the United States. (R. S., 2220, 2221.)

Skc. 90. Every survesor-general shall engage a sufficient number of skillful surveyors as his deputies, to whom he is anthorized to arminister the

General duties of survey-ors-general. necessary oaths upon their appointments. He shall have anthority to frame regnlations for their direction, not inconsistent with law or the instructions of the General Land Office, and to remove them for negligence or misconduct in office.
Secomd. He shall eanse to be surveyed, measnred, and marked, without delay, all base and meridian lines throngh such points and perpetuated hy such momments, and such other correction parallels and meridians as may he prescribed ly law or by instructions from the General Land Office in respect to the public lands within his survering district, to which the Indian title has been or may be hereafter extingaished.
Thirl. He shall cause to be survered all private land clams within his district, after they have been confirmed by anthority of Congress, so far as may be necessary to complete the survey of the pulilic lands.

Fourth. He shall transmit to the register of the respective land offices within his district general and particular plats of all lands surveged by him for each land district; and he shall forward copies of such plats to the Commisioner of the General Land ()ffice.

Fifth. He shall, so far as is compatible with the desk duties of his office, occasionally inspect the surveying operations while in progress in the field, sufficiently to satisfy himself of the fidelity of the execution of the work according to contract, and the actual aud necessary expenses inenrred by him while so engaged shall be allowed; and where it is incompatible with his other duties for a surveyor-general to devote the time necessary to make a personal inspection of the work in progress, theu he is authorized to depute a confidential agent to make such examination, aud the actual and necessary expenses of such person shall be allowed and paid for that service,
and five dollars a day during the examinotion in the field; lint such examination shall not be protracted beyond thirty days, and in no case longer than is actnally necessary; and when a surveyor-geueral, or any person employed in his office at a regular salary, is engaged in such special service, he shall receive only his necessary expenses in addition to his regular salary. (R. S., 2223.)
SEC. 91. Every deputy surveyor shall enter into bond, with sufficient security, for the faithful performance of all surveying contracts confided to him; and the penalty of the bond in each caseshall be donble the Bond of deputy furveyor. istimated amonnt of money accruing under such contract, at the rate permile stipulated to be paid therein. The sufficiency of the sureties to all such bonds shall be approved and certified by the proper surveyor-general. (R. S., 2230.)
SEC. 92. The surveyors-general, in addition to the oath now anthorized by law to be administered to depnties on their appointment to office, shall require each of their deputies, on the return of his surveys, to take and sinbscribe an oath that those surveys have been faithfully and correctly execnted according to law and the instructions of the surveyor-general. (R. S., 2231.)
Sec. 93. The district attorney of the United States, in whose district any false, erroneous, or fraudnlent surveys have been executed, shall, upon suit on bond of deputy surthe application of the proper sarveyor-general, immediately insti- veyor, lien oi: tute suit upon the bond of such deputy, and the institution of such suit shall act as a lien upon any property owned or held by such deputy or his sureties at the time such suit was instituted. (R. S., 2232.)
Sec. 98. The President is authorized in any case where he thinks the public interest may require it, to transfer the duties of register and receiver in any district to the surveyor-general of the surveying district in ceiver performent by survey. which such land district is located. (R. S., 2288.)

SEC. 99. The public lands shall be divided by north and south lines rnn according to the true meridian, and by others crossing them at right angles, Rules of survey. so as to form townships of six miles stuare, unless where the line of an Indian reservation, or of tracts of land heretofore surveyed or patented, or the course of navigable rivers, may render this impracticable; and in that case this rule must be departed from no further than such particular circumstances require.

Second. The corners of the townships mnst be marked with progressave numbers from the beginning; each distance of a mile between such corners must be also distinctly marked with marks different from those of the corners.

Third. The township shall be subdivided into sections, containing, as nearly as may be, six hundred and forty acres each, by rmming throngh the same, each way, parallel lines at the end of every two miles; and by making a corner on each of such lines at the eud of every mile. The sections shall be numbered, respectively, beginning with the number one in the northeast section, and proceerling west and east alternately through the township with progressive numbers till the thrty-six he completed.

Fourth. The deputy surveyors, respectively, shall canse to be marked on a tree near each corner established in the manner described, and within the section, the number of such section, and over it the number of the township within which sneh section may he; and the deputy survegors shall carefully note, in their respective field-hooks, the names of the corner trees marked and the mumbers so made.

Fifth. Where the exterior lines of the townships which may be subdivided into sections or half sections exceed, or do not extend six miles, the excess or deficioney shall be suecially noted, and added to or deducted from the western and northern ranges of sectious or half sectious in such townships, according as the error may be in running the lines from east to west, or from north to sonth; the sections and half sections bounded on the northern and western lines of such townships shall be sold as containing only the quantity expressed in the returns and plats, respectively, and all others as containing the complete legal quantity.

Sixth. All lines shall be plainly marked upon trees, and measured with ehains, containing two perches of sixteen and one-half feet each, subdivided into twentyfive equal links; and the chain shall be adjusted to a standard to be kept for that purpose.

Seventh. Every surveyor shall note in his field-hook the truc sitnations of all mines, salt licks, salt springs, and mill-seats which come to his knowledge; all watercourses over which the line he runs may pass; and also the quality of the lands.

Eighth. These field books shall be returued to the surveyor-general, who shall canse therefrom a description of the whole lands surveyed to be madeout and transmitted to the officers who may superintend the sales. He shall also cause a fair plat to be made of the townships and fractional parts of townships contained in the lands, describing the subdivisions thereof, and the marks of the corners. This plat shall be recorded in books to be kept for that purpose; and a copy thereof shall be kept open at the surveyor-general's office for public information, and other copies shall be sent to the places of the sale and to the General Land Office. (R.S., 2395.)

SEC. 100. The boundaries and contents of the several sections, balf sections, and Boundaries and contents of 'flarter sections of the public lands shall be ascertained in conpublic lands, how ascertained. formity with the following principles:
First. All the corners marked in the surveys returned by the surveyor-general shall be established as the proper comers of sections, or subdivisions of sections, which they were intended to designate, and the comers of half :mh quarter sections, not marked on the survers, shall be placed as nearly as possible equidistant from two corners which stand on the same line.
second. The boundary lines, actually run and marked in the surveys returned by the surveyor-general, shall be established as the proper boundary lines of the sections or subdivisions for which they were intenderl, and the length of such lines as returned shall be held and considered as the true length thereot. And the boundary lines which have not been actually run and marked shall be ascertained by runing straight lines from the established enmers to the opposite corresponding corners; but in those portions of the fractional townships, where no such opposite corresponding corners have been or cau be fixed, the boundary lines shall be ascertained by rmining from the established comers dne north and sonth or east and west lines, as the case may be, to the water-course, Indian boundary line, or other external boundary of such fractional township.
Third. Each section or subdivision of section, the contents whereof have been returned, by the surveyor-general, shall be held ant considered as containing the exact quantity expressed in such return; and the half-sections and quarter-sections, the contents whereot shall not-have been thus returned, shall ho held and considfred as containing the one-half or the one-fourth part, respectively, of the returned contents of the section of which they may make part. (R. S., 2396.)

SEC. 101. In every case of the division of a guarter section the line for the division thereof shall run worth and south. and the colners and contents of
1.ines of division of halfquarter sections, how run. half-quarter sections which may thereafter be sold shall be ascertained in the manner and on the principles directed and prescribed by the section preceding, and fractional sections containing one hundred and sixty afres or upwards shall in like manner, as nearly as practicable be subdivided into half quarter-sections, under such rules and regulations as may be prescribed by the sumptary of the Interior, and in every case of a division of a half-quarter section, the line for the division thereof shall imn east ind west, and the comers and contents of quarter-fuarter sections, which may thereafter be sold, shall be ascertained, as neirly as may be, in the manner and on the principles directed and prescribed by the sirction preceding; and fractional sections containing fewer or more than one hundred and sixty acres shall in like manner, as nearly as may be practicalnle, be snbdiviled into quarter-quarter sections, under such rules aud regnlations as may be proscribed he the Secretary of the Interior. (R.S., 2397.)

Nec. 102. Whencer, in the opinion of the President, a departme from the ordinary method of smeying lamd on any river, lake, hayon, or water-conrse wonld promote the pnblic interest, he mar direct thr survesorgeneral, in whose district such hand is situated, and where the rhange is intended to be made, to canse the lamds thas sitnated to be surveged in tracts of two aeres in widlh, frouting on any river, hayon, lake, or water-course, and rumning back the depth of forty acres; which tracts of land so survejed shall be "fferd for sale entire, instcad of in half prarter sections, and in the nsual manner, ami on the same terms in all respects as the other public lands of the United States. (R.S., 2407.)

SEC. 106. The public surveys shall extend over all mineral lands, and all snbrividing of smrveyed lands into lots less than ome hundred and sixty Fixtmuion of public sur acres may be done by ronnty and local surveyors at the expense
royo minerallands. of clamants; but nothing in this section coutained shall require the survey of waste or useless lands. (R.S., 2406.)

SEC. 107. The printed mannal of survering instructions for the surver of the public lamds of the United States, and private land claims, prepared
What instructions to be deectimed part of contract. at the General Land Office, ant hearing date June thirticth, eightecn limblred and ninety-fomr, the instructions of the Commissiomer of the General Land Oftice, and the special instruetions of the surveyor genpral, when not in conflict with such printed mannal, or the instructions of said ('ommissioner. shall be takrm and deemed to bo part of every contract for surveying the pmblic lands of the United States and private land claims. (R. S., 2399, as amented by act approved Augnst 15, 1894.)

Sec. 111. Contracts for the survey of the pulbic lands shall not become binding upon the United States undil aproved hy the Commissioner of

Contracts for surveys of publie lands, when tunding. the General Land ofliee, exerpt in such cases as the Commissioner may otherwise specially order. (R. S., 2398.)
Sec. 112. The Commissioner of the General Land Office has power, and it shall be his duty, to fix the prices per mile for public surveys, which shall

Prices of survers, how cus tabliahed: coat of survey. ing private claima and rnilroad grants to be refonded. in no ease exceed the maximum establisherl by law; and, under instructions to be prepared by the Commissioner, an acenrate acconnt shall be kept ly each surveyor-geueral of the cost of sur-
vesing and platting private land claims, to be reported to the General Land Office, with the matp, of such clain; and patents shall not issue for any such private chaim, nor shall any copy of such survey lee furnished, until the cost of survey and plating has been paid into the Treasury by the clamant or other party; and before any land granted to any railroad company by the United States shall be conveyed to steh company or any persons entitled thereto, under any of the acts incorporating or relating to said company, unless such company is exempted by law from the payment of such cost, there shall first be paid into the Treasury of the United States the cost of surveying, selecting, and convering the same by the said company or persons in interest. (R. S., 2400; 19 Stats., 121.)
SEC. 115. When the settlers in any township, not mineral or reserved by Government, desire a survey made of the same, nuder the authority of the sur- When surves may be had veyor-general, and file an application therefor in writing, and de- byeetlers in township.
posit in a proper United States depository, to the credit of the United States, a smo sufficient to pay for such survey, together with all expenses incident thereto, without cost or claim for indemnity on the United States, it may he lawful for the surveyorgeneral, under such instructions as may be given him by the Commisuioner of the General Land Office, and in accordance with law, to survey such township and make return thereof to the general and proper local land office, provided the township so proposed to be surveyed is within the range of the reqular progress of the public surveys embraced by existing standard lines or bases for the township, and subdivisional surveys. (iे. S., 2101.)
Sec. 116. The deposit of money in a proper United States depository, under the provisions of the precedingsection, shall be deemed an appropria-
tion of the sums so depositerl for the objects contemplated by that Deposit for expenses or section, and the Secretary of the Treasury is anthorized to canse survess dee,
the sums so deposited to be placed to the eredit of the proper
appropriations for the surveying service; but any excesses in such sums over and above the actual cost of the surveys, comprising all expenses incident thereto, for which they were severally deposited, shall be repaid to the depositors respectively. (R. S., 2402.)

SEC. 117. Where settlers make deposits in accordance with the provisions of section one hundred and fifteen, the amount so deposited shall go in part payment for their lands situated in the townships, the sur-

Setleras' deposity for surveying of which is paid for out of such deposits; or the certificates of hands, ond ane pare payment issued for such deposits may be assigued by indorsement and be received in payment for any public lands of the United States entered by settlers under the pre-emption and homestead laws of the United States, and not otherwise. (R. S., 2403.)*

SEC. 118. Each surveyor-general, when thereunto duly authorized by law, shall cause all confirmed private land elaims within his distriet to be acenrately surveyed, and shall transmit plats and field-notes there thereof to the Commissioner of the General Land Office for his confirmed, etc. approval. When publication of such surveys is anthorized by law, the proof thereot, together with any objections properly filed, and all evidence submitted either in support of or in opposition to the approval of any such survey, shall also be transmitted to said Commissioner. (R. S., 2447.)
SEC. 120. Every person who in any manner, by threat or force, interrupts, hinders, or prevents the surveying of the public lands, or of any private land claim which has been or may be confirmed by the United States, Penalty by the persons authorized to survey the same, in conformity with
the instructions of the Commissioner of , the fiemeral Land Office, shall be fined not less than fifty dollars, nor more than three thousand dellars, and be imprisoned not less than one nor more than three years. (R. S., 2412.)
Sec. 1थ1. Whenever the President is satisfied that forcible opposition has been offered, or is likely to be offered, to any surveyor or deputy surveyor in the discharge of his duties in surveying the public lands, it may be lawful for the l'resident to order the marshal of the State or district, by hiniself or deputy, to attend such surveyor or deputy survesor with sufficient force to protect such officer in the execution of his duty, and to remove force should any be offered. (R. S., 2413.)
Sec. 122. The President is authorized to appoint surveyors of public lands, who shall explore such vacant and nuappropriated lands of the United
States as produce the live-oak and red-cedar timbers, and shall surverors to explore and select such tracts or portions thereof, where the principall growth seect timber lands to wse of the Navy. 18 of either of such timbers, as in the judgment of the Secretary.
of the Navy may be necessary to furnish for the Navy a sutticient supply of the

[^1]same. Such surveyors shall report to the President the tracts by them selected, with the boundaries ascertained and accurately designated by actual survey or water-courses. (R. S., 2459.)

APPOINTMENT OF DEPUTY SURVEYORS.

1. Sec. 2223, U. S. Revised Statutes, provides that "Every surveyor general shall engage a sufficient number of skillful surveyors as his deputies, to whom he is authorized to administer the necessary oaths upou their appointments. He shall have authority to frame regulations for their direction, not inconsistent with law or the instructions of the General Land Office, and to remove them for negligence or misconduct in office."

Each surveyor general should exercise great care in the appointment of deputy surveyors, and should thoroughly satisfy himself, before making such appointments, that the applicants possess the proper theoretical and practical qualifications, as well as moral standing and fitness for the important trusts to be confided to them.

To enable the deputy surveyor to fully understand and appreciate the responsibility under which he is acting, his attention is invited to the provisions of the second section of the act of Congress approved Augnst 8,1846 , entitled "An act to equalize the compensation of the surveyors-general of the public lands of the United States, and for other purposes," which is as follows:
"SEC. 2. That the surveyors-general of the public lands of the United States, in addition to the oath now anthorized by law to be administered to deputies on their appointment to office, shall require each of their deputies, on the return of his surveys, to take and subseribe an oath or affirmation that those surveys have been faithfully and correctly executed according to law and the instructions of the surveyor-general; and on satisfactory evidence being presented to any court of competent jurisdictiou that such surveys, or any part thereof, had not been thins executed, the deputy making such false oath or affirmation shall be deemed guilty of perjury, and shall suffer all the pains and penalties attached to that offeuse; and the district attorney of the United States for the time being, in whose district any such false, érroneous, or fraudulent surveys shall have been execnted, shall, upon the application of the proper surveyor-general, immediately institute suit upon the bond of such deputy; and the institution of such suit shall act as a lien upon any property owned or held by such deputy, or his sureties, at the time such suit was instituted."
2. All persons appointed deputy surveyors will deliver to the surveyor general their official oaths, duly subscribed and sworn to, as follows:

[^2]Sworn to and subscribed before me this _ day of ——, A. D., 189-.

A full record of all appointments of deputy surveyors, together with their official oaths, will be carefully preserved in the office of the surveyor general.
3. The deputy surveyor having been duly appointed, and his oath of allegiance filed in the surveyor general's office, contracts for surveys may then be entered into between the surveyor general and such deputy surveyor, and all surveying contracts and bonds will be made out in the following form:

FORM OF CONTRACT.

This agrecment, made this - day of -_, 189-, between the surveyor general of the United States for ——acting for and in behalf of the United States, of the one part, and -, deputy surveyor, of the other part -

Witnesseth, That the said _—_ for and in consideration of the conditions, terms, provisious, and covenants hereinafter expressed, and according to the true intent and meaning thereof, loth hereloy covenant and agree with the said surveyor general, in his capacity aforesaid, that _ the said ___ in -_ own proper person-, with the assistance of such chainmen, axmen, flag-bearers, and moundmen as may be necessary, in strict conformity with the laws of the United States, the printed mannal of surveying instructions, as revised and approved in 1894, and other surveying instructions issued by the Commissioner of the General Land Office, and with such special instructions as - may receive from the said surveyor general in conformity therewith (all of said instructions to be taken and deemed a part of this contract), will well, truly, and faithfully survey, mark, and establish __ and that _ will complete these surveys in the manner a foresaid, ant return the true and original field-uotes thereof to the office of the said surveyor general on or before the - day of - next ensning the date hereof, on penalty of forfeiture, and payiug to the United States the sum mentioned in the annexed bond, if default be made in any of the foregoing conditions. And it is further expressly stipulated and made a condition of this contract that the survers herein described shall not be commenced before the said -_ shall have been officially notified by the said surveyor general of the approval of this contract by the Commissioner of the General Land Office.

And the said surveyor general, in his official capacity aforesaid, covenants and agrees with the said named, in the manner aforesaid, there shall be paid to the said __ by the Treasury Department of the United States, as a full compensation for all work performed inder this agreement, at the rate of _dollars for base, staudard, meridian, and meander lines, __ dollars for township lines, and _dollars for section and connecting lines, except where the lines of survey pass over monntainous lands, or lands heavily timbered, or covered with dense nudergrowth, and in such case at the rate of \qquad dollars for base, standard, meridian, and meander lines, ——dollars for township lines, and _- dollars for section and connecting lines per mile, for every mile and part of mile actually run and marked in the field, random lines and offsets not included.

Provided, however, That no payment shall be made until the plats and field notes of the survey executed under this contract shall have been accepted by the Commissioner of the General Land Office.

It is further agreed by and between the parties to this agreement that no accounts shall be paid unless properly certified by the surveyor general (or his successor in office) that the surveys are in accordance with the instructions herein referred to and the provisions of this agrecment, and until approved plats and certified transscripts of field notes of the surveys for which the acconnts are rendered are filed in the General Land Office.

And it is further understood and agreed by and between the partics to this agreement that the said surveys will not be approved by the said survecor general (or by his snccessor in office) unless they shall be found to be in exact accordance with the instructions hereinbefore specified: Prorided also, That no member of [or delegate to] Congress or subcontractor shall be admitted to any share or part of this contract, or to any benefit to arise therempon, and that no payment shall be made for any surveys not executod by the said deputy surveyor - _ in - own proper persou.

In testimony whereof the parties to these articles of agreement have heremuto set their hands and seals the day and year first above written.
Signed, sealed, and acknowledged betore us:
Witnesses to snrieyor general's signature.
Resilence:
Residence:
Unted Statcs Surveyor Gentral for , [seal.].
Witnesses to deputy surveyon's siguature.
Residence: ——.
Residence: -_

> Chital States Depmiy, [surveyor.

FORM OF BOND.
Know all men hy these presents, that we, -_ of -_ of -_ of principal, ————of - as sureties, are held and firmly bomm unto the United States of America in the sum of - dollars, lawfinmoner of the United States, for which payment. well and truly to be made, we bind onsthees, onr heirs, exeentors, and administrators, and each and every one of us and them, jointly and severally, firmly by these presents.
Signed with our hands and sealed with our seals this - day of - 189 -.
The condition of the above obligation is snch, that if the above-bonmon - deputs surveyor, shall well, truly, and taithfully, according to the laws of the United States, the printed manual of surveying instructions and other survering instrnetions issued, or which may hereafter be issnet, hy the Commissioner of the General Land Office, and to such special instructions as - may receive from the surveyor general in conformity therewith, make and execute the surveys which are required of ——o he made hy the foregoing contract, and return the true field notes of the said survers to the surveror general in the mamer and within the period named in the saicl contract, then this obligation to bo void; otherwise, it shall remain in full foree ambl virtue.
Signed, sealed, and acknowledged before us:
Resid"nce: -_
Residence:

Agiducits of sureties.

[^3]County of

- $s 8$:

I, __ one of the sureties on the nfficial bond of ___ as an_ do depose and say that I am worth, in nnincumbered property, not exempt from execoltion under the laws of the ——of - - dollars and upward after payment of my just debts and liabilities, as follows:
Real estate, valued at \$——, and consisting of * -_.
Personal estate, valued at $\$-$, and consisting of + -.
Signature:

(Post-office address:)
is day of

Sworn to and subseribed before me this _ day of -_, 189 -.
[seal.]
of ——,
County of Do her:
I, Con , who administered the above oath, was, at the time of doing so, a _ in and for salid __ duly qualified to act as such, and that I believe his signature as above written is gemuine.
In testimony whereof, I have heremito set my hand and atfixed the stal of __ this - day of -_, one thousand eight humdred and-.

Certificute.

I, —— hereby certify that in my opinion the sureties to the above bond are sufficient, and I hereby approve the same.
Cuited Stutes Surreyor General for

1. The names of the U. S. surveyor general, deputy surveyor, sureties, and witnesses must be written in full, and the residence of witnesses written after their sighatures.
2. A full deseription of the surveys embraced in the contract must be written in the blank space luft for that purpose.
3. The date when the surveys can be commenced shall not be earlier than the commencement of the fiscal year for which the appropriation is made, except in eases where the appropriation is made immediatcly avalable.
4. The rates named in any contract must not exceed those fixed by law.
5. The signatures of the surveyor general and of the deputy surveyor must each be witnessed by two persons.
6. All erasures, mutilations, and interlineations must he avoided.
7. The bond must he dated the day it is signed by all the parties thereto, and its execution must be subserfuent to the exccution of the contrart.
8. The names of all the parties executing the bond, and of the witnesses thereto, must be written in full.
9. The aftidavits of sureties must be mate before some officer (preferably an officer of the United States) duly authorized to administer uaths and having a seal.
10. The sufficiency of sureties must be certified to by the surveror general.
11. The amonnt of the bond must be at least donble the estimated amomet that will be due to the deputy surveyor upon the completion of the contract made under the same.
12. The duplicate and triplicate contracts and bonds will be forwarded to the General Land Office, and when approved the Commissioner will forward the triplicate to the First Comptroller of the Treasury.

SYSTEM OF REC'ANGULAR SURVEYING.

[See I'lates I, III, and IV.]

1. Existing law requires that in general the public lands of the United States "shall be divided by north and south lines run according to the true meridian, and by others crossing them at right angles so as to form townships six miles square," and that the corners of the townships thus surveyed "must be marked with progressive number's from the beginning."
[^4]Also, that the townships shall be subdivided into thirty-six sections, each of which shall contain six hundred and forty acres, as nearly as may be, by a system of two sets of parallel lines, one governed by true meridians and the other by parallels of latitnde, the latter intersecting the former at right angles, at intervals of a mile.
2. In the execution of the public surveys under existing law, it is apparent that the requirements that the lines of survey shall conform to true meridians, and that the townships shall be 6 miles square, taken together, involve a mathematical impossibility due to the convergency of the meridians.
Therefore, to conform the meridional township lines to the true meridians produces townships of a trapezoidal form which do not contain the precise area of 23,040 acres required by law, and which discrepancy increases with the increase in the convergency of the meridians, as the surveys attain the higher latitudes.

In view of these facts, and mider the provisions of section 2 of the act of May 1S, 1796, that sections of a mile square shall contain 640 acres, as nearly as may be, and also under those of section 3 of the act of May 10, 1500, that "in all eases where the exterior lines of the townships, thus to be subdivided into sections and half sections, shall exceed, or shall not extend 6 miles, the excess or deficiency shall be specially noted, and added to or deducted from the western or northern ranges of sections or half sections in snch township, according as the error may be in running lines from east to west, or from south to north; the sections and half sections bounded on the northern and western lines of such townships shall be sold as containing only the quantity expressed in the returns and plats, respectively, and all others as containing the complete legal quantity," the public lands of the United States shall be surveyed muler the methods of the system of rectangular surveying, which harmonizes the incompatibilities of the requirements of law and practice as follows:

First. The establishment of a principal meridian conforming to the true meridian, and, at right angles to it, a base line conforming to a parallel of latitude.

Second. The establishment of standard parallels conforming to parallels of latitude, initiated from the principal meridian at intervals of 24 miles and extended east and west of the same.

Third. The establishment of guide meridians conforming to true meridians, initiated upon the base line and successive standard parallels at intervals of $\stackrel{24}{ }$ miles, resulting in tracts of land 24 miles square, as nearly as may be, which shall be subsequently divided into tracts of land 6 miles square by two sets of lines, one conforming to true meridians, cressed by others conforming to parallels of latitude at intervals of 6 miles, containing 23,040 acres, as nearly as may be, and designated townships.

Such townships shall be subrlivided into thirty-six tracts, called sections, each of which shall contain 640 acres, as nearly as may be, by two sets of parallel lines, one set parallel to a true meridian and the other conforming to parallels of latitude, mutually intersecting at intervals of 1 mile and at right angles, us nearly as may be.

Any series of contiguous townships situated north and south of each other constitutes a ranye, while such a series sitnated in an east and west direction constitutes a tier.

The accomparying diagram (Plate IH), and the specimen field notes (page 142), pertaining to the same, will serve to illustrate the method of rmuing lines to form tracts of land 24 miles square, as well as the
method of rumming out the exterior lines of townships, and the order and mode of subdividing townships will be found illustrated in the accompanying specimen field notes (page 172), conforming with the township plat (Plate IV). The method here presented is designed to insure as full a compliance with all the requirements, meaning, and intent of the surveying laws as practicable.

The section lines are surveyed from south to north* and from east to west, in order to throw the excess or deficiency in measurement on the north and west sides of the township, as required by law. In case where a township has been partially surveyed, and it is necessary to complete the survey of the same, or where the character of the land is such that only the north or west portions of the township can be surveyed, this rule can not be strictly adhered to, but, in such cases, it will be departed from only so far as is absolutely necessary. It will also be necessary to depart from this rule where surveys close upon State or Territorial boundaries, or upon surveys extending from different meridians.
3. The tiers of townships will be numbered, to the north or south, commencing with No. 1, at the base line; and the ranges of the townships, to the east or west, beginning with No. 1, at the principal meridian of the system.
4. The thirty-six sections into which a towuship is subdivided are numbered, commencing with number one at the northeast angle of the township, and proceeding west to number six, and thence proceeding east to number twelve, and so on, alternately, to number thirty-six in the southeast angle. In all cases of surveys of fractional townships, the sections will bear the same numbers they would have if the township was full.
5. Standard parallels shall be established at intervals of every 24 miles, north and south of the base line, and guide meridians at intervals of every 24 miles, east and west of the principal meridian; thus contining the errors resulting from convergence of meridians and inaccuracies in measurement within comparatively small areas.

INSTRUMENTS.

6. The surveys of the public lands of the United States, embracing the establishment of base lines, principal meridians, standard parallels, meander lines, and the subdivisions of townships, will be made with instruments provided with tine accessories necessary to determine a direction with reference to the trie meridian, independently of the magnetic needle.

Burt's improved solar compass, or a transit of approved construction, with or without solar attachment, will be used in all cases. When a transit without solar attachment is employed, Polaris obsercutions and the retracements necessary to execute the work in accordance with existing law and the requirements of these instructions will be insisted upon.
7. Deputies using instruments with solar apparatus will be required to make observations on the star Polaris at the beginming of every survey, and, whenever necessary, to test the accuracy of the solar apparatus.
The observations required to test the adjustments of the solar apparatus will be made at the corner where the survey begins, or at the
camp of the deputy surveyor nearest said corner; and in all cases the deputy will fully state in the field notes the exact location of the observing station.
Deputy surveyors will examine the adjustments of their instruments, and take the latitude* daily, weather permitting, while running all lines of the public surveys. They will make complete records in their field notes, under proper dates, of the making of all observations in compliance with these instructions, showing the character and condition of the instrument in use, and the precision attained in the survey, by comparing the direction of the line run with the meridian determined by observation.

On every survey executed with solar instruments, the deputy will, at least once on each working day, record in his field notes the proper reading of the latitude are; the declination of the sun, corrected for refraction, set off on the declination arc; and note the correct local mean time of his observation, which, for the record, will be taken at least two hours from apparent noon.
8. The construction and adjustments of all surveying instruments used in surveying the public lands of the United States will be tested at least once a year, and oftener, if necessary, on the true meridian, established under the direction of the surveyor general of the district; and if found defective, the instruments shall undergo such repairs or modifications as may be found necessary to secure the closest possible approximation to accuracy and uniformity in all field work controlleu by such instruments.

A record will be made of such examinations, showing the number and charater of the instrument, name of the maker, the quantity of instrumental error discovered by comparison, in either solar or magnetic apparatus, or both, and means taken to correct the same. The surveyor general will allow no surveys to be made until the instruments to be used therefor have been approved by him.
9. The township and subdivision lines will usually be measured by a two-pole chain of 33 feet in length, t consisting of 50 links, each link being seven and ninety-two hundredths inches long. On uniform and level ground, however, the four-pole chain may be used. The measurements will, however, always be expressed in terms of the fourpole chain of 100 links. The deputy surveyor shall provide himself with a measure of the standard chain kept at the office of the surveyor general, to be used by him as a field standard. The chain in use will be compared and adjnsted with this field standard each working day, and such field standard will be returned to the surveyor general's office for examination when the work is completed.

Deputy surveyors will use eleven tally pins made of steel, not exceeding 14 inches in length, weighty enough toward the point to make them drop perpendicularly, and liaving a ring at the top, in which will be fixed a piece of red cloth, or something else of conspicuous color, to make them readily seen when stuck in the ground.

PROCESS OF CHAINING.

In measuring lines with a two-pole chain, five chains are called a "tally;" and in measuring lines with a four-pole chain, ten chains are called a "tally," because at that distance the last of the ten

[^5]tally pins with which the forward chainman sets out will have been stuck. He then cries "tally," which cry is repeated by the other chainman, and each registers the distance by slipping a thimble, button, or ring of leather, or something of the kind, on a belt worn for that purpose, or by some other convenient method. The hind chainman then comes up, and having counted in the presence of his fellow the tally pins which he has taken up, so that both may be assured that none of the pins have been lost, he then takes the forward end of the chain, and proceeds to set the pius. Thus the chaimmen alternately change places, each setting the pins that he has taken up, so that one is forward in all the odd, and the other in all the even tallies. Such procedure, it is believed, tends to insure aceuracy in measurement, facilitates the recollection of the distances to objects on the line, and renders a mistally almost impossible.

Leveling tire chain and plumbing the pins.

1. The length of every surveyed line will be ascertained by precise horizontal measurement, as nearly approximating to an air line as is possible in practice on the earth's surface. This all-important object can only be attained by a rigid adherence to the three following observances:

First. Ever keeping the chain drawn to its utmost degree of tension on even gronnd.

Second. On uneven ground, keeping the chain not only stretehed as aforesaid, but leveled. And when ascending and descending steep ground, hills or mountains, the chain will have to be shortened to onehalf or one-fơurth its length (and sometimes more), in order aceurately to obtain the true morizontal measure.

Third. The careful plumbing of the tally pins, so as to attain precisely the spot where they should be stuck. The more uneven the surface, the greater the caution needed to set the pins.

MARKING LINES.

1. All lines on which are to be established the legal corner boundaries will be marked after this method, viz: Those trees which may be intersected by the line will have two chops or notches cut on the sides facing the line, without any other marks whatever. These are called "s sight trees" or "line trees." A sufficient number of other trees standing within 50 links of the line, on either side of it, will be blazed on two sides diagonally or quartering toward the line, in order to render the line conspicuous, and readily to be traced, the blazes to be opposite each other, comeiding in direction with the line where the trees stand very near it, and to approach nearer each other toward the line, the farther the line passes from the blazed trees. Due care will ever be taken to have the lines so well marked as to be readily followed, and to cut the blazes deep enough to leave recognizable scars as long as the trees stand.

Where trees 2 inches or more in diameter are found, the required blazes will not be omitted.

Bushes on or near the line should be bent at right angles therewith, and receive a blow of the ax at about the nsual height of blazes from the ground sufficient to leave them in a bent position, but not to prevent their growth.
2. On trial or random lines, the trees will not be blazed. unless occasionally, from indispensable necessity, and then it will be done so gnardedly as to prevent the possibility of confounding the marks of the trial line with the true. But bushes and limbs of trees may be lopped, and stakes set on the trial or random line, at every ten chains, to enable the surveyor on his return to follow and correct the trial line and establish therefirom the true line. To prevent confusion, the temporary stakes set on the trial or random line will be pulled $u p$ when the surveyor returns to establish the true line.

INSUPERABLE OBJECTS ON LINE-WITNESS POINTS.

1. Under circumstances where the survey of a township or section line is obstructed by an impassable obstacle, such as a pond, swamp, or marsh (not meanderable), the line will be prolonged across such obstruction by making the necessary right-angle offsets (Plate IV, sec. 22); or, if such proceeding is impracticable, a traverse line will be run, or some proper trigonometical operation will be employed to locate the line on the opposite side of the obstruction; and in case the line, either meridional or latitudinal, thus regained, is recovered beyond the interrening obstacle, said line will be surveyed back to the margin of the obstruction and all the particulars, in relation to the field operations, will be fully stated in the field notes.
2. As a guide in alinement and measurement, at each point where the line intersects the margin of an obstacle, a witness point* will be established, except when such point is less than 20 chains distant from the true point for a legal corner which falls in the obstruction, in which case a ritness corner \dagger will be established at the intersection. (See Plate IV, section 22.)
3. In a case where all the points of intersection with the obstacle to measurement fall more than 20 chains from the proper place for a legal corner in the obstruction, and a witness corner can be placed on the offset line within 20 chains of the inaccessible corner point, such "witness corner" will be established. (See Plate IV, south boundary of section 16.)

ESTABLISHING CORNERS.

1. To procure the faithful execution of this part of a surveyor's duty, is a matter of the utmost importance. After true coursing and most exact measurements, the establishment of corners is the consummation of the field work. Therefore, if the corners be not perpetuated in a permanent and workmanlike manner, the principal olject of surveying operations will not have been attained.
2. The points at which corners will be established are fully stated in the several articles: "Base Lines," "Principal Meridians," "Standard Parallels," etc., following the title "Initial Points," page 50.
3. The best marking tools adapted to the purpose will be provided for marking neatly, distinctly, and durably, all the letters and figures required to be made at corners, arabic figures being nsed exclusively; and the deputy will always have at hand the necessary implements for keeping his marking irons in perfect order.

DESCRIPTIONS OF CORNERS.

1. The form and language used in the following articles, in describing, for each one of the thirteen classes of corners, eight specific construc-
tions and malings, with the stated moditications in certain eases, will be carefilly followed by depnty surveyors in their field notes; and their field work will strietly conply with the requirements of the descriptions.
2. When pits and mounds of earth are made aceessories to corners, the pits will always have a rectanfular plan; while the mounds will have a conical form, with eircular base; and in all cases both pits and monnds will have dimensions at least as great as those specified in the descriptions. Deputy surveyors will strictly adhere to these provisions, and no departure from the stated requirements will be permitted, either in instructions or pruetice in the field. (See Plates V and VI).
3. Referring to the numbered paragraphs, the corners described in " 3 " will be preterred to those described in either " 1 " or " 2 ", when corners are established in loose, sandy soil, and good bearing trees are available; under similar couditions, the corners described in " 5 " and " 8 " will be preferred to those described in " 4 " and " 7 ", respectively.
4. The selection of the particular construction to be adopted in any case will be left, as a matter of course, to the judgment and discretion of the deputy, who will assign the greatest weight to the durability of the corner materials and permanency of the finished corners.

5 . The following abbreviations and contractions will be used in the deseriptions of corners, viz:

A. M. C.	for auxiliary meander corner.	N.	for north.
bdy.	for boundary.	$\frac{1}{4}$ sec. cor.	for quarter section corner.
bitrs.	for boundaries.	R.	for range.
bet.	for between.	Rs.	for ranges.
C. C.	for closing corner.	sec., secs.	for section, sections.
cor., cors.	for corner, corners.	S. M. C.	for special meauder corner.
dist.	for distance.	S. 1.	for standard coruer.
E.	for east.	sq.	for square.
ft.	for foot or feet.	S.	for south.
firacl.	for fractional.	T. or Tp.	for townslip.
ins.	for inclies.	Ts. or Tps.	for townships.
diam.	for di:mmeter.	W.	for west.
1 ks .	for links.	W. C.	for wituess corner.
M. C.	for meander cornor.	W. P.	for witness point.

For " 18 inches long, inches wide, 6 inches thick," in describing a corner stone, write " $18 \times 7 \times 6$ ins.," being particular to always preserve the same order of length, width, and thiekness (or (lepth), and use a similar form when describing pits.

STANDARD TOWNSHIP CORNERS.

[See Plates III and V.]
When more then onc-hulf of all the stamlard township and seetion corners on any (f miles of " base line or standerd parallel are stone rorners, the descriptions in parturuphs 1 and 2 . if the corners therein deseriberl are cestelblished, will be morlified as follons: Strike out "S. C., on N." After "marked", insert the words:
'4. O., 13 N. oll N.,
22 E. on E., and
21 E . on W. faces; "
When under the conditions rabore specififl the corner described in paragraph 1 is establisherl, a stake may be driven in the enst pit and marked. instead of the stone, and Ieseribed as excmplitied in the last clause of para. graph 6, page 00.
(See Specimen Field Notes, pages 145 and 149).

1. Stone, with Pits and MFound of Earth.

Seta - stone, $-\times-\times$ - ins., - ins. in the ground, for standard cor. of (e. g.) Tps. 13 N., Rs. 21 and 22 E., marked S. C. on N.; with 6 grooves on N., E., and W. faces; dug pits, $30 \times 24 \times 12$ ins., crosswise on each line, E. and W., 4 ft., and N. of stone, 8 ft. dist.; and raised a momnd of earth, 5 ft . base, $2 \frac{1}{2} \mathrm{ft}$. high, N.* of cor.

2. Stone, with Mound of Stone.

Set a - stone, $-\times-\times$ - ins., - ins. in the ground, for standard cor. of (e. g.) Tps. 13 N., Rs. 21 and 22 E., marked S. U., on N.; with 6 grooves on N., E., and W. faces: and raised a mound of stonet, 2 ft . base, $1 \frac{1}{2} \mathrm{ft}$. ligh, N. of cor. Pits impracticable.
3. Stone, with Bearing Trees.

Set a - stone, $-\times-\times$-ins., - ins. in the ground, for standard cor. of (e. g.) Tps. 13 N., Rs. 21 and 22 E., marked S. C., on N.; with 6 grooves on N., E., and W. faces; from which

A -, - ins. diam., bears N. - O E., - lks. dist., marked \ddagger
T. 13 N., R. 2! E., S. 31, B. T.

A - , - ins. diam., bears N. -o W., - Iks. dist., marked T. 13 N., R. 21 E., S. 36, B. T.

4. Post, with l'its and Mound of Earth.

Set a - post, 3 ft. long, 4 ins. sq., with marked stone (charred stake or quart of charcoal), 24 ins. in the ground, for standard cor. of (e. g.) Tps. 13 N., Rs. 22 and 23 E., marked

$$
\text { S. C., T. } 13 \text { N. on N., }
$$

1.. 23 E., S. 31 on E., and
R. 22^{2} E., S. 36 on W. faces; with 6 grooves on N., E., and W. faces; dug pits, $30 \times 24 \times 12$ ins., crosswise on each line, E. and W., 4 ft ., and N. of post, 8 ft . dist.; and.raised a mound of earth, 5 ft . base, $2 \frac{1}{2}$ ft. high, N. of cor.

5. Post, with Bearing Trees.

Set a - post, 3 ft. Iong, 4 ins. sq., 24 ins. in the ground, for standard cor. of (e. . .) Tps. 13 N., Rs. 22 and 23 E., marked
S. C., T. 13 N. on N.,
R. 23 E., S. 31 on E., and
R. 22 E., S. 36 on W. faces; with 6 grooves on N., E., and W. faces, from which

A -, - ins. diam., bears N. - ${ }^{\circ}$ E., - lks. dist., marked T. 13 N., R. 23 E., S. 31, B. T.

A -, - ins. diam., bears N. - ${ }^{\circ}$ W., - lks. dist., marked T. 13 N., R. 22 E., S. 36, B.T.

6. Mound of Earth, with Deposit, and Stake in Pit.

Deposited a marked stone (charred stake or quart of charcoal) 12 ins. in the gromml, for standard cor. of (e. g.) Tps. 13 N., Rs. 22 and 23 E.; dug pits, $30 \times 24 \times 12$ ins., crosswise on each line, N., E., and W. of cor., 5 ft . dist.; and raised a mound of earth, 5 ft. base, $2 \frac{1}{2}$ ft. high, over deposit.

[^6]In E. pit drove a - stake, 2 ft . long, $2 \mathrm{ins} . \mathrm{sq} ., 12 \mathrm{ins}$. in the ground, marked
S. C., T. 13 N. on N.,
R. 23 E., S. 31 on E., and
R. 22 E., S. 36 on W. faces; with 6 groores on N., E., and W. faces.
7. Tree Corner, with Pits and Mound of Earth.

A -, - ins. diant., for standard cor. of (c. g.) Tps. 13 N., Rs. 22 and 23 E., I marked
S. C., T. 1:3 N. on N.,
R. 23 E., S. :31 on E., and
R. 22 E., S. 36 on W. sides; with 6 notches on N., E., and W. sides; dug pits, $24 \times 18 \times 12$ ins., crosswise on each line, N., E., and W. of cor., 5 ft . dist.; and raised a monnd of earth around tree.
8. Tree Corner, with Bearing Trees.

A - , ins. diam., for standard cor. of (e. g.) Tps. 13 N., Rs. 22 and 23 E., I marked
S. C., T. 13 N. on N.,
R. 23 E., S. 31 on E., and
R. 22 E., S. 36 on W. sides; with 6 notches on N., E., and W. sides; from which

A -, - ins. diam., bears N. -o E., - lks. dist., marked T. 13 N., R. 23 E., S. 31, B. T.

A - , ins. diam., bears N. - ${ }^{\circ}$ W., - lks. dist., marked T. 13 N., R. 22 E., S. 36, B. T.

CLOSING TOWNSHIP CORNERS.

[See Plates V and VI.]
When more than one-half of all the tomship corners are stone corners, the descriptions in paragraphs 1 and 2, if the corners therein described are established, will be modified, as follows: Strike out "C. C., on S.;". After "marked", insert the words
"C. C., 3 N. on S.,
2 W. on E., and
3 W . on W. faces."
When, under the conditions above specified, the eorner described in paragraph 1 is established, a stake may be dricen in the east pit, and marked instead of the stone, and described as exemplified in the last clause of paragraph 6, page 26 .

1. Stone, with Pits and Mound of Earth.

Set a - stone, $-\times-\times$ ins., - ins. in the ground, for closing cor. of (e. g.) Tps. 4 N., Rs. 2 and 3 W.. marked U. C., on S.; with 6 grooves on S., E., and W. faces; dug pits, $30 \times 24 \times 1 \stackrel{2}{2}$ ins., crosswise on each line, E. and W., 4 ft ., and S. of stone, $S \mathrm{ft}$. dist.; and raised a mound of earth, 5 ft . base, $2 \frac{1}{2} \mathrm{ft}$. high, S. of cor.
2. Stone, with Mound of Stone.

Set a - stone, $-\times-\times$ ins., -ins. in the gronnd, for closing cor. of (e. g.) Tps. 4 N., Rs. 2 and 3 W., marked C. C., on S.; with 6 grooves on S., E., and W. faces; and raised a mond of stone, 2 ft . base, $1 \frac{1}{2} \mathrm{ft}$. high, S. of cor. Pits impracticable.
3. Stone, with Bearing Trees.

Set a - stone, $-\times-\times-$ ins., - ins. in the ground, for closing cor. of (e. g.) Tps. 4 N., Rs. 2 and 3 W ., marked C. C., on S.; with 6 grooves on S., E., and W. faces; from which:

A -, - ins. diam. bears S. - ${ }^{\circ}$ E., - lks. dist., inarked T. 4 N., R. 2 W., S. 6, B. T.

A -, - ins. diam., bears S. - - W., - lks. dist., marked T. 4 N., R. 3 W., S. 1, B. T.

4. Post, with Pits and Mound of Earth.

Set a - post, 3 ft . long, 4 ins. sq., with marked stone (charred stakr, or quart of charcoal), 24 ins . in the ground, for closing cor. of (e. g.) Tps. 4 N., Rs. 2 and 3 W., marked
C. C., T. 4 N. on S.,
R. 2 W., S. 6 on E., and
R. 3 W., S. 1 on W. faces; with 6 grooves on S., E., and W. faces; dug pits, $30 \times 24 \times 12$ ins., crosswise on each line, E. and W., 4 ft ., and S . of post 8 ft . dist.; and raised a mound of earth, 5 ft . base, $2 \frac{1}{2}$ feet high, S. of cor.
5. Post, with Bearing Trees.

Set a - post, 3 ft . long, 4 ins. sq., 24 ins. in the ground, for closing cor. of (e. g.) Tps. 4 N., Rs. 2 and 3 W., marked
C. C., T. 4 N. on S.,
R. 2 W., S. 6 on E., and
R. 3 W., S. 1 on W. faces; with 6 grooves on S., E., and W. faces; from which

A -, - ins. diam., bears S. -o E., - lks. dist., marked T. 4 N., R. 2 W., S. 6, B. T.

A -, - ins. diam., bears S. - ${ }^{\text {W., }}$. Iks. dist., marked
T. 4 N., R. 3 W., S. 1, B. T.
6. Mound of Earth, with Deposit, and Stake in Pit.

Deposited a marked stone (charred stake or quart of charcoal), 12 ins. in the ground, for closing cor. of (e. g.) Tps. 4 N., Rs. 2 and 3 W.; dug pits, $30 \times 24 \times 12$ ins., crosswise on each line, S., E., and W. of cor., 5 ft . dist.; and raised a mound of earth, 5 ft . base, $2 \frac{1}{2} \mathrm{ft}$. high, over deposit.

In E. pit, drove a - stake 2 ft . long, 2 ins. sq., 12 ins. in the ground, marked
U. C., T. 4 N. on S.,
R. 2 W., S. 6 on E., and
R. 3 W., S. 1 on W. faces; with 6 grooves on S., E.. and W. faces.
7. Tree Corner, with Pits and Mound of Earth.

A -, —ins. diam., for closing cor. of (e. g.) Tps. 4 N., Rs. 2 and :3 W., I marked
C. C., T. 4 N. on S.,
R. 2 W., S. 6 on E., and
R. 3 W., S. 1 on W. sides; with 6 notches on S., E., and W. sides; dug pits, $24 \times 18 \times 12$ ins., crosswise on each line, S., E., and W. of cor., 5 ft . dist.; and raised a mound of earth, around tree.

8. Tree Corner, with Bearing Trees.

A -, - ins. diam., for closing cor. of (e. g.) Tps. 4 N., Rs. 2 and 3 W., I marked
C. C., T. 4 N. on S..
R. 2 W., S. 6 on E., and
R. 3 W., S. 1 on W. sides; with 6 notches on S., E., and W. sides; from which
A -, - ins. cliam., bears S. - ${ }^{\circ} \mathrm{E}$., - Iks. dist., marked T. 4 N., R. 2 W., S. 6, B. T.

A -, - ins. diam., bears S. - ${ }^{\circ}$ W., - lks. dist., marked T. 4 N., R. 3 W., S. 1, B.T.
9. Connecting lines.

All closing townsinip corners on base lines or standard parallels, will be connected, by course and distance, with the nearest standard corner thereon; closing corners on all other lines, will be connected, in a similar manner, with the nearest township, section, or quarter section corner, or mile or half-mile monument, as existing conditions may recuire.
10. Relative positions of Closing Corners, Pits, Mounds, and Bearing Trees.
Any line, which by intersection with another surveyed line, determines the place for a closing corner, will be called a closing line; then in general, the monnd and one pit of a closing corner will be placed on snch "closing line," N., S., E., or W. of the closing corner, as prevailing conditions may require; while said mound and pit, with the two bearing trees (if used), will always be located on the same side of the line closed upon, and on which the other pits will be established, as directed in the foregoing descriptions, and illustrated on Plate VI.

11. Positions and dimensions of Pits of Closing Corners on irregular boundaries.

When a closing line intersects an irregular boundary at an angle less than 75°, and stone or post closing corners are established, the pit on the boundary adjoining the acute angle will be omitted, and the pit on the opposite side of the closing corner will have its dimensions increased, as follows: For a closing township corner, the enlarged pit will measure $42 \times 36 \times 12$ ins.; for a closing section corner it will be $30 \times 24 \times 12$ ins. (See Plate VI, figs. 2 and 3.)

12. Township or Seetion interfering Closing Corners.

When two closing lines, at right angle to each other, intersect an irregular bomdary at points less than 8 feet apart, and stone or post corners are established, the pits, that under ordinary circumstances would be placed on the boundary, will be omitted, and the pits on the closing lines will have their dimensions increased to $36 \times 36 \times 12$ ins. Sce Plate VI, fig. 4 , at a and b.)

13. Positions and dimensions of Pits and Mounds of interfering Closing Corners.

When, under the conditions stated in paragraphs 11 and 12, the corners "Mound of Earth, with Deposits and Stake in Pit" are established, the pits on the boundary line will be omitted when the distance between the closing corners is less than 10 feet and greater than 4 feet, and the dimensions of the pits on the closing lines will be increased as directed in said paragraphs.
In case the distance between the closing corners is less than 4 feet, one mound, 5 ft. base, $2 \frac{1}{2} \mathrm{ft}$. high, will cover the deposits of both closing corners. (See Plate VI, fig. 4, at c, d, and e.)
[See Plate V.]
When more than one-half of all the corners of a tornshipare stone corners, the descriptions in parayraphs 1 and 2 , if the corners therein deseribed are established, will be modified, as follors: After "marked", insert the words
"3 N. on N. E.,
2 E. on S. E.,
2 N. on S. W., and
3 E. on N. W. faces;"

1. Stone, with Pits and Mound of Earth.

Set a - stone, $-\times-\times$ ins., - ins. in the ground, for cor. of ($\mathrm{e} . \mathrm{g}$.) Tps. 2 and 3 N., Rs. 2 and 3 W., marked with 6 notches on each edge; dug pits, $24 \times 24 \times 12$ ins., on each line, N., E., and W., 4 ft., and S. of stone, 8 ft . dist.; and saised a mound of earth, 5 ft. base, $2 \frac{1}{2} \mathrm{ft}$. high, S. of cor.

2. Stone, with Mound of Stone.

Set a - stone, $-\times-\times$ - ins., - ins. in the ground, for cor. of (e. g.) Tps. 2 and 3 N., Rs. 2 and 3 W., marked with 6 notches on each edge, and raised a mound of stone, 2 ft. base, $1 \frac{1}{2} \mathrm{ft}$. high, S. of cor. Pits impracticable.
3. Stone, with Bearing Trees.

Set a - stone, $-\times-\times$ - ins., - ins. in the gromm, for cor. of (e. g.) Tps. 2 and 3 N., Rs. 2 and 3 W., marked with 6 notches on each edge; from which

A - , ins. diam., bears N. - ${ }^{\circ}$ E., - lks. dist., marked T. 3 N., R. 2 W., S. 31, B. T.

A -, - ins. diam., bears S. -o E., -lks. dist., marked T. 2 N., R. 2 W., S. 6, B. T.

A -, - ins. diam., bears S. - ${ }^{\circ}$ W., - lks. dist., marked T. 2 N., R. 3 W., S. 1, B. T.

A -, -ins. diau., bears N.-- W., - lks. dist., marked T. 3 N., R. 3 W., S. 36, B. 'T.
4. Post, with Pits and Mound of Earth.

Set a - post, 3 ft. long, 4 ins. sq., with marked stone (charred stake or gmart of charcoal), 24 ins. in the ground, for cor. of (e. g.) Tps. थ and 3 N., Rs. 2 and 3 W., marked
T. 3 N., S. 31 on N E.,
R. 2 W., S. 6 on S. E.,
T. 2 N., S. 1 on S. W., and
R. 3 W., S. 36 on N. W. faces; with 6 notches on each edge; dug pits, $24 \times 24 \times 12$ ins., on each line, N., E., and W., 4 ft., and S. of post, 8 ft . dist.; and raised a mound of earth, 5 ft . base, $2 \frac{1}{2} \mathrm{ft}$. high, S. of cor.
5. Post, with Bearing Trees.

Set a - post, 3 ft . long, 4 ins. sq., 24 ins. in the ground, for cor. of (e. g.) Tps. 2 and 3 N., Rs. 2 and 3 W ., marked
T. 3 N., S. 31 on N. E.,
R. 2 W., S. 6 on S. E.,
T. 2 N., S. 1 on S. W., and
R. 3 W., S. 36 on N. W., faces; with 6 notches on each edge; from which

A -, - ins. diam., bears N. - E., -lks. dist., marked T. 3 N., R. 2 W., S. 31, B. T.

A -, -ins. diam., bears S. -o E., -lks. dist., marked T. 2 N., R. \geq W., S. 6, В. T.

A -, -ins. diam., bears S. -o W., -lks. dist., marked T. 2 N., R. 3 W., S. 1, B. T.

A -, -ins. diam., bears N. -o W., - lks. dist., marked T. 3 N., R. 3 W., S. 36, B. T.
6. Mound of Warth, with Deposit, and Stake in Pit.

Deposited a marked stone (charred stake or (fuart of charcoal), 12 ins. in the gromnd, for cor. of (e. g.) Tps. 2 and 3 N., Rs. 2 and 3 W.; dug pits $24 \times 24 \times 12$ ins., on each line, N., S., E., and W. of cor., 5 ft. dist.; and raised a mound of earth, 5 ft . base, $2 \frac{1}{2} \mathrm{ft}$. high, over deposit.

In E. pit drove a - stake, 2 ft . long, 2 ins. sq., 12 ins. in the ground, marked
T. 3 N., S. 31 on N. E.,
R. 2 W., S. 6 on S. E.,
T. 2 N., S. 1 on S. W., and
R. 3 W., S. 36 on N. W. faces; with 6 notches on each edge.
7. Tree Corner, with Pits and Mound of Earth.

A —, - ins. dian., for cor. of (e. g.) Tps. 2 and 3 N., Rs. 2 and 3 W ., 1 ntarked
T. 3 N., S. 31 on N. E.,
R. 2 W., S. 6 on S. E.,
T. 2 N., S. 1 on S. W., and
R. 3 W., S. 36 on N. W. sides; with 6 notehes facing each eardinal point; clug pits, $24 \times 18 \times 12$ ins., on each line, N., S., E., and W. of cor., 5 ft . dist.; and raised a momed of earth arond tree.
8. Tree Corner, with Bearing Trees.

A -, - ins. dian., for cor. of (e. g.) Tps. 2 and 3 N., Rs. 2 and 3 W., I marked
T. 3 N., S. 31 on N. E.,
R. 2 W., S. 6 on S. E.,
T. 2 N., S. 1 on S. W., and
R. 3 W., S. 36 on N. W. sides; with 6 notches facing each cardinal point; from which
A -, - ins. diam., bears N. - ${ }^{\circ}$ E., - lks. dist., marked T. 3 N., R. 2 W., S. 31, B. T.

A -, - ins. diam., bears S. - ${ }^{\circ}$ E., - lks. dist., marked T. 2 N., R. 2 W., S. 6, B. T.
A. -, - ins. diam., bears S. - ${ }^{\circ}$ W., - lks. dist., marked T. $\boldsymbol{2}^{2}$ N., R. 3 W., S. 1, B. T.

A - - ins. diam., bears N. -o W., - lks. dist., marked T. 3 N., R. 3 W., S. 36, B. T.

CORNERS COMMON TO TWO TOWNSHIPS ONLY.

[See Plates V and IX .]
When more than one-half of all the corners of a township are stone corners, the descriptions in paragraphs 1 and 2 , if the corners therein described are establishcd, will be modified as follows:

After "marked", insert the words:
" 2 N. on S. W., and
7 W. on N. W. faces."

When, under the conditions above specitied, the corner Aeseribed in paragraph 1 is established, a stake may be dricen in the south pit and marked instead of the stone, and described as exemplified in the last clanse of paragraph 6, below.

1. Stone, with Pits and Mounds of Earth.

Set a - stone, - $\times-\times$ - ins., - ins. in the ground, for cor. of (e. g.) Tps. 2 and 3 N., R. 7 W., on W. bdy. Tp. 3 N., R. 6 W., marked with 6 notches on N., and W. edges; dug pits $30 \times 24 \times 12$ ins., on each line, N. and S., 4 ft ., and W. of stone, S ft. dist.; and raised a mound of earth, 5 ft . base, $2 \frac{1}{2} \mathrm{ft}$. high, W. of cor.

2. Stone, with Mound of Stone.

Set a - stone, - $\times-\times$-ins., -ins. in the ground, for cor. of (e. g.) Tps. 2 and 3 N., R. 7 W., on W. bdy. Tp. 3 N., R. 6 W., marked with 6 notches on N., and W. edges; and raised a mound of stone, 2 ft . base, $1 \frac{1}{2} \mathrm{ft}$. high, W. of cor. Pits impracticable.
3. Stone, with Bearing Trees.

Set a - stone, - $\times-\times$ - ins., - ins. in the ground, for cor. of (e. g.) Tps. 2 and 3 N., Rs 5 and 6 W., on N. bdy. Tp. 2 N., R. 6 W., marked with 6 notches on N. and W. elges; from which

A -, ins. diam., bears N. - O E., - lks. dist., marked T. 2 N., R. 5. W., S. 6, B. T.

A -, -ins. diam., hears N. -o W., - lks. dist., marked
T. 3 N., R. 6 W., S. 36, B. T.
4. Post, with Pits and Mound of Earth.

Set a - post, 3 ft . long, 4 ins. sq., with marked stone (charred stake or quart of charcoal), 24 ins. in the ground, for cor. of (e. g.) Tps. 2 and 3 N., Rs. 5 aud 6 W., on N. bdy. Tp. 2 N., R. 6 W., marked
T. 2 N., R. 5 W., S. 6 on N. E., and
T. 3 N., R. 6 W., S. 36 on N: W. faces; with 6 notehes on N. and W. edges; dug pits, $30 \times 24 \times 12$ ins., on each line, E. and W., 4 ft., and N. of post, $S \mathrm{ft}$. dist.; and raised a mound of earth, 5 ft . base, $2 \frac{1}{2} \mathrm{ft}$. high, N. of cor.
5. Post, with Bearing Trees.

Set a - post, 3 ft . long, 4 ins. sq., 24 ins. in the ground, for cor. of (e. g.) Tps. 2 and 3 N., R. 7 W., on W. bdy. Tp. 3 N., R. 6 W., marked
T. $2 \mathrm{~N} .$, R. 7 W., S. 1 on S. W., and
T. 3 N., R. 7 W., S. 36 on N. W. faces; with 6 notches on N. and W. edges; from which

A -, -ins. diam., bears S. - O W., - lks. dist., marked
T. 2 N., R. 7 W., S. 1, B. T.

A -, - ins. diam., bears N.-o W., - lks. dist., marked T. 3 N., R. 7 W., S. 36, B. T.
6. Mound of Earth, with Deposit, and Stake in Pit.

Deposited a marked stone (charred stake or quart of charcoal), 12 ins. in the ground, for cor. of (e. g.) Tps. 2 and 3 N., R. 7 W., on W. bdy. Tp. 3 N., K. $6 \mathrm{~W} . ;$ dug pits, $30 \times 24 \times 12$ ins., on each line, N., E., and W. of cor., 5 ft (list.; and raised a mound of earth, 5 ft . base, $2 \frac{1}{2} \mathrm{ft}^{\mathrm{t}}$. high, over deposit.

In S. pit drove a - stake, 2 ft. long, 2 ins. sq., 12 ins. in the ground, marked
T. 2 N., R. 7 W., S. 1 on S. W., and
T. 2 N., R. 7 W., S. 36 on N. W. fices; with 6 notehes on fr. and W. edges.
7. Tree Corner, with Pits and Mound of Earth.

A - - - ius. diam., for cor. of (e. (.)), Tps. 2 and 3 N., Rs. 5 and 6 W., on N. bdy. Tp. ᄅ~N., R. 6 W., I marked
T. 2 N., R. 5 W. on N. E., and
T. 3 N., R. 6 W . on N. W. sides; with 6 notches facing N. and W.: dug pits $24 \times 18 \times 12$ ins., crosswise on each line, N., E., and W. of cor., 5 ft . dist.; and raised a monnd of earth, aromud tree.
8. Tree Comer, with Beariny Trees.

A—, - ins. diam., for cor. of (e. g.) Tps. ᄅ2 and 3 N., R. 7 W., on W. bdy. Tp. 3 N., R. 6 W., I marked
T. 2 N., R. 7 W., S. 1 on S. W., and
T. 3 N., R. 7 W., S. 36 on N. W.. sides; with 6 notehes facing N. and W.; from which

A -, - ins. diam., bears S. -o W., - Iks. dist., marked T. 2 N., R. 7 W., S. 1, B. T.

A -, - ins. diam., bears N. -o W., - lks. dist., marked T. 3 N., R. 7 W., S. 36, B. T.

CORNERS REFERRING TO ONE TOWNSHIP ONLY.

$$
\text { [See Plates } \Gamma \text { and } 1 \mathrm{~K} \text {.] }
$$

When more then one-half of all corners of a township are stone corners, the descriptions in paragraphs 1 and 2, if the corners therein described are established, will be modified, as follows: After " marked", insert the words:
" 2 N., 6 W . on S. W. face."
When, under the conditions above specified, the corner described in paragraph 1 is established, a stake may be driven in the south pit, and marked instead of the stone, and described as exemplified in the last clause of paragraph 6, page 32.

1. Stone, with Pits and Mound of Earth.

Set a - stone, - $-\times$ - ins., -ins. in the grommd, for N. E. cor. of (e. g.) Tp. 2 N., R. 6 W., marked with 6 notches on S. and W. ed ges; dug pits, $36 \times 36 \times 1 \geq$ ins., on each line, S . and W . of stone, 8 ft. dist.; and raised a mound of earth, 5 ft . base, $3 \frac{1}{2} \mathrm{ft}$. high, S . W. of cor.
2. Stone, with Moumd of Stone.

Set a - stone, $-\times-\times$ - ins., -ins. in the ground, for N. E. cor. of (e. g.) Tp. 2 N., R. 6 W., marked with 6 notches on S. and W. edges; and raised a monnd of stone, $2 \mathrm{tt}^{\mathrm{t}}$. base, $1 \frac{1}{2} \mathrm{ft}$. high, S. W. of cor. Pits impracticable.
3. Stone, with Bearing Tree.

Set a - stone, $-\times-\times$ ins., - ins. in the ground for N. E. cor. of ${ }^{\prime}$ (c. g.) Tp. 2 N., R. 6 W., marked with 6 notches on S. and W. edges; from which

A - , ins. diam., bears S. - ${ }^{\text {D }}$., - lks. dist., marked T. 2 N., R. 6 W., S. 1, B. T.
4. Post, with Pits and Mownd of Earth.

Set a - post, 3 ft . long, 4 ins. sq., with marked stone (charred stake or quart of charcoal), 24 ins. in the ground, for N. E. cor. of (e.g.) Tp. 2 N., R. 6 W., marked
T. ンN., R. 5 W., S. 1i O! N. E.,
S. 6 on S: E:
T. 2 N., R. 6 W., S. 1 on S. W., and
S. 6 on N. W. faces; with 6 notches on S. and W. edges; dug pits, $36 \times 36 \times 12$ ins., on each line, S . and W. of post, 8 ft . dist.; and raised a mound of earth, 5 ft . base, $2 \frac{1}{\mathrm{ft}}$. high, S. W. of cor.
5. Post, with Bearing Tree.

Set a - post, 3 ft. long, 4 ins. sq., 24 ins. in the ground, for S. W. cor. of (e. g.) Tp. 3 N., R. 6 W., marked
T. 3 N., R. 6 W., S. 31 on N. E.,
S. 1 on S. E.,
T. 2 N., R. 7 W., S. 1 on S. W., and
S. 1 on N. W. faces; with 6 notches on N. and E. edges; from which

> A - , ins. diam., bears N. - ${ }^{\circ}$ E., - lks. dist., marked
> T. 3 N., R. 6 W., S. 31, B. T.
6. Mound of Earth, with Deposit, and Stake in Pit.

Deposited a marised stone (charred stake or quart of charcoal), 12 ins. in the ground, for S. W. cor. of (e. g.) T. 3 N., R. 6 W.; dug pits, $36 \times 36 \times 12$ ins., on each line, N. and E. of cor., 5 ft . dist.; and raised a monnd of earth, 5 ft . base, $2 \frac{1}{2} \mathrm{ft}$. high, over deposit.

In E. pit drove a - stake, 2 ft. long, 2 in. sq., 12 ins. in the ground, marked
T. 3 N., R. 6 W., S. 31 on N. E.,
S. 1 on S. E.,
T. 2 N., P. 7 W., S. 1 on S. W., and
S. 1 on N. W. faces; with 6 notches on N. and E. edges.
7. Tree Corner, with Pits and Mound of Earth.

A -, - ins. diam., for S. W. cor. of (e. g.) Tp. 3 N., R. 6 W., I marked
T. 2 N., R. 6 W., S. 31 on N. E.,
S. 1 on S. E.,
T. 2 N., R. 7 W., S. 1 on S. W., and
S. 1 ou N. W. sides; with 6 notches facing N. aud E.; dug pits, $30 \times 24 \times 12$ ins., crosswise on each line, N. and E. of cor., 5 ft. dist.; and raised a mound of earth around tree.
8. Tree Corner, with Bearing Tree.

A -, - ins. dian., for S. E. cor. of (e. g.) Tp. 4 N., R. 6 W., I marked
S. 6 on N. E.,
T. 3 N., R. 5 W. S. 6 on S. E.,
S. 6 on S. W., and
T. 4 N., R. 6 W., S. 36 on N. W. sides; with 6 notches facing N. and W.; from which

A - - ius. diam., hears N. - ${ }^{\circ}$ W., - lks. dist., marked
T. 2 N., R. 6 W., S. 36, B. T.

STANDARD SECTION CORNERS.
[See Plates 111 and V.]

1. Stone, with Pits and Mound of Earth.

Set a - stone, $-\times$ - - ins., - ins. in the ground, for standard cor. of (e. g.) secs. 31 and 32, marked S. C., on N.; with 5 grooves on E., and 1 groove on W. faces; dug pits, $24 \times 18 \times 12$ ins., crosswise on
each line, E. and W., 3 ft., and N. of stone, 7 ft. dist.; and raised a mound of earth, 4 ft . base, ${ }^{2} \mathrm{ft}$. high, N. of cor.
2. Stone, with mound of Stone.

Set a - stone, $-\times-\times$ ins., - ins. in the ground, for stand. cor. of (e. g.) secs. 3 J and 36 , marked S. C., on N.; with 1 groove on,L., and $\tilde{5}$ grooves on W. faces; and raised a mound of stone, 2 ft . base $1 \frac{1}{2}$ ft. high, N. of cor. Pits impracticable.
3. Stone, with Beuring Trees.

Set a - stone, $-x-\times$ - ins., - ins. in the gromnd, for standari cor. of (e. g.) secs. 33 and 34 , marked S. C., on N.; with 3 grooves on E. and W. faces; from which

A -, - ins. diam., bears N. - ${ }^{\circ}$ E., - lks. dist., marked T. 13 N., R. 21 E., S. 34, B. T.

A -, - ins. diam., bears N. - ${ }^{\circ}$ W., - lks. dist., marked
T. 13 N., R. 21 E., S. 33, B. T.
4. Post, with Pits and Mound of Earth.

Set a - post, 3 ft. long, 4 ins. sq., with marked stone (charred stake or quart of charcoal), 24 ins. in the gromed, for standard cor. of (e. g.) secs. 32 and 33 , marked
S. C., T. 13 N., R. 21 E. on N.,
S. 33 on E., and
S. 32 on W. faces; with 4 grooves on E., and 2 grooves on W. faces; dug pits, $24 \times 18 \times 12$ ins., crosswise on each line, E. and W., 3 ft., and N. of post, 7 ft . dist.; and raised a momnd of earth, 4 ft . base, $\stackrel{2}{ } \mathrm{ft}$. high, N. of cor.
5. Post, with Bearing Trees.

Set a - post, 3 ft. long, 4 ins. sq., 24 ins. in the gromed, for standard cor. of (e. g.) secs. 34 and 3π, marked
S. C., T. 13 N., R. 21 on N.,
S. 3π on E., and
S. 34 on W. faces; with two grooves on E., and 4 grooves on W. faces; from which
A -, - ins. diam., bears N. - ${ }^{\circ}$ E., - lks. dist., marked
T. 13 N., R. 21 E., S. 35, B. T.

A -, - ins. diam., bears N. -o W., - lks. dist., marked T. 13 N., R. 21 E., S. 34, B. T.
6. Mound of Earth, with Deposit, and Stake in Pit.

Deposited a marked stone (charred stake or quart of charcoal), 12 ins. in the ground, for standard cor. of (e. g.) secs. 33 and 34 ; dug pit., $24 \times 18 \times 12$ ins., crosswise on each line, N., E., and W. of cor., $\boldsymbol{\pi}$ ft . dist.; and raised a momd of earth, 4 ft . base, $\xlongequal{2} \mathrm{ft}$ high, over deposit.

In E. pit drove a - stake, 2 ft . long, 2 ins. sq., 12 ins. in the ground, marked
S. C., T. 13 N., R. 22 E. on N.,
S. 34 on E., and
S. 33 on W. faces; with 3 grooves on E. and W. faces.
7. Tree Corner, with Pits and Mound of Earth.

A -, - ins. diam., for standard cor. of (e. g.) secs. 31 and 32 , I marked
S. C., T. 13 N., R. 22 E. on N.,
S. 32 on E., and
S. 31 on W. sides; with 5 notches on E., and 1 notch on W. sides; 356 -3
dug pits, $18 \times 18 \times 12$ ins., N., E., and W. of Cor., 4 ft. dist.; and raised a mound of earth around tree.
8. Tree Corner, with Bearing Trees.

A -, - ins. diam., for standard cor. of (e. g.) secs. 35 and 36 , I marked
S. C., T. 13 N., R. 22 E. on N.,
S. 36 on E., and
S. 35 on W. sides; with 1 notch on E., and 5 notches on W. sides; from which

A -, - ins. diam., bears N. - ${ }^{\circ}$ E., - lks. dist., marked T. 13 N., R. 22 E., S. 36, B. T.

A -, - ins. diam., bears N. - ${ }^{\circ}$ W., - lks. dist., marked T. 13 N., R. 22 E., S. 35, B. T.

CLOSING SECTION CORNERS.

[See Plates V and VI.]

1. Stone, with Pits and Mound of Earth.

Set a - stone, $-\times-\times$ - ins., $-i n s$. in the gronnd, for closing cor. of (e. g.) secs. 1 and 2, marked C. C., on S.; with 1 groove on E., and 5 grooves on W. faces; dug pits, $24 \times 18 \times 12 \mathrm{~ms}$. crosswise on each line, E. and W., 3 ft ., and S. of stone, 7 ft . dist.; and raised a mound of earth, 4 ft . base, 2 ft . high, S. of cor.
2. Stone, with Mound of Stone.

Set a - stone, $-\times-\times-$ ins., - ius. in the ground, for closing cor. of (e. g.) secs. 3 and 4 , marked C. C., on S.; with 3 grooves on E. and W. faces; and raised a mound of stone, 2 ft . base, $1 \frac{1}{2} \mathrm{ft}$. high, S. of cor. Pits impracticable.

3. Stone, with Bearing Trees.

Set a - stone, $-\times-\times$ - ins. - ins. in the ground, for closing cor. of (e. g.) sees. 1 and 2, marked C. C., on S.; with 1 groove on E., and 5 grooves on W. faces; from which

A -, - ins. diam., bears S. -o E., - lks. dist., marked
T. 4 N., R. 3 W., S. 1, B. T.

A -, - ins. diam., bears S.O - W., - lks. dist., marked
T. 4 N., R. 3 W., S. ב, B. T.
4. Post, with Pits and Moomd of Earth.

Set a - post, 3 ft. long, 4 ins. sq., with marked stone (charred stake or quart of charcoal), 24 ins. in the ground, for closing cor. of (e. g.) sees. 1 and 2, marked
C. C., T. 4 N., R. 3 W. on S.,
S. 1 on E., and
S. 2 on W. faces; with 1 groove on E., and 5 grooves on W. faces; dug pits, $24 \times 18 \times 12$ ins., crosswise on each line, E. and W., 3 ft., and S. of post, 7 ft . dist.; and raised a mound of earth, 4 ft . base, 2 ft . high, S. of cor.
5. Post, with Bearing Trees.

Set a - post, 3 ft. long, 4 ins. sq., 24 ins. in the ground, for closing cor. of (e. g.) sees. 1 and $\stackrel{2}{2}$, marked
C. C., T. 4 N., R. 3 W. on S.,
S. 1 on E., and
S. 2 on W. faces; with 1 groove on E., and 5 grooves on W. faces; from which

A-, - ins. diam., bears S. -o E., - lks. dist., marked
T. 4 N., R. 3 W., S. 1, B. T.

A-, - ins. diam., bears S. -o W., -lks. dist., marked
T. 4 N., R. 3 W., S. 2, B.T.
6. Mound of Earth, with Deposit, and Stake in Pit.

Deposited a marked stone (charred stake or quart of chareoal), 12 ins. in the ground, for closing cor. of (e. g.) secs. 3 and 4; dug pits, $24 \times 18 \times 12$ ins., crosswise on each line, S., E., and W. of cor.. 4 ft . dist.; and raised a monnd of earth, 4 ft . base, 2 ft . high, over deposit.

In E. pit drove a - stake, 2 ft . long, 2 ins. sq., 12 ins. in the ground, marked
C. C., T. 4 N., R. 3 W. on S.,
S. 3. on E., and
S. 4. on W. faces; with 3 grooves on E. and W. faces.
7. Tree Corner, with Pits and Mound of Earth

A-, -ins. diam., for closing cor. of (e. g.) secs. 1 and 2 , I marked
C. C., T. 4 N., R. 3 W. on S.,
S. 1 on E., and
S. 2 on W. sides; with 1 notch on E., and 5 notches on W. sides; dug pits, $18 \times 18 \times 12$ ins., S., E., and W. of cor., 5 tt. dist.; and raised a monnd of earth around tree.
8. Tree Corner, with Bearing Trees.

A -, - ins. diam., for closing cor. (e. g.) sees. 1 and 2, I marked
C. C., T. 4 N.. R. 3 W. ou S.,
S. 1 on E., and
S. $\grave{2}$ on W. sides; with 1 notch on E., and 5 notches on W. sides; from which
A -, - ins. diam., bears S. -o E., - lks. dist., marked T. 4 N., R. 3 W., S. 1, B. T.

A -, -ins. diam., bears S. - ${ }^{\circ}$ W., - lks. dist., marked
T. 4 N., R. 3 W., S. 2, B. T.
9. All closiug section corners, on base lines or standard parallels, will
be connected by conrse and distance with the nearest standard corner
thereon. (See paragraphs 5 and 9 , page 55.)

CORNERS COMMON TO FOUR SECTIONS.

[See Plates V^{*} and IX.]
When more thanone-half of all the corners in a township are stone corners. the descriptions in paragruphs 1 and $\dot{\sim}$, if the corners therein described are established for cor. of sees. 15, 16, 21 and 22 , will be modified as follous: after "marked," insert the words
"4 N. on N.E., and
3 W. on S.E. faces."
When, unter the conditions above specified, the corner described in paragraph 1 is established, " stake may be iriven in the southeast pit, und marked instend of the stone, and described as exemplified in the last clanse of paragraph 6, paye $3 \overline{7}$.

1. Stone, with Pits and Mound of E'arth.

Set a - stone, $-\times-\times$-ins. - ins. in the ground, for cor. of (e. g.) secs. $14,15,22$, and 23 ['Tp. 4 N., h. 3 W.]*, marked with 3 notches on s.

[^7]and E. ellges; dug pits, $18 \times 18 \times 12$ ins., in each sec. $5 \frac{1}{2}$ ft. dist.; and raisel a mound of earth, 4 ft . base, 2 ft . high, W. of cor.
\because Stone, with Mound of Stone.
Set a - stone, $-\times-\times-$ ins., - ins. in the ground, for cor. of (e. g.) secs. 14, 15, 22, and 23 [Tp. 4 N., R. 3 W.]*, marked with 3 notches on S. and E. edges; and raised a mound of stone, 2 ft . base, $1 \frac{1}{2} \mathrm{ft}$. high, W. of cor. l'its impracticable.

3. Stone, with Bearing Trees.

Set a - stone, $-\times-\times-$ ins., - ins. in the ground, for cor. of (e. g.) secs. 9, 10, 15, and 16 , marked with 4 notches on S., and 3 notches on E. ellges; fiom which

A -, - ins. diam., bears N. - ${ }^{\circ}$ E., - lks. dist., marked T. 2 N., R. 2 W., S. 10, B. T.

A -, - ins. diam., bears S. - ${ }^{\circ}$ E., - lks. dist., marked T. 2 N., R.2 W., S. 15, B. T.

A -, - ins. diam., bears S. - ${ }^{\circ}$ W., - lks. dist., marked T. 2 N., R. 2 W., S. 16, B. T.

A -, - ins. diam., bears N. - ${ }^{\circ}$ W., - lks. dist., marked T. 2 N., R. 2 W., S. 9, B. T.

4. Post, with Pit and Mound of Earth.

Set a - post, 3 ft. long, 4 ins. sq., with marked stone (charred stake or quart of charcoal), 24 ins. in the ground, for cor. of (e. g.) secs. 15, 16, 21; and 22, marked
T. 2 N., S. 15 on N. E.,
R. 2 W., S. 22 on S. E.,
S. 21 on S. W., and
S. 16 on N. W. faces with 3 notches on S. and E. edges; dng pits, $18 \times 18 \times 12$ ins., in each sec., $5 \frac{1}{2}$ ft. dist. ; and raised a momnd of earth, 4 ft . base, $: \mathrm{ft}$. high, W. of cor.

5. Post, with Beariny Trees.

Set a - post, 3 ft . long, 4 ins. $\mathrm{sq} ., 24$ ins. in the gromd for cor. of (e. g.) sees. 25, 26, 3.) and 36, marked
T. 2 N., S. 25 on N. E.,
R. 2 W., S. 36 on S. E.,
S. 35 on S. W., and
S. 26 on N.W. faces; with 1 notch on S. and E. edges; from which

A -, - ins. diam., bears N. - ${ }^{\text {E }}$., - lks. dist., marked Ti. 2 N., R. 2 W., S. $\downarrow 5, ~ B . ~ T . ~$
A -, - ins. diam., bears S. - ${ }^{\circ}$ E., - lks. dist., marked 'T. ュN., R. 2 W., S. 36, B. T.
A -, - ins. diam., bears S. -o W., - lks. dist. marked T. e2 N., R. 2 W., S. 35 , B. T.

A -, - ins. diam., bears N. - ${ }^{\text {W. W., - lks. dist., marked }}$ T. 2 N., R. 2 W., S. $2(6,1$. T.
6. Mound, with Deposit, and Stake in Pit.

Deposited a marked stone (eharred stake or quart of charcoal), 12 ins. in the gromnd, for cor. of (e.g.) sees. 25, 26, 35, and 36; dug pits, $18 \times$ 18×12 ins., in each sece, 4 ft . dist.; and raised a mound of earth, 4 ft . base, " 2 ft . high, over deposit.

[^8]In S. E. pit drove a - stake, 2 ft. long, 2 ins. sq., 12 ins. in the ground, marked
T. 2 N., S. 25 on N. E.,
R. 2 W., S. 36 on S. E.,
S. 35 on S. W., and
S. 26 on N. W. faces; with 1 notch on S. and E. edges.
7. Tree Corner, with Pits and Mound of Earth.

A-, - ins. diam., for cor. of (e. g.) sees. $29,30,31$, and 32 , I marked T. 2 N., S. 29 on N. E.,
R. 2 W., S. 32 on S. E.,
S. 31 on S. W., and
S. 30 on N. W. sides; with 1 notch on S., and 5 notrhes on E. sides; dug pits, $18 \times 18 \times 12$ ins., in each sec., 5 ft . dist.; and raised a mound of earth around tree.
8. Tree Corner, with Bearing Trees.

A-, -ins. diam., for cor. of (e. g.) sees. 5, 6, 7, and S, I marked
T. 2 N., S. 5 on N. E.,
R. 2 W., S. S on S. E.,
S. 7 on S. W., and
S. 6 on N. W. sides; with 5 notches on S. and E. sides; from which

A-, -ins. diam., bears N. - ${ }^{\circ}$ E., - lks. dist., marked T. 2 N., R. 2 W., S. 5, B. T.

A-, - ins. diam., bears S. -o E., 1ks. dist., marked T. 2 N., R. 2 W., S. 8, B.T.

A-, - ins. diam., bears S.- ${ }^{\circ}$ W., lks. dist., marked T. 2 N., R. 2 W., S. 7, B. T.

A -, - ins. diam., bears N. - ${ }^{\circ}$ W. - lks. dist., marked T. 2 N., R. 2 W., S. 6, B. T.

SECIION CORNERS COMMON TO TWO SECTIONS ONLY.

[See Plates V and VI.]

When more than one-half of all the corners in a township are stone corners, the descriptions in paragraphs 1 and 2, if the corners therein described are established near cor. of sees. 15, 16, 21 , und 22, will be modified, as follows:

After "marked", insert the words
"3 N. on S. W., and
7 W. on N. W. faces;".
When, under the conditions above specified, the comer described in paragraph 1 is established, a stake may be driven in the southeest pit, and marked instead of the stome, and deseribed as exemplified in the last clause of paragraph 6, page 38.

1. Stone, with Pits and Mound of Earth.

Seta-stone, $-\times-\times$ ins., -ins. in the ground, for cor. of (e. g.)* secs. 25 and $36[T \mathrm{~T} .3$ N., R. 7 W.$], \dagger$ marked with 5 notches on N., and 1 noteh on S. edges; dug pits, $\because 4 \times 24 \times 12$ ins., in each sec., 6 ft . dist.; and raised a mound of earth. 4 ft . base, 2 ft . high, W. of cor.

[^9]
2. Stone, with Mound of Stone.

Set a - stone, $-\times-\times$ ins., - ins. in the ground, for cor. of (e.g.)* secs. 15 and 22 [T]. 3 N., R. 7 W.], \dagger marked with 3 notches on N.. and S . edges; and raised a mound of stone, 2 ft . base, $1 \frac{1}{2} \mathrm{ft}$. high, W. of cor. Pits impracticable.
3. Stone, with Bearing Trees.

Set a - stone, $-\times-\times$ ins., - ins. in the ground, for cor'. of (e.g. $) \frac{\ddagger}{7}$ secs. 28 and 29 , marked with 4 notches on E. edge; from which

A -, - ins. diam., bears N. - ${ }^{\circ}$ E., - lks. dist., marked T. 3 N., R. 7 W., S. 28, B. T.

A -, - ins. diam., bears N. - \quad W., - lks. dist., marked T. 3 N., R. 7 W., S. 29, B. T.

4. Post, with Pits and Mound of Earth.

Set a - post, 3 ft. long, 4 ins. sq., with marked stone (eharred stake or quart of charcoal), 24 ins. in the ground, for cor. of (e. g.) 33 and 34,§ marked
T. 2 N., S. 34 on N. E., and
R. 6, W., S. 33 on N. W. faces; with three notches on E. and W. edges; dug pits $24 \times 24 \times 12$ ins., in each sec., 6 ft . dist, and raised a mound of earth, 4 ft . base, 2 ft . high, N . of cor.
5. Post, with Bearing Trees:

Set a - post, 3 ft . long, $4 \mathrm{ins}$. sq., 24 ins . in the ground, for cor. of (e. g.) secs. 24 and $25, \|$ marked
T.' 3 N., S. 25 on S. W., and
R. 5 W., S. 24 on N. W. faces; with 4 notches on N., and 2 notches on S. edges; from which

A -, - ins. diam., bears S. - O W., - lks. dist., marked T. 3 N., R. 5 W., S. 25, B. T.

A -, - ins. diam., bears N. -o W., - lks. dist., marked T. 3 N., R. 5 W., S. $\because 4$, B. T.
6. Mound of Earth, with Deposit, and Stake in Pit.

Deposited a marked stone (charred stake or quart of charcoal), 12 ins. in the ground, for cor. of (e. g.) secs. 13 and 24 ; 9 dug pits $24 \times$ $24 \times 12 \mathrm{ins}$., in each sec., 4 ft . dist.; and raised a mound of earth, 4 ft . base, 2 ft . high, over deposit.

In S. W. pit drove a - stake, 2 ft. long, 2 ins. sq., 12 ins. in the ground, marked
T. 2 N., S. 24 on S. W., and
R. 6 W., S. 13 on N. W. faces, with 3 notches on N. and S. edges.
7. Tree Corner, with Pits and Mound of Earth.

A —, —ins. dliam., for cor. of (e. g.) sees. 24 and 25,** I marked
T. 3 N., S. 25 on S. W. and
R. 6 W., S. 24 on N. W. sides; with 4 notches on N. and S. sides; dug pits, $18 \times 18 \times 12$ ins., in each sec., 5 ft . dist.; and raised a mound of earth around tree.

[^10]太. Tree Corner, with Bearing Trees.
A -, - ins. diam., for cor. of (e. g.) sees. 22 and 27,* I marled
T. 3 N., S. 27 on S. W., and
R. 7 W., S. 22 on N. W. sides; with 4 notehes on N., and 2 notehes ons. sides; from which

A -; - ins. diam., bears S. -o W., - lks. dist., marked T. 3 N., R. 7 W., S. 27, B. T.

A -, - ins. diam., bears N. - ${ }^{\circ}$ W., - lks. dist., marked T. 3 N., R. 7 W., S. 22, B. T.

SECTION CORNERS REFERRING TO ONE SECTION ONLY.

$$
\text { [See Plates } V \text { and } I X \text {.] }
$$

When more than one-half of all corners in a township are stone corners, the descriptions in paragraphs 1 and $\stackrel{2}{ }$, if the corners therein deseribed, wre established near the place for cor. of sees. 15, 16, 21, and 22, will be modified, cts follows: After "marked", insert the words:
"\& N., $5 \mathrm{~W}^{\top}$. on N. E. face;"
When, under the conditions abore specified, the corner deseribed in paragraph 1 is established, a stake may be driven in the pit, amd marked instead of the stone, and described as exemplified in the last clause of puragraph 6 , page 40.

1. Stone, with Pit and Mound of Earth.

Set a - stone, $-\times-\times$ - ins., - ius. in the gronnd, for S. W. cor. of (e. g.) sec. 12 [Tp. $\stackrel{2}{2}$ N., R. 5 W.],* marked with 1 notch on E. edge; dug a pit, $36 \times 36 \times 12$ ins., in the see., S ft. dist.; and raised a mound of earth, 4 ft. base, 2 ft. high, N. E. of cor.

2. Stone, with Moumd of Stone.

Set a - stone, $-\times-\times$ - ins., - ins. in the ground, for S. W. cor. of (e. g.) sec. $12[\mathrm{~T} p .2$ N.. R. 5 W.], \dagger marked with 1 notch on E. edge; and raised a monnd of stone, 2 ft . base, $1 \frac{1}{2} \mathrm{ft}$. high, N. E. of cor.

3. Stome, with Beariny Tree.

Set a - stone, - $\times-\times$ ins., - ins. in the ground, for S. W. gor. of (e. g.) sec. 12, marked with 1 notelı on E. edge; trom which

A -, -ins. diam., bears N. - ${ }^{\circ}$ E., - lks. dist., marked T. 2 N., R. 5 W., S. 12, B. T.

4. Post, with Pit and Monmd of Earth.

Set a - post, 3 ft . long. 4 ins. sq., with marked stone (charred stake or quart of charcoal), 24 ins . in the ground, for N. W. cor of (e. g.) sec. $10 ; \ddagger$ marked
T. 3 N., S. 9 on N. E.
R. 5 W., S. 10 on S. E.
S. 9 on S. W., and
S. 9 on N. W. faces; with 5 notches on S. and 3 notches on E. edges; dug a pit, $36 \times 36 \times 12$ ins., in the sec., 8 ft. dist.; and raised a mound of earth, 4 ft . base, 2 ft . high, S . E. of cor.

[^11]5. Post, with Bearing Tree.

Set a - post, 3 ft . long, 4 ins. sq., 24 ins. in the gromnd, for S. W. cor. of (e. g.) sec. 12;* marked
T. 2 N., S. 12 on N. E.,
R. 5 W., S. 13 on S. E.,
S. 13 on S. W., and
S. 13 on N. W. faces; with 1 notch on E. edge; from which

A -, - ins. diam., bears N. - ${ }^{\circ}$ E., - lks. dist., marked
T. 2 N., R. 5 W., S. 12, B. T.
6. Mound of Earth, with Deposit and Stake in pit.

Deposited a marked stone (charred stake or quart of charcoal), 12 ins. in the ground, for N. W. cor. of (e. g.) see. $10 ; \dagger$ dng a pit, $36 \times$ 36×12 ins. in the sec., 5 ft. dist.; and raised a mound of earth, 4 ft . base, 2 ft. high, over deposit.

In the pit drove a - stake, 2 ft. long, 2 ins. sq., 12 ins. in the ground, marked
T. 3 N., S. 9 on N. E.,
R. 5 W., S. 10 on S. E.,
S. 9 on S. W., and
S. 9 on N. W. faces; with 5 notches on S., and 3 notches on E. edges.
7. Tree Corner, with Pits and Mound of Earth.

A -, - ins. dian., for S. W. cor. of (e. g.) sec. 12,* I marked
T. 2 N., S. 12 on N. E.,
R. 5 W., S. 13 on S. E.,
S. 13 on S. W., and
S. 13 on N. W. sides, with 1 notch on E. side; dug a pit, $24 \times 24 \times$ 12 ins., in the scẹ., 5 ft dist.; and raised a mond of earth aromd tree.
8. Tree Corner, with Bearing Trees.

A-, - ins. diam., for N. W. cor. of (e. g.) sec. 10, I marked
T. 3 N., S. 9 on N. E.,
R. 5 W., S, 10 on S. E.,
S. 9 on S. W., and
S. 9 on N. W., sides; with 5 notches on S., and 3 notehes on E. sides; from which
A-, - ins. diam., bears S. - $^{\circ} \mathrm{E} .$, - lks. dist., marked
T. 3 N., R. 5 W., S. 10, B. T.
quarter section curners.

> [See llates V and VI.]

1. Stone, with I'its ant Mound of Earth.

Set a - stone, $-\times-\times$ ins., - ins. in the gromd, for $\frac{1}{4}$ see. cor. [(e. g.) bet. secs. 14 and $2: 3$], \ddagger marked $\frac{1}{4}$, on N. face; dug pits, $18 \times$ 18×12 ins., E. and W. of stone, 3 ft. dist.; and raised a mound of earth, $3 \frac{1}{2}$ ft. base, $1 \frac{1}{2} \mathrm{ft}$. high, N. of cor.

[^12]2. Stone, with Mound of Stone.

Set a - stone, $-\times-\times$ ins., - ins. in the gromd, for $\frac{1}{4}$ sec. cor. [(e. g.) bet. secs. 14 and 15],* marked $\frac{1}{4}$ on W. face; and raised a morud of stone, 2 ft . base, $1 \frac{1}{2} \mathrm{ft}$. high, W. of cor. Pits impracticable.
3. Stone, with Bearing Tires.

Set a - stone, $-\times-\times$ - ins., - ins. in the gromnd, for $\frac{1}{4}$ sec. cor. [(e. g.) bet. sees. 16 and 17],* marked $\frac{1}{4}$, on W. face; fron which
A-, - ins. diam., bear's N.-O E., -lks. dist., marked $\frac{1}{4}$ S., B. T.
A -, - ins. diam., bear's N.-○ W.,- lks. dist., marked $\frac{1}{4}$ S., B. T.
4. Post, with Pits and Momd of Earth.

Set a - post, 3 ft. long, 3 ins. si., with marked stone (charred stake or quart of charcoal), 24 ins. in the gromad, for $\frac{1}{4}$ sec. cor. [(e. g.) bet. secs. 4 and $9 \jmath^{*}$, marked $\frac{1}{4} \mathrm{~S}$., on N. face; dng pits $18 \times 18 \times 12$ ins., L. and W. of post, 3 ft . dist.; and raised a mound of earth, $3 \frac{1}{2} \mathrm{ft}$. base, $1 \frac{1}{2}$ ft. high, N. of cor.
5. Post, with Bearing Trees.

Set a - post, 3 ft. long, 3 ins. sq., 24 ins. in the ground, for $\frac{1}{4}$ sec. cor. [(e. g.) bet. secs. 21 and 22],* marked $\frac{1}{4}$ S., on W. face; from which

A - , ins. diam., bears S. - ${ }^{\circ}$ E., - lks. dist., marked $\frac{1}{4}$ S., B. T.
A -, - ins. diam., bears S. - ${ }^{\circ}$ W., - liss. dist., marked $\frac{1}{4}$ S., B. T.

6. Mound, with Deposit and Stake in Pit.

Deposited a marked stone (charred stake or quart of charcoal), 12 ins. in the ground, for $\frac{1}{4}$ sec. cor. [(e. g.) bet. secs. 21 and 23$] ; *$ dug pits, $18 \times 18 \times 12$ ins., E. and W. of cor., 4 ft. dist.; and raised a mound of earth, $3: \frac{1}{2} \mathrm{ft}$. base, $1 \frac{1}{2} \mathrm{ft}$. high, over deposit.

In E. pit flrove a - stake, 2 ft. long, 2 ins. sq., 12 ins. iu the ground, marked $\frac{1}{4}$ S. on N. face.
7. Tree Corner, with Pits and Mound of Earth.

A -, - ins. diam., for $\frac{1}{4}$ sec. cor. [(e. g.) bet. secs. 7 and 8],* I marked $\frac{1}{4}$ S., on W. side; dug pits, $18 \times 18 \times 12$ ins., N. and S. of cor., 4 ft . dist.; and raised a momid of earth around tree.
8. Tree Corner, with Bearing Trees.

A - - ins. diam., for $\frac{1}{4}$ sec. cor. [(e. g.) bet. secs. 20 and 29],* I marked $\frac{1}{4}$ S., on N. side ; from which
A -, - ins. diam., bears N. - ${ }^{\circ} \mathrm{W} .,-\mathrm{lks}$. dist., marked $\frac{1}{4}$ S., B. T.
A -, - ins. diam., bears S. - \circ W., - lks. dist., marked $\frac{1}{4}$ S., B. T.

9. Pits and Mounds of Quarter Seetion Corners.

On meridional lines, the pits will be ding N. and S., and the mound will be placed on the west side of the corner; on latitudinal lines, the pits will be located E. and W., and the mound will be built on the north side of the corner. See Plate VI.

[^13]
10. Markings on Quarter Section Corners.

On meridional lines, the markings will be placed on the west side, and on lutitudinal lines, on the north side of the stone, post, or other comer.

11. Stakes in Pits of Quarter Section Cormers.

On meridional lines the stakes will be driven in the S. pit, and on latitudinal lines, in the E. pit.

STANDARD QUARTER SECTION CORNERS.

[See Plate V and VI.]
All standard quarter section corners, on base lines or standard parallels, will have the letters S. C. (for standard corner), precede the marking " $\frac{1}{4}$ " or " $\frac{1}{4}$ S.", as the case may be; such corners will be established in all other respects like other quarter section corners.

When bearing trees are described for standard quarter section corners, each tree will be marked, S. C., $\frac{1}{4}$ S., B. T.

QUARTER SECTION CORNERS COMMON TO TWO QUARTERS OF ONE SECTION.

These corners will be similar in all respects to those that are common to four quarters of two sections. See notes on Plates VII and VIII.

MEANDER CORNERS.
[See Plates V and VI.]

1. Stone, with Pit and Moumd of Earth.

Set a - stone, $-x-x$-ins. - ins. in the ground for meander cor. of (e. g.) fracl. secs. 26 and 35,* marked
M. C. on E. face; with 1 groove on S. face; ciug a pit,* $36 \times 36 \times 12$ ins., 8 ft . W. of stone; and raised a mound of eartl, 4 ft . base, 2 ft . liigh, W. of cor.*
2. Stone, with Mound of Stone.

Seta - stone, $-\times-\times$-ins., -ins. in the ground, for meander cor. of (e. g.) fracl. secs. 17 and 18, \dagger marked
M. C. on S. face; with 5 grooves on E. face; and raised a mound of stone, 2 ft . base, $1 \frac{1}{2} \mathrm{ft}$. high, N. of cor. Pits impracticable.
3. Stone, with Bearing Trees.

Set a - stone $-x-x$ - ins., - ins. in the ground, for meander cor. of (e. g.) fracl. secs. 26 and 35 , with 1 groove on S. face; \dagger marked:
M. C. on W. face; from which

A-, - ins., diam., bears N. - E ., - lks. dist., marked
T. 15 N., R. 20 E., S. 26, M. C. B. T.

A-, - ins., diann., bears S. - © C. - lks., dist., marked
T. 15 M., R. 20 E., S. 35, M. C. B. T.
4. Post, with Pit and Mound of Earth.

Set a - post, 3 ft. long, 4 ins., sq., with marked stone (charred stake or quart of chareal), 24 ins. in the gromud, for meander cor. of (e. s.) fracl. secs. 19 and $20, \dagger$ marked
M. C. oll N.,

[^14]T. 15 N. on S.,
R. 20 E., S. 20 on E., and
S. 19 on W. faces; dug a pit, $36 \times 36 \times 12$ ins., 8 ft. S. of post; and raised a mound of earth, 4 ft . base, 2 ft . high, S. of cor.
5. Post, with Bearing Trees.

Set a - post, 3 ft . long, 4 ins. sq., 24 ins. in the ground, for meander cor. of (e. g.) fracl. secs. 25 and 26 ,* marked
M. C. on N.,
T. 15 N. on S.,
R. 20 E., S. 2π on E., and
S. 26 on W. faces; from which

A -, - ins. diam., bears S. - ${ }^{\circ}$ E., - lks. dist., marked T. 15 N., R. 20 E., S. 25, M. С. B. T.

A-, - ins. diam., bears S. - ${ }^{\circ}$ W., - lks. dist., marked T. 15 N., R. 20 E., S. 26, M. C. B. T.
(i. Mound rith Deposit, aud Stake in Pit.

Deposited a marked stone (charred stake or quart of charcoal) 12 ins. in the ground, for meander cor. of (e. g.) fracl. secs. 25 and 26 ;* dug a pit, $36 \times 36 \times 12$ ins., 5 ft . N. of cor.; and raised a mound of earth, 4 ft . base, 2 ft . high, over deposit.

In the pit drove a - stake, 2 ft. long, 2 ins. sq., 12 ins. in the ground, marked
M. C. ou S.,
T. 15 N . on N.,
R. 20 E., S. 26 on W., and
S. 25 on E. faces.
7. Tree Corner, with Pits and Mound of Earth.

A - , - ins. diam., from meander cor. of (e. g.) fracl. secs. 17 and $\because 0$, * I marked
M. C. on W.,
T. 15 N . on E.,
R. 20 E., S. 17 on N., and
S. 20 on S. sides dug a pit, $36 \times 36 \times 12$ ins., 8 ft. E. of tree; and raised a mound of earth, 4 ft . base, 2 ft . high, E. of cor.
8. Tree Corner, with Bearing Trees.

A -, - ins. diam., for a special meander cor. of (e. g.) fracl. E. and W. halves of see. $33, \dagger$ I marked
S. M. C. on N.,
T. 15 N. on S.,
R. 20 E., S. 33 on E., and
S. 33 on W. sides; from which

A -, - ins. diam., bears S. -o E. - lks. dist., marked T. 15 N., R. 20 E., S. 33 , S. M. C. B. T.

A - , - ins. diam., bears S. - ${ }^{\circ}$ W., - lks. dist., marked T. 15 N., R. 20 E., S. 33, S. M. C. B.T.
9. Pits and Mounds of Meamder Corners.

When a pit is dug as an accessory to a meander corner, it will be located S feet from such corner (except as otherwise provided for in paragraph 6), on the side opposite the stream or lake meandered;

[^15]while the momnd will be placed midway between the corner and nearest side of the pit.

10. Markings on Meander Corners.

On all meander corners, the letters "M. C." (for meander corner) will be cut into the side facing the stream or lake to be meandered. On post or tree meander corners, within township exteriors, additional marks will be placed, as follows: the township number will be marked on the side opposite "M. C."; the proper range and section nmber will be placed on the right-hand side (when looking along line toward the stream or lake), and the appropriate section number on the opposite shie.

All meander corners on base lines or standard parallels will be marked S. C. on the north side or face.

On principal or gnide meridians, and on meridional township lines, the letters "M. C." will be placed as above directed; the township number will be marked on the opposite side; while the proper range and section numbers will be marked on the sides facing the east and west cardinal points.

On base lines or standard parallels and on latitudinal township lines, the township numbers will be marked on the sides facing the north and south cardinal points; while the range and section numbers will be placed on the side opposite the marking "M. C."

In all the markings provided for in this paragraph, the numbers indicating townships, ranges, and sections, will be preceded by the initial letters "T." "R." and "S.", respectively.

11. Deseriptions will be modificd in certain cases.

When a tree is marked for a regulur meander corner, the descriptions in paragraphs 8 will be modified, as follows: strike out "special"; in hace of "E. and W. halves of sec. 33 ", write "sees. - and -,"; and omit the letter "S.", preceding "M. C.", in the marking on corner and bearing trees.

The descriptions in paragraphs 1 to 7 , inclusive, will be modified to describe speeial meander corners, as illustrated in paragraph 8 , by writing "special" before meander cor. and "S." before "M. C.," when conditions require the change.

12. Special Meander Corners and Auxiliary Meander Corners.

Regular meander corners are those established on standard, township, or section lines. See Plate V, for plans of meander corners, and the specimen plat, Plate IV, sections 17, 18, 19, 20, 25, 26, and 35, for locations of the meander corners described in Specimen Field Notes, pages 208 to 210 .

The meander corners, on lines of legal subdivisions, other than standard, township, or section lines, will be designated special meander corners, (e. g.) those located on the Specimen Plat, Plate IV, in section 33.

Meander enrners, not on a line belonging to the system of rectangnlar surveying, will be called muxilimy meander corners, (e. g.) the meander comer on Diamond Rock, in section 18.

13. Meander Corners on unsafe ground will be witnessed.

When a Meander Comer falls at a point where prevailing conditions would insure its destruction by matural canses, a witness corner to such meander comer will be established, as provided for in the article "Wituess Corners", page 47.

CORNERS ON RESERVATION OR OTHER BOUNDARIES NO'T CONFORMING TO THE SYSTEM OF RECTANGULAR SURVETING.
[See Plate VI.]

1. Stone, with Mound of Earth.

Set a - stone, $-\times-\times-$ ins.,* - ins. in the ground, for the (e. g.) 17 mile cor., marked

17 M. on S.,
N. P. on E., and
P. L. on W. faces; dug pits, $36 \times 36 \times 12$ ins., E. and W. of stone, 4 ft . dist.; and raised a mound of earth, 5 ft . base, $2 \frac{1}{2} \mathrm{ft}$. high, S . of col'.
2. Stone, with JIound of Stone.

Set a - stone, $-\times-\times-$ ins., ${ }^{*}$ - ins. in the gromnd, for the (e. g.) 38 mile cor., marked

38 M. on N. E.,
N. P. on N. W., and
P. L. on S. E. faces; and raised a mound of stone, 3 ft . base, 2 ft . high, \dagger N. E. of cor. Pits imprarticable.
3. Stone, with Bearing Trees.

Set a - stone, $-\times-\times-$ ins., * - ins. in the ground, for the (e. g.)
35 mile cor., marked
35 M. on E.,
N. P. on N., and

S W. on S. faces; from which
A -, - ins. diam., bears N. - ${ }^{\text {E }}$., - lks. dist., marked N. P. I. R., 35 M. B. T.

A - , ins. diam., bears S. - O E.. \ddagger - lks. dist., marked T. 6 N., R. 8 W., S. 9, 35 M. B. T.

A -, - ins. diam., bears S. - $\mathrm{W} ., \ddagger$ - lks. dist., marked T. 6 N., R. 8 W., S. 8,35 M. B. T.

A -, - ins. diam., bears N. - ${ }^{\circ}$ W., - lks. dist., marked N. P. I. R., 35 M. B. T.

4. Post, with Pits and Mound of Earth.

Set a - post, $3 \mathrm{ft} . \mathrm{loug}, 5$ ins. sq., § with marked stone (charred stake or quart of charcoal), 24 ins. in the ground, for the (e. g.) 17 mile cor., marked

17 M. on S.,
N. P. I. R. on E., aurl
P. L. on W. faces; dug pits, $36 \times 36 \times 12$ ins., E. and W. of post, 4 ft. dist.; and raised in momd of earth, 5 ft . base, $2_{2}^{2} \mathrm{ft}$. higin, S. of cor.

[^16]5. Post, with Bearing Trees.

Set a - post, 3 ft . long, 5 ins. sq., ${ }^{*} 24$ ins. in the ground, for the (e. g.) 35 mile cor., marked

35 M. 11 E..
N. P. I. R. on N., and
T. 6 N., R. 8 W., S. 9, on S.; fiom which

A -, - ins. diam., bears N. - ${ }^{\circ}$ E., - ks. dist., marked N. P. I. R., 35 M. B. T.

A - , ins. dian., bears S. -o E., \dagger - lks. dist., marked T. 6 N., R. 8 W., S. 9, 35 M. B. 'T.

A - , ins. diam., bears S. - ${ }^{\circ}$ W., \dagger - lks. dist., marked T. 6 N., R. 8 W., S. S, 35 M. B. T.

A -, - ins. diam., bears N. -o W., - lks. dist., marked N. P. I. R., 35 M. B. T.
6. Mount, with Deposit and Stake in Pit.

Deposited a marked stone (charred stake or quart of charcoal), 12 ins. in the ground, for the (e. g.) 33 mile cor.; dug pits, $36 \times 36 \times 12$ ins., N. E. and S. W. of cor., 5 ft . dist.; and raised a mound of earth, 5 ft . base, $2 \frac{1}{2} \mathrm{ft}$. high, over deposit.

In N. E. pit drove a - stake, 2 ft . long, $2 \mathrm{ins} . \mathrm{sq}$., 12 ins . in the ground, marked

33 M. on S. E.,
N. P. I. R. on N. E., and
T. 6 N., R. $\&$ W., S. 15 on S. W. faces.
7. Tree Corner, with Pits and Mound of Earth.

A - , ins. diam., for the (e. g.) 29 mile cor., I mark
29 M. on E.,
N. P. I. R. on N., and
T. 5 N., R. 7 W., S. 8 on S. sides; dug pits, $36 \times 36 \times 1$: ins., N. and S. of tree, $\overline{7} \mathrm{ft}$. dist.; and raised a monnd of earth, $\overline{5} \mathrm{ft}$. base, $2 \frac{1}{2} \mathrm{ft}$. high, E. of cor.
S. Tree Corner, with Bearing Trees.t

A - , - ins. diam., for the (e. g.) 35 mile cor., I mark
3.) M. on E.,
N. P. I. R. on N., and
T. 6 N., R. 8 W., S. 9 on S. sides; from which

A -, - ins. diam., bears N. - ${ }^{\circ}$ E., - lks. dist., marked N. P. I. R., 35 N., В. T.

A -, - ins. diam., bears S. - ${ }^{\circ}$ L., - lks. dist., marked T. 6 N., R. 8 W., S. 9, 35 M., B. T.

A -, - ins. diam., bears S. - ${ }^{\text {W W., - lks. dist., marked }}$ T. 6 N., R. S W., S. S, 35 M., B. T.

A - , - ins. diam., bears N. -O W., - lks. dist., marked N. P. I. R., 35 М., В. Т.

9. Corner Monument of Stone, with Deposit.

Deposited a marked stone (charred stake, quart of charcoal, or vial with record \ddagger inclosed), 12 ins. in the ground, for the S. W. cor. of

[^17](e. g.) the Ne\% Perces Imlian Peservation; and built a monmment of stone, 3 ft. sq. at base, $ٌ 2$ ft. sq. on top, 3 ft . high, over deposit; marked
S. W. cor., N. I. I. R. on N. E.,*
P. I., - † M. - t chs. on S. E.,
P. L., — \ddagger on S. W., and
P. L. on N. W. faces.
10. A Post for Cornor Monument, with Pits and Mound of Earth.

Set a post, 3 ft . long, 5 ins. sq., 24 ins. in the gromnd, for the N. W. cor. of (e. g.) the Ne\% Perees Indian Reservation, marked
P. L. on S. E.,
N. W. cor. N. P. I. R. on S. E.,
P. L. - † M. - † chs. on S. W., aud
P. L. - \ddagger on N. W. faces; dug pits, $36 \times 36 \times 12$ ins., S. and N. E. of post, 8 ft . dist.; and raised a mound of earth, 5 ft . base, $9 \frac{1}{2} \mathrm{ft}$. high, S. E. of cor.

11. A Stone for Corner Monmment, with Pits and Moumd of Earth.

Set a - stone, $36 \times 10 \times 7$ ins., 27 ins . in the ground, for the N. E. cor. of (e. g.) the Nez I'erces Indian Reservation; marked
P. L. on N. E.,
I. L. on S. E.,
N. E. cor., N. P. I. R. on S. W., and
P. L. on N. W. faces; dıg pits $36 \times 36 \times 12$ ins., S. and W. of stone, 8 ft. dist.; and raised a mound of earth, 5 ft . base, $2 \frac{1}{2} \mathrm{ft}$. high, S. W. of cor.

12. Morlifieations of deseriptions.

When a stone or post is established for a corner monument (i. e.) at a cormer of a reservation, and four (4) bearing trees are available, the descriptions in paragraph 10 and 11 will be modified, as follows: Replace all that refers to pits and mound of earth, by correct descriptions of four properly marked bearing trees, for each corner. (See paragraphs 3 and 5 , pages 47,48 .)

The dimensions and arrangement of pits and mounds, described in the last two paragraphs, are similar to those described for "Comers referring to one township only." (See paragraphs 1 and 4, lage 31.)

WITNESS CORNERS.§

1. Witness Corners will be established in certain cases.

When the true point for any corner described in these instructions falls where prevailing conditions would insure its destruction by natural canses, a wituess corner will be established in a secure position, on a surreyed line if possible, and within twenty chains of the corner point thus witnessed.

2. Markings on Witness Corners.

A witness corner will bear the same marks that would be placed upon the corner for which it is a witness, and in addition, will have the letters "W. C." (for witness corner), conspicuously displayed above the

[^18]
48

regular markings; such witness corners will be established, in all other respects, like a regnlar corner.

3. Markings on Bearing Trees of Witness Corners.

When bearing trees are described as accessories to a witness corner, the preseribed markings on each tree will be preceded by the letters " W. C.," distinctly cut into the wood.
The true bearing and distance of witness corners, from the true point for the corner, will always be clearly stated in the field notes.

4. Witness Corners to corner points falling in roads, etc.

The point for a corner falling on a railroad, street, or wagon road, will be perpetuated by a marked stone (charred stake or quart of charcoal), deposited 24 inches in the ground,* and witnessed by two witness corners, one of which will be established on each limiting line of the highway.

In case the point for any regular corner falls at the intersection of two or more streets or roads, it will be perpetuated by a marked stone (charred stake or quart of charcoal), deposited 24 inches in the ground, and witnessed by two witness cormers established on opposite sides of the corner point, and at the mntnal intersections of the lines limiting the roads or streets, as the case may be.

WITNESS POINTS.

Witness points will be perpetuated by corners similar to those described for quarter section corners, with the marking "W. P." (for witness point), in puace of " $\frac{1}{4}$," or " $\frac{1}{4} \mathrm{~s}$.", as the case may be.

If bearing trees are available as accessories to uitness points, each tree will be marked W. P. B. T. (See "Insuperable objects on lineWitness Points," page 22.)

MISCELLANEOUS.

1. Corners on Rock in place, or on Boulders. \dagger

When a corner falls on rock in place, or on a boulder, a cross (x), will be made at the exact corner point, and witnessed by the proper number of bearing trees, if they are available; in the absence of suitable trees, a mound of earth will be raised, if size of the boulder or form of the rock in place permits the excavation of pits. As a last resort, a mound of stone will be built to attract attention to the point, if loose rock can be obtained in the vicinity.

2. Location of Mounds.

When monds of earth or other material are raised as accessortes to corners, they will be placed as specified in the foregoing Description of Corners, and in cvery case the dircetion of the mond from the corner will be carefully stated. The use of the indefinite description " alongside" will be discontinned.

In case the character of the land is such that the mound can not be placed as hercinbefore described, the deputy will state in his notes, by bearing and distance, exactly where the mond is located with reference to the corner, and will give his reasons for placing it as duscribed.

[^19]3. Moumds of Stone, coreved with E'arth.

In a case where pits are practicable and the deputy prefers raising a momed of stone, or a momel of stone covered with earth,* he will use the form given for "Stome with mound of stone." When the corner thus described is established; but when the corner "Stome, with mound of stome covered with earth," is constructed, the description will be morlified as follows: Strike ont the words "Pits impracticable"; in place of " mound of stone, 2 ft. base, $1 \frac{1}{2} \mathrm{ft}$. high," write " mound of stone covered with earth, - ft. base, - ft. high," insertiug in the blank spaces the dimensions of the momd given•in paragraph 1 , following the designation of each class of corners, pages $\because 4$ to 45 .

4. Bearing Trees.

Bearing trees marked as accessories to standard corners, either township, section, or quarter section, will be seleeted on the north side of base lines or standard parallels, and bearing trees referring to the - losing corners on said lines, will be located on the south side; in gencral, the bearing trees referring to any particular closing corner, together with one pit and the mound belonging to such corner, will be located on the same side of the line closed upon, and on the side from which the surveys have been closed.

When the requisite number of trees can be found within 300 links of the corner point, two (2) bearing trees will be marked and described for every standard or closiug township or section corner, or comer common to two townships or sections, only; four (4) for every corner common to four townships or four sections; one (1) for a corner referring to one township, or one section, only; two (2) for every quarter section corner or meander corner, and four (4) for each mile or half mile corner, or corner monument on a reservation or other boundary, not couforming to the system of rectangular surveyiug.

In case the prescribed number of trees can not be found within limits, the deputy will state in his field notes, after describing those marked, " no other trees within limits," and add "dug pits - $\times-\times-i n s . "$ etc., or "raised a momud of stone, - ft. base, - ft. high, - of cor.," as prevaling conditions may require.

Bearing trees, being the most important aceessories to the eorncrs, will have their exact bearings from the true meridian taken with the instrument used in rummeg the lines of survey; and the distance fiom the middle of each bearing tree to the middle point of the corner will be carefilly measured, and recorded in the field notes.

A plain blaze will be made at the usual or most convenient height, on each bearing tree, on the side facing the corncr. The height of all other markings on the tree will in no case execed the limit of two and one-half feet above the gromid.

5. Stones for corners.

Stones 18 ins. long, or less, will be set with two-thirds of their length in the gromnd, and those more than 18 ins. long will have three-fourths of their length in the gromed.

No stones measuring less than 504 cubic inches, or less than 12 ins . in length, will be nsed for corners.

[^20]
6. Objects to be noted.

Particular attention is directed to the "Summary of objects and data required to be noted." See page 58 of these instructions; and the deputy will thoroughly comply with the same in his work and field notes.

7. Lines discontimued at Legal Corners.

No mountainous lands, or lands not classed as surveyable, will be meandered, and all lines approaching such lands will be discontinued at the section or quarter-section corner nearest the unsurveyed land.
8. Markis to be cut.

All letters and figures on posts, trees, or stoues, etc., will be cut into the object upon which they are placed. Arabic figures and plain letters will be used for all markings.
9. Orientation of Corners.

Corners referring to one, two, or four townships or sections, not identical with standard or closing corners, will be set with their faces directed NE. and SW., and NW. and SE., while all other corners will be set with their sides fucing the carilinal points; except corners on boundaries of reservations and private land claims, which will be set squarely on line.
10. Size of Posts, Mounds, etc.

The sizes of wooden posts, mounds, and pits, noted in the foregoing descriptions, will be regarded as minimum, and their dimensions will be increased whenever practicable.

11. Corner Materials.

In establishing corners, durable stones will be used when obtainable; then, posts; and lastly, mounds, with stake in pit.

Wood of a perishable nature will not be used for posts or stakes.

12. Instructions will be examinea.

Deputy surveyors will carefully read, study, and familiarize themselves with all instructions contained in this volume, and will instruct their assistants as to their duties before commencing work. An extra copy of this Manual may be firmished each deputy, for the use of his assistants.

INITIAL POINTS.

Initial points from which the lines of the public surveys are to be extended will be established whenever necessary, under such special instructions as may be prescribed in each case by the Commissioner of the General Land Office. The locus of such initial points will be selected with great care and due consideration for their prominence and easy identification, and must be established astronomically.

The lines of the public surveys are classified as follows:
Class 1. Base lines and standard parallels.
Class 2. Principal and guide meridians.
Class 3. Township exteriors (or meridional and latitudinal township boundaries).

Class 4. Subdivision and meander lines.

The initial point having been establisherl, the line of the publie surveys will be extended therefrom, as follows:

BASE LINE.

1. From the initial point the base line will be extended east and west on a parallel of latitude, by the use of transit or solar instruments, as may be directed by the surveyor general in his written special instructions. The transit shonld be designated for the alinement of all important lines.
2. The direction of base lines will conform to parallels of latitude and will be controlled by true meridians; consequently the correct determination of true meridians by observations on Polaris at elongation* is a matter of prime importance.
3. When transits are employed, certain reference lines \dagger having a known position and relation to the required parallel of latitude will be prolonged as straight lines, by two back and two fore sights at each setting of the instrument, the horizontal limb being revolved 180° in azimuth between the observations.
4. Where solar apparatus is used, the deputy will test the instrument, whenever practicable, by comparing its indications with a meridian determined by Polaris observations; \ddagger and in all cases where error is discovered he will make the necessary corrections of his line before proceeding with the survey. \ddagger All operations will be fully described in the field notes.
5. The proper township, sectiou, and quarter section corners will be established at lawful intervals, and meander corners at the intersection of the line with all meanderable streams, lakes, or bayous.
6. In order to detect errors and insure aceuracy in measurement, two sets of chainmen will be employed; one to note distances to intermediate points and to locate topographical featmes, the other to act as a check. Each will measme 40 chains, and the proper corner will be placed midway between the cnding points of the two measurements.

The deputy will be present when said corner is thens established, and will record in the body of his field notes the distances to the same, according to the measurement by each set of chainmen.§
To obviate collusion between the sets of chaimmen, the second set should commence at a point in advance of the beginning corner of the first set, the initial difference in measurement thus obtained being known only to the deputy.

PRINCIPAL MERIDIAN.

1. This line shall conform to a true meridian and will be extended from the initial point, either north or south, or in both directions, as the conditions may require, by the use of transit or solar instruments, as may be directel by the surveyor general in his special written instructions.
2. The methods used for determination of directions, and the precautions to be observed to secure accuracy in measurement, are fully stated above under the title "Base line", and will be complied with in every particular.
3. In aldition to the above general instructions, it is required that

[^21]\ddagger See specimen field notes, page 172.
§ See pages 142 to 167.
in all eases where the establishment of a new principal meridian seems to be necessary to the surveyor general, he slall submit the matter, together with his reasons therefor, to the Commissioner of the General Land Office, and the survey of such principal meridian shall not be commenced until written anthority, together with such special instruce tions as he may deem necessary, shall have been received from the Commissioner.

STANDARD PARALLELS.

1. Standard parallels, which are also called correction lines, shall be extended east and west from the principal meridian, at intervals of every 24 miles north and sonth of the base line, in the manner prescribed for running said line, and all requirements under the title "Base Line" will be carefully observed. (Sce page 51 .)
2. Where standard parallels have been placed at intervals of 30 or 36 miles, regardless of existing instructions, and where gross irregularities require additional standard lines, from which to initiate new, or upon which to close old surveys, an intermediate correction line should be established to which a local name may be given, (e. g.) "Cedar Creek Correction Line;" and the same will be run, in all respects, like the regular standard parallels.

GUIDE MERIDIANS.

1. Guide meridians shall be extended north from the base line, or standard parallels, at intervals of every 24 miles east and west from the principal meridian, in the manner prescribed for running the principal meridiau, and all the provisions for securing accuracy of alinement and measurement found, or referred to unter the title "Principal Meridian," will apply to the survey of said guide meridians. (See page 51.)
\because. When existing conditions require that such guide meridiaus shall be run south from the base or correction lines, they will be initiated at properly established closing corners on such lines.
2. Where guide meridians have been improperly placed at intervals greatly exceeding the anthorized distance of 24 miles, and standard lines are required to limit errors of old, or govern new surveys, a new guide meridian may be rum fiom a standard, or properly established closing corner, and it local name may be assigned to the same, (e. g.) "(irass Valley Guide Meridiau". These additional guide meridians will be surveyed in all respects like the regular g'nide meridians.

TOWNSHIP EXTERIORS.

1. Whenever practicable, the township exteriors in a tract of land 24 miles square, boumled by standard lines, will be surveyed smecessively through the block, beginning with those of the southuestern township.
2. The meridional boundaries of townships will lave precedence in the order of survey and will be run from south to north on true meridians, with permanent corners at lawful distances; the latitudinal boundaries will be ruu from cast to west on roudom or trial lines, and enrrected bark on true lines.

The falling of a random, north or sonth of the township corner to be closed upon, will be carefully measured, and, with the resilting true returu course, will be duly recorded in the field notes.

Shonld it happen, however, that such random intersects the meridian of the objective corner, morth or sonth of said comer, or falls short of, or ovemmes the length of the sonth boundary of the township by more than three cheins (due allowance being made for couvergency), said random, and, if necessary, all the exterior boundaries of the township, will be retraced and remeasured to discover and correct the error.

When ruming random lines from east to west, temporary corners will be set at intervals of 40.00 chains, and proper permaneint corners will be established upon the true line, corrected back in arcordance with these instructions, thereby throwing the excess or deficiency against the west bomulary of the township, as required by law.
3. Whenever practicable, the exterior boundaries of townships belonging to the west range, in at tract or block 24 miles square, will first be surveyed in succession, through the range, from south to north; and in a similar manner, the other three ranges will be surveyed in regular sequence.
4. In cases wheve impassable objects oeem and the foregoing rules can not be complied with, township corners will be established as follows :

In extending the south or north bonndaries of a township to the west, where the southuest or northerest comers can not be established in the regular way by running a nortl and south line, such boundaries will be run west on a true line, allowing for convergency on the west half mile; and from the township corner established at the end of such bomdary, the west boundary will be run north or south. as the case may be. In extending south or north boundaries of a township to the east, where the southeast or mortheast corner ean not be established in the regular way, the same rule will be observerl, except that snch boundaries will be run east on " true line, and the east boundary run morth or south, as the case may be.
$\overline{5}$. Allowance for the convergency of meridians will be made whenever necessary.

METHOD OF SUBDIVIDING.

1. The exterior boundaries of a full township laving been properly established, the subdivision thereof will be made as follows:

At or near the southeast corner of the township, a true meridian will be determined by Polaris or solar observations, and the deputy's instrument will be tested thereon; then from said corner the first mile of the east and sonth boundaries will be retraced, if subdivisions and surver of the exteriors have been provided for in separate contracts; but, if the survey of the exterior and subdivisional lines are included in the same contract, the retracements refered to will be omitted. All discrepancies resulting from disagreement of bearings or measurements will be carefully stated in the field notes.
2. After testing his instrumenton the true meridian thus determined, the deputy will commence at the corner to sections 35 and 36 , on the south boundary, and run a line parallel to the range line,* establishing at 40.00 chains, the quarter section corner between sections 35 and 36 , and at 80.00 chains the corner for sections $25,26,35$, and 36 .
3. From the last-named corner, a random line will be run eastward, withont blazing, parallel to the south boundery of section 36 , to its inter-

[^22]
54

section with the east boundary of the township, placing at 40.00 chains from the point of begimning, a post for temporary quarter section corner. If the random line intersects said township boundary exactly at the corner for sections 25 and 36 , it will be blazed back and established as the true line, the permanent quarter section corner being established thereon, miducay between the initial and terminal section corners.

If, however, the random intersects said township bonndary to the north or sonth of said corner, the falling* will be carefully measured, and from the data thus obtained, the true return course will be calculated, \dagger and the true line blazed and established and the position of the quarter section corner determined, as directed above.

The details of the entire operation will be recorded in the field notes.
4. Having thus established the line between sections 25 and 36 ; from the corner tor sections $25,26,35$, and 36 , the uest and north boundaries of sections $25,24,13$, and 12 , will be established as directed for those of section 36; with the exception that the random lines of said north boundaries will be rim parallel to the established south boundaries of the sections to which they belong, instead of the south boundary of section 36 ; e. g. the random line between sections 24 and 25 will be rm parallel to the established south boundary of section 25 , etc.

5 . Then, from the last established section corner, i. e. the corner for sections $1,2,11$, and 12 , the line between sections 1 and 2 , will be projected northward, on a random line, parallel to the east boundary of the township, setting a post for temporary quarter section corner at 40.00 chains, to its intersection with the north bondary of the township. If the random intersects said north bomndary exactly at corner for sections 1 and 2 , it will be blazed back and established as the true line, the temporary quarter section corner being established permanently in its original position, and the fractional measurement thrown
of the range line, if the same is west of north, but subtract when it bears east of north.

Tabie A.-Corrections for Convergency, within a Township.

	Latitude.	Correction to be applied to bearing of range lines at a distance of - .				
		1 mile.	2 miles.	3 miles.	4 miles.	5 miles.
- 0		,	1	,	1	,
30 to 35.		1	1	2	2	3
35 to 40.		1	1	2	3	3
40 to 45.		1	2	2	3	4
45 to 50.		1	2	3	4	5

Erample.-Latitude, 47°. Range line bears N. $0^{\circ} 2^{\prime}$ E.; then parallel meridional section lines will be run as follows:

From the corner for sections-
35 and 36, N. $0^{\circ} 1^{\prime} \mathrm{E}$.
34 and 35 , north.
33 and 34, N. $0^{\circ} 1^{\prime}$ W.
32 and $33, \mathrm{~N} .0^{\circ} 2^{\prime} \mathrm{W}$.
31 and 32, N. $0^{\circ} 3^{\prime}$ W.
*See "Prescribed Limits." prage 59.
t See Tiblo V11, ind rules, page 128. Linudom bearings, determined as directed above, are actually the true bearings of fractional trme lines and are so used for rumning them. Any deviation from random bearings, lerived from the application of the falling [Table VII], changes the random bearing by an amomet due to unavoidable errors, and shonld give for a final result a bearing as near the true bearing as the field work will permit. A true bearing means the angular deviation from the trae meridian in contradistinction to the magnetic hearing, or angle made with the magnetic meridian. A true line will be understood to refer to the line upon which the corners are established.
into that portion of the line between said comer and the north boundary of the township.

If however, said random intersects the north bomdary of the township, to the east or west of the corner for sections 1 and \because, the consequent falling will be carefully measured, and from the data thus obtained the true return course will be calculated* and the trie line established, the permanent quarter section comer being placed upon the same at 40.00 chains from the initial corner of the random line, thereby throwing the fractional measurement in that portion lying between the quarter section corner and the north boundary of the township.

When the north bomdary of a township, is a base line or standard parallel, the line between sections 1 and 2 will be rum parallel to the ronge line as a truc line, the quarter section corner will be placed at, 40.00 chains, and a closing corner will be established at the point of intersection with such base or standard line; and in such case, the distance from said closing comer, to the nearest standard corner on such base or standard line, will be carefilly measmed and noted as a conneetion line.
6. Each successive range of sections progressing to the west, until the fifth range is attained, will be surveyed in a similar manner; then, from the section corners established on the west bomdary of said range of sections, randon lines will be properted to their intersection with the west boundary of the township, and the true return lines established as prescribed for the survey of the first or most eastern range of sections, with the exception that on the true lines thus established the quarter section corners will be established at 40.00 chains from the the initial corncrs of the randoms, the fractional measurements being thereby thown into those portions of the lines situated between said quarter section corners and the west boundary of the township.
7. The following gencral requirements are reiterated for emphasis:

The random of a latitudinal section line will always be run parallel to the south boundary of the section to which it belongs, and with the true bearing of said boundary; and then a section has no linear south boundary, the random will be rin parallel to the south boundary of the range of sections in which it is situated, and fractional true lines will be run in a similar manner. \dagger
8. The deputy is not required to complete the survey of the first range of sections from sonth to north before commencing the survey of the second or any subsequent range of sections, but the corner on whith any random line closes shall have been previonsly established by ruming the line which determines its position, except as follows: Where it is impracticable to establish such section corner in the regnlar manner, it will be established by ruming the latitudinal section line as a true line, with a true berring, determined as above directed for random lines, setting the quarter section corner at 40.00 chains and the section corner at 80.00 chains. \ddagger
9. Quarter section corners, both upon meridional and latitudinal section lines, will be established at points equidistant from the corresponding section comers, except upon the lines closing on the north and west boundaries of the township, and in those situations the quarter section corners will always be established at precisely forty cheins to the north or west (as the case may be) of the respective section coruers from which those lines respectively start, by which procedure the

[^23]excess or deficiency in the measurements will be thrown, according to law, on the extreme tier or range of quarter sections, as the case may be.
10. Where by reason of impassable olyects only a portion of the south boundary of a township can be established, an anxiliary base line (or lines,* as the case may require) will be run through the portion which has no linear south boundary, first random, then corrected, connecting properly-established corresponding section corners (either interior or exterior) and as far sonth as possible, and from such line or lines, the section lines will be extended northwardly in the usual mamer, and any fraction south of said line will be surveyed in the opposite direction from the section corners on the auxiliary loase thus established. (See Plate I, figs. 3, 4, and 5.)
11. Where by reason of impassable objects no portion of the south boundary of a township can be regularly established, the subdivision thereof will proceed from north to south and from east to west, thereby throwing all fractional measurements and areas against the west boundary, and the meanderable stream or other boundary limiting the township on the south.

If the east boundary is withont regular section corners and the north bomndary has been rum eastwardly as a true line, with section corners at regnlar intervals of 80.00 chains, the subdivision of the township will be made from west to east, and fractional measurements and areas will be thrown against the irregular east bomdary.
12. When the proper point for the establishment of a township or section comer is inaccessible, and a witness corner can be erected upon each of the two lines which approach the same, at distances not exceeding twenty chains therefrom, said witness corners \dagger will be properly established, and the half miles upon which they stand will be recognized as surveyed lines.

The witness corner will be marked as conspicnously as a section corner, and bearing trees will be used wherever possible.

The deputy wili be required to furnish good evidence that the section corner is actually inaccessible.

MEANDERING.

1. Proceeding down stream, the bank on the left hand is termed the left bank and that on the right hand the right bank. These terms will be miversally used to distinguish the two banks of a river or stream.
2. Navigable rivers, as well as all rivers not embraced in the class denominated "navigable," the right-angle width of which is three chains and upwards, will be meandered on both banks, at the ordinary mean high water mark, by taking the general courses and distances of their simosities, and the same will be entered in the field book. Rivers not classed as navigable will not be meandered above the point where the average right-angle width is less than three chains. Shallow streams, without any well-defined chamel or permanent banks, will not be meamfered; except tide-water streams, whether more or less than three ehains wide, which shonld be meandered at ordinary high-water mark, as far as tide-water extends.

At every point where eithes standard, township, or section lines intersect the bank of a navigable stream, or any meanderable line, corners will be established at the time of rmming these lines. Such corners

[^24]are called meander corners,* and the deputy will commence at one of these corners, follow the bank or boundary line, and measure the length of each course from the begiming corner to the next "meander coruer." Compass courses, by the needle or solar, will be used in meanders. Transit angles are not allowed.

The crossing distance between meander corners on same line and the true bearing and distance between corresponding meander corners will be ascertaned by triangulation, or direct measurement, in order that the river may be protracted with entire accuracy, The particulars will be given in the field notes.

In meandering water courses or lakes, where a distance is more than ten chains between successive stations, whole chains only should be taken; but if the distance is less than ten chains, and it is fonnd convenient to employ chains and links, the number of links shonld be a multiple of ten, thereby saving time and labor in testing the closings, both in the field and office.
3. The meanders of all lakes, navigable bayons, and deep ponds, of the area of twenty-five acres and upwards, will be commenced at a meander corner and continned, as above directed for navigable streams; from said corner, the courses and distances of the entire margin of the same, and the intersections with all meander corners established thereon, will be noted.

All streams falling into the river, lake, or bayon will be noted, and the width at their months stated; also, the position, size, and depth of springs, whether the water be pure or mineral; also, the heads and months of all bayous; all islands, rapids, and bars will be noted, with intersections, to their upper and lower ends, to establish their exact sitnation. The elevation of the banks of lakes, bayous, and streams, the height of falls and cascades, and the length and fall of rapids will be recorded in the field notes.

To meander a lake or deep pond lying entirely within the boundaries of a section, two lines will be run from the two nearest comers on differeat sides of such lake or pond, the comses and length of which will be recorded, and if coincident with unsurveyed lines of legal subdivisions, that fact will also be stated in the field notes, and at each of the points where said lines intersect the margin of the pond or lake, a speeialt meander corner will be established as above directed. (See example, page 201.)

The relative position of these points being thas definitely fixed in the section, the meandering will commence at one of them and be continued to the other, noting the intersection, and thence to the beginning. The proceedings are to be fully entered in the field notes.
4. Meander lines will not be established at the segregation line between dry and swamp or overffowed land, but at the ordinery high. water mark of the actual margin of the rivers or lakes on which such swamp or overflowed lauds border.
5. The precise relative position of an island, in a township made fractional by a river or lake in which the island is situated, will be determined by triangulation from a special and carefully measured base line, initiated upon the surveyed lines, on or near the lake or river bank on the main land, so as to connect by course and distance on a direct

[^25]line, the meander corner on the mainland with the corresponding point on the island, where the proper meander corner will be established.
6. In making the connection of an island lying entirely within a section, with the mainland, a special base will be measured from the most convenient meander corner, and from such base, the location of an auxiliary* meander corner will be determined by triangulation, at which the meanders of the island will be initiated.
7. In the survey of lands bordering on tide water, "meander corners" will be established at the points where surveyed lines intersect highwater mark, and the meanders will follow the high water line.
8. The field notes of meanders will show the dates on which the work was performed, as illustrated in the specimen notes, page 216 . The field notes of meanders will state and describe the corner from which the meanders commenced, and upon which they closed, and will exhibit the meanders of each fractional section separately; following, and composing a part of such notes, will be given a description of the land, timber, depth of inundation to which the bottom is subject, and the banks, eurrent, and bottom of the stream or body of water meandered. The utmost care will be taken to pass no object of topography, or chanye therein, without giving a particular description thereof in its proper place in the notes of the meanders.

SUMMARY OF OBJECTS AND DATA REQUIRED TO BE NOTED.

1. The precise length of every line run, noting all necessary offsets therefrom, with the reason for making them, and method employed.
2. The kind and diameter of all bearing trees, with the course and distance of the same from their respective corners; and the precise relative position of witness corners to the true corners.
3. The kind of materials of which corners are constructed.
4. Trees on line. The name, diameter, and distance on line to all trees which it intersects.
5. Intersections by line of land objects. The distance at which the line interseets the boundary lines of every reservation, settler's claim, improvement, or rancho; prairie, bottom land, swamp, marsh, grove, and windfall, with the course of the same at all points of intersection; also, the distances at which the line begins to ascend, arrives at the top, begins to descend, and reaches the foot of all remarkable hills and ridges, with their courses, and estimated height in feet, above the level land of the surrounding country, or above the bottom lands, ravines, or waters near which they are situated. Also, distance to and across large ravines, their depth and course.
(j . Intersections by line of water objects. All rivers, creeks, and smaller streams of water which the line crosses; the distances measured on the true line to the bank first arrived at, the course down stream at points of intersection, and their widths on line. In cases of navigable streams, their width will be ascertained between the meander corners, as set forth under the proper head. \dagger
6. The land's surface-whether level, rolling, broken, hilly, or mountainons.
7. The soil-whether first, second, third, or fourth rate.
8. Timber-the several kinds of timber and undergrowth, in the order in which they predominate.

[^26]11. Syrings of watcr-whether fresh, saline, or mineral, with the comse of the streams flowing fiom them.

1シ. Lakcs and ponds-destribing their banks and giving thein height, and also depth of water, and whether it be pure or stagnant.
13. Improvements. Towns and villages; houses or cabins, fields, or other improvements with owners' names; mill sites, forges, and factories, mineral monuments, and all corners not belonging to the system of rectangular surveying; will be located by bearing and distance, or by intersecting bearings from given points.
14. Coal banks or beds; peat or turf grounds; minerals and ores; with partieular description of the same as to quality and extent, and all diggings therefor; also salt springs and licks. All reliable information that can be obtained respeeting these objects, whether they be on the line or not, will appear in the general description.
15. Roads and trails, with their directions, whence and whither.
16. Rapids, cataracts, cascades, or falls of water, with the estimated height of their fall in feet.
17. Precipices, eaves, sink holes, ravines, stone quarries, lerlges of roeks, with the kind of stone they afford.
18. Natural curiositics, interesting fossils, petrifactions, organie remains, etc.; also all ancient works of art, such as monuds, fortifications, embankments, ditehes, or objects of like nature.
19. The magnetie declination will be incidentally noted at all points of the lines being surveyed, where any matcrial change in the same indicates the probable presence of iron ores; and the position of such points will be perfectly identified in the field notes.

PRESCRIBED LIMITS FOR CLOSINGS AND LENGTHS OF LINES.

1. If in rumning a random township exterior, such random falls short of or exceeds its proper length by more than three chains, or falls more than thrce chains north or sonth of its objeetive comer, it will be re-run, and if found correct, so much of the remaining boundaries of the township will be retraced or resurveyerl,* as may be found necessary to locate the error.
2. Every meridional section line, except those terminating in the north boundary of the township, shall be eighty chains in length. \dagger
3. The random meridional section lines throngh the north tier of sections shall fall within fifty links east or west of the section corners established on the north boundary of the township, except when elosing: on a base line or standard parallel.
4. The actual length of meridional section lines through the north tier of sections shall be within one hundred and fifty links of their theoretical length. The latter will be determined from the meridional boundaries of the north tier of sections.
5. All random latitudinal section lines shall fall within fifty links north or sonth of their objective section eorners.

In any range of sections, the difference between the true bearing of a latitudinal section line and that of the sonth boundary of the range, shall not exceed 21 minntes of are.

The latitudinal section lines, except those terminating in the west bomudary of the township, shall be within fifty lintis of the actual distance established on the south boundary line of the township for the width of the range of sections to which they belong.
6. The north boundary and the south boundary of any one section,

[^27]except in the extreme western range of sections, shall be within fifty links of erual length.
7. The meanders within each fractional section, or between any two successive meander comers, or of an island in the interior of a section, shomld close within a limit to be determined by allowing five-eighths of " liuk for each chuin of said meander line. Where the meander corners marking the ends of a meander line in a fractional section are located on standard, township, or section lines, the above limit, increased by one-fourth of the regular perimeter of the fractional section, expressed in miles, multiplied by $\% 1$ links, will be allowed.*

The extreme limit, however, will in no ease be permitted to exceed one hundred and fifty linls.

FIELD NOTES.

1. The proper blank books for original field notes will be furnished by the surveyor gencral, and in such books the deputy surveyor will make a faithful, distinct, and minute record of everything done and observed by himself and his assistants, pursuant to instructions, in relation to rimning, measuring, and marking lines, establishing corners, etc., and fuesent, as far as possible, full and complete topographical sketches of all standard and exterior lines, frawn to the usual scale for township exteriors. These "original field notes" are not necessarily the entries made in the field, in the deputy's pocket note books called tablets; but they are to be fully and correctly written ont in ink, from such tablets, for the permanent record of the work. Tablets should be so finly written as to verify the "original field notes" whenever the surveyor general requires them for inspection.

2 . A full description of all corners belonging to old surveys, from which the lines of new surveys start, or upon which they close, will in all cases be furuished the deputy from the surveyor general's office, when anthority is given for commencing work; then, if the old corners are found to agree with said descriptions, the deputy will describe any one of them in this form, "which is a stone firmly set, marked, and witnessed, as described by the surveyor general"; but, should a corner not answer the description supplied, the deputy will give a full description of such corner and its accessories, following the proper approved form given in these instructions.

A full description of each corner established under any one contract will be given once only; subsequent reference to such corner will be made in the form, "heretofore described", or (e. g.) "the corner for sections $2,3,10$, and 11 ," as the case may require.

In all cases where a corner is reëstablished, the original field notes will describe fully the manner in which it is done.
3. The original field notes of the survey of base, standard, and meridian lines will describe all corners established thereon, how established, the crossings of streams, ravines, hills, and mountains; character of soil, timber, minerals, etc.; and after the description of each township corner established in ruming such lines, the deputy will note particularly in the "general description" the character of townships on each side of the lines run.
4. The original field notes of the survey of exterior boundaries of townships will describe the corners and topography, as above required, and the "general description" at the end of such notes will describe the townships as fully as possible, and also state whether or not they should be subdivided.

* See Plate I, tigs. 8, 9, 10, 11, and 12.

5. The original field notes of the subdivisional survey of townships will describe the corners and topography as above required, and the "general description" at the end of such notes will state minntely the character of the land, soil, timber, etc., found in such tomnships.

The topography will be given on the true line in all eases, and will be taken correctly, not estimated or approximated.
6. With the original field notes of the survey of base lines and staudard parallels, and principal and gnide meridians forming a tract 24 miles square,* including those of the township exteriors therein, the deputy will submit a diagram of the lines surveyed, drawn to a scale of half an inch to one mile, upon which will be written the true bearings amul lengths of all surreyed lines, except the lengths of those which are actu. ally 40.00 or 80.00 chains. These diagrams will exhibit all water courses, with the direction of each indicated by an arrow head pointing dorn stream; also, the intersection of the lines with all prairies, marshes, swamps, ravines, lakes, ponds, mometains, hills, and all other natnral or artificial topographical features mentioned in the original field notes, to the fullest extent possible.
7. With the speeial instruetions for making subdivisional surveys of tomnships into sections, the deputy will be furnished by the surveyor general with blank township diagrams drawn to a scale of one inch to forty chains, upon which the true bearings and lenuths of the township and seetion lines, from which the surveys are to be projected, or upon whieh they are to close, will be earefully marked; and on such diagrams the deputy who subdivides will make appropriate sketches of the various objects of topography as they occur on his lines, so as to exhibit not only the points of intersertion therewith, but also the directions and relative positions of such objects between the lines, or within each section, as far as practicable, so that every topographical feature may be properly completed and comnected in the showing.
8. Triangulations, offsets, or traverses, made to determine distances that can not be directly measured, such as those over (e. g.) deep streams, lakes, impassable swamps, cañons, etc., will be made on the random lines, \dagger when random lines are run. All particulars will be fully stated in the field notes.

The exhibition of every mile of surveying, whether on standard, township, or subdivision lines, and the meanders in each section, will be complete in itself, and will be separated from other records by a black line drawn across that part of the page containing the body of notes. The description of the surface, soil, minerals, timber, undergrowth, etc., on each mile of line will follow the notes of survey of such line, and not be mingled with them.

Particular care will be taken to record at the end of each mile the number of chains of momatainous land, heavily timbered land, or land covered with dense mudergrowth. (See page 2.4.)

The date of each day's work will immediately follow the notes thereof.
9. Near the end of the original field notes and immediately before the "general description", the deputy surveyor will add, in the form shown in specimen field notes (page 177), a tabular statement of the latitude and departure of all bomodary lines of the township, derived from a traverse table, and will give the totals, and the ervors in latitude and departure; said errors shall in 110 case exceed three chuins, the prescribed limit for the falling of the random uorth boundary of a township. If a part or the whole of one or more bomdaries is made un, of meander lines, the northings, sonthings, eastings, and westings of the
full section lines, nearest said meanders, will replace the missing N., S., E., or W. township lines, as the case may require, thereby presenting the errors of said boundaries of a closed survey.

If all the exterior lines have been surveyed by the deputy, the bearings and distances for the table will be taken from his own notes. In a case where some of the boundaries have been surveyed under another contract, the deputy will use the bearings and distances smplied by the surveyor general, in connection with those of his own lines; and, if errors exceed the allowance of three chains, specified in paragraph 1 of the "Prescribed Limits",* the deputy will determine where the error oceurs, correct the same before he leaves the field, and place the table in his priginal field notes.

Besides the ordinary notes taken on line (and which will always be written down on the spot, leaving nothing to be supplied by memory), the depnty will subjoin, at the conclusion of his book, such further description or information touching any matter or thing connected with the township (or other') survey which he may be able to afford, and may deem useful or necessary to be known-with a general description of the township in the aygreyate, as respects the face of the country, its soil and geological features, timber, minerals, waters, etc.
10. Following the general deaription of the township, will be placed "A list of the names of the individuals employed to assist in running, measuring, and marking the lines and corners described in the foregoing field notes of township, No. - of the base line of range No. of the -_meridian, showing the respective capacities in which they acted."

AFFIDAVI'TS TO FIELD NOTES.

The following are the forms of official oaths to be taken by deputy surveyors and their assistants. The original oaths will be affixed to the original field notes forwarded to the surveyor general by the deputy surveyor; the preiiminary oaths being placed on the page following the index of the first book, and the final oaths at the end of the last book of field notes of the survey of eaeh elass of lines \dagger to which they refer:

PRELIMINAIIY OATHS OF ASSISTANTS.
We, _—_ and _ do solemnly swear that we will well and faitlifully execute the duties of chaimmen; that we will level the chain mon even aml meven ground and plumb the tally pins, either by sticking or dropping the same; that we will report the true distance to all notable objects, and the trie length of all lines that we assist in measuring, to the best of our skill and ability, and in accordance with instructions given us, in the survey of the

$$
\square, \text { Chainman. }
$$

Subscribed and sworn to before me this __ day of ——, 189-.
[SEAL.]

We, _and ——_ do solcmuly swear that we will well and truly perform the duties of moundmen in the establishment of eorners, according to the instructions given us, to the best of our skill and ability, in the survey of
Snleseriberl and sworn to before me this _ day of - Moumdman.
[sEAL.]

[^28]We, _- and _ do solemnly swear that we will well and truly perform the duties of axmen, in the establishment of corners and other duties, according to instructions given us, to the best of our skill and ability, in the survey of -

I, -_ , do solemmly swear that I will well and truly perform the duties of flagman, according to instructions given me, to the best of my skill and ability, in the survey of \qquad
——————"tıyman.
Subscribed and sworn to before me this -_ day of -_, 189 -.
[SEAL.] \qquad

HINAL OATHS OF DEPUTY SURVEYORS AN1) THEII ASSISTANTE.

List of names.

A list of the names of the individuals employer by _- United states depury suryejor, to assist in running, measmring, and marking the lines and corners described in the foregoing field notes of the survey of -_ - showing the respective eapacities in which they acted.

EINAL OATIIS OF ASSISLANTA.
We hereby certify that we assisted ——— United States deputy smiveyor, in surveying all those parts or portions of the -_ of the _ base and meridian, - of - which are represented in the foregoing field notes as having been surveyed by him and under his direction; and that said smrvey has been in all respects, to the best of our knowledge and belief, well and faithfilly surveyed, and the comer monnments established according to the imstrnetions fiminish by the United States surveyor general for -.

Subscribed and sworn to before me this -_ day of -_, 189-. [sEal.]

FINAL OATII OF ['NITED STATES DEPUTY SURVEYOR.

I. \qquad , United States deputy surveyor, do solemmly swear that in pursuance of instructions received from , United states surveror general for __, bearing date of the - day of -... 189-, I have well, faithfulls, and truly, in my own proper person, and in strict conformity with the instruction furnished by the United states surveyor general for -...., the Mannal of Surveyinglustructions, and the laws of the United States, surveyed all those parts or portions of
——of the base and meridian in the _—_of which are represented in the foregoing field notes as having been surveyed by me and nuder my directious; and I do further solemnly swear that all the corners of said survey have been established and perpetuated in strictaccordance with the Mannal of Surveying Instructions, and the special written instructions of the United states surveyor genemal for -and in the specific manner described in the field notes, and that the foregoing are the true field notes of such survey; and should any frand be detected, I will sutier the penalty of perjury, under the provisions of an act of Congress approved August 8, 1816.

> United States Deputy Surteyor.

Subscribed by said -_, U. S. doputy surveyor, and sworn to before me this _ day of -_, 189-.
[seal.]
11. The final oath of the deputy surveyor will be taken before the U.S. Surveyor General for the State or Territory in which the survey is executed, or before any other officer aqthorized by the laws of the United States or by the municipal authorities, to administer land oaths, except notaries public.

It is preferable that both preliminary and final oaths of assistanis should be taken before some officer duly authorized to administer oaths other than the deputy surveyor. In cases, however, where great delay, expense, or inconvenience would result fiom a strict compliance with this rule, the deputy surveyor is authorized to administer the necessiry oaths to his assistants, but in each case where this is done, he will submit to the proper surveyor general, a full written report of the circumstances which required his stated action.
12. The deputy will transmit the original field notes and the required sketches to the surveyor general at the earliest practicable date after completion of his work in the field. Said original field notes will be filed in the office of the surveyor geneval as a pert of its permanent records, subject only to the direction of the Commissioner of the General Lamb Office; and no changes whatever will be made in said original field notes, after they have been filed in the surreyor yeneral's office.
13. The origimal fied notes, each bearing the rritten approzal of the survevor general, will be substantially bound in volmmes of suitable size and retained in the surveyor general's office. Certified transcripts of said original field notes will be prepared at the earliest practicable date, as follows:
(a) The field notes of the smrvey of base lines and standard parallels, of prineipal and guide meridians, of township exteriors, and of subdivision and meander lines will be written in separate books. A complete set of preliminary and final oaths will be attached to the ficld notes of cuch class of lines.* No adhesive material of any kind will be used to fasten leaves or covers. Cut or mutilated leaves, or slips, will not lee inserted.
(b) The field notes of subdixisions will be written in a separate book for ench township; the preliminary oaths of the assistants employed in making said subdirisions will be prefixed to the first book, and their final oaths will be attached to the last book of the series, arranged in the orter of dates.
(c) The first or title page of each book of field notes will describe the subject matter of the same, the locus of the survey, by whom surveyed, momber and date of contract, and the dates of commencement and completion of the work.

* See classification of lines, page 50 .
(d) The second page of euch book of field notes will contain the names and duties of the assistants employed on the surveys recordcd therein; the index will be placed on the same or following page.
(e) Whenever a new assistant is employed, or the duties of any one of then changed, such fact will be stated in an appropriate entry immediately preceding the notes taken under such changed arrangements.
(f) No abbreviations or contractions of words are allowable, except such words as are constantly occurring, and a few others, additional to those enmmerated on page 23 , as follows:

astron.	for astronomical.	l. m. t. for local mean time.	
chs.	for chains.	long.	for longitude.
corr.	for correction.	m.	for minmtes.
decl.	for declination.	mag. decl. for magnetic declination.	
alif. lat. for difference of latitude.	red.	for reduce or reduction.	
lep.	for departure.	temp.	for temporary.
li.	for honrs.	U.C.	for upper culmination.
lat.	for latitude.	w. corr.	for watch correction.
L. C. for lower culmination.	w.t.	for watch time.	

Proper names will never be abbreviated, however often they recur. (g) All transcripts of field notes, made out as herein directed, will be. written on official field-note paper, foolscap size (pages $13 \frac{1}{2} \times$ S $\frac{1}{2}$ inches), in a bold, legible hand, or type-written, and as nearly as possible withont erasures or interlincations; such transcripts of any series of surveys, inchnded in one acconnt forwarded to the General Land Office, will be securely put up in one package, at the office of the surveyor general, prior to transmission.

SPECIAL INSTRUCTIONS ISSUED BY UNITED STATES SURVEYORS GEN゙ERAL TO UNITED STATES DEPUTY SURVEYORS.

One of the most important duties to be performed by the surveyor general is to provide the deputy surveyor with Special Instructions, in connection with the contract, prepared in accordance with law, which instructions will not consist of directing attention to certain paragraphs in this Mannal, reiteration of its requirements, and printed directions of a general nature; but they will in all cases be specific in character, with all necessary detailed statements setting forth what the deputy is to do and how the work is to be performed. Before making ont special instructions, the surveyor general will cause a thorough examination to be made of the field notes and plats of older surveys of standard and township lines upon which the deputy is to base lis work, and give him full information-both written and graphic-of the exact condition of adjoining surveys, with all irregularities that may be fonnd, carefully and clearly noted; with all necessary instructions for his guidance if he finds everything as-it should be, aud, in addition, full advice as far as practicable what to do in case the surveys on the ground are not as represented in the old notes.

If the contract inchudes exterior lines, the surveyor general will specify in detail where the deputy is to commence, in what order and in what direction he is to run the lines, and provide for his use a diagram, drawn to a scale of one inch to one mile, giving full and aceurate information in regard to lengths and bearings of all lines of old surveys, from which he is to work, or "pon which he is to close. The diagrams will be made in triplieate, one copy for the General Land Office, one for the deputy, and one to be retained; they may be either original drawings, or blue prints or tracings therefom. In no case must the deputy be sent
into the field without full and accurate information in regard to all irregnlarities on the records which will affect the extent or accuracy of his survey.

SPECIMEN FIELD NOTES.

[See Plates III and IV.]

Specimen field notes Nos. 1, 2, 3, 4, and 5, illustrate, respectively, the method and order to be followed in the survey of standard parallels, guide meridians, and township exteriors; resurvey of township exteriors; and the subdivision of a township into sections and quarter sections.

The attention of every depaty surveyor is particularly directed to these specimens, as indicating not only the method by which his work will be conducted, but also the form, order, language, ete., in which his field notes will be prepared for the office of the surveyor general, and such specimens will be deemed a part of these instructions; and any departure from their details, in cases where the circumstances are analogous in practice, will be regarded as a violation of his contract and oath.

DIAGRAII OF TOWNSHIP EXTERIORS.

[See Plate III.]
The title, certificate, and remarks on Plate III, with the specimen field notes Nos. 1, 2, and 3, will fully explain the drawing designated "Township Exteriors."
In all cases the true bearing and length of each township boundary will be clearly stated on the diagram; and, when any township boundary entered on the diagram, surveyed under the current contract, or a prior contract, departs from the true meridian, or proper latitude curve (as the case may be), or falls short of or overruns its proper length, by an amount in excess of the prescribed limits of three chains (page 59, paragraph 1), the actual position and extent of said township boundary will be graphically exhibited on the diagram, as well as by bearing and length recorded in the field notes.

SPECLMEN TOWNSHIP PLAT.
[See Plate IV.]
Plate IV illustrates the subdivision of a township into sections and quarter sections; the record of said subdivision being given in detail in specimen field notes No. 5.

The subdivision of fractional sections into forty-acre lots (as near as may be) will be so laid down on the official township plat in broken black lines as to admit of giving to each a specific designation by word description, if possible, according to its relative position in the fractional section, as per examples on Plate IV; or by a number, in all cases where the lot can not properly be designated as a quarter quarter. Those fractional lots which are not susceptible of being described according to relative local position will be numbered in a regular series; those bordering on the north boundary of a township to be numbered progressively from east to west, and those bordering on the west boundary of a township to be numbered progressively from north to south, in each regular section. As section 6 borders on both the north and west boundaries of the township, the fractional lots in the
same will be numbered as follows: commencing with No. 1 in the northeast, thence progressively west to No. 4 in the northwest, and south to No. 7 in the southwest corner of the section.

To secure a uniform system for numbering lots of fractional sections, including those above specified, imagine the section divided by three equidistant parallel latitudinal lines into four strips or tiers, numbered from north to south; then, beginning with the eastern lot of the north tier, call it No. 1, and continue the numbering west throngh the tier, then east in the second, west in the third, and east in the fourth tier. A lot extending north and sonth throngh two, or part of two tiers, will be numbered in the tier containing its greater area. In case any tier is without numbered lots, the numbering will be continued in the next tier to the sonth. (Plate IV, seetion 18.)

This method of numbering will apply to any part of a section, regardless of the relative situation of a part or parts surveyed and lotted under a prior contract; in this case the lot numbers will be a continnation of the series already initiated.

Interior lots will be, as nearly as possible, 20.00 chains long by 20.00 chains wide; and the excess or deficiency of measurement will always be thrown against the northern or western boundary of the section, or meander line, or irregular bumdary, as the case may be.

When, by reason of irregular surveys or from other causes, the length of a township from south to north exceeds the lawful length of 480.00 chains, or the width from east to west exceeds 480.00 chains minus the proper convergency, to such extent as to require two or more tiers of lots along the north bonndary, or two or more ranges of lots along the west boundary, as the case may be, the entire north or west halves of said sections will be properly lotted, and to each lot will be assigned its proper number; and in such cases the area of each lot will be stated on the plat.

In case the length or width of the township falls so far short of legal dimensions as to eliminate the north or west half of any section situated as above specified, that part of the section remaining will be treated in a similar manner.

In a regular township (Plate IV) the southeast quarter of the northwest quarter of section 6 will have its proper area in acres (40) inserted in all cases. The half quarter sections in north tier and west range of sections will exhibit their proper areas in acres (80); while the areas of quarter sections will be omitterl, except as follows:

When two lines of legal subdivision of either 160,80 , or 40 acre tracts intersect each other on or so near a meander or boundary line that the ordinary inaccuracies of drawing would leave the areas of said tracts in doubt, the plats will, for the sake of clearness and a full showing of the facts, exhibit the proper areas of such quarter, half quarter, and quarter quarter sections. See examples, Plate IV, iu sections 13, 17, 25 , and 35 .

Plats shall not be trimmed. A margin of three inehes for binding will be preserved on the left-hand side of each plat. Each plat will be certified by the surveyor general, with table annexed, according to the form on Plate IV, and will exhibit the area of public land, water surface, townsite, private land claims, and mineral claims, with the total area of the township.

Each township plat will le prepared in triplicate: one for the General Land Office, one for the Uniterl States district lind office, and the third will be retained as the record in the office of the surveyor general.

The plat for the local land office will not be forwarded until notice is
received by the surveyor general from the Commissioner of the General Land Office that the survey represented on said plat has been accepted, and that he is anthorizel to file the triplicate plat.
The plats will be prepared as nearly as possible in accordance with the specimen plat designated "Plate IV." The use of all fluids, except a preparation of India ink of good quality, must be avoided by the dranghtsman in delineations relating to the public surveys. All lines, figures, etc., will be sharply defined. All lettering on the plats must be clear and sharp in outline and design, and black; ornamentation of any kind is prohibited. These requirements are necessary in order that everything shown upon original plats may be fairly reproduced in making photolithographic eopies of the same.

All towns, settlements, permanent buildings, private claims, reservations, water courses, ditches, lakes, islands, momtains, buttes, cañons, roads, railroads, telegraph lines, canals, etc., will be shown npon the plats and designated by proper names where such are known.

All township plats are to be drawn to a miform scale of 1 ineh to 40 chains, United States staudard, and diagrams of exteriors to a seale of 1 ineh to 160 chains.
Surveyors general will require that the specimen plat shall be elosely followed, in order that miformity of appearance and expression of drawing representing the public land surveys may be attained.

With the copy of each township plat furnished to a district land oftice, the surveyor general is required by law to furnish descriptive notes of the character and quality of the soil and timber found on and in the vicinity of each surveyed line, and to give a description of each corner.

Printed blank forms of such notes are furnished by the General Land Office. The forms provide cighteen spaces for meander corners, which, in most eases, will be snfficient; but when the number shall exceed eighteen, the residue will have to be inserted on the supplemental blank form.

A series of meander enrners are shown on Plate IV, viz: From No. 1 to No. 8, on Yellowstone River; No. 9 to No. 10, on Clear Lake; No. 11 to No. 15, on Lin's Lake; No. 16 to No. 17, ou Ivy Island; and No. 18, on Diamond Rock.

Computation of tire areas of lots adjoining the north and WEST BOUNDARIES OF REGULAR TOWNSHIPS.

1. In regular townships, the tracts of land in each section adjoining the north and west boundaries of such townships, in exeess of the regularly subdivided 480 acres (except in section (i), will, in general, be in the form of trapezoids, 80.00 chains in length by abont 20 chains in widtlı.

On the plats of such townships, each of said tracts will be divided into four lots, by drawing broken lines at intervals of 20.00 chains, parallel to the ends of the tracts, which will be regarded as parallel to each other.

With the execption of seetion 6, the sonth bomdaries of sections of the north tier, when within prescribed limits, will be ealled 80.00 chains.

When the above-named conditions obtain, the areas of the lots in any one tract (except in section 6) may be determined, as follows:

Divide the differcnce between the widths of the ends of the tract by 4; if'3 remains, increase the hundredth figmre of the quotient by a unit; in all other cases disregard the fraction ; call the quotient thus obtained,
"d"; then, taking the end widths of the tract in chains and deeimals of a chain, the areas of the lots, in acres, will be:

Of the smallest lot: twice the width of the lesser eud, plus "d";
Of the largest lot: twiee the width of the greater end, minus "d";
Of the smaller middle lot: sum of the widths of the ends, minus "d";
Of the larger mindle lot: sum of the widths of the ends, plus "d".
A check on the computation may be had by multiplying the sum of the widths of the ends of the tract by 4 ; the product should agree exaetly with the total area of the four lots.

The proper application of the above rules will always give areas correct to the nearest humbredth of an acre; and, as the use of fiactions is entirely avoided, the method is recommended for its simplicity and accuracy.

Example 1. (See Plate IV, section 31.)
The $\frac{1}{4}$ difference of latitudinal boundaries is $0.03 \frac{3}{4}$ chains; consequently, "d" is . 04 chains; then,

$$
\begin{aligned}
& 18.35 \times 2 \quad+.04=36.74 \text { acres, the area of lot } 1 ; \\
& 18.50 \times 2 \times 36.96 \text { acres, the area of lot } 4 ; \\
& 18.50+18.35-.04=36.81 \text { acres, the area of lot } 2 ; \\
& 1.50+18.35+.04=36.89 \text { acres, the area of lot } 3 ; \\
& \text { Check }:[18.35+18.50] \times 4=147.40 \text { acres, the area of the four lots. }
\end{aligned}
$$

The arithmetical operations are here written in detail, for the purpose of illustration; but the practical computer will perform all the work mentally.
2. Section 6. (See Plate I, fics. 6 and 7; and Plate IV.) The areas of lots 5,6 , and 7 may be obtained by the foregoing rules in all cases, except when the township closes on a base line or standard parallel; also. the area of lot 4, provided both meridional bonudaries are 80.00 chains in length; when the last condition obtains, the areas of lots 1 , 2 , and 3 will be equal, and each will contain 40.00 acres.

In any ease where the west boundary of sec. 6 , is 80.00 chains, and the east boundary either greater or less than 80.00 chains, the areas of lots $1,2,3$, and 4 will be computed as follows:

Refer to figures 6 and 7 and determine the difference, " q ", between the cast boundaries of lots 1 and 4 by the following proportion:
N. bdy. sec. 6 . : diff. of meridional bdrs. see. $6 .:: 60$ chs. : q; then will E. bdy. $\operatorname{lot} 4=\mathrm{E}$. bdy. lot $1 \pm q$; in which, " q " will be adder when the east boundary of sec. 6 is less thun 80.00 ehains (fig. 7.); but subtracted when said east bomdary is greater than 80.00 ehains (fig. 6).

Now take one third of "q", and add it to the shorter east boundrery of lots 1 or 4 , as conditions may require, and thereby determine the length of one of the meridional boumlaries of lot 2 ; to which, ag"ain add "one third of $q^{\prime \prime}$, and thus obtain the length of the opposite side of lot 2. The areas of lots 1,2 , and 3 , in acres, will be found by taking the sum of their respective meridional boundaries, expressed in chuins ant deeimals of a chain.

The area of lot 4 may be had by multiplying its mean width by its mean length.

Finally, to test the entire work, multiply the sum of the latitudinal boundaries by 4 , and to the product udd the area of the small triangle C A B, if the east boundary is greater than 80.00 chains (fig. 6); but subtract the area of said small triangle if the east boundary is less than 80.00 chains (fig. 7). These operations, correctly performed,
will give the true area of the section, which should agree exactly with the total area of its legal subdivisions, obtained as directed in the preceding paragraphs.

Example 2. (See Plate I, figs. 6 and 7, and Plate IV.)
Compute areas of lots 5,6 , and 7 of see. 6 , as directed in paragraph 1, and illustrated by the example; then write:

$$
\begin{aligned}
& \text { chs. chs. chs chs. } \\
& 77.75: 0.05:: 60.00: 0.0386=q ; \frac{1}{s} q=0.0129 \\
& \text { chs. chs. } \\
& 20.0500-0.0386=20.01, \text { the } \mathrm{E} . \text {. bly. of } \operatorname{lot} 4 ; \\
& 20.0114+0.0129=20.02 \text {, the } \mathrm{E} . \text { bdy. of } \operatorname{lot} 3 ; \\
& 20.0243+0.0129=20.04 \text {, the E. bily. of lot } 2 .
\end{aligned}
$$

Then, for the areas of lots $1,2,3$, and 4 , we have:

$$
\begin{aligned}
& \text { chs. chis. acres. } \\
& 20.05+20.04 \ldots \ldots=40.09 \text {, the area of lot } 1 \text {; } \\
& 20.04+20.02 \ldots \ldots=40.06 \text {, the area of lut } 2 \text {; } \\
& 20.02+20.01 \ldots \ldots=40.03 \text {, the area of } \operatorname{lot} 3 \text {; } \\
& \frac{20.00+20.01}{2} \times \frac{17.75+17.78}{2}=35.54 \text {, the area of lot } 4 \text {. } \\
& \text { Also }[17.78+17.87] \times 3=106.95 \text {, the area of lots } 5,6 \text {, and } 7 \text {. } \\
& \text { Area of regular subdivisions }=360.00 \\
& \text { Total } \ldots=622.67 \text {, the area of Sec. } 6 . \\
& \text { chs. chs. } \\
& \text { Check: }[77.87+77.75] \times 4=622.48 \\
& 77.75 \times 0.025=0.19 \text {, the area of triangle C A B (fig. 6). } \\
& \text { Total.... }=622.67 \text {, which agrees with the area of section } 6 \text {, } \\
& \text { before determined. }
\end{aligned}
$$

3. The area in acres of a tract 40.00 chains long, aljoining north or west township boundaries (except in N. W. $\frac{1}{4}$ see. 6), is equal to the sum of its parallel bounduries (expressed in chains and decimals thereof) multiplied by 2 ; (e. g.) the area of lots 6 and 7 (Plate I, fig. 6), is $[17.87+17.81] \times 2=71.36$ acres.

The area in acres of a tract 60.00 chains long, situated as above described (exchding lot 4, of sec. 6), may be found by multiplying the sum of its parallel boundaries (expressed in chains and decimals of a ehain) by 3 ; (e. g.) fig. 6 ; south bomulary lot $4=17.78$ chs.; area of lots 5,6 , and 7 is $[17.78+17.87] \times 3=106.95$ acres. (See example 2.)

The area in acres of quarter sections adjoining north and west townslip boundaries (excluding N. W. $\frac{1}{4}$ sec. 6), may be obtained by multiplying the sum of their parallel boundarics (taken in chains and decimals of a chain), by 2 ; (e. g.) the area of S. W. $\frac{1}{4}$ sec. 6 (fig. 6), is $[37.87+37.81] \times 2=151.36$ acres.

The area in acres of any section along the north and west boundaries of regular townships (except sec. 6) may be had by multiplying the sum of its parallel boundaries (expressed in chains and decimals of a chain) by 4 ; (e. g.) the area of see. 1 (Plate IV) is [$80.00+79.77]$ $\times 4=639.0$ s acres.
The area in acres of a theoretieal township may be obtained by multiplying the sum of its latitudinal boundaries (expressed in chains and

[^29]decinals of a chain) by 24 ; (e. g.) the area of the township represented by Plate I, fig. 1 is $[480.00+479.34] \times 24=23,024.16$ acres.

Explanations of articles on pages 72 to 78, With general DEFINITIONS OF A "RETRACEMENT" AND A "RESURVEY."

When new surveys are to be initiated from, or closed upon the lines of old surveys, which although reported to have been executed correctly, are found to be actually defective in alinement, measurement, or position, it is manifest that the employment of the regular methods prescribed for surveying normal township exteriors and subdivisions would result in extending the imperfections of the old surveys into the new, thereby producing irregular townships bounded by exterior lines not in conformity with true meridians or parallels of latitude, and containing trapezium-shaped sections which may or may not contain 640 acres each, as required by law.

Therefore, in order to extend such new surveys without incorporating therein the defects of prior erroneous work, special methods, in harmony as far as practicable with the following requirements, should be employed, viz:
The establishment of township boundaries conformable to true meridian and latitude lines.

The establishment of section boundaries by running two sets of parallel lines governed respectively by true meridians and parallels of latitude, and intersecting each other approximately at right angles at such intervals as to produce tracts of square form containing 640 acres each.
The reduction to a minimum of the number of fractional lots in a township, and consequently of the amount of field and office work.

Such special methods are based upon certain limits of allowable error in the alinement, measurement, and position of old township boundaries, as prescribed in the following article entitled "Definitions of Defective Township Boundaries," page 72 , which will be determined and rectifications made, if necessary, under the provisions of the article entitled "Retracement or Resurvey of Township Lines and Linear Boundaries not Established in Conformity with the Rectangular System of Surveying," page 72, prior to the execution of new suryeys under the methods prescribed by the article entitled "Methods of Executing New Surveys, when Initiated from or closed upon Defective old Surveys," page 75, and illustrated on Plate VII, by figures 1 to 15; on Plate VIII, figures 1 to 7, and on Plate IX.

In order to prevent any misunderstanding relative to the modus operand i indicated by the terms "retracement" and "resurvey," the following definitions of the same are here presented:

The retracement of a township boundary, or other line of survey, consists in the determination of the true bearings and distances between the successive corners along the entire length of such a line; and the data thus obtained will be embodied in the field notes together with detailed particulars of the methorls employed.

The resurvey of a township boundary or other line of survey consists of a retracement of such a line accompanied by the reconstruction of defective original coruers and the estabhshment thereon of all the necessary new corners, and the detailed particulars of the entire operation will be embodied in the field notes.

DEFINITIONS OF DEFECTIVE TOWNSHIP BOUNDARIES.

1. Upon retracement thereof, an old township bomndary may be found to be defective in one or all of three qualifications, viz: alinement, measurement, and position, as follows:
2. In alinement; when any portion thereof deviates more than twentyone minutes of arc from a true meridian or latitude line.
3. In measurement; in the case of a meridional line, or a latitudinal line which is identical with a standard parallel; when its length is greater or less than six miles by more than three chains; or when the length of any portion thereof between two successive corners, is greater or less than forty chains; excepting that portion between the last established corner aud the limiting line, which may be greater or less than forty chains, when such a boundary has been closed upon the bank of a meanderable body of water, a military or Indian reservation, or State boundary, ete., as the case may be.
4. In measurement; in the case of a latitudinal line not identical with a portion of a standard parallel; when its length is greater or less than six miles minus the proper correction for convergency, by more than three chains; or when the length of any portion thereof between two successive corners is greater or less than forty chains; except, when such a boundary has been run as a true line to an intersection with any line of limitation, that portion thereof, between the last established subdivisional corner aud the limiting line, may be greater or less than forty chains; and also, when it has been established in the regular manner, i. e. by random and true lines, that portion thereof in which the fractional measurement was originally allowed for may be greater or less than forty chains.
5. In position; when the corners originally established on such a boundary can not be connected with the corners on the opposite regularly established bomulary, by lines which do not deviate more than twenty-one minutes of are from true meridian or latitude lines.
6. The limits prescribed in the foregoing paragraphs are to be considered only in determining the necessity of resurveying old township boundaries when new surveys are to be initiated from or closed upon the same, and will not be construed in any way as establishing limits of allowable error in the exceution of new surveys.

RETRACEMENT OR RESURVEY OF TOWNSIIIP LINES AND LINEAR BOUNDARIES NOT ESTABLISHED IN CONFORMITY WITH THE RECTANGULAR SYSTEM OF SURVEYING.*

If in subdividing a township, it is found that any boundary thereof is defective in excess of the limits of allowable error prescribed in the article entitlerl "Definitions of Defective Township Boundaries," above, or that the corners originally established thereon had been incorrectly marked, or have been obliterated, the deputy surveyor will resurvey so much of said boundaries as may be necessary, as follows:

1. When subdivisional lines have not been closed upon either side of, or mineral claims tied to, a township boundary, it will be corrected (if necessary), in point of alinement, as well as measurement, by establishing regular new corners at lawfind distances (minus the northing or plus the southing of the south boundary; or minus the westing or plus the easting of the east boundary), from said boundaries respectively (as the case may be), upon a right line connecting the proper township corners,

[^30]provided said line does not deviate more than twenty-one minutes of are from a trine meridtan or latitude line (as the case may be). (See Plate VIl, tigs. 1, 2, 3.)
But, if the bearing of said line exceeds the limit prescribed above, the new corners will be placed on a line run due north or west, from the southeast corner of the township, to intersection with the township or range line (as the case may be), where a closing corner will be established, and the old township corner properly changed to a corner common to two townships.

The old corners on all township boundaries rectified under the provisions of this paragraph will be destroyed. (See Plate VII, figs. 4 and 5 .)
2. Where subdivisional lines have been closed upon one side of, or mineral claims tied to, a township boundary prior to the subdivision of the township on the other side, its alinement will not be changed; all obliterated old corners will be reëstablished in their origiual places; new regular corners common to two townships, sections, or quarter sections, will be established upon it at lawful distances, minus the northing or plus the southing of the south boundary; or minus the westing or plus the easting of the east boundary, from said boundaries respectively (as the case may be), marked with reference to the township' being subdivided, and the marks on the old corners upon such boundary which refer to the new work will be effeced.

Marks on bearing trees will be corrected (if necessary) to indicate the township, range, and section in which they stand, but the pits and mounds will remain as originally established. (See Plate VII, figs. 6 and 7.)
3. Where subdivisioual lines have been closed upon one side of, or mineral claims tied to, the northern portion of a range line prior to the subdivision of the township on the other side (see paragraph 2), while upon the southern portion of the same such attachments have not been made on either side (see paragraph 1), said southern portion will be resurveyed and proper new corners established thereon, at lawful distances from the south boundary, as follows:

If the bearing of said southern portion does not deviate more than twenty-one minutes of are from a true meridian line, it will be rectified under the provisions of the first clanse of paragraph 1 , and the rectifications will be continued on the northern portion under the provisions of paragraph 2. (See Plate VII, fig. 8.)

If, however, said bearing excceds the specified limit, from the northern terminal corner of said southern portion, the range line will be extended due south on a random to its intersection with the south boundary where a corner common to two townships will be established, all the necessary changes made in the markings on the original corner common to four tomnships sitnated in its immediate vicinity, and regular new corners placed upon the respective portions of the entire range line as specified in the foregoing clanse. (See Plate VII, fig. 9.)

Similar cases involving the rectification of the northern portion of a range line when the sonthern portion of the same can not be rectified in bearing, will be treated in conformity with the rules prescribed in the foregoing clauses, with the exception, that where such northern portion deviates more than twenty-one minutes of are from a true meridian line, its alinement will be rectified by extending the same from its southern terminal corner, due north on a true line to its intersection with the north boundary, where a proper closing corner will be
established and the necessary corrections applied to the old corner common to four townships in its immediate vicinity, so as to change it to a corner common to two townships. (See Plate VII, figs. 10, 11, and 12.)

In the treatment of latitudinal township lines the rule prescribed in the foregoing clauses will be applied, observing, however, that the stated designations north or south will correspond in such cases to west or east, respectively.
4. When subdivisional lines have been closed upon one or both sides of, or mineral claims tied to, the northern and southern portions of a range line, while the middle portion thereof is free from such attachments, said portion will be resurveyed and new regular corners will be established thereon at intervals of forty chains from its southern terminal corner, upon a right line connecting the original terminal corners thereof, the fractional measurement being thrown against the northern terminal corner. (See Plate VII, figs. 13, 14, and 15.)

In such cases all the original corners, excepting the terminal corners, of the portion of the lines thus resurveyed, will be destroyed.

The rectification of the middle portions of latitudinal township lines, on which the conditions specified above obtain, will be executed in a similar manner, observing, however, that the designations north or south in the foregoing clauses will in such cases correspond to west or east, respectively.
5. Under the foregoing paragraphs, the fact that mineral claims have been tied to a defective township boundary as therein specified, will act as a bar to the rectification of such a boundary in alinement, only when the number of claims involved is great; while in cases where a few such claims have been comected with a few of the corners on such a boundary, said boundary will be rectified in alinement and new corners placed thereon, care being taken, however, to perpetuate in a proper manner such old corners as are found to be connected with the claims; and the methods employed to accomplish the same, together with the bearings and distances of such old corner from the new, will be briefly and accurately recorded in the field notes.
New corners on defective township bomadaries must be established by an actual survey of such lines, and in no case will such corners be established from data acquired in running lines closing upon the same.

In the retracement or resurvey of base lines, standard parallels, principal meridians and guide meridians, two sets of chainmen will be employed, while for similar work on township lines, not of the character specified above, only one set of chainmen is required, and in cases where conditions such as specified in paragraph 2 obtain, the bearings and distances between successive old corners and the connections of all new corners with the nearest old comers will be carefully determined and recorded in the field notes.

When township or subdivisional lines intersect the boundaries of confirmed private land claims, or any other linear boundaries established at variance with the rectangular system of surveying, as much of said boundaries will be retraced as may be necessary, temporary stakes being set at intervals of ten chains thereon, and also at each angle formed by a change in the direction of the same.

All obliterated boundary corners will be reëstablished in their original places, and the regular surveys will be closed upon the retraced line as prescribed for "closings" in the last clause of par. 5 , page 55.

Note.-Regarding restoration of lost corners, by prirate and county surveyors, see page 224.

METHODS OF EXECUTING NEW SURVEYS, WHEN INITLATED FROM OR CLOSED UPON OLD SURVEYS, AND EXPLANATION OF FIGURES ON PLATE VII.

Such methods are illustrated by the several figures on Plate VII, the rectification of the lines of old surveys, and the establishment of new township exterior and subrlivisional lines connected with such old lines, being based upon the rules prescribed in the article entitled "Retracement or Resurvey of Township Lines," \&c., page 7\%.

In considering the several cases, the probable obtaining conditions relative to a range line have been adopted in order to reduce the number of figures on said plate, and, to curtail also as much as practicable, the amount of reiterative verbal explanations; it being definitely understood, however, that whatever conditions may obtain relative to a latitudinal line similar to those illustrated and explained in extenso in the cases relative to the range line, the necessary rectifications will be made by the application of similar methods, subject, however, to the proper modifications due to the difference in the direction of the respective lines.

The character of such modifications, when not obvious, are expressed in detail under the varions clanses of the several paragraphs of the article on retracements referred to above.

It will also be clearly understood that, in order to avoid unnecessary structural complications, the figures on Plate VII exhibit only the positions of township and section corners after rectification, while in actual practice the quarter section corners will also be properly affected.

Fig. 1. The east boundary is assumed as irregular in bearing and defective in measurement; the township corners on the same, however, being susceptible of connection by a line not deviating more than twenty-one minutes of are from a true meridian line.

It will be rectified under the rules prescribed by clanse 1 , paragraph 1, while from the proper corners the uest and north boundaries will be established in the regular manner, as well as the subdivisions within the exteriors thms rectified and established.

Fig. 2. The east boundary defectire in measurement. It will be rectified under clause 1, paragraph 1, while the west and north boundaries will be established, and the subdivisions executed in the regular manner.

Fig. 3. The east boundary defective in position. Since the south boundary deviates from a true east and west line by more than twenty-one minutes of are, said east boundary will be rectified under clause 1, paragraph 1; the west and north boundaries will be established in the regular manner; and the subdivisions will beexecuted fiom north to south, and from east to west, commencing at the corner to sections $1,2,35$, and 36 , and closing the fractional measurements on the south and west boundaries, as such closings are made in regular subdivisions on the north and west boundaries.

Fig. 4. The east boundary defective in alinement. It will be rectified under clause -2 , paragraph 1 ; while the west and north boundaries will be established, and the subrlivisions executed, in the regular manner.

Fig. 5. The cast boundary defective in alinement and measurement. It will be rectified under clause 2 , paragraph 1 ; the west boundary will be rectified in the regular mamer, while from the corner common to two townships on the rectified east boundary, the north boundary will be run west on random and cast on true line, permanent corners

76

common to sections and quarter sections of the township to be subdivided being established on the same.

The subdivisions will be executed in the regnlar manner.
Fig. 6. The sonth and east boundaries being defective in alinement, measurement, and position, will be rectified under clanse 1, paragraph 2 ; the west boundary will be established in the regular manner, and the north boundary by east on random, and west on true line, thowing the fractional measurement against the old east boundary; while the subrlivisions will be executed from north to south, and from west to east, commencing at the corner to sections $5,6,31$, and 32 , and closing the fractional measurements on the old south and east boundaries, as such closings are made in regular subdivisions on the north and west boundaries.

Fig. 7. The morth, south, east and west boundaries being defective in alinement, measurement, and position. The south and east boundaries will be rectitied under clause 1, paragraph 2 ; while the $\boldsymbol{\pi}$ est and north boundaries will be retraced for length and bearing, any obliterated old corners being reëstablished in their original places.

The subdivisions will be executed as follows:
From the corners to sections 35 and 36 , and 25 and 36 , the lines between said scetions will be extended due north and west, respectively, to their mutual intersection, where the corner to sections 25 , 26,35 and 36 , will be established.

From said corner, the line between sections 26 and 35,27 and 34,28 and 33,29 and 32 , and 30 and 31 will be projected due west on a true line to its intersection with the west boundary of the township, where a closing corner will be established.

A line thus established is termed a Sectional Correction Line; and when such an anxiliary line, thus projected, intersects its objective limiting line in such proximity to its objective corner that the accessories of the two corners would interfere, that portion of the auxiliary line situated between the last-established section corner and the limiting line will be changed in alinement to close upon the corner found, thus avoiding placing two corners in close proximity.

From the initial point of the scetional comection line, which, in this ease, is the corner to sections $25,26,35$, and 36 , the line between sections 25 and 26,23 and 24,13 and 14,11 and 12 , and 1 and 2 , will be projected north on a true line to its intersection with the north boundary, where a closing corner will be established. A line thus established is termed a sectional guide meridian.

Sonth of the sectional correction line, and cast of the sectional guide meridian, the subdivisions will be closed upon the south and east bonndaries by random and true lines, throwing the fractional measurements against the same, as such closings are made in regular surveys on the north and west boundaries; while that portion of the township sitnated to the north and west respectively, of said anxiliary lines, will be subdivided in the regular manner, the parallelism of the latitudinal section lines being referred to the sectional currection line, and that of the meridional section lines to the sectional guide meridian.

Closings on the west and north bonndaries will be made by random and true lines, when the fallings are less than 50 links per mile, and by true lines rum to closing comers when the fallings exceed said limit.

Fig. S. The cast boundary defective in measurement, the morthern portion of the same being unchangeable, while the sonthern portion admits of rectification.

The east boundary will be rectified under clause 2 , paragraph 2 , the
west and north boundaries will be established, and the subdivisions executed, in the regular manner.

Fig. 9. The eust boundary defective in alinement and measurement, the northern portion thereof beng muchangeable, while the southern portion of the same admits of rectification.

The east boundary will be rectified under clanse 3 , paragraph 3 , the south boundary, under clause i, paragraph 2; the west boundary will be established in the regular mamer; while the north bomdary will be run east on random, and west on true line, throwing the fractional measurement against the cast doundary.

The subdivisions will be executed from south to north, and from west to east, closing the fractional measurements on the north and east boundaries, as such closings are made in regular surveys, on the north and west boundaries.

Fig. 10. The east boundary defective in measurement, the southern portion thereof being unchangeable, while the northern portion admits of rectification.

The east boundary will be rectified under clause 4 , paragraph 3 ; while the west and north boundaries will be established, and the subdivisions executed in the regular manner.

Fig. 11. The east boundary defective in alinement and measurement, the southern portion thercof being unchangeable, while the northern portion admits of rectitication.

The east boundary will be rectified under clause 4, paragraph 3; the west boundary will be established in the regular manner; the north boundary by east on true line to closing corner, the fractional measurement being thrown against the old east bomudary; while the subdivisions will be executed from north to south, and from west to east, the fractional measurements being thrown against the old south and east boundaries, as such closings are made in regular surveys against the north and west bommdaries.

Fig. 12. The east boundary defective in measurement; the northern and southern portions thereof being unchangeable, while the middle portion admits of rectification.
The east boundary will be rectified under clause 1, paragraph 4, the west and north boundaries will be established, and the subdivisions executed in the regular manner.
Fig. 13. The east boundary defective in alinement and measurement; the northern and southern portions thereof being uuchangeable; while the middle portion arlmits of rectification.

The cast boundary will be rectified under clause 1, paragraph 4; the west boundary will be established in the regular manuer; the north boundary by east on random and west on true line, the fractional measurement being thrown against the old east boundary; while the subdivisions will be executed from north to south and from west to east, closing the fractional measurements against the old south and east boundaries, as such closings are made in regular surveys against the north and uest boundaries.

Fig. 14. The east boundary defective in alinement and measurement; the northern and southern portions thereof not admitting of rectification in any way, since subdivisioual surveys have been closed upon both sites of the same; while the middle portion admits of rectification in measurement.

The east boundary will be rectified under clause 1, paragraph 4; the west boundary will be established in the regular manner, the township corner at the end of six miles thereon being temporarily established.

From said temporary corner, the fractional north boundary will be run east on random to the nearest old established corner on the same, at which point if the falling of the random is within 50 links per mile, said boundary will be corrected westward on true line, setting corners common to the sections and quarter sections on the north, at regular intervals from the initial point of the true line, and throwing the consequent fractional measurement in its normal place against the new west boundary, while the temporary township corner previously established thereon will be made permanent.

If, however, the falling defined above exceeds the stated limit from the last established corner of the old surveys, the fractional north boundary will be projected due west to its intersection with the west boundary, at which point the proper township corner will be permanently established, and the temporary corner destroyed.
In establishing the corners on said north boundary under the latter procedure, the requirements prescribed in the former relative to the allowance for fractional measurement will be strictly observed.

In subdividing, the methods prescribed under Fig. 6 will be applied as far as practicable. The details of the case under consideration are clearly exhibited by fig. 14.
Fig. 15. All of the boundaries are assumed to be defective in alinement, measurement, and position; also portions of each as being closed upon by subdivisional surveys and consequently unchangeable relative to the old surveys, while other portions of the same being free from such attachments, admit of rectification.

This figure is construeted on a larger scale than those explained in the preceding paragraphs, in order to illustrate in detail the modus operandi to be pursued in rectification, under the rules of the article on retracements applicable to each of the obtaining conditions, and also in subdividing within the rectified exteriors.

HIATUSES AND OVERLAPS.

[Plate VIII.]
The several figures on Plate VIII illustrate in detail the methods to be employed in connecting the unsurveyed portions of two or more township boundaries, when four of such fractional lines, upon being projected towards each other in the direction of the cardinal points by lines not deviating more than twenty-one minutes of are from true meridian or latitudinal lines, do not form a common intersection.
Said methods, in addition to the reasons embodied in the article entitled "Explanations of Articles," etc., page 71, are based upon the following desiderata, viz:

1. The adjustment of such township boundaries so as to maintain section 36 in a condition theoretically and practically perfect, according to the requirements of the rectangular system of surveying.
2. That in accomplishing the above, the resultant fractional excess or deficiency (which for brevity of explanation is termed "t the rectangular fraction") will be thrown into, or taken out of section 6 , whenever practicable.
3. That all incidental fractional measurements developed in the establishmer to township boundaries or subdivisional lines by such methods shall be thrown against the old surveys whenever practicable.

In considering said methods it will be observed that the conditions
to be dealt with are either hiatuses or overlaps, the former possessing three characteristic features, which are named as follows:
Simple hiatus. See figures 1 and 2.
Meridional hiatus. See figure 3.
Latitudinal hiatus. See figure 4 ; while overlaps are shown by figure 5.

As the application of said methods, when the conditions exhibited obtain, gives similar results with but a few exceptions, which will be specifically detailed hereafter, the condition represented by A, figure 3 , will be considered and the method of connection described as an example, upon the following assumptions, viz:

That, of the boundaries of townships 1 and 2 north, ranges 3 and 4 west, those portions indicated by broken lines are unsurveyed;

That it is required to comect said portions in order to complete the subdivisions in one or more of the townships.

Begimning at the established terminal corners on the south and east boundaries of T. 2 N., R. 4 W., blank lines will be projected due east and due sonth, respectively, with temporary stakes at intervals of ten chains, to an intersection, which point will be marked by a temporary stake;

Then, from the established terminal corners on the west and north boundaries of T. 1 N., R. 3 W., true lines will be projected due north and due west, respectively, with regular corners for two sections and quarter sections, to an intersection, which point will be marked by a temporary stake;

Then, by proper measurements, the character of the resulting condition will be determined, and by comparison with diagrams A, of the figures on Plate VIII, the particular method of connection will be obtained and applied.

Said condition in the case under consideration, it will be observed, is a "meridional hiatus"; therefore, from the temporary stake marking the intersection of the extended sonth and east boundaries of T. 2 N., R. 4 W ., which will be replaced by a permanent corner (common to two townships) for T. 1 N., R. 3 W., and T. 2 N., R. 4 W., the south boundary of the latter will be extended due east to its intersection with the west boundary of the former, where a corner for (one township only) T. 1 N., R. 4 W., will be permanently established;

Then, from the corner for T. 1 N., R. 3 W., and T. 2 N., R. 4 W., the sonth and east boundaries of the latter will be corrected back west and north, respectively, on true lines, establishing regular corners common to two quarter sections and sections of said township, to the initial points of the blank lines, against which the resulting fractional measurements will be thrown, while the stakes temporarily established on the blank lines at intervals of ten chains will be destroyed;

Then, from the stake temporarily marking the intersection of the north and west boundaries of 'T. 1 N., R. 3 W., which will be destroyed, the former boundary will be extended due west to its intersection with the east boundary of T. 2 N., R. 4 W., where a proper closing corner will beestablished, the resulting fractional measurement thrown against the same, and the distance to the nearest corner on said boundary carefully determined and recorded in the field notes.

Thus section 36 is made full, serving as a perfect base from which to initiate the subdivisional work in T. 2 N., R. 4 W.; the "rectangular fraction," which in this case indirectly represents an excess, is incorporated in section 6 , which being lotted on two sides in its normal con-
dition, absorbs the excess without deranging materially those portions of the same usually defined as regular subdivisions; while the unsurveyed portions of the entire group of townships are arranged in such a manner as to admit of completing the subdivisional work therein on the approved rectangular basis.
Relative to incorporating an excess in, or supplying a deficiency from, section 6 , simple hiatuses are noted as exceptions to the general rule; therefore, when such hiatuses are square, or longer meridionally (see l, diagrams A, fig. 1), the "rectangular fraction" will be taken out of section 31, and incorporated in section 1; but if the length thereof (see 1, diag. A, fig. 2) lie in a latitudinal direction, said "rectangular fiaction" will be taken out of section 1 and incorporated in section 31.

If the surveys contemplated, within a group of four townships, consist of the completion of the southeast unsurveyed portion of the northwest township only, the method detailed in the foregoing paragraphs will be employed in all particulars, with the exception that the extension of the north and west boundaries of the sontheast township will be omitted; but the completion of the unsurveyed portions of any of the other three demands of the deputy surveyor the performance of the whole operation, and the complete connection of all the boundaries.

When, of four township boundaries whose directions tend to an approximate common point, two of the same have been carried to a mutual intersection, and are closed upon by subdivisional and other lines (see paragraph 2, article ou "Retracements," etc., the unsurveyed portion of the remaining boundaries will be comected with them by the application of these methods, sufficiently modified to preserve intact the prior subdivisional surveys.

FRAGMENTARY SUBDIVISION.

Plate IX illustrates the general methods to be employed in the execution of fragmentary subdivisions within townships, portions of which have been subdivided from fractional township boundaries extended from varions directions and not connected with each other.
These conditions obtain to a large extent in mometainons regions, where in accordance with the existing provisions, relative to the survey of agricultural lands, in the acts of Congress making appropriations for public land surveys, such surveys are extended along the valley and bottom lands, leaving the mountainous areas mourveyed at the time of the exceution of the original work; but which, at a later date, in view of other considerations are placed under contract for survey.

It is obvious that the number and character of such cases would be too great and varied to be considered in detail; therefore, when the deputy surveyor meets with a case which is not covered exactly by these instructions, or the special instructions from the surveyor general, his thorongh understanding of the preceding articles on this subject, and of the conditions illustrated on Plates VI and VIII, it is expected will point ont to him the proper method to be employed.

It is possible, however, that cases may arise so complex in their character as to produce a feeling of doubt relative to the proper solution of the problem; in which case he will at once communicate with this office through the surveyor general, submitting information, by letter and dingrams, of the exact condition as fonnd by him, and the necessary instructions will be forwarded as soon as practicable.

Note,-A quarter section is lield to be surveyed only when three of its corners have been officially established.

GEOGRAPHICAL POSITIONS OF BASE LINES AND PRINCIPAL MERIDIANS GOVERNING THE PUBLIC SURVEYS.

The system of rectangular surveying, anthorized by law May 20, 1755, was first employed in the survey of United States public lauds in the State of Ohio.

The bonndary line between the States of Pennsylvania and Ohio, known as "Ellicott's line," in longitude $80^{\circ} 32^{\prime} 20^{\prime \prime}$ west from Grcenwich, is the meridian to which the first surveys are referred. The townships east of the Scioto River, in the State of Ohio, are numbered from sonth to north, commencing with No. 1 on the Ohio River, while the ranges are numbered from east to west, beginning with No. 1 on the east boundary of the State, except in the tract designated "U. S. military land," in which the townships and ranges are numbered, respectively, from the south and east boundaries of said tract.

During the period of one hundred and nine years since the organization of the system of rectangnlar surveying, numbered and locally named principal meridians and base lines have been established, as follows:

The first principal meridian begins at the junction of the Ohio and Big Miami rivers, extends north on the boundary line between the States of Ohio and Indiand, and roughly approximates to the meridian of longitude $84^{\circ} 48^{\prime} 50^{\prime \prime}$ west from Greenwich. The ranges of the publie surveys in the State of Ohio, west of the Scioto River, are, in part, numbered from this meridian. For further information in regard to numbering of townships and ranges of the early surveys in Ohio, the reader is referred to the State map prepared in the General Land Office.

The second principal meridian coincides with $86^{\circ} 28^{\prime}$ of longitude west from Greenwich, starts from a point two and one half miles west of the contluence of the Little Blue and Ohio rivers, rums north to the northern boundary of Indiana, and, with the base line in latitude $38^{\circ} 28^{\prime} 20^{\prime \prime}$, governs the surveys in Indiana and part of those in Illinois.

The third principal meridian begins at the month of the Ohio River and extends north to the northern boundary of the State of Illinois, and with the base line in latitude $38^{\circ} 28^{\prime} 20^{\prime \prime}$, governs the surveys in the State east of the third principal meridian, with the exception of those projected from the second prineipal meridian, and the surveys on the west, to the Illimois River. This meridian is nearly coincident with $89^{\circ} 10^{\prime} 15^{\prime \prime}$ of west longitude from Green wich.

The fourth principul meridian begins at a point on the right bank of the Illinois River, in latitude $40^{\circ} 00^{\prime} 30^{\prime \prime}$ north, and longitude $90^{\circ} 25^{\prime} 45^{\prime \prime}$ west from Greenwich, and with the base line running west from the initial point, govems the smrveys in Illinois west of the Illinois River and west of that part of the thirdprincipal meridian which lies north of the river.

The fourth principal meridian also extends north through Wisconsin and northeastern Minnesota, and, with the south boundary of Wisconsin as its base line, goverus all the surveys in the former and those in the latter State lying east of the Mississ ppi River, and the third guide meridian west (of the fifth principal meridian system), north of the river.

The fifth principal meridian starts from the old mouth of the Arkansas River, and with the base line rumning west from the old mouth of the St. Francis River, governs the surveys in Arkansas, Missouri, Iowa, North Dakota; those in Minnesota, west of the Mississippi River and west of the third guide meridian north of the river; and in South Dakota
all east of the Missouri River, and the surveys on the west side of the river to a limiting line following the third guide meridian (of the sixth principal meridian system), White River, and the west and north boundaries of the Lower Brulé Indian Reservation. This meridian is nearly coincident with $91^{\circ} 03^{\prime} 42^{\prime \prime}$ longitude west from Greenwich.

The sixth principal meridian, which is approximately the meridian of $97^{\circ} 23^{\prime}$ west longitude from Greenwich, extends from the base line coincident with the north boundary of Kansas in latitude 40° north, south through the State to its south boundary, in latitude $37 \circ$ north, and north through Nebraska to the Missouri River; and governs the surveys in Kansas and Nebraska; the surveys in Wyoming, except those referred to the Wind River meridian and base line, which intersect in latitude $43^{\circ} 01^{\prime} 20^{\prime \prime}$ north, and longitude $108^{\circ} 48^{\prime} 40^{\prime \prime}$ west from Greenwieh; the surveys in Colorado, except those projected from the New Mexieo and Ute meridians, the latter intersecting its base line in latitude $39^{\circ} 06^{\prime} 40^{\prime \prime}$ north and longitude $108^{\circ} 33^{\prime} 20^{\prime \prime}$ west from Greenwich; and the surveys in South Dakota extended, or to be extended, over the tract embracing the Pine Ridge and Rosebud Indian reservations.

In addition to the above mentioned numbered principal meridians, other principal meridians with local names have been established, as follows:
The Michigan meridian, in longitude $84^{\circ} 22^{\prime} 24^{\prime \prime}$ west from Greenwich, with a base line in latitude $42^{\circ} 26^{\prime} 30^{\prime \prime}$ north (eight miles north of Detroit), governs the surveys in Michigan.

The Tallahassee meridian, in longitude $S 4^{\circ} 16^{\prime} 42^{\prime \prime}$ west from Greenwich, runs north and south from the initial point on the base line at Tallahassee, in latitude $30^{\circ} 28^{\prime}$ north, and governs the surveys in Florida.

The Saint Stephens meridian, in longitude $88^{\circ} 02^{\prime}$ west from Greenwich, begins at the initial point (Ellicott's corner), on the base line, in latitude 31° north, extends south to Mobile Bay and north to latitude $33^{\circ} 06^{\prime} 20^{\prime \prime}$, and governs the surveys in the southern district of Alabama, and in Pearl River distriet lying east of the river and south of the Choctaw base line, in latitude $31^{\circ} 52^{\prime} 40^{\prime \prime}$ north, in the State of Mississippi.

The Huntsville meridian begins on the northern boundary of Alabama, in latitude $34^{\circ} 59^{\prime}$ north, longitude $86^{\circ} 34^{\prime} 45^{\prime \prime}$ west from Greenwich, extends south to latitude $33^{\circ} 6^{\prime} 20^{\prime \prime}$ north, and governs the surveys in the northern district of Alabama.

The Choetaw meridian begins on the Choctaw base line, latitude 31° $54^{\prime} 40^{\prime \prime}$ north, lougitude $90^{\circ} 14^{\prime} 45^{\prime \prime}$ west from Greenwich, runs north to the sonth boundary of the Chickasaw cession, in latitude $34^{\circ} 19^{\prime}$ $40^{\prime \prime}$ north, and governs the surveys east and west of the meridian, and north of the base line.

The Chickasaw meridian begins on the north boundary of Mississippi in latitude $34^{\circ} 59^{\prime}$ north, longitude $89^{\circ} 15^{\prime}$ west from Greenwich, extends south to latitude $33048^{\prime} 45^{\prime \prime}$ north, and governs the surveys in north Missisippi.

The Washington meridian begins on the base line in latitude 31° north, longitude $91^{\circ} 9^{\prime} 15^{\prime \prime}$ west from Greenwich, extends north to the Mississippi River, and governs the surveys in the sonthwestern angle of the State of Mississippi.

The Saint Helena meridian begins at the initial point of the Washington meridian, in latitude 31° north, and longitude $91^{\circ} 09^{\prime} 15^{\prime \prime}$ west of Greenwich, extends south to the Mississippi River, and governs the sur-
veys in the Greensburg and southeastern districts of Lonisiana, east of the Mississippi River.

The Louisiana meridian, in longitude $92^{\circ} 24^{\prime} 15^{\prime \prime}$ west of Greenwich, extends from the Gulf of Mexico to the north boundary of Lonisiana, and, with the base line through the initial point, conforming to the parallel of 31° north latitude, governs all the surveys in the state west of the Mississippi River.

The New Mexico meridian, in longitude $106^{\circ} 53^{\prime} 40^{\prime \prime}$ west from Greenwich, extends through the Territory, and with the base line, in latitude $34^{\circ} 15^{\prime} 25^{\prime \prime}$ north governs the surveys in New Mexico, except those in the northwest corner of the territory, referred to Navajo meridian and base line, which have their initial point in latitude $35^{\circ} 45^{\prime}$ north, longitude $105^{\circ} 32^{\prime} 45^{\prime \prime}$ west from Greenwich.

The Salt Lake meridian, in longitude $111^{\circ} 5 \pm^{\prime} 00^{\prime \prime}$ west from Greenwieh, has its initial point at the corner of Temple Block, in Salt Lake City, Utah, extends north and south throngh the Territory, and, with the base line, through the initial, and coincident with the parallel of 40°, $46^{\prime} 04^{\prime \prime}$ north latitude, governs the surveys in the Territory, except those referred to the Uintah meridian and base line progected from an initial point in latitude $40^{\circ} 26^{\prime} 20^{\prime \prime}$ north, longitude $109^{\circ} 57^{\prime} 30^{\prime \prime}$ west from Greanwich.

The Boisé meridian, longitude $116^{\circ} 24^{\prime} 15^{\prime \prime}$ west from Greenwich, passes through the initial point established south $29^{\circ} 30^{\prime}$ west, nineteen miles distant from Boisé City, extends north and south through the State, and, with the base line in latitude $43^{\circ} 46^{\prime}$ north, governs the surveys in the State of Idaho.

The Mount Diablo meridian, California, coincides with the meridian of $121^{\circ} 54^{\prime} 48^{\prime \prime}$ west from Greenwich, intersects the base line on the summit of the mountain from which it takes its name, in latitude $37 \circ 51^{\prime}$ $30^{\prime \prime}$ north, and goverus the surveys in the State of Nevada, and the surveys of all central and northern California, except those belonging to the Humboldt meridian system.

The Humboldt meridian, longitnde $124^{\circ} 8^{\prime}$ west from Greenwich, intersects the base line on the summit of Mount Pierce, in latitude $40^{\circ} 25^{\prime}$ $12^{\prime \prime}$ north, and goverus the surveys in the northwestern corner of California, lying west of the Coast range of mountains, and north of township 5 south, of the Humboldt meridian system.

The San Bernardino meridian, California, longitude $116^{\circ} 56^{\prime} 15^{\prime \prime}$ west from Greenwich, intersects the base line on Mount San Bernardino, latitude $34^{\circ} 07^{\prime} 10^{\prime \prime}$ north, and governs the surveys in southern California, lying east of the meridian, and that part of the surveys situated west of it which is south of the eighth standard parallel south, of the Mount Diablo meridian system.

The Willamctte meridian, which is coincident with the meridian of $122^{\circ} 44^{\prime} 20^{\prime \prime}$ west from Greenwich, extends south from the base line, in latitude $45^{\circ} 31^{\prime}$ north, to the north boundary of California, and north to the international boundary, and governs all the public surveys in the States of Oregon and Washington.

The Black Hills meridian, longitude $104^{\circ} 03^{\prime}$ west from Greenwich, with the base line in latitude 44° north, governs the surveys in the State of South Dakota, north and west of White River, and west of the Missouri River (between latitudes $45^{\circ} 55^{\prime} 20^{\prime \prime}$ and $44^{\circ} 17^{\prime} 30^{\prime \prime}$), the morth and west boundaries of the Lower Brule Indian Reservation, and the west boundary of range 79 west, of the fifth principal meridian system.

The Montana meridian extends north and south from the initial
monument on the summit of a limestone hill, eight hundred feet high, longitude $111^{\circ} 38^{\prime} 50^{\prime \prime}$ west from Green wich, and with the base line on the parallel of $45^{\circ} 46^{\prime} 4 S^{\prime \prime}$ north latitude, goverus the surveys in the State of Montana.

The Gila and Salt River meridian intersects the base line on the south side of Gila River, opposite the mouth of Salt River, in latitude $33^{\circ} 22^{\prime} 40^{\prime \prime}$ north, longitude $112^{\circ} 17^{\prime} 25^{\prime \prime}$ west from Greenwich, and governs the surveys in the Territory of Arizona.

The Indian meridian, in longitude $97^{\circ} 14^{\prime} 30^{\prime \prime}$ west from Greenwich, extends from Red River to the south boundary of Kansas, and with the base line in latitude $34^{\circ} 30^{\prime}$ nortl, governs the surveys in the Indian Territory, and in Oklahoma Territory all surveys east of 100° west longitnde from Greenwich.

The Cimarron meridian, in longitude 103° west from Greenwich, extends from latitude $36^{\circ} 30^{\prime}$ to 37° north, and with the base line in latitude $36^{\circ} 30^{\prime}$ north, governs the surveys in Oklahoma Territory west of 100° west longitude from Greenwich.

DECLINATION OF THE MAGNETIC NEEDLE

For the following article, with tables, charts, and their explanation, relating to the use of the compass in surveying, the Commissioner of the General Land Office is indebted to Dr. T. C. Mendenhall, Superintendent of the U.S. Coast and Geodetic Survey. It was furnished at the request of the Commissioner.

The paper, originally written in 1878 by Assistant C. A. Schott, chief of the computing division, has been revised and enlarged by him in order to present the latest information on the subject in possession of the C. and G. Survey, Jine, 1593. It is also accompanied by three charts taken from the C. and G. Survey report for 1889 and amended to date; they show the distribution of the magnetic declination for the year 1890, and in comection with the tables, for any year within their range.

This paper takes the place of the chapter commencing at the foot of page 25 and ending in the middle of page 29 of the "Mannal of Instructions to Surveyors General of the United States" printed in 1871, part of which in the course of time had become obsolete. The present article will be found of great interest and value as an aid in the prosecution of the surveys of the public lands.

AN ACCOUNT OF THE PRESENT GEOGRAPHICAL DISTRIBUTION AND of the annual change of the magnetlc declination* WITHIN THE LIMITS OF THE UNITED STATES.

Introductory remarks.-The magnetic declination at any place is the angle contaned between two vertical planes, one being that of the astronomical or true meridian of the place and the other the plane in which the axis of a freely suspended horizontal magnetic veedle lies at the time. The former is a fixed plane, the latter is variable, as is shown by the regular or irregnlar, and the greater or less oscillations of a needle when delicately suspended; these fluctuations are subject to different laws depending on geographical position. Since the magnetic

[^31]declination is found to vary with respect to place and time, it is necessary on the part of the observer to give with his statement of the declination the geographical position or the latitude and longitnde* of his station (expressed to the nearest minute of are will suffice in general), and to accompany the recorl by the local time when the observation was made; the nearest hour (or quarter of an hour) should be stated, also whether sidereal time, mean time, local, or standard time is used.
The declination is called "west" when the north-seeking end of the magnet or needle points to the westward of the true meridian, and is called "east" when the same end points to the eastward. Roughly speaking, the north end of a needle tends approximately towards the geographical north, or, rather towards a region which surrounds the magnetic pole, situated in the vicinity of King William Land, and supposed to be in abont latitude $70 \frac{1}{2} \circ$ and longitude $100^{\circ} \mathrm{W}$. Here the horizontal needle has lost its directive force, and the dip needle will point vertically up and down; in other words, at the pole the magnetic and gravitational forces agree in direction. The magnetic declination presents great extremes in value within the limits of the United States; thms for the year 1893, we have at Eastport, Me., 19° W.; at the northeastern end of Lake Michigan, at the west end of Lake Erie, and in St. Helena Somd, S. C., 0° (needle pointing due north); at Galveston, Tex., $7{ }_{3} \circ \mathrm{E} . ;$ at San Diego, Cal., 131_{4}° E.; at Cape Flattery, Wash., 23° E.; at Sitka, Alaska, 290 E.; the maximum of 433° E. is reached at the month of Firth River, near where the meridional bomdary line of 141° strikes the Arctic Ocean; at Bering Strait, the declination has diminished to 21° E., and at the extreme western point of our territory, at Attu Island, it is but $8 \frac{1}{2}{ }^{\circ}$ E. The general distribution of the declination (for the given epoch, 1890), is shown by the isogonic charts appended to this manual, taken from the Coast and Geodetic Survey Report for 1889, Appendix No. 11; they are reproduced and amended to bring them up to the present state of our knowledge, and appear here transferred to the new base map of 1893 (scale foomm). The third chart referred to appears for the first time in the manual, it represents the magnetic meridians, i. e. lines which show directly the direction of the needle, this being a tangent to the curve at any point in it. These curves, therefore, may be said to represent a physical fact, while the isogonic curves are wholly artificial, but better adapted for practical application. The meridional system converges toward the magnetic pole without any special relation to the geographical pole, whereas in the isogonic system all curves must pass through the latter pole as well. It is a matter of great importance for surveyors to recognize the fact of the local deviations from the general trend of the isogonic lines; these local irregularities of the distribution are more conspicuous in regions of igneous rocks, but they appear also in regions of sedimentary deposits, the intensity of the disturbance depending on that of the local cause and its depth below the surface. The disturbing local poles or ridges are in general of the same polarity as that of the north magnetic pole. Disturbed regions may range from a fraction of a square mile to hundreds of sınare miles, but as yet little has been done in this inviting field for research.

In consequence of the secular variation of the declination the magnetic charts require to be reconstructed from time to time, though for a few years from the date of an isogonic chart the declination for any

[^32]position can readily be assigned by means of our knowledge of the annual change, which is sufficiently constant for a few years to produce no appreciable error. The secular variation is by far the greatest of the great number of changes in the direction of the needle. Thins at Albany, N. Y., the declination changed from $12^{\circ} \mathrm{W}$. in the year 1650 to nearly $5 \frac{10}{2} \mathrm{~W}$. about the year 1795 , and is now again about 1030 W .; at New York the change was similar; at Baltimore, Md., the declination changed from nearly $6^{\circ} \mathrm{W}$. about 1680 to nearly $\frac{1}{2} \circ \mathrm{~W}$. in 1802 , the present value being near $5^{\circ} \mathrm{W}$.; at San Diego, Cal., the declination was about $7 \frac{1}{3}{ }^{\circ}$ E. in 1710, and is now a little over 13° E.; at Chamisso Island, Kotzebue Sound, Alaska, the declination was $33 \frac{1}{2}$ ㅇ. E. in 1750, but is now only $26 \frac{1}{2} \mathrm{O}$ E. The results of the latest investigation of this subject published by the Survey are contained in Appendix No. 7, Coast and Geodetic Survey Report for 1888. What is known as the annual change of the declination is nothing else than the effect of the secular variation during one year, and must be carefully distinguished from the amual variation, which has but a small range and depends on the season of the year.

The isogonic and magnetic meridian charts.-Referring to the two isogonic charts appended to this article, the larger comprises the compact area of the United States and the smaller one the territory of Alaska. If for any selected epoch we comnect by curves all positions at which the needle was observed to have the same given declination, we trace ont an isogonic curve for that value of declination. On the charts they are laid down for the equal difference of 1^{10}, with every fifth curve drawn heavier for better distinction, and they answer to the epoch January 1, 1890. For their construction more than 3,200 observed declinations (reduced to epoch) were employed, the latest observation only being used at stations occupied more than once. The isogonic curve of zero declination, also called the agonic line, at which the needle points due north and south, is seen to pass from the island of Michipicoten to the extreme west end of Lake Erie and close to Charleston, S. O., where it leaves the coast and turns toward the Bahama Islands. This curve has been conveniently used as a representative line to mark out the changes which in the conrse of time the magnetic system in its vicinity undergoes.

On the Atlantic coast it reached its highest position* near Cape Henry, Va., about the year 1800 and has since been moving southward. All localities to the northeast of this line have west declination, indicated by $a+s i g n$ to the index number; localities to the westward of it and comprising the greater part of the United States have now east declination, as marked by a negative index. To take up the declination for any given position on this chart, we resort to simple graphical interpolation; it is best done by dropping a perpendicular (curved) from the position to the nearest isogonic on either side of it and measuring the length of the shorter one, also that of the two together; the proportion of the distance with respect to the whole difference of 60^{\prime} is readily ascertained. The result answers to the year 1890 (January), and by applying the effect of the annual change, as tabulated further on, the declination may be had for any time before or after that epoch. This annual change is at present manifested by the apparent movement of the isogonic lines to the sonthward or downward along the Atlantic coast and to the westward or left on the Gulf coast and in the interior to the north of it; on the Pacific coast this movement has

[^33]either ceased or is very inconspicuons at present. The charts show two shaded bands, one crossing the northern part of Maine where the direction of the needle has reached a limiting westerly position and is about ready to reverse its secular motion; the other band skirts the Paciice coast from Washington to Point Conception, Cal., where it passes out to sea. Here the needle is about stationary at the easterly limit of its grand secular swing. For intermediate points this same condition was reached at corresponding times during the present century.

It will be seen that the irregularities in the local distribution of magnetism can only be brought out and specially delineated by a large addition to the observations so far accumulated.*

The degree of accuracy of the charts depends in the first place on that of the original observation, secoudly on that of the change in the interval between observation and epoch, and lastly on the density of observations abont the locality or the degree of generalization required in the construction of the curves. The meridional chart has already been sufficiently explained and the additional dip and intensity curves shown on it do not come within the scope of this paper.

The secular variation of the magnetic declination.-This variation, as already pointed out, is a matter of great importance to the surveyor who is frequently called upon to recover or re-run old compass lines or to decide between conflicting claims as to position of old bomudary lines originally traced out by compass but lost or obliterated in the course of time. As its name implies, this angular motion extends over so long a period and is so utterly unknown as to its origin that the recognition of its law is a matter of much difficulty and uncertainty. To represent it a periodic function is employed; but from this it shonld not be inferred that the motion is repeated at stated intervals; on the contrary we are fully aware of the complexity of the phenomenon and of the necessity of continnally watching year by year the changes resulting fiom observatious and correcting or remodeling our analytical representatious accordingly. It should be fully understood that this process is a wholly tentative one and that the mathematical inferences due to the form of the function are not meant thereby to represent or become a physical reality. Thus we are forced to reconstruct our secular change tables at suitable intervals. The period found most in accord with observations is about 250 years with variations of about 50 years longer or shorter, at various stations. This holds only for the United States. The earlier setting in of the secular variation phases in the east and spreading westward over the conntry has already been referred to; for instance the easterumost position or eastern elongation occurred at places in eastern Maine abont the year 1760, this phase reached the Hudson River about 1790, the Mississippi River about 1820, Salt Lake about 1870, and the west coast, as at San Francisco Bay, probably next year or not far from it. Whether this phenomenon will be repeated with the present incoming opposite phase in northern Maine remains to be seen. The results from a discussion of 1,062 observations at 94 stations are given in the following table of decemnial values, and after 1850 for 5 -year intervals. The average number of observations for each station is 11.

Table of the secular variation of the magnetic declination at stations in the United States, computed by means of periodic functions and based

[^34]upon all available observations from the earliest to the present time. The table is subdivided into three groups, viz: Group I comprises the stations located east of the Apalachian Range, and the Atlantic coast from Maine to Florida, inchsive; Group II, the stations situated between the Rocky Momntains and the A palachian Range, from Canada to the Gulf; Group III contains the stations located between the Rocky Mountains and the Pacific coast, from California to Washington, also those in Alaska. Within each group the stations are arranged in the order of their latitudes.

The tabular values are of various degrees of accuracy, as is indicated by the entry, giving either whole degrees, or degrees and tenths, or degrees, tenths, and limidredths-the latter relatively the most reliable. The results, dating back to the seventeenth century, are in many cases but approximations more or less reliable. West declination is indicater by the sign + prefixerl, east declination by the sign - prefixed. All values for 1900 are mere rough predictions and depend upon the precarious supposition of a continuation of the law implied by the formule.

Table B.-Secular Tariation of Magnetic Declination-Eastern Group of Siations.

$\begin{gathered} \text { Year (Janu- } \\ \text { ary 1.) } \end{gathered}$				m \circ $\rightarrow 2$ ar $\stackrel{c}{c}$ \pm	Portland, Me.	$$		Chesterfield, N. H.		$\begin{gathered} \text { Williamstown, } \\ \text { Mass. } \end{gathered}$
	-	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-
1600	+19									
10	19									
20	19									
30	18.5									
40	18									
1650	$+17.5$									
60	17									
70	16									
80	15									
90	14.5									
1700	$+13.7$				+12. 1					
10	13.0				11.4					
20	-12.3				10.6					
30	11.9				9.9					
40	11.6				9.3					
1750	$+11.4$				+8.8				$+8.0$	$+7.5$
60	11.4			+6.6	8.41				7.5	6.8
70	11.6			6.1	8.18		$+7.8$		7.21	6.3
80 90	12.0			5. 7	8.12	+6.8	7.6		7.07	5.9
90	12.6		+7.1	5.6	8.23	6.5	7.5		7.07	5.7
1800	$+13.2$	$+10.8$	$+7.2$	$+5.7$	$+8.50$	$+6.4$	$+7.6$		$+7.26$	$+5.7$
10	14.0	11.4	7.4	6.1	8.92	6.44	7.9	+5.9	7.60	5.9
20	14.8	12.1	7.78	6.6	9.46	6. 71	8.3	6.2	8. 07	6.3
30	15.6	12.9	8. 29	7.3	10.10	7.18	8.87	6.98	8. 65	6.8
40	16.4	13.7	8.90	8.1	10.82	7.80	9.55	7.97	9.31	7.4
1850	$+17.1$	+14.5	$+9.58$	+9.0	$+11.56$	$+8.55$	$+10.28$	+8.60	$+10.02$	$+8.1$
55	17.4	14.0	9.93	9.45	11.92	8.96	10.66	8.86	10.37	8.5
60	17.79	15.3	10.27	9. 90	12. 29	9.38	11.03	9.16	10.72	8.8
65	18.08	15.6	10.62	10.36	12. 64	9.80	11.40	- 9.59	11. 06	9.2
70	18.32	16.0	10.96	10.79	12.97	10.22	11.75	10.09	11.39	9.6
1875	$+18.53$	$+16.27$	$+11.28$	+11.20	$+13.29$	$+10.64$	$+12.09$	$+10.59$	$+11.70$	$+10.0$
80	18.71	16.54	11.58	11.59	13.58	11.05	12.40	11.01	11.99	10.3
85	18.84	16.79	11. 86	11.94	13.85	11. 44	12. 69	11.27	12. 25	10.6
90	18.92	16. 99	12.11	12. 26	14.08	11. 80	12.94	11.38	12.48	10.9
95	19.0	17.15	12.3	12.5	14.3	13. 1	13.16	11.4	12.7	11.2
1900	+19.0	$+17.3$	+12.5	+12.8	+14.4	$+12.4$	+13.3	+11.5	$+12.8$	$+11.4$

Table B.-Secular Fariation of Magnetic Declination-Eastern Group of StationsContinued.

		$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { y } \\ & \text { y } \\ & \text { 5- } \\ & 6 \end{aligned}$			荡				
	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc
1600	$+10.5$									
10	11.									
20	\$1.5					+13.				
30	11.8					13.				
40	12.0					12.8				
1650	$+12.1$					$+12.6$				
60	12.0					12.3				
70	11.7					11.85				
80	11.3					11. 3				
90	10.8					10.6				
1700	+10.2			$+9.8$	$+10.1$	$+9.9$				$+9.1$
10	9.5			9.2	9.4	9.2	$+10.4$	$+9.3$		8.4
20	8. 76			8. 7	8.7	8.55	9.5	-8.66		7.8
30	8.07			8.2	8.1	7.9	8.8	7.96		7.3
40	7.38			7.82	7.6	7.4	8.4	7.27		6.8
1750	$+6.76$	$+7.8$		$+7.46$	+7.1	+7.0	+7.8	$+6.62$	+6.8	+6.4
60	6. 23	7.1		7.17	6.8	6.7	7.0	6.05	6.1	6.2
70	5. 8	6. 6		6.96	6. 6	6. 6	6.3	5.59	5. 6	6.1
80	5.55	6.2		6.86	6.5	6. 6	6.0	5.27	5.1	6.2
90	5.43	6.1	$+3.01$	6.80	6.65	6.8	6.2	5.10	4.8	6.4
1800	+5.48	$+6.3$	+2.96	$+7.10$	+6.90	$+7.2$	+6. 46	+5.10	$+4.7$	$+6.8$
10	5.67	6.6	3. 10	7.46	7. 29	7.7	6.54	5. 26	4.7	7.2
20	6.02	7.2	3. 411	7.97	7.78	8.25	6. 71	5. 58	5.0	7.7
30	6.49	7.9	3. 87	8. 60	S. 37	8.91	7. 29	6. 02	5. 39	8. 34
40	7.07	8.7	4.46	9. 29	9.01	9.61	8.24	6.59	5.95	8. 96
1850	+7.73	+9.64	$+5.14$	$+9.99$	$+9.67$	$+10.32$	+9.18	+7.24	$+6.61$	$+9.57$
55	8.08	10.11	5. 51	10.3:	10.00	10.67	9.53	7.58	6. 97	9.87
60	8. 44	10.58	5. 89	10. 63	10.33	11.00	9.78	7.93	7.35	10.15
65	8.80	11.04	6. 26	10.92	10.64	11.31	10.00	8.27	7. 72	10.40
70	9.17	11.48	6.65	11.17	10.94	11.61	10.:21	8.62	8.10	10.64
	+9.53	$+11.90$	$+7.02$	$+11.40$	$+11.22$	$+11.88$	$+10.47$	$+8.97$	+8. 47	$+10.86$
80	9.87	12.29	7.38	11.59	11.47	12.12	10.79	9.29	8.84	11.04
85	10. 21	12.7	7.72	11.74	11.71	12. 34	11.17	9.60	9.19	11.19
90	10.5.2	13.0	8.05	11.85	11.91	12. 51	11.56	9.89	9.52	11.31
95	10.82	13.2	8.35	11.9	12. 08	12.65	11.9	10.16	9.8	11.4
1900	$+11.1$	+13.5	+8.6	$+12.0$	$+12.2$	+12.8	+12.1	$+10.4$	+10.1	$+11.5$

Table B.-Secular Variation of Magnetic Declination-Eastern Group of StationsContinued.

1600	-	\bigcirc	-	-	-	-	-	\bigcirc	-	-
10		8.5								
20		9.								
30		9.5								
40		9.6								
1650		$+9.7$								
60		9.7								
70		9.7								
80 90		9.6 9.1						+8.3		
		9.1								
1700		$+8.5$						+7.9	$+8.2$	
10		7.8						7.5	7.8	
20		7.3						7.0	7.4	
30		6. 8						6.4	6.8	+4.45
40		6.3	+6.1					5.7	6.2	3.83
1750	$+5.8$	$+5.6$	$+5.3$	+3.9				+4.8	+5.3	+3.18
60		5.0		3.2		$+4.5$		3.9	4.4	
70	5. 0	4. 6	3.8	2.5		3.9		3.1	3. 6	1. 64
80 90	4.77 4.67	4.4 4.4	3.2 2.7	1.8 1.33		3.5 3.21		2.4 2.0	2.8 2.3	0.82 +0.12
90	4.67	4.4		1.33	+2.3	3.21	-0.1	2.0	2.3	+0.12
1800	+4.72	+4.3	+2. 4	+0.99	$+2.54$	$+3.09$	$+0.0$	+1.8	$+2.1$	-0.35
10	4. 90	4.5	$\stackrel{2}{2}$	0.84	2.93	3. 15	0.3	2.0	2.16	-0.48
20	5.21	4.61	2.3	0.88		3. 38	0.8	2.5	2.44	-0.28
30	5.63	4.98	2.5	1.11	4.02	3.77	1.4	3.0	2.91	+0.17
40	6. 13	5.61	2. 96	1.52	4.66	4. 28	2.2	3.7	3.46	0.75
1850	+6.69	$+6.31$	$+3.53$	$+2.07$	+5.32	$+4.91$	$+2.94$	+4.35	+4.07	+1.38
55	6.99	6.62	3.86	2.40	5. ¢.6	5. 25	3.33	4.6	4.39	1.70
60	7. 28	6.91	4. 22	2.74	5. 98	5.60	3.71	5.0	4.73	2. 02
65	7.58	7. 16	4.59	3.10	6. 29	5. 96	4.08	5.3	5.08	2.35
70	7.87	7.40	4.98	3.48	6.59	6. 32	4. 43	5.7	5.44	2. 70
1875	+8. 15	+7.64	$+5.36$	+3.85	+6.87	+6.67	+4.75	+6. 2	$+5.81$	+3.06
80	8.41	7.90	5.75	4.23	7.12	7.01	5.05	6.7	6.20	3.44
85	8.66	8.18	6. 12	4. 60	7.35	7.35	5.30	7.1	6. 50	3. 84
90	8.89	8.49	6. 49	4. 95	7. 55	7. 65	5.52	7.6	7.0	4. 25
$\begin{array}{r}95 \\ 1900 \\ \hline\end{array}$	9.1 +9.3	8.8 +9.1	6.83 +7.2	5.3 +5.8	7.72 +7.9	7.94 +8.2	5.7 +5.8	7.9 +8.0	7.4 +7.7	4.65 +5.0
1900	+9.3	+9.1	+7.2	+5. 8	+7.9			+8.0	$+7.7$	$+5.0$

* To reduce to Sandy Hook, N. J., subtract $0^{\circ} .33$.

Table B.-Secular Fariation of Magnetic Declination-Eastern Group of StationsConcluded.

$\begin{gathered} \text { Year (Jamu- } \\ \text { ary 1.) } \end{gathered}$		E	$\Gamma^{\prime} A^{\prime} E_{[}\left[\theta_{E}\right]$			荡	$\begin{gathered} \text { Capo Henry, } \\ \text { Va. } \end{gathered}$	$\begin{gathered} \text { Newbern, } \\ \text { N.C. } \end{gathered}$			感
1600	\bigcirc	\bigcirc	0	\bigcirc	-	\bigcirc	-	-	-	0	-
10											
20											
30											
40											
1650											
60											
70		$+6$									
80	+8.	6.									
90	8.	6.				+4.7					
1700	$+8.0$	$+5.4$			$+6.4$	$+4.6$	$+4.6$			$+0.0$	
10	7.6	5.0			5.8	4.4	4.3			-0.5	
20	7.0	4.5			5.2	4.0	3.9			1.2	
30	6. 4	3.9			4.4	3.5	3.4			1.8	
40	5.7	3.2			3.7	2.9	2.9			2.5	
1750	$+4.9$	+2.6		+1.i	$+2.9$	+2.3	$+2.3$			-3.1	
60	4.2	ㄹ.0		1.0	2.3	1.65	1.8			3.7	
70	3.6	1. 46		0.5	1.7	1.05	1.2	-1.6		4.1	
80	3.2	1.04		$+0.2$	1.2	0.52	0.8	1.9		4.4	
90	2.9	0.76		-0.0	0.9	+0.10	0.45	2.1		4.55	
1800	$+2.7$	+0.64		-0.1	$+0.8$	-0.17	$+0.24$	-2.11	-5.0	-4.55	
10	2.8	0.68		-0.0	0.9	0.28	0.17	1.96	5.3	4.37	-4.7
20	3.0	0.88		$+0.3$	1.1	-0.22	0.25	1. 66	5.3	4.05	4.7
30	3. 4	1. 23		0.7	1.5	+0.01	0. 47	1.23	5.6	3. 59	4.5
40	4.0	1. 70	+2.65	1.19	2.00	1). 38	0. 82	0.70	5.55	3.03	4.2
1850	$+4.62$	$+2.27$	+3.22	$+1.78$	+2.64	$+0.88$	$+1.27$	-0.09	-5.33	-2.39	-3.78
55	4.97	-. 58	3.5)	-3.10	2.99	1. 16	1.53	+0.22	5.17	2.06	3.54
60	5. 34	2.90	3.79	$\cdots{ }_{2} 92$	3. 36	1.47	1.80	0.54	4.98	1.73	3.27
65 70	5. 70 6. 46	3. 23	4.08	2.74	3. 73	1.78	$\stackrel{1}{2.08}$	0.86	4. 76	1.39	2.98
70	6. U6	3.55	4.36	3.06	4.11	2.10	2.37	1.17	4.51	1.07	2.68
1875	+6.41	$+3.87$	+4.65	$+3.37$	+4.49	$+2.43$	$+2.66$	$+1.46$	-4.24	-0.75	-2.37
80	6.76	4.17	4.93	3. 66	4.86	2.75	2.94	1.74	3.96	0.45	2.06
85	7. 06	4. 47	5.21	3.93	5.2	3. 06	3. 22	2. 01	3. 66	-0.17	1. 76
90	7.35	4.74	5.50	4.18	5.6	3.3	3.5	2. 25	3.36	$+0.09$	1.45
95 1900	7.6 +7.8	5.0 +5.2	5.8 +6.1	4.40 +4.6	5.9 +6.2	3.6 +3.9	3.7 +3.0	2. 45	3.1	0.3	1.2
1900	$+7.8$	+5.2	+6.1	$+4.6$	$+6.2$	$+3.9$	$+3.9$	$+2.6$	-2.7	$+0.5$	-0.9

Table C.-Secular Variation of Magnetic Declination-Middle Group of Stations.

水				吾							
	\bigcirc	-	\bigcirc								
1650											
60											
70									+9.9		
80									10.1		
10									10. 2		
1700									$+10.1$		
10									9.8		
20									9.3		
30									8.6		
40									7.8		
1750									+7.0		
60									6.1		
70									5.2		
80				... - .					4. 46		
90		$+0.0$					+0.44	-0.47	3. 76		
1800		-0.5					+0. 22	-0.55	$+3.26$	-3.1	
10		0.9					0.21	0.46	2.89	3.06	
20		1.1	$+2.6$		-5.0		0.41	-0.21	2. 74	2.84	-5.7
30		1. 16	3.15	+0.8	5.2		0.79	+0.20	2.80	2.49	5.84
40		1.04	3.72	1.32	5.2		1.35	0.73	3.05	2.04	5.71
1850	-9.8	-0.76	+4.52	+1.60	-4.95	-7.4	$+2.05$	$+1.36$	$+3.52$	-1.55	-5.33
55	9.9	0.57	4.96	1.85	4.74	7.2	2.43	1. 70	3.81	1. 22	5.06
60	10. 12	0.34	5.41	2.17	4.45	6.9	2. 84	2.05	4.13	0.93	4.74
65	10.08	-0.07	5.87	2. 39	4.11	6.6	3. 25	2. 40	4.49	0.64	4.37
70	10.11	$+0.21$	6.33	2.66	3.71	6.2	3. 67	2. 75	4.88	0.34	3.96
1875	-10.10	$+0.52$	$+6.79$	$+3.14$	-3.95	-5.8	$+4.09$	$+3.10$	$+5.29$	-0.05	-3.52
80	10.06	0.84	7.23	3.62	2.73	5.4	4.51	3.43	5.71	$+0.23$	3.04
85	9.98	1. 18	7.6	3.88	2.15	5.0	4.91	3.75	6. 14	0.49	2. 55
90	9.9	1.52	8.0	4.12	1.5	4.5	5.30	4.05	6.58	0.74	2. 04
95	9.7	1.9	8.4	4.5	-1.0	4.1	5.66	4.3	7.03	0.96	1. 53
1900	-9.5	+2.2	$+8.8$	$+4.8$		-3.6	$+6.0$	$+4.5$	$+7.5$	$+1.3$	-1.0

$\begin{gathered} \text { Yeqr (Janu } \\ \text { ary 1). } \end{gathered}$									$\begin{aligned} & \dot{8} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		
1650	-	-	\bigcirc	\bigcirc	\bigcirc	-	-	\bigcirc	-	\bigcirc	\bigcirc
60											
70											
80											
90											
1700											
10											
20											
30											
40											
1750											
60											
70											
80		+0.2					-0.42				
+ 90		-0.2			-1.73		0.85				-4.0
1800		-0.46			-1.76		-1.15				-4.1
10	-4.15	0.52			1. 66	-12.6	1.30			-2.9	4.1
20	3.65	0.39	- 6.12		1.43	12. 6	1.98	-.......		2.8	3.9
30	3.91	-0.09	6.23	-5. 6	1.10	12.6	1.11			2. 7	3.60
40	2.25	$+0.36$	6.25	5.4	0.66	12.33	0.78	$+0.18$		2. 33	3.15
1850	-1.44	$+0.94$	-6.04	-5.0	-0.16	-11.96	-0.32	+0.68		-1.86	-2.61
55	1.03	1.26	5. 88	4.8	$+0.11$	11.73	-0.06	0.96		1.57	2.31
60	0. 62	1. 60	5.67	4. 6	0.39	11.47	+0. 93	1.36	-15.14	1.27	2.00
65 70	-0.21	1.94	5. 4 2	4.3	0.67	11.19	0.54	1.56	15.02	0.94	1.68
70	+0.18	2.30	5.15	4.0	0.96	10.89	0.86	1.87	14.88	0.60	1.36
1875	$+0.55$	+ 2.65	-4.84	-3.8	$+1.95$	-10.56	+1.19	$+2.18$	-14.71	-0.26	-1.04
80	0.85	2. 39	+1.52	3.5	1.52	10.23	1.52	2. 49	14.52	$+0.10$	0.73
85	1. 20	3.32	4.17	3.2	1.79	9.89	1.85	-. 78	14.30	0.45	0.43
90	1.48	3. 62	3.81	¢. 9	2. 15	9.56	2.18	2.06	14.06	0.79	-0.14
95 1900	1.7 +1.9	3.9 +4.2	3.45 -3.1	2.6 -2.3	2.3 +2.5	9.6 -8.9	2.49 +2.8	3.3 +3.5	-13.8	1.1 +1.4	+0.12 +0.4
1900	+1.9	+4.2	-3.1	-2.3	$+2.5$	-8.9	$+2.8$	$+3.5$		+1.4	+0.4

Table C.-Secular Variation of Magnetic Declination-Middle Group of StationsConcluded.

$\begin{aligned} & \text { Year (January } \\ & \text { 1). } \end{aligned}$											
	-	-	-	-	-	-	-	-	-	\bigcirc	-
$\begin{array}{r} 1650 \\ 60 \end{array}$											
70											
80											
90											
1700								-2.2			
10								2.2			
20								3.4			
30 40								3.7			
40								3.1			
1750								-3.7			
60						-4.1		4.4			
70						4.87		5.1			
80 90						5.61		5.8			
90						6.28		6.5			
1800	-4.9				-5. 8	-6.84		-7.12			
10	5.01			-6.5	6. 30	7.25		7.62			
20	4.99		-6.7	6.58	6.71	7.50		7.96	-9.8		-6.9
30	4.83	-8.9	6.9	6.54	6.97	7.56	-11.0	8.15	10.1		6.5
40	4.51	8.6	6.9	6.37	7.07	7.43	10.7	8.16	10.3		6. 03
1850	-4.08	-8.2	-6.7	-6.11	-6. 99	-7.12	-10.20	-8.00	-10.31	-8.9	-5.47
55	3.85	8.0	6.5	5. 93	6. 90	6.90	9.97	7.85	10.25	8.90	5.17
60	3.57	7.7	6.3	5.74	6. 75	6. 65	9.74	7. 66	10.16	8.84	4. 85
65 70	3. 28	7.4	${ }^{6.1} 8$	5.53	6. 57	6. 36	9.50	7.44	10.03	8.74	4. 53
70	2.99	7.1	5. 78	5.30	6. 36	6.05	9.27	7.18	9.86	8.59	4.21
1875	-2.69	-6.7	-5.46	-5.06	-6.12	-5.71	-9.03	-6.90	-9.66	-8.40	-3.88
80	2.39	6.4	5.13	4.81	5.84	5.34	8. 80	6.59	9. 43	8.16	3.57
85	2. 09	6.0	4.78	4.55	5.54	4.97	8.57	6. 26	9.17	7.88	3. 26
90	1.80	5. 6	4. 40	4. 28	5. 23	4. 59	8.34	5. 91	8. 89	${ }_{-7.56}$	2.96
95 1900	1.53	5.3 -4.9	4.0 -3.6	- $\begin{array}{r}4.02 \\ -3.8\end{array}$	4.9 -4.6	- 4.20	8.1 -7.9	5.6 -5.2	8.6 -8.3	-7.2	2.7 -2.4

Table D.-Secular Variation of Magnetic Declination-Western Group of Stations,

The following table contains the latitude and longitude of each of the secular variation stations, together with the ammal change of the declination for the epochs 1890,1895 and 1900 , as far as known at present. Increasing westerly declination, or what is the same, decreasing easterly declination, has a + sign prefixed to its amnal change, whereas decreasing westerly or increasing easterly declination is indicated by a - sign.

Table E.-Latitude and Lomgitude of places of Magnetic Observation, and Anmual Tariation of Magnetic Declination.

f place.	Latitude.	$\begin{aligned} & \text { Longi. } \\ & \text { tude } \\ & \text { west. } \end{aligned}$	Annual change of decl, for-		
			1890.	1895.	1900.
Eastern Group.	-	-	${ }^{\prime}$	'	,
Eastport, Me	4454.4	6659.2	$+0.8$	$+0.2$	
Bangor, Me	44482	6846.9	+2.2	+1.7	+1.2
Burlington, Vt	4428.5 43 42 42	7312.0 7217.1	+2.8 +3.5 +3.5	+3.4 +3.0	+2.0 +2.4
Hanover, Portland, N. He..	4342.3 4338.8	7917.1 7016.6	+3.5 +2.6	+3.0 +2.2	+2.4
Rutland, Vt.	4336.5	7255.5	+4.2	+3.8	+3.3
Portsmonth, N. II	4304.3	7042.5	$+2.9$	+2.5	+2.0
Chesterfield, N. H	4253.5	7224	-2.7	+2.2	+1.6
Newhuryport, Miass	4248.9	70 49.2	+2.6	+2. 2	
Williamstown, Mass	4242.8	7313.4	+3.4	+3.0	
Alhany, N. Y	4239.2	7345.8	+3.7	+3.4	+3.1
Salem, Mass	4231.9	7052.5	+3.6	+3.0	
Oxford, N. Y	4226.5	7540.5	+3.7	+3.4	
Cambridge, Mass	4223.9	7107.7	+1.5	+1.2	
Boston, Mass.	4221.5	7103.9	+2.2	+1.9	
Provincetown, Mass	4203.1	7011.3	+1.9	+1.5	+1.0
Providence, R. I	4150.2	$712: 3$	+4.4	+3.6	
Hartford, Comn	4145.9	7240.4	+3.3	+3.0	+2.7
New Haven, Conn	4118.5	7255.7	+3.8	+3.4	
Nantucket, Mass.	4117.0	7006.0	+1.2	+0.8	
Cold Spring Harlor, N. Y	4052	7328	$+3.6$	$+2.3$	
New York. N. Y	4042.7	7400.4	+3.8	+3.8	
South Bethleheme, Pa	4036.4	7522.9	+4.3	+4.0	+3.7
Huntingdon, Pa	4031	7812	+4.1	+3.9	
New Brunswick, N.J	4029.9	7426.8	$+2.2$	+1.8	
Jamesburg, N.J	4021	7427	+3.6	+3.3	$+2.9$
Harrisburs, Pa	4015.9	7652.9	+2.3	+1.8	
Hatboro, Pa	4012	7507	+4.4	+3.3	
Philadelphia, Pa	3956.9	7509.0	+4.4	+4.4	
Chambersturg, P	3955	7740	+4.9	+4.8	
West Creek, N. J.	3938	7419	+3.3	+2.9	+2.4
Baltimore, Md.	3917.8	7637.0	+3.1	+2.8	
Cape May, N. J	3856.0	7457.6	+3.4		
Washington, D.C	3853.3	7700.6	+2.4	$+2.0$	
Cape Henlopen, l el	3846.7	7505.0	+4.0	+3.7	
Williamsburg. Va	3716.2	7642.4	+3.4	+3.2	
Cave Henry, Ya	3655.6	7600.4	$+3.0$	+2.8	
Newbern, N. C	3506	7702	$+2.7$	+2.3	+1.9
Milledgeville, fa	3304.2	8312	+3.7	+3.7	
Charleston, S. C	3246.6	7955.8	+2.9	+2.5	
Savannah, Ga	3204.9	8105.5	$+3.6$	+3.4	
Middle group.					
Duluth, Minn., and Superior, Wis.	4645.5	9204.5			
Sault de Ste. Marie, Mich	4629.9	8420.1	+4.1	+4.1	
Pierrepont Manor, N. ${ }^{\text {I }}$	4344.5	7603.0	+4.6	+4.2	
Toronto, Can ..	4339.4	7923.5	+3.8	+4.4	-
Grand Haven, Mich	4305.2	8612.6			
Milwankee, Wis	4302.5	8754.2	+5.4	+5.5	
Buffalo, N. Y	425.8	7853.5	+4.5	+4.2	
Dunkirk, N. Y	4229.6	7921.3	+3.4	+3.1	+2.7
Ithaca, N. Y.	42 26, 8	7628.9	+5.3	+5.2	± 5.1

Table E.-Latitude aud Longit ude of places of Magnetic Ohservation, ete.-Concluded.

Name of place.	Latitude.	Longitudo west.	Anmal change of deel. for-		
			1890.	1895.	1900.
Middle Group-Continued.					
Detroit, Mich	4220.0	8303.0	+2.8	+2.5	+2.2
Kalanazoo, Micl	4217.4	8535.2	+6.1	+6.2	
Ypsilanti, Mich	4214	8338	+3.1	+2.6	
Erie, Pa	4207.8	8005.4	+3.5	$+3.2$	
Chicago, Ill	4150.0	8736.8	+4.3	+4.4	+4.4
Michigan City, Ind	4143.4	8654.4	$+3.5$	+3.4	
Cleveland, ohio ...	4130.4	8141.5	+3.0	+2.8	
Onaha, Nels	4115.7	9556.5	+4.1	+4.1	+4.0
Beaver, Pa	4044	8020	$+3.8$	+3.7	
Pittaburg, Pa	4027.6	8000.8	+3.2	+3.0	
Denver, Colo	3945.3	10459.5	+3.1	+3.4	
Marietta, Ohio	3925	8128	+4.1	+3.9	
Athens, Ohin.	3919	8202	+3.3	+3.0	
Cincimati, Ohio	3906.4	8429.8	+3.4	+3.3	
St. Lonis, Mo.	3838.0	9012.2	+4.4	+4.3	
Nashville, Temm	3608.9	8648.2	+4.6	+4.7	
Florence, Ala	3447.2	8741.7	$+3.2$	+3.2	+3.1
Mohile, Ala	3041.4	8802.5	+3.9	+4.0	
Pensacola, Fla	3020.8	8718.3	+4.6	+4.6	
Anstin, Tex	30 i6.4	9744.2	+2.8		
New Orleans, La	2957.2	9003.9	+4.2	+4.3	
San Antonio, Tex	2926.8	9827.9	+3.5	+3.7	$+3.9$
Galveston, Tex	2917.4	9447	+4.2	+4.5	
Key West, Fla	2433.5	8148.5	+3.4	+3.2	
Western group.					
El Paso, Tex	3145.5	10627.0	+2.6	+3.0	
San Diego, Cal	3242.1	11714.3	+1.0	+1.3	+1.6
Santa Barbara, Cal	3424.2	11943	+0.7	+1.1	
Monterey, Cal	3636.1	12153.6	-0.6	-0.3	0.0
San Francisco,	3747.5	12227.3	-0.2	0.0	+0.1
Cape Mendocino, CaI	4026.3	12424.3	+0.3	+0.6	
Salt Lako City, Utah	4046.1	11153.8	+2.5	+3.2	
Vancouver, Wash	4537.5	12239.7	+0.8	+1.3	
Walla Walla, Wask	4604	11822	+1.0	+1.5	
Cape Disappointment, Wash	4616.7	12402.8	-1.1	-0.7	
Sirattle, Wash	4735.9	12220.0	+0.8	+1.3	
Port Townsend, Wash	4807.0	12244.9	+2.0		
Nee-ah Hay, Wash	48 21.8	12438.0	+0.3	+0.8	
Iliulink Marbor, Unalaska Isl., A laska	5352.6	16631.5	+2.9	+3.0	+3.1
Sitka, Alaska.	5702.9	13519.7	-2.0(?)		
St. Pam!, Kadiak Isl., Alaska	5748.0	15221.3	+6.9	+7.2	
Port Mulyrave, Yakntat Bay, Alask	5933.7	13945.9	+0.0(?)		
Port Etches, Alaska	6020.7	14637.6	+9.9		
Port Clarence, Alaska.................. Ciamisso Isl., Kotzebue Sound, Alask	6516	16650	+3.4	+2.9	
Chamisso Isl., Kotzebie Sound, Alask	6613	16149	$+3.5$	+3.0	

It will be observed that the character of the secular change is fairly miform over large areas, thongh each locality apparently has or may have minor features not shared by surrounding stations. It is, however, difficult to distinguish with certainty real from apparent deviations, in consequence of the imperfect data at our command. The following summary of the most probable values for the ammal change abont the epoch 1893 has been made $u p$ from the preceding tabular values and from other less reliable information, but for many States or special subdivisions it can only be a rough approximation,

386- 7

98

Table F.-Approximate average Aumual Change of the Magnetic Declimation about the epoch 1893, for the central part of each State, Territory, or geographical subdivision.
[As before, a + sign indicates increasing west declination or decreasing east declination, a - sign indicates the contrary.]

Locality.	Annual change.	Locality.	Annual change.
Alabama.	+3.7	Missouri..	${ }^{+4.0}$
Dixon Entrance	-1 (?)	Neloraska:	+2 ()
Sitka bay	-2 (?)	Western part	+3 (?)
	+0 (?)	Eastern part	+4 (?)
Bering Strait.	${ }_{+2}^{+4}$ (?)	Nevada..	$+{ }_{+4.0}{ }^{(?)}$
Arizonal ${ }^{\text {A rkansas } . . .7 .}$	$+{ }_{+}^{+2}$	New Jorsey:	
California:		Northern part	+3.8
Southern coast	+1	Sonthern part	
Coast, central	-0.5	New Mesico	+2.7
Colorado	+1 +2.8	New Long Island	+3.2
Connecticut	+3.6	Western part	+4.0
Delaware	$+3.4$	North Carolina .	
District of Columbia.	+2.4	North Dakota	+3 (7)
Florida:		Oho.	
Perinsula part...	$+{ }_{+3.5}^{+5.9}$	Oremanio	
Georgia	$+3.5$	Western part.	
Idaho.	+1.5(?)	Eastern part	+2 (\%)
Illinois.		Pemnsy Ivania	
Inciana	$+3.5$	Rhoue 1sland.	+3.3
Inowa	$+4.5$	South Dakota.	
Kansas	$+3.4$	Teunessee.	+3.6(?)
Kentucky		Texas:	
Lonisiana	+3.6(?)	Eastern part	+3 (?)
Maine: ${ }_{\text {Western }}$		Central part	
Eastern part	$+{ }_{+1}$	Utah.....	$+2.5$
Marylamd	+3.2	Vermont.	
Massachusetts:		Virginia	+3.0
Western part	+3.3	Washington:	
Eastern part	+2.2	Western pa	
Michigan:		West Virvinia	+1.2
Northern part	+4. ${ }^{\text {(7) }}$		
Minnesota,	+3 (?)	W yoming.	+3 (?)
Mississippi.	+3.5		

It is highly desirable to render the above list more precise and comprehensive, but this can only be done by an increase of reliable data, which, to some extent, should be proportioned to the vast areas now, magnetically, almost a complete blank. The tabular numbers may be used for a few years (say five) without serions error being introdnced.

The diurnal variution of the declination.-Next in order of magnitude of systematic changes, and for which special attention is required when ruming a compass course, is the dimmal motion of the magnetic needle. In general, about the time of sumrise, or soon after it, the north-seeking end of the needle is found approaching to or near its eastermost position, i. e., near or at its eastern elongation of the solar day period. On the yearly average this phase happens, for instance, at Philadelphia, Pa., about 8 a. m.; at Key West, Fla., about $8 \frac{1}{4}$ a. m.; at Los Angeles, Cal., shortly after $8 \mathrm{a} . \mathrm{m}$. However, the time of occurrence is subject to an anmal variation, the eastem elongation being reached about half an hour earlier during summer and about half an hour later during winter than its average epoch. The direction of the needle, after remaining nearly stationary abont this time, soon begins its principal daily motion towards the west, at first slowly, but after about $9 \frac{1}{2}$ a. m. quite rapidly, but slackening again in speed when nearing its western extreme position known as the western elongation. It occurs about $1 \frac{1}{2} \mathrm{p} . \mathrm{m}$. On the yearly average this phase is reached at Philadelphia about $1_{3}{ }^{\text {h }}$
p. m., at Key West about $1 \frac{1}{2}{ }^{\text {h }} \mathrm{p}$. m., at Los Angeles abont $1 \frac{1}{4} \mathrm{~h}$ p. m. Like the morining extreme it is subject to an ammal change, occurving less than $\frac{1}{\ddagger}$ of an hour earlier in smmer and the sane amount later in winter. After this secomd temporary stand, the needle revexses its angular motion and gradnally retmons to the position from which it had set ont in the early morning, not however without experiencing during the night a secondary but small retrograde motion.

The average position of the needle during the daily period is reached abont $102^{\text {h }}$ a. m., and within $\frac{1}{4}$ of an hour of this epoch at all places within the United States (Alaska excepted), yet it is subject to a displacement to $10^{\mathrm{h}} \mathrm{a} . \mathrm{m}$. in summer and to $111_{2}^{\text {h }} \mathrm{a} . \mathrm{m}$. in winter. The needle crosses a second time the average magnetie meridian between $7^{1 \mathrm{l}}$ and $8^{\mathrm{m}} \mathrm{p} . \mathrm{m}$., but this time is less distinctly marked. The amount of angular motion between the morning and atternoon is called the diurnal range. It amounts to about 8^{\prime} at Philadelphia, 5^{\prime} at Key West, and 6^{\prime} at Los Angeles, on the average, but during midsummer it rises to $12^{\prime}, 8^{\prime}$, and 9^{\prime} at these places, respectively, and recedes to $5^{\prime}, 3^{\prime}$, and 4^{\prime}, respectively, during midwinter. The solar diurnal variation is further subject to a periodic inequality depending on the sun-spot eycle of about 11 years. The dimrul range is least in years of minimum spots, as in 1578 and 1889. and is greatest in years of maximmm spots, which years occur generally about four years after the minimm years, as in $188^{3} 3$ and near the current year. In years of least sun-spot activity, the range is abont 0.5 , and in years of greatest activity, about 1.3 , the average range of the diurnal motion as given above. It must not be supposed that the diurnal variation can be observed regularly, day for day. It is at all times subject to more or less irregularity and occasionally to an extent overpowering the daily range altogether; this happens partienlarly in the winter season, when the regular motion is small, and in the months of March and September, i. e., the equinoctial months, September preponderating; on the other hand, greater regularity or less interruption from oceasional disturbances may be expected during the solstitial months, June and December. In every month there are a few daysabout half a dozen, more or less-on which the honrly progression of the dimual motion is quite regular; such days have been ealled "quiet days" as representing type curves. The character of the diurnal variation is the same for all places within the temperate zone, but ehanges as we approach the equatorial (magnetic dip small) region, as well as upon approaching the polar (magnetic dip large) region; thus in Alaska we find diurnal ranges of half a degree and over, with the epochs of the daily extremes shifted to earlier hours. For a satisfactory determination of the declination it is recommended to extend the observations over not less than three days in order to secure data for the elimination of the diurnal motion. It is best to observe the needle, say every ten minutes, about the expected times of the elongations, so as to include them, and to adopt the mean declination obtained for these two epochs.

The following table will be found useful for reducing observed declinations taken at any time of the day between 6^{h} a.m. and $6^{\mathrm{h}} \mathrm{p} . \mathrm{m}$. on any day of the year, to the average value of the day or that value which would have been obtained had hourly or continuous observations been made thronghout the twenty-four hours. The tabular value answers approximately to the middle part of a sun-spot cycle. Considering the ordinary irregnlarities in the diurnal variation, it suffices to take the nearest whole minute of are from the table. These tabular quantities are nothing more than the deflections at any hour from the mean of twenty-four hours, with reference to the seasons of the year and to
geographical position of the station. Two sets of figures are given, those for northern places, for latitude between 49° and 37° about, and for sonthern places, for latitude between 37° and 25°. For the upper geographical zone the observations at Philadelphia, Toronto, and Madison were utilized; for the lower zone, those at Key West and Los Angeles.
heduction of the result of a declination observed at any hour to the average or mean declination of the day.
The letter W affixed to a number indicates that the direction of the needle at that time is to the west of its average position and by the amount given; the letter E indicates that the needle deviates to the east of the average, and the corrections must be made accordingly.

Table G.-For finding mean Declination for the dey.

Season, and position in latitude.	Local mean time; morning hours.						
	$6^{\text {h }}$	7h	8^{6}	$9{ }^{\text {b }}$	$10^{\text {h }}$	$11^{\text {b }}$	$12^{\text {h }}$
December, January, February :	${ }^{\prime}$	${ }^{\prime} 1$	$1{ }^{1}$	' ${ }^{\text {c }}$	1.	', W	' ${ }^{1.8}$
Northern part...............	0.7 E	1.1 E	1.9 E	2.2 E	1.5 F	0.1 W	1.8 W
Southern part	0.1 W	0.1 E	1.0 E	2.0 E	2.2 E	1.1 E	0.5 W
Mareh, A jril, May							
Northern part-	2.6 E	3.8 E	4.45 E	3.5 E	1.2 E	1.6 E 0.6 W	3.8 W
Southern part ..	1.6 E	2.8 E	3.3 E	2.6 E	1.1E	0.6 W	1.9 W
June, ${ }^{\text {duls, A ugust: }}$ Northern part.	4.0 E	5.6 F	5.7E	4.5 E	1.7E	1.6 E	4.1 W
Sonthern part	2.4 E	4.0 E	4.2 E	2.9 E	0.5 E	1.6 W	2.8 W
September, October, November: Northern part.	1.8 E	2.6 E	3.1 E	2.5 E	1.0 E	1.5 E	3.3 W
Southern part	0.9 E	2.1 E	2.6 E	2.1 E	0.6 E	0.9 W	2.1 W
Local mean time; afternoon hours.							
Season, and position in latitude.	$0^{\text {b }}$	$1{ }^{\text {b }}$	$2^{\text {h }}$	$3^{\text {h }}$	$4^{\text {h }}$	$5{ }^{\text {h }}$	$6{ }^{\text {b }}$
December, January, February :	${ }^{1}$ T	${ }^{\prime}$	', W	${ }^{1}$ W	${ }^{\prime}$, W	${ }^{\prime}$	' ${ }^{1}$
Northern part.	1.8 W	2.9 W	2.8 W	2.1 W	1.3 W	0.7 W	0.2 W
Southern part	0.5 W	1.5 W	1.8 W	1.6 W	1.0 Wr	0.4 W	0.1 W
Mareh, April, May:			$4.6{ }^{\text {W }}$				
Northern part..	3.8 W	4. 8.6 W 2.	4.6 W	3.8 W W	3.5 W	1.4 0.9	0.7 W
June, Juls, Angust:							
Northern part...	4.1 W	5.6 W	5.6 W	4.6 W	3.0 W	1.4 W	0.6 W
southern part	2.8 W	3.2 W	3.1 W	2.4 W	1.5 W	0.8 W	0.4 W
September, October, November:							
Northern part. Southern Sart	$\begin{aligned} & 3.3 \mathrm{~W} \\ & 2.1 \mathrm{~W} \end{aligned}$	4.0 2.3 W	3.4 W 1.9 W	2.3 W	1.2 0.7 W	0.6 W 0.4	0.1 W
southern part.	2.1 W						

The application of the tabular values to observations as to magnitude and sign is obvions.

Magmetic disturbancos.-These disturbances when of great amount and large extent are known as magnetic storms and are not infrequently a source of annoyance to the surveyor; they may occur at any time and are, when taken individually, beyond our power of prediction, but when averages are taken of many hundreds or thonsands, and discussed, they are nevertheless found to be subject to precise laws. Their presence is generally indicated by sudden deflections and by rapid and large flnctuations from the normal direction of the needle at the time, and they often take place simultaneously over large regions of the globe, even involving both hemispheres. They may last from a few hours to three and sometimes more days, and are not infrequently accompanied by auroral displays. These disturbances are supposed to originate in the solar envelope and are felt here by indnctive action. The hours most frequently subject to disturbances are from 7 to $10 \mathrm{a} . \mathrm{m}$. ; those least disturbed between 2 and $6 \mathrm{p} . \mathrm{m}$. They are more energetic during
the equinoctial months and less so during the solstitial months; the larger storms oecur predominantly during years of maximum sum-spot activity. Within the area of the United States, Alaska excepted, deflections from the normal for the time of day of $\frac{10}{4}$ are common. Deflections of $\frac{10}{2}$ oceur occasionally, but those exceeding 10 or 2° are rare; in the higher magnetic latitudes they may even reach the greater part of a quadrant.

Minor changes in the direction of the magnetic needle.-It suffices to mention here a few of the smaller fluctuations, not only as matter of general interest* but as showing relations and interdependence of terrestrial and cosmical magnetisms. Of this character are the laws found to govern the direction of the needle with respect to the position of the moon. The principal inequality is that known as the lunar-diumal variation. It exhibits every lunar day two deflections to the east and two to the west of the normal direction; the range is nearly $27^{\prime \prime}$ at Philadelphia, $43^{\prime \prime}$ at Toronto, and $16^{\prime \prime}$ at Los Angeles. There are also relations depending on the moon's phases and parallax. Of solar inequalities we may mention the annual inequality of about $1 \frac{1}{2}^{\prime}$ (or less) of angular range and the very remarkable one depending on the sun's rotation about its axis, for which period the observations of the neelle assign about 26 days.

Remarks on instrumental means and methols for observing the declina. tion.-The accuracy with which the derination may be determined depends chiefly upon the instruments at command and upon the ability and care of the observer in using them. It rests with him to select the jroper instrument, the proper method and time for observing. The instrmments ordinarily in the hands of the surveyor are snfficiently described in books on smreying or in catalogues of instrument makers, but it may not be superfluous to call renewed attention to the importance of the determination of the so called index correction. Fordescription and illustration of more refined magnetic instruments as well as for their adjustment and method of using them the reader may consult Const and Geodetic Survey Report for 1881, Appendix No. 8, entitled, "Directions for measurement of terrestrial magnetism". The method to be followed will depend greatly upon circumstances. Thas the sun or the pole star may be observed for azimuth; local time may be had by the method of equal altitudes of the sun, for which the latitude of the place need only to be known roughly. Observations of the pole star for the true azimuth are generally preferred, since no great precision in the local time is required. The following tables and explanatory remarks have been inserted to facilitate the use of this method. It will serve for the period 1890 to 1910.

[^35]Table H.-Approximate local mean (astronomical*) times of the CuIminations and Elongations of Polaris in the year 1893.
[Computed for latitude $+40^{\circ}$ north, and longitude 6^{h} west from Greenwich.]

Date.	East elongation.		$\left\lvert\, \begin{gathered} \text { Upper } \\ \text { culmina- } \\ \text { tion. } \end{gathered}\right.$		$\begin{aligned} & \text { West } \\ & \text { elonga- } \\ & \text { tiou. } \end{aligned}$		Lower culmination.	
${\underset{\text { Jan. }}{ } 1893 .}^{1}$	h.	$\begin{array}{r} m . \\ 37.2 \end{array}$	h.	$\begin{array}{r} m . \\ 32.0 \end{array}$	$\begin{aligned} & h . \\ & 12 \end{aligned}$	$\begin{array}{r} m . \\ 26.8 \end{array}$	h. 18	$\begin{array}{r} m . \\ 30.0 \end{array}$
	23	38.0	5	36.7	11	31.5	17	34.7
Feb. 1	22	30.8	4	29, 6	10	24.4	16	27.6
	21	35.6	3	34.3		29.2	15	32.3
Mar. 1	20	40.4	2	39.1		33.9	14	37.1
	19	45.3	1	44.1	7	38.8	13	42.1
Apr. 1	18	38.3	0	37.0	6	31.8	12	35.1
	17	43.3	23	38.1	5	36.8	11	40.1
May 1	16	40.5	22	35. 2	4	34.0	10	37.2
	15	45.6	21	40.3	3	39.1	9	42.3
June 1	14	38.9	20	33.7	2	$3 \div .4$	8	35.7
15	13	44.0	19	38.8		37.5	7	40.8
July 1	12	41.4	18	36.2	0	34.9	6	38.2
15	11	46.5	17	41.3	23	36.1	5	43.3
Ang. ${ }^{1}$	10	40.0	16	34.8		29.6		36.8
15		45.1	15	:39.9	21	34.7	3	41.9
Sept. 1	8	38.5	14		20		2	35. 3
	7	43.6	13	38.4	19	33.2		
Oct. 1	6	40.8	12	35.6	18	30.4	0	37.6
	5	45.8	11	40.6	17	35.4	23	38.7
Nov. 1	4	39.0	10	33.8	16	28.6	22	31.8
	3	43.8	9	38.6	15	33.4	21	36.6
Dec. 1	2	40.8	8		14	.30.4	20	33.6
15	1	45.5		40.3	13	35.1	19	38.3

To refer to any calendar day other than the first and fifteenth of each month, subtract 3.94^{m} for every day between it and the preceding tabular day, or add 3.94^{m} for every day between it and the succeeding tabular day.

It will be noticed that for the tabular year two easteru elongations occur on January 10, and two westeru elongations on July 9 ; there are also two upper culminations on April 10 and two lower culminations on October 10.

The lower culmination either follows or precedes the upper culminatien at an interval of $11^{\mathrm{h}} 58.0^{\mathrm{m}}$. Also east elongation either follows west elongation at an interval of $12^{\mathrm{h}} 06.5^{\mathrm{m}}$, or precedes it at an inter. val of $11^{\mathrm{l}} 49.6^{\mathrm{m}}$.

For dates and positions other than those direetly given by the table, the following corrections need to be applied:

To refer the tabular times to any year subsequent to the year 1893, add 0.25 m . (nearly) for every additional year. \dagger

To refer the tabular times, corrected as above, to any year in a quadremmim, observe that for the first year after a leap year the table is correct; for the second year after a leap year add 0.9^{mi} to the tabular value; for the third year after a leap year, add $1.7^{\text {m" }}$ to the tabular value; for leap year before Mareh 1, add 2.6^{m} to the tabular time, and from and after March 1 subtract $1.2^{\prime \prime \prime}$ from the same.

The longitude correction will be 0.16^{m} for each hour from the meridian of $6^{\prime \prime}$, subtractive when west, additive when east of it.
To refer to any other than the tabular latitude between the limits of $25{ }^{\circ}$ and 50° north, add to the time of west elongation 0.13^{m} for every

[^36]degree south of latitude 40°, and subtract from the time of west elongation 0.18^{m} for every degree north of 40°; reverse these sigus for corrections to the times of east elongation. For latitudes as high as 60°, diminish the times of west elongation and increase the times of east elongation by $0.23^{\prime \prime}$ for every degree north of latitude 40°.

It will not be considered out of place here to direct attention to the circumstance that the year 1900 will not be a leap year, and this should be kept in view when dealing with dates from and after March 1 of that year. The twentieth century will begin after the expiration of December 31, 1900.

The tabular times thus deduced may generally be depended upon to have $n o$ greater error than $\pm 0.3^{\mathrm{m}}$.

Table J.-Azimuths of Polaris when at elongation for any year between 1890 and 1910, and for amy latitnde between sjo and $\underset{2}{ } z_{0}$ north. The tubulur numbers apply more particuiarly to the middle of April and the middle of September for each year.

Latitude.	1890.	1891.	1892.	1893.	1894.	1895.	1896.	1897.	1898.	1899.
-		-	\bigcirc	-			- '		- ,	- ,
25	124.6	124.3	123.9	123.6	123.2	122.9	122.5	129.2	121.8	121.5
26	25.3	25.0	24.6	24.3	23.9	23.6	23.2	22.9	22.5	$\underline{22.2}$
27	26.0	25.7	25.4	25.1	24.7	24.3	24.0	23.6	23.3	$2 \because 9$
28	26.8	26.5	26.2	25.8	25.4	25.1	21.7	24.4	24.0	23.7
29	27.6	27.3	27.0	26.6	26.3	25.9	25.5	25.2	24.8	24.5
30	128.5	128.2	127.8	127.5	127.1	126.8	126.4	126.0	125.7	125.3
31	29.4	29.1	28.8	28.4	28.0	27.6	27.3	26.9	26.5	26.2
32	30.4	30.1	29.7	29.3	29.0	28.6	28.2	27.9	27.5	27.1
33	31.4	31.1	30.7	30.3	30.0	29.6	29.2	28.8	28.5	28.1
34	32.5	32.1	31.8	31.4	31.0	30.6	30.2	29.9	29.5	29.1
35	133.6	133.2	132.9	132.5	132.1	131.7	131.3	130.9	130.6	130.2
36	34.8	34.4	34.0	33.6	33.2	32.9	32.5	32.1	31.7	31.3
37	36.0	35.6	35.2	34.8	34.5	34.1	33.7	33.3	32. 9	32.5
38	37.3	36.9	36.5	36.1	35.7	35.3	35.0	34.6	34.2	33.8
39	38.7	38.3	37.9	37.5	37.1	36.7	36.3	35.9	35.5	35.1
40	140.1	139.7	139.3	138.9	138.5	138.1	137.7	137.2	136.8	136.4
41	41.6	41.2	40.8	40.4	40.0	39.6	39.1	38.7	38.3	37.9
42	43.2	42. 8	42.4	43. 0	41.5	41.1	40.7	40.3	39.8	39.4
43	44.9	44.4	44.0	43.6	43.2	42.7	42.3	41.9	41.4	41.0
44	46.6	46.2	45.8	45.3	44.9	44.4	44.0	43.6	43.1	42. 7
45	148.5	148.1	147.6	147.1	146.7	146.2	145.8	145.4	144.9	144.5
46	50.4	50.0	49.5	49.0	48.6	48.2	47.7	47.2	46.8	46.3
47	52.5	52.0	51.5	51.0	50.6	50.2	49.7	49.2	48.8	48.3
48	54.6	54.2	53.7	53.2	52.8	52.3	51.8	51.3	E0.9	50.4
49	56.9	56.5	56.0	55.5	55.0	54.5	54.1	53.6	53.1	52.6
50	159.3	158.8	158.3	157.9	157.4	156.9	156.4	155.9	155.4	154.9
51	201.9	201.4	200.9	200.4	59.9	59.4	58.9	58.4	57.9	57.4
52	04.6	04.1	03.6	03.0	202.5	202.0	201.5	201.0	200.5	200.0
5.3	07.5	07.0	06.4	05.9	05.3	04.8	04.3	03.8	03. 2	02.7
54	10.5	10.0	09.4	08.9	08.3	07.8	07.3	06.7	06.2	05.6
55	213.7	213.2	212.6	212.1	211.5	211.0	210.5	209.9	209.4	208.8
56	17.2	16.6	16.1	15.5	15.0	14.4	13.8	13.3	12. 7	12.2
57	20.9	20.3	19.7	19.2	18.6	18.0	17.4	16.8	16.3	15.7
58	24.8	24.2	23.6	23.0	22.4	21.8	21.2	20.6	20.0	19.4
59	29.0	28.4	27.8	27.1	26.5	25.9	25.3	24.7	24.0	23.4
60	233.5	232.9	232.2	231.6	230.9	230.3	229.7	229.0	228.4	227.7
61	38.3	37.6	37.0	36.3	35.7	35.0	34.3	33.7	33.0	32.4
62	43.4	42.7	42.0	41.4	40.7	40.0	39.3	38.7	38.0	37.4
$6: 3$	49.0	48.3	47. 6	47.0	46.3	45.6	44.9	44.2	43.5	42.8
64	55.0	54.3	53.6	52.8	52.1	51.4	50.7	50.0	49.2	48.5
65	301.6	300.8	300.1	259.3	258.6	257.8	257.1	256.3	255.6	254.8
66	08.7	07.9	07.1	306.4	305.6	304.8	304.0	303.2	302.5	301.7
67	16. 4	15.6	14.8	14.0	13.2	12.4	11.6	10.8	09.9	09.1
68	24.9	24.0	23.2	22.3	21.5	20.6	19.8	18.9	18.1	17.
69	34.1	33.2	32.3	31.5	30.6	29.7	28.8	27.9	27.1	26.3
70	344.4	343.5	342.6	341.6	340.7	339.8	338.9	338.0	337.0	3 36. 1
71	55.8	54.8	52. 9	52. 9	53. 0	51.0	50.0	49.0	48.1	47.1
72	408.4	407.4	406.4	405.3	404.3	403.3	402.3	401.3	400.2	59.2

Table J.-Azimuths of Polaris when at clongation for any year betwcen 1890 and 1910, and for any latitude between 25° and 75° north, etc.-Concluded.

Lati- tude.	1900.	1901.	1902.	1903.	1904.	1905.	1906.	1907.	1908.	1909.	1910.
\bigcirc	\bigcirc	-	-	-	-	- 1	\bigcirc	-	\bigcirc	-	-
25	121.2	120.8	120.5	120.1	119.8	119.4	119.1	118.7	118.4	118.1	117.7
26	21.8	21.5	21.1	20.8	20.5	20.1	19.8	19.4	19.1	18.7	18.4
27	22.5	22. 2	21.9	21.5	21.2	20.8	20.5	20.1	19.8	19.4	19.1
28	23.3	23.0	22.6	22.2	21.9	21.6	21.3	20.9	20.5	20.1	19.8
29	24.1	23.8	23.4	23.0	22.7	22.4	22.1	21.7	21.3	20.9	20.5
30	124.9	124.6	124.2	123.9	123.5	123.1	122.8	122.4	122.1	121.7	121.3
31	25.8	25.5	25.1	34.7	24.4	24.0	23.6	23.2	22.9	22.5	22.2
32	26.7	26.4	26.0	25. 6	25.3	24.9	24.5	24.1	23.8	23.4	23.1
33	27.7	27.3	27.0	26.6	26.2	25.9	25.5	25.1	24.7	24.3	24.0
34	28.7	28.4	28.0	27.6	27.2	26.9	26.5	26.1	25.7	25.3	25.0
35	129.8	129.4	129.0	128.7	128.3	127.9	127.5	127.1	126.8	126.4	126.0
36	30.9	30.5	30.1	29.8	29.4	29.0	28.6	28.2	27.9	27.5	27.1
37	32.1	31.7	31.3	30.9	30.5	30.1	29.7	29.3	29.0	28.6	28.2
38	33.4	33.0	32. 6	32.2	31.8	31.4	31.0	30.6	30.2	29.8	29.4
39	34.7	34.3	33.9	33.5	33.1	32.7	32.3	31.8	31.4	31.0	30.6
40	136.1	135.6	135.2	134.8	134.4	134.0	133.6	133.2	132.8	132.4	132.0
41	37.5	37.1	36.7	36.2	35.8	35.4	35.0	34.6	34.2	33.8	33.4
42	39.0	38.6	38. 2	37.7	37.3	36.9	36.5	36.0	35.6	35.2	34.8
43	40.6	40.2	39.8	39.3	38.9	38,5	38.1	37.6	37.2	36.8	36.3
44	42.3	41.8	41.4	41.0	40.5	40.1	39. 7	39.2	38.8	38.4	37.9
45	144.0	143.6	143.2	142.7	142.3	141.8	141.4	140.9	140.5	140.1	139.6
46	45.9	45.5	45.0	44.6	44.2	43.7	43.2	42.7	42.3	41.9	41.4
47	47.9	47.4	46.9	46.5	46. 0	45.6	45.1	44.6	44.2	43.7	43.3
48	49.9	49.5	49.0	48.6	48.1	47.7	47.2	46.7	46.3	45.8	45.3
49	52.1	51.7	51.2	50.7	50.2	49.8	49.3	48.8	48.4	47.9	47.4
50	154.4	151.0	153.5	153.0	152.5	152.0	151.5	151.0	150.6	150.1	149.6
51	56.9	56.4	55.9	55.4	54.9	54.4	54.0	53.5	53.0	52.5	52.0
52	59.5	59.0	58.5	58.0	57.5	57.0	. 6.4	55.9	55.4	54.9	54.4
53	202.2	201.7	201.2	200.7	200.2	59.6	59.1	58.6	58.1	57.6	57.1
54	05.1	04.6	04.1	03.5	03.0	202.5	202.0	201.5	200.9	200.4	59.9
55	208.3	207.8	207.2	206.6	206.1	205.6	205.0	204.4	203.9	203.4	202.8
56	11.6	11.0	10.5	09.9	09.4	08.8	08.2	07.7	07.1	06.6	06.9
57	15.1	14.5	14.0	13.4	12.8	12. 2	11.7	11.1	10.5	10.0	09.4
58	18.8	18.2	17.6	17.1	16.5	15.9	15.3	14.7	14.2	13.6	13.0
59	22.8	22.2	21.6	21.0	20.4	19.8	19.2	18.6	18.0	17.4	16.8
60	227.1	226.5	225.9	225.2	224.6	224.0	223.4	222.8	222.1	221.5	220.9
61	31.7	31.1	30.4	29.8	29.1	28.5	27.9	27.2	26.6	25.9	25.3
62	36.7	36.0	35.4	34.7	34.1	33.4	32.7	32.1	31.4	30.8	30.1
63	42.1	41.4	40.7	40.0	39.3	38.6	38.0	37.3	36.6	35.9	35.2
64	47.8	47. 1	46.4	45.7	45.0	44.3	43.6	42.9	42.2	41.5	40.8
65	254.1	253.4	252.6	251.9	251.2	250.4	249.7	249.0	248.3	247.5	246.8
66	310.9	300.1	59.4	58.6	57.9	57.1	56.3	55. 6	54.8	54.1	53.3
67	08.3	07.5	306.7	305.9	305.1	3 04. 4	303.6	302.8	302.0	301.2	300.4
68	16.4	15.6	14.8	6. 8.9	13.1	12.3	11.5	10.7	09.8	09.0	08.2
69	25.3	24.4	23.6	22.7	21.9	21.0	$\bigcirc 0.1$	19.3	18.4	17.6	16.7
70	3 35. 2	334.3	333.4	332.5	331.6	330.6	329.7	328.8	327.9	327.0	326.1
71	46.1	45.1	44.2	43.2	42.3	41.3	40.3	39.4	38.4	37.5	36.5
72	58.2	57.2	56.2	55.2	54.2	53.2	52.1	51.1	50.1	49.1	48.1

The preceding table was computed with the mean place (declination) of Polaris for cach year. A closer result will be had by applying to the tabular results the following correction, which depends upon the difference of the mean and the apparent declinations of the star:

Table K.-Correction of Azimutias from Polaris Observations for each Month.

For middle of-	Latitude.				For middle of-	Latitude.			
	25°	40°.	55°	70°		25°	40°	55°	70°
	,	,	,	,		t	,	,	,
Janmary	-0.3	-0.4	-0.5	-0.9	July.	$+0.2$	$+0.3$	+0.4	$+0.6$
February	-0.3	-0.3	-4.4	-0.7	August.	+0.1	+0.1	+0.2	$+0.3$
March	-0.1	-0.2	-0.2	-0.4	sippember	0.0	-0.1	-0.1	-0.1
April	0.0	0.0	0.0	0.0	(kitober.	-0.9	-0.3	-0.4	-0.6
May	+0.2	$+0.2$	+0.2	+ +0.4	November	-0.5	-0.6	-0.7	--1.1
J nue	+0.2	+6.3	$+0.4$	+0.6	December . . ${ }^{\text {a }}$	-0.6	-0.8	-0.9	-1.5

The tabular azimnth thus corrected may generally be depended upon with no greater error than $\pm 0^{\prime} .2$, except for high latitude, where it must be somewhat increased.

The pole star is now distant from the pole of the equator $1 \circ 16^{\prime}$; it will continue to approach it for very nearly two and a quarter centuries yet, when it will be at the minimum distance-somewhat less than half a degree.

Among the simple methods for tracing ont on the ground a true north and south line, and one demanding only a very slender instrumental outfit, is that given in Lalande's Astronomy, published more than a century ago; the method was used by Audrew Ellicott in his boundary survey work of Pemsylvania and was again brought to notice in the present century by Dr. Charles Davies. It consists in watehing for the time when Polaris and a given bright star come to the same vertical, and then after a sloort lapse of time, given in a table, Polaris will be found exactly on the meridian, and hence can be referred to the horizon and to any meridian mark placed there.

The verticality may be ascertained by a plumb line or by the vertical thread of a transit instrument; the method demands neither a graduated circle, nor a chronometer, nor any exact knowledge of the local time, an ordinary watch being sufficient to measure the short tabular interval.

Early in the present century the star Alioth (ε Urse Majoris) was favorably situated for use of the method; however in 1850 the interval between times of verticality and of culmination already amounted to 17 minutes, which interval now (1893) has grown to 28.5^{m} for lower culmination and to 29.5^{m} for upper culmination, hence this star is no longer suitable. EC Ursa Majoris or δ Cassiopeiat should now be substituted for it, both these stars being now in very favorable positions. C Ursie Majoris or Mizar is the middle one of the three stars in the tail of the Great Bear and δ Cassiopeize is at the bottom of the first stroke of the letter W, as frequently imagined to unite roughly the five brightest stars of this constellation. At present the pole star culminates nearly at the time when it is on the same vertical circle with ζ Urse Majoris; the table is given below showing the interval for each star in the years 1890 and 1900.

> For ζ Urse Majoris in $\left\{\begin{array}{l}1890-0.9^{\mathrm{m}} \\ 1900+2.6^{\mathrm{m}}\end{array}\right\}$ annual increase 0.35^{m}
> For δ Cassiopeiæ in $\left\{\begin{array}{l}1890+0.1^{\mathrm{m}} \\ 1900+3.4^{\mathrm{m}}\end{array}\right\}$ annual increase 0.33^{m}

In the higher latitudes the lower culmination is preferable to the upper, but in all cases special attention is to be paid to the correct projection of the star to the horizon.
(June 1, 1893. C. A. S.)

TO DETERMINE THE TRUE MERIDIAN BY OBSERVATION ON POLARIS AT ELONGATION, WITH THE ENGINEER'S OR SURVEYOR'S TRANSIT.

1. Set a stone, or drive a wooden plug, firmly in the ground, and upon the top thereof make a small distinct mark.
2. Abont thirty minutes before the time of the eastern or western elongation of Polaris, as given by the tables of elongation, set up the transit firmly, with its vertical axis exactly over the mark, and carefully level the instrument.
3. Illuminate the cross wires by the light from a bull's-eye lantern or other source, the rays being directed into the object end of the

106

telescope by an assistant; while great care will be taken to see that the line of collimation describes a truly vertical plane.
4. Place the vertical wire upon the star, which, if it has not reached its elongation, will move to the right for eastern, and to the left for westeru elongation.
5. While the star moves towards its point of elongation, by means of the tangent screw of the vernier plate it will be continually covered by the vertical wire, until a point is reached where it will appear to remain on the wire for some time, then leave it in a direction contrary to its former motion; thus indicating the point of elongation.
6. At the instant the star appears to thread the vertical wire, depress the telescope to a horizontal position; five chains north of the place of olservation, set a stone or drive a wooden plug, upon which by a strongly illuminated pencil or other slender object, exactly coincident with the vertical wire, mark a point in the line of sight thas determined; then, quickly revolve the vernier plate 180°, repeat the observation, and as before mark a point in the new direction; then, the middle point between the two marks, with the point under the instrument, will define on the ground the trace of the vertical plane through Polaris at its eastern or western elongation, as the case may be.
7. By daylight, lay off to the east or west, as the case. may require, the proper azimuth taken from the table on page 104; the instrument will then define the true meridian,* which may be permanently marked by monuments for future reference.

TO DETERMINE THE TRUE MERIDIAN BY OBSERVATION ON POLARIS AT ELONGATION, WITH A PLUMB-LINE AND PEEP SIGHT.

1. Attach the plumb line to a support situated as far above the ground as practicable, such as the limb of a tree, a piece of board nailed or otherwise fastened to a telegraph pole, a house, barn, or other buildincs, affording a clear view in a north and south direction.
'The phimb bob may consist of some weighty material, such as a brick, a piece of iron or stone, weighing fonr to five pounds, which will hold the phomb line straight and vertical, fully as well as one of turned and finished metal.

Strongly illuminate the plumb line just below its support by a lamp or cantle, care being taken to obsemre the source of light from the view of the observer by an opaque screen.
2. For a peep sight, cut a slot about one-sixteenth of an inch wide in a thin piece of board, or nail two strips of tin, with straight edges, to a square block of wood, so arranged that they will stand vertical when the block is placed flat on its base upon a smooth horizontal rest, which will be placed at a convenient height sonth of the plumb line and firmly serured in an east and west direction, in such a position that, wheu viewed throngh the peep sight, Polaris will appear about a foot below the support of the plumb line.

The position may be practically determined by trial, the night precerling that set for the observation.
3. Abont thirty minntes before the time of elongation, as given in the tables of elongation, bring the peep sight into the same line of sight with the plumb line and l'olaris.

[^37]To reach elongation, the star will move off the plumb line to the east for eastern elongation, or to the west for western elongation, therefore by moving the peep sight in the proper direction, east or west, as the case may be, keep the star on the phomb line until it appears to remain stationary, thus indicating that it has reached its point of elongation.

The peep sight will now be secured in place by a clamp or weight, and all further operations will be deferred mitil the next morning.
4. By daylight, place a slender rod at a distance of two or three hmodred feet from the peep sight, and exactly in range with it and the plumb line; carefinlly measure this distance.

Take from the table on page 103 , the azimuth of Polaris corresponding to the latitude of the station and year of observation; find the natural tangent of said azimuth and multiply it by the distance from the peep sight to the rod: the product will express the distance to be laid off from the rod exactly at right angles to the direetion already determined (to the west for eastern elongation or to the east for western elongation), to a point, which with the peep sight, will define the direction of the true meridian with suffieient aceuracy for the needs of local surveyors.
to determine the true meridian by observing the transits OF POLARES AND ANOTHER STAR ACROSS THE SAME VERTICAL plane.

1. A very close approximation to a true meridian may be had by remembering that Polaris very nearly reaches the true meridian when it is in the same rertical plane with the star Delta (δ) in the constellation Cassiopeia. Using the apparatus just deseribed, place the "peep sight" in line with the plumb line and Polaris, and move it to the west as Polaris moves east, until Polaris and Delta appear upon the plumbline together, and carefully note the time by a clock or watch; then, by moving the peep sight, preserve its alinement with Polaris and the plumb line (paying no further attention to the other star); at the expiration of the small interval of time * derived from the table on page 105 the peep sight and plamb line will define the true meridian, which may be permanently marked for finture nse.
2. This method is practicable only when the star Delta is below the pole during the night; when it passes the meridian above the pole, it is toonear the zenith to be of service, in which case the star Zeta (气), the last star but one in the tail of the Great Bear, may be used instead.

Delta (δ) Cassiopeise is on the meridian below Polaris and the pole, at midnight about April 10, and is, therefore, the proper star to use at that date and for some two or three mouths before and after.

Six months later, the star Zeta (ξ), in the tail of the Great Bear, will smpply its place, and will be used in precisely the same manner.

The method given in this article for finding the true meridian can not be used with advantage on accomnt of the haziness of the atmosphere near the horizon, at places below about 33° north latitule.

The diagram, \dagger drawn to scale, exhibits the principal stars of the constellations Cassiopeia and Great Bear, with Delta (δ) Cassiopeia, Zeta

[^38](ξ) of the Great Bear, and Polaris on the meridian, represented by the straight line; Polaris being at lower culmination.

This method is given in Lalande's Astronomy and was practiced by A. Ellicott, in 1785, on the Ohio and Pennsylvania boundary.

The diagram held perpendicular to the line of sight directed to the pole, with the right hand side of the page uppermost, will represent the configuration of the constellations with 户olaris near eastern elongation at midnight about July 10-inverted, it will show Zeta (ζ) of the Great Bear and Polaris on the meridian (the former below and the latter aboce the pole) at midnight about October 10; and held with left hand side uppermost the diagram will indicate relative situations for midnight about Jannary 10, with Polaris near western elongation. The arrows indicate ihe direction of ipprarent motion. Zeta (ζ) of the Great Bear (also sometimes called the Great Dipper), was called Mizar by the ancient Arabians, and the small star near it Alcor. Hizar' is the second star from the end of the handle of the dipper.

109

The foregoing methods for the determination of the true meridian are excellent in themselves when available, as they answer the requirements of the surveyor and give results with all desirable precision. They do not require an accurate knowledge of the time, which is their principal advantage. The relative motion of the stars employed, when near the meridian and the unchangeable azimuth of Polaris at elongation) so far as the surveyor is concerned), indicate with sufficient exactness the moment when the observation should be made. Stormy weather, a hazy atmospliere, or the presence of clouds, may interfere with or entirely prevent observation when the star is either at elongation or on the meridian, and both events sometimes occur in broad daylight or at an inconvenient hour of the night. Under such circumstances, a simple method applicable at any time (Polaris being visible), may be acceptable, and can often be used by the surveyor when other methods fail.

determination of the azimuth of polaris and true meridian AT ANY HOUR, THE STAR BEING VISIBLE, AND THE CORREC'T LOCAL MEAN TIME BEING KNOWN.

Many years ago a table was published giving azimuths of Polaris at stated times during one year, but as it was arranged for a kind of time with which surveyors are generally unacquainted, and was explained in unfamiliar astronomical terms, and required the use of tables and data not always accessible, it met with little favor and never came into general use.

In this article it is proposed to simplify the work, omit all technicalities requiring a knowledge of astronomy, and present the method, with two new and compact tables adapted to common clock time, with such plain directions for use that any person of ordinary intelligence can understand and apply them.

As the surveyor should have a perfectly clear idea of what is meant by Astronomical Time (used to simplify computations), and the Hour Angle of Polaris, these terms will now be explained.

[^39]writing for the day of the month, that civil date on which the noon falls, fiom which the time is reckoned. Finally, the astronomical time may be called the hours and minntes clapsed since the NOON LAST PAST, the astronomical DATE being that of the civil day to which the noon belongs. Thus, April $23,4.15 \mathrm{p}$. m., civil time, is April 23, $4^{\mathrm{h}} 15^{\mathrm{m}}$, astronomical time, and April 23, 4.15 a . m., civil time, is April 22, $16^{\mathrm{h}} 15^{\mathrm{m}}$, astronomical time.

The surveyor should thoronghly master this transformation* of the civil time into astronomical time, as it will be the first duty he will have to perform after observing Polaris out of the meridian.

Howr Angle of Polaris.-In ig. 2, Plate I, the full rertical line represents a portion of the meridian passing through the zenith Z (the point dircctly overhead), and intersecting the northern horizon at the north point N , from which, for surveying purposes, the azimuths of Polaris are reckoned east or west. The meridian is pointed ont by the phomb line when it is in the same plane with the eye of the observer and Polaris on the meridian, and a visual representation is also seen in the vertical wire of the transit, when it bisects the star on the meridian.

When Polaris crosses the meridian it is said to culminate; above the pole (at S), the passage is called the Upper Culmination, in contradistinction to the Louer Cumination (at S^{\prime}).

In the diagram,-which the surveyor may better understand by holding it up perpendienlar to the line of sight when he looks toward the pole,-Polaris is supposed to be on the meridian, where it will be abont noon on A pril 10th of each year. The star appears to revolve around the pole, in the direction of the arrows, once in every $23^{\mathrm{h}} 56^{\mathrm{m}} .1 \dagger$ of mean solar time; it consequently comes to and crosses the meridian, or culminutes, nearly four minutes earlier each successive day. The apparent motion of the star beiug uniform, one quarter of the circle will (omitting fractions) be described in $5^{1 \mathrm{~h}} 59^{\mathrm{m}}$, one half in $11^{\mathrm{h}} 58^{\mathrm{m}}$, and three quarters in $17^{\mathrm{h}} \tilde{5} 7^{\mathrm{m}}$. For the positions $\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}$, ete., the angles SP_{1}, SL's s_{2}, SD's s_{3}, etc., are called Hour Augles of Polaris for the instant the star is at s_{1}, s_{2}, or s_{3}, etc., and they are measured by the arcs S_{1}, $\mathrm{Ss}_{2}, \mathrm{Ss}_{3}$, etc., expressed (in these instructions) in mean solar (common clock) time, and are always connted from the upper meridian (at S), to the west, around the circle from $0^{\mathrm{h}} 0^{\mathrm{m}}$ to $23^{\mathrm{h}} 26^{\mathrm{n}} .1$, and may have any value between the limits named. The hour angles, measured by the $\operatorname{arcs} \mathrm{Ss}_{1}, \mathrm{Ss}_{2}, \mathrm{Ss}_{3}, \mathrm{Ss}_{4}, \mathrm{Ss}_{5}$, and Ss_{6}, are approximately $1^{\mathrm{h}} 8^{\mathrm{m}}, 5^{\mathrm{h}} 55^{\mathrm{m}}$, $9^{11} 4^{\mathrm{m}}, 14^{\mathrm{n}} 52^{\mathrm{n}}, 18^{\mathrm{n}} 01^{\mathrm{m}} \neq \ddagger$ and $22^{\mathrm{n}} 48^{\mathrm{min}}$ respectively; their extent is also iudicated, graphically, by broken fractional circles about the pole.

Suppose the star observed (e. g.) at the point S_{3}; the time it was at S , (the time of upper culmination), takeu from the whole circle, $23^{\mathrm{h}} 56^{\mathrm{m}} .1$, will leave the arc $\mathrm{Ss}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}$, or the hour angle at the instant of observation; similar relations will obtain when the star is observed in any other position; thercfore, in general:

Subtraet the time of Upper Culmination from the correct local mean time of observation; the remainder will be the Hour. Angle of Polaris.

[^40]The observation will be made as directed on page 105, modified as follows: there will be nowaiting for the star to reach elongation; the observation may be made at any instant when Polaris is visible, the exact time being carefully noted.

Table I.

This table gives, in "Part I," the local mean time of the upper culmination of Polaris, on the 1 st and 15 th of each month, for the years 1890 to 1900,* inclusive. The times decrease, in each year, to April 10, when they become zero; then, commencing at $23^{\mathrm{h}} 56^{\mathrm{m}} .1$, the times again decrease until the following April, and so on, continuously. The quantity in the column marked "Diff. for 1 day" is the deerease per day during the interval of time against which it stands, and answers for all the years marked in the table. For any intermediate date, the "Diff. for 1 day" will be multiplied by the days elapsed since the preceding tabular date, and the product subtracted from the corresponding time, to obtain the required time of upper culmination for the date under consideration. The table answers directly for $90{ }^{\circ}$ west longitude. For places east or west of the assumed meridian, a small correction, \dagger dependent on the longitude, may be applied to the deduced time of culmination. This correction may be taken from Part III, and, with suffieient accuracy, for the longitude nearest that of the station. Use the correction according to the direction placed over it. A few examples will illustrate the use of the table.

1. Required the time of upper culmination of Polaris for a station in longitude 116° west, for March 3, 1892.

Red. for 2 days is $\left.3^{\mathrm{m} .94 \times 2=7^{\mathrm{m}} .9 \text { (Part II) }} \begin{array}{l}\text { Corr. for } 116^{y} \text { long. is......0 } 0^{\mathrm{m}} .3 \text { (Part III) }\end{array}\right\}$ Subtract	

Local mean time U. C. of Polaris, 1892, March 3.......................... 2 29.6
The required time may also be obtained by using the table in the opposite direction; by taking the time for March 15, and adding the reduction, as follows:

	h. m.
Astron. time, U. C. of Polaris, 1892, Marclı 15	142.6
Red. for 12 days is $3^{\mathrm{m}} .94 \times 12=47^{\mathrm{m}} .3$, add	47.3
Sum	229.9
Correction for longitude 116° (Part III), subt	0.3
Local me	

In this ease the two results are identical. If the computation is made both ways, the results will check each other.

P'art Il has been inserted to save the surveyor the little trouble of making multiplications; thus, for the above example, look in Part II, under the proper tabular difference, $3^{\prime \prime \prime} .94$, and opposite the day of the month in left hand colum, is the correction $7^{\mathrm{m}} .9$; also in Part III is

[^41]
112

found the correction for 116° longitude, $0^{m} .3$, the sum being $8^{m} .2$. The work may be put down as follows:
h. m.

Astron. time, U. C. of Polaris, 1892, March 1 (Part I) 237.8
Red. (Part II), and correction for long. (Part III), subtract................... 8.2
Local mean time, U. C. of Polaris, 1892, March 3
229.6

The longitude correction being small, may generally be omitted; it will not be considered in the following examples.

Computing from a preceding date, for days between April 11 and 15 of any year, the reduction in Part II will be greater than the tabulated time of culmination, in which case $23^{\mathrm{h}} 56^{\mathrm{m}} .1$ will be added, to make the subtraction possible.
2. Required, for a station in long. 90° west, the time of U. C. of Polaris for April 14, 1891:

	h. m.
Astron. time, U. C. of Polaris, 1891, April 1 (Part I)	038.4
Add	2356.1
Sum	2434.5
Reduction to April 14, (l'art II), subtract.	51.1
Local mean time, U. C. of Polaris, April14.	2343.4

Working from a following date, for days between 9 th and 15 th of A pril, the sum will exceed $23^{\prime \prime} 56^{\mathrm{m}} .1$, and when this occurs subtract 233^{h} $56^{\mathrm{m}} .1$ from the sum, and the remainder will be the required time.
3. Required, for a station in long. 90° west, the time of U. C. of Polaris for April 10, 1892:

Astron. time, U. C. of Polaris, 1892, April 15 (Part I) Reduction for 5 days (Part II), add.	$\begin{array}{r} 2336.8 \\ \quad 19.6 \end{array}$
Sum	2356.4
Subtract	2356.1
Local mean time, U. C. of Polaris, 1892, April 1	

This example, worked like the last one, from the preeeding date (April 1), will give precisely the result above written. (See example above.) If to the above time of eulmination we add $23^{\mathrm{h}} 56^{\mathrm{m}} .1$, and then subtract $3^{\mathrm{m}} .9$, we obtain $2^{2 n} 52^{m} .5$, the time of the second upper culmination on April 10, since both occur within 24 hours of noon and consequently on the same day. The upper culmination, to be used at any time, will always be the last one that occurs before the observation. In this instance it is, of course, the first one that takes place on the 10th.*
The surveyor should be carefin to employ Part II, Table I, correctly. When the table is used in regular order, the "Reduction" may be taken from Part II with the argument, \uparrow "Day of the month" in left hand column, or "Number of days elapsed" in right hand column, as may be preferred. In example 2, Part II, may be entered in with the argument 13 days elapsed (from 1st to 14th) in right hand column; then the reduction, $51^{11} .1$, results, as above written; but, when working from a following date (example 3), the day of the month in left hand colmm can not be used.

Mistakes are often made by using the wrong column in Part I; as a

[^42]
113

matter of course, the time should aloays be taken out for the current year.

The foregoing examples embrace all cases which can occur in the use of Table I, and will be a sufficient guide for its application.

Table I.-Local mean (astronomical) time of the upper culmination of Polaris, computed for longitude 6 hours $\left(30^{\circ}\right)$ west of Greenwich.
[The time on line with any date in Part I is the hours and minutes elapsed (measured by a common clock or watch) since the preceding noou.]

Part I.

Date.	1890.	1891.	1892.	1893.	1894.	1895.	1896.	1897.	Diff. for 1 day.
	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h.	h. m.	m.
Jan. 1	632.2	633.4	634.6	632.0	633.3	634.7	636.1	633.0	3.95
15	536.9	538.1	539.3	536.7	538.0	539.4	540.8	537.7	3.95
Feb. 1	429.8	431.0	432.2	429.6	± 30.9	432.3	433.7	430.6	3.95
15	334.5	335.7	337.0	334.3	335.7	337.1	338.5	335.3	3.95
Mar. 1	239.3	240.5	237.8	239.1	240.4	241.8	239.3	240.1	3.91
15	144.2	145.4	142.6	143.9	145.3	146.7	144.1	144.9	3.94
Apr. 1	037.2	038.4	035.7	037.0	038.4	039.7	037.2	038.0	3.94
15	23 38.3	2339.5	2336.8	$23 \quad 38.1$	2339.4	2340.8	2338.3	2339.1	3.93
May 1	4235.4	2236.6	$\because 234.0$	2385.2	2236.6	2238.0	2235.5	2236.2	3.93
15	2140.5	2141.7	2139.0	2140.3	2141.7	2143.0	2140.6	2141.3	3.92
June 1	2033.9	2035.1	2032.4	2033.7	2035.0	20.36 .4	20.33 .9	20 34. 7	3.92
15	1939.0	1940.2	1937.5	1938.9	1940.2	1941.6	1939.1	1939.9	3.92
July 1	1836.4	1837.6	1834.9	1836.2	1837.6	1838.9	1836.5	1837.2	3.92
15	1741.5	1742.8	1740.1	1741.4	1742.7	1744.1	1741.7	1742.4	3.92
Aug. 1	1635.0	1636.2	1633.5	1634.8	1636.2	1637.6	1635.1	1635.8	3.91
15	1540.1	1541.3	$15 \quad 38.7$	1540.0	1541.3	1542.7	1540.3	1541.0	3.92
Sept. 1	1433.5	1434.7	1432.0	1433.3	1434.7	1436.1	1433.7	1434.3	3.92
15	13 3. 6.6	1339.8	1337.1	1338.4	1339.8	1341.2	1338.8	1339.4	3.92
Oct. 1	1235.7	1237.0	1234.3	1235.6	1237.0	1238.4	1236.0	1236.6	3.93
15	1140.7	1142.0	1139.3	1140.6	1142.0	1143.4	1141.0	1141.6	3.93
Nov. 1	$10 \quad 33.9$	1035.1	1032.4	1033.8	1035.1	1036.6	1034.1	1034.8	3.93)
15	938.8	940.0	937.3	938.6	940.0	941.5	939.0	939.6	3.94
Dec. 1	835.7	836.9	834.3	835.6	837.0	338.4	835.9	836.6	3.94
15	740.5	741.7	739.1	740.4	741.8	743.2	740.7	7 \$1.4	3. 94
									3.95

Applications of Tables I and II.

4. Required the Hour Angle and Azimuth of Polaris, for a station in latitude 46° N., longitude $90^{\circ} \mathrm{W}$. , at $8^{\mathrm{n}} 24^{\mathrm{m}}$ p. m., November 7, 1891.
h. m.

Astronomical time of observation, 1891, Nov. 7... 8 24.0
Astron. time, U. C. Polaris, Nor. 1 (Tab!e 1, Part I) $10 \quad 30$ m.
Reduction to Nov. 6* (Part II), subtract.................... $\dagger 19.7$
Astron. time, U. C. Polaris, Nov. 6 10 15. 15 , subtract. ${ }^{+} 10 \quad 15.4$
Hour Angle of Polaris, at observation . 22.6
Subtract from.. . . . 23 56.1
Time Argument for Table II ... 1147.5
Azimuth of Polaris, at observation ... $1^{\circ} 51^{\prime}$ E.
Part III.-Corrction of the tubular time for longitude.

Longiturle.	63°	$72{ }^{\circ}$	$81{ }^{\circ}$	90°	99°	108°	$117{ }^{\circ}$	127°
Corrertion	Arld m. 0.3	$\begin{gathered} \text { Add } \\ m . \\ 0.2 \end{gathered}$	$\begin{aligned} & \text { Arld } \\ & m . \\ & 0.1 \end{aligned}$	$\begin{aligned} & \text { Add } \\ & m . \\ & 0.0 \end{aligned}$	$\begin{gathered} \text { Subtract } \\ m . \\ 0.1 \end{gathered}$	$\begin{gathered} \text { Subtract } \\ m .2 \\ 0.2 \end{gathered}$	Subtract m. 0.2	Subtract m. 0.4

[^43]Table II.
This table gives, for various hour angles, expressed in mean solar time, and for even degrees of latitude from 30 to 50 degrees, the Azimuthes of Polaris during the remainder of this century, computed for average values of the north polar distance of the star-the arguments (reference mombers). being the hour conyle (or $23^{n} 56^{m} .1$, mimus the hour angle, when the latter exceeds $\left.11^{11} 58^{m}\right)$, which is termed the Time

[^44]Argmment;* and the latitude of the place of obsrration. The table is so extended that armuths may be taken ont by mere inspertion and all interpolation avoided, exerpt such as wan be performed mentally.

The hours of the 6 time arguments" are placed in the columns headed "Homs," on left of each page. The minutes of the time argmments will be lound in the colmmus marked "m." muder the years for which they are compnted, and they are inchaded between the same loavy rigzag lines which inclose the hours to which they belong.

The time arguments are given to the nearest half minnte; the occurrence of a perion after the minutes of any one of them, indicates that its value is 0.5^{m} greater than ${ }^{m}$ minted, the table being so arranged to economize space.

The table will be used as follows: Find the HOURS of the time argument in the left-hand columu of cither page; then, between the heavy lines which inclose the hours, find the monutes in the column morked at the top) with the current year. On the same horizontul line with the minutes, the azimuth will be found under the given latitude, which is murked at the top of the right-homulhalf of each page. Thus, for $18!9$, time aryument, 0^{h} 40^{m}, latitude 42°; find 0^{h} on lett-hand page and umder $1 \mathrm{~s}^{2} 2$, find 40^{m}, on tenth line from the top, and on same line with the mimutes, under latitude $4 \because 0$, is the azimuth $0 \times 18^{\prime}$. For 1896 , time argument $7^{\mathrm{h}} 58^{\mathrm{m}}$, lat. $3 \mathrm{Bi}^{\circ}$, the azimuth is $1^{\circ} 19^{\prime}$, found on the 9 th line from bottom of right-hand page.

It the exuct time argmment is not foumd in the table, the azimuth should be proportioned to the difference between the given and tabular values of said argument. Thus, if the time argument in the first of the above examples (for 1892) was $0^{\text {h }}+2^{m}$, instead of $0^{\mathrm{h}} 40^{\mathrm{m}}$, the azimuth would be the mean between ${ }^{\circ} 18^{\prime}$ and $0^{\circ} 20^{\prime}$, or $W^{\circ} 19^{\prime}$. In a similar manner, if the latitude is nearer an odd than an even degree, the mean of the azimaths for the next greater and next less latiturle will be used; thus, in the above example for 1896 , if the given latitude was 37°, the mean between $1^{\circ} 19^{\prime}$ and $1^{\circ} 21^{\prime}$, or $1^{\circ} 20^{\prime}$, would be the corresponding azimuth. The table has been arranged to give the azimuths as exemplified above, by simple inspection. No written arithmetical work is required, all beiug performed mentally. It will always be sufficiont to take the nearest whole degree of latitude and use it as above directed, except for a few values near the bottom of either page, where the difference of azimuths, fion $2 \circ$ difference of latitude, amomats to 4
 40^{\prime}. In this case the latitude may be taken to the nearest half degree (462°); the corresponding azimmth is $1^{\circ} 42^{\prime}$. See another example in Sprecimen Field Notes, page 158.
B. The attention of the surveyor is directed to the faet that he should always use one day of twenty-four hours as the unit when he subtracts

[^45]
116

the time of culmination from the time of observation. Sre example 4, page 114. In any case when the time of upper culmination, taken tiom Table I, for the given date, would be numerically greater than the astronomical time of observation, the former time will be taken out for a date one day earlier than the date of observation. The nveyor will decide when such condition exists by comparing the time given in the table with his astronomical time of observation. See example 4 and explanations in footnotes below Table I, page 114.

When an hour angle comes ont within one minute of either $0^{\mathrm{h}} 0^{\mathrm{m}}$, or $23^{\text {h }} 56^{\prime \prime 2} .1$, the observation may be regarded as having been taken with the star on the meridian, above the pole; if within one minnte of 11^{h} $5 S^{\mathrm{m}}$, Polaris may be considered on the meridian below the pole at the time of observation.

At elongation Polaris is nearly $5^{\mathrm{h}} 55^{\mathrm{m}}$ west (or east) of its position at upper culmination; consequently if the hour angle for any observation comes ont within five mimutes of $5^{\mathrm{L}} 55^{\mathrm{mI}}$ or $18^{\mathrm{h}} 1^{\mathrm{m}}$, the star may be assumed to be at elongation, west for the first and east for the second hour angle, and its azimuth may be taken from a preceding table, which gives its value at elongation, from 1890 to $1910, *$ inclusive.

Should the surveyor wish the time of Lower Culmination, for use with the plumb-line method, described on page 107, or for any other purpose, he will first determine the time of upper culmination for the date (T'able I), and then subtract $11^{1 \mathrm{~h}} 58^{\mathrm{m}}$ for the precelling lower culmination, or add $11^{\mathrm{h}} 58^{\mathrm{m}}$ for the lower culmination following the derived time for upper culmination, attending to the addition or subtraction of $23^{\mathrm{h}} \tilde{5} 6^{\mathrm{m}} .1$, as directed on page 112 .

The time to be used when making observations on Polaris off the meridian, should be as accurate as can be obtained. Looking at Table II, near the top of either page, the surveyor will observe, that for a difference of four minutes in the time argument, there is a change of about two minutes in azimuth; consequently, to obtain the azimuth to the nearest whole minute of are, the local mean time, upon which all depends, shonld be known within two minutes. When the surveyor uses a solar instrument, he can readily determine the time for himself during the afternoon before observing Polaris, or in the morning after observation, and, without moving the hands of his watch, apply the necessary correction to his observed watch time, as exemplified in Specimen Field Notes, page 172. When the surveyor uses standard railroad time, he will correct the same for the difference of longitude between his station and the standard meridian for which the time is given, at the rate of four minutes of time for each degree of the difference in arc. Thus, if the difference of longitude is $6^{\circ} 45^{\prime}$, the equivalent in time will be 27 minutes. The difference of longitude may be taken from a good map. The number of seconds taken from the 5th column of Table X, (opposite the proper latitude), multiplied by the number of ranges, will give the correction for longitude in seconds of time. The correction will be subtrueted from the standard railroad time of observation, when the surveyor's station is rest, or added when east of the standard meridian, as the ase may require, to obtain local time. It is immaterial where the surveyor olutains the standard time, provided he gets it right; a result which will be determined in the most satisfactory manner, by a direct comparison at telegraph office, personally conducted.

[^46]Generally, the surveyor will have only two or three simple additions or subtractions to make, and ten minutes will be ample time in which to make the observation and perform the little computation required.

Note.-The azimuths entered in the following table were calculated with the mean North Polar l)istance of Polaris ($1^{\circ} 16^{\prime} 32^{\prime}$), the assmmed latitudes of the tahls. and the stated hour anfles for the year 1890 . The resulting values having been tabulated, the process was reversed, and with the mean N. P. I). of the star, for the 1st of Jnly of each of the remaining ten years of the series, the latitudes named, and azimuths already determined, the corresponding hour angles were fomm. By this artifice, the table (which, if computed for the same hour angles for each rear, wonld cover twenty-two pages of this book), is here confined to two pages, and this without any sacrifice of precision, and with the additional alvantage of presenting all the azimuths for eleven years, at one opening of the book, an armomement whieh will be appreciated by those survegors who may have oceasion to use this method in the discharge of their professional duties.

VERIFYING RESULTS OF SOLAR WORK.

Surreyors general and their deputies have sometimes failed to appreciate the requirements of the Manmal on testing the adjustment of the solar compass and verifying the accuracy of its work. In some cases a wholly erroneons idea thereon has been entertained, making it necessary to instruct deputies that the arljustments of a solar compass are not proved correct by its own meridian, obtained at a single setting; but that its meridian must be verified by a proper Polaris observation, to render the field notes reliable.

If a solar instrument standing ummoved, both forenoon and afternoon, wives an morying result, it is presumed to be aceurately set, and all its parts in adjustment; but the requirement of a eareful test of the solar by stellar observation, will be rigidly adhered to.

The practice of permitting field examinations to be made by examiners using needle compasses only will be henceforth discontinned. Surveyors geleral should appoint for inspectors of field work only such as are competent to make eritical examination of the courses of surveyed lines.

Table II.-Azimuthe of Polaris
[The hour angles are expressed in mean solar time. The oceurrence of a period

for the use of land surreyors.

after minutes of an hour ingle indicates that its value is $0^{\mathrm{m} .5}$ greater than printed.]

STAR AND AZIMUTH.
W. of N. when hour ongle is less than $11^{\mathrm{b}} 58 \mathrm{~m}$. E. of N. when hour angle is grearer than $11^{\mathrm{h}} 58^{\mathrm{m}}$.

Time arcrment, the star's hour angle (or $23^{\text {h }} 56^{\mathrm{m}} 1$.
minus the star's hour angle), for the year-

$\stackrel{\dot{ே}}{\stackrel{\dot{L}}{E}}$	$\begin{gathered} \dot{2} \\ \underset{y}{2} \end{gathered}$	$\dot{\bar{j}}$	$\underset{\underset{i}{i}}{\stackrel{i}{i}}$	$\begin{aligned} & \stackrel{80}{\hat{x}} \\ & \dot{x} \end{aligned}$	$\begin{aligned} & \dot{+} \\ & \\ & \hline \end{aligned}$	$\stackrel{i}{\hat{O}}$	-	$\stackrel{i 0}{8}$	$\stackrel{\dot{I}}{\underset{\sim}{2}}$	-	-

Polaris below the Pole.
To determine the true meridian, the azimuth will be laid off to the east when the hom angle is less than $11^{4} 58^{\mathrm{m}}$, and to the rest when greater than $11^{\mathrm{h}} 58^{\mathrm{mm}}$.

11 m. m.

11	54	$5 \pm$	54	54	54	54	54	54	54	54	54
	50	50	50	50	50	50	50	50	50	5.$)$	50
	46	46	46	46	46	46	46.	45.	45.	46.	45.
	42	42	43	42	42	42	41.	41.	41.	41.	41.
	38	38	38	37.	37.	37.	37.	37.	37.	37.	37.
	34	84	34	33.	33.	33.	33.	33.	33.	33	33
	30	30	30	29.	29.	39.	29.	29.	$\because 9$	29	29
	20	26	26	25.	25.	25.	25.	25	25	25	25
	\because	22	22	21.	21.	21	21	21	21	21	21
	18	18	18	17.	17.	17.	17	17	17	16.	16.
	14	14	14	13.	13.	13.	13	13	12.	12.	12.
	10	10	10	9.	9.	9.	$!$	8.	8.	8.	8
	6	6	6	5.	5.	5.	5	4.	4.	4.	4
11	2	2	2	1.	1.	1	,	1.	0.	0.	0

10

10	58	57.	57.	57	57	56.	56.	56.	56.	55.	55.
	53	52.	52.	52.	52	51.	51.	51	51	50.	50.
	$4{ }^{4}$	$4 \overline{7}$.	47.	47.	47	46.	46.	46	46	45.	45
	43	4 \because.	42.	42.	$4{ }^{4}$.	41.	41.	41	40.	40.	40
	38.	38	37.	37.	37	36.	36	35.	35.	35	35
	33.	33	32.	32.	32	31.	31	30.	30.	30	29.
	28.	48	27.	27	26.	26	26	25.	25	24.	24.
	23.	2	2\%.	29	21.	21	21	20.	20	19.	$1!$
	18.	18	17.	17	16.	16	15.	15.	15	14.	14
	13.	13	12.	12	11.	11	10.	10	9.	9	
	8.	8	7.	7	6.	6		5	1.1	4	3.
10	3.	3	2.	2	1.	1	61	59.	9	8.	58

58.	58	57
53.	53	5%

48. $48 \mid 47$.

52
46.

| 43. | 43 | 42 | 41. | 40. | 40. | 39. | 39 | 38. | 37 | 37 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 38. | 38 | 37 | 36. | 35. | 35 | 34. | 33. | 38 | 32 | 31. |
| 33. | 32. | 32 | 31. | 30. | 30 | 29 | 28. | 28 | 27 | 26. |
| 28. | 28 | 27 | 26. | 25. | 25 | 24 | 23 | 32. | 21. | 21 |
| 3. | 23 | 23 | 21. | 20. | 19. | 19 | 18 | 17. | 16. | 15. |

18. 17. 17
1. 12.12

8.	7.	7	6	5	4	3	7.	6	5	5	
0	3.	2.	2	1	59.	58	58	57	56	0.	59
	58	54									
	58	57.	56	55	54.	54	52.	52	51	49.	49

[^47]1291301321351
Azimuths for latitude-

\circ	0	0	0	0	0	0	0	0	0	0
30	32	34	36	$3 x$	40	42	44	46	48	50

3 1010 | 10 | 10 | 1 | 0 | 2 | 2 | 0 | 20 | 2 | 2 | 0 | 20 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 3 | 3 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | |
| 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 6 | 6 | 6 | |
| 6 | 6 | 6 | 6 | 7 | 7 | 7 | 7 | 8 | 8 | 8 | |
| 8 | 8 | 8 | 8 | 8 | 8 | 9 | 9 | 9 | 10 | 10 | |
| 9 | 9 | 9 | 10 | 10 | 10 | 11 | 11 | 11 | 12 | 12 | |
| 11 | 11 | 11 | 11 | 12 | 12 | 12 | 13 | 13 | 14 | 14 | |
| 12 | 12 | 13 | 12 | 13 | 14 | 14 | 14 | 15 | 15 | 16 | |
| 14 | 14 | 14 | 15 | 15 | 15 | 16 | 16 | 17 | 17 | 18 | |
| 15 | 15 | 16 | 16 | 17 | 17 | 18 | 18 | 19 | 19 | 20 | |
| 17 | 17 | 17 | 18 | 18 | 19 | 19 | 20 | 21 | 21 | 92 | |
| 18 | 18 | 19 | 19 | 20 | 20 | 21 | 22 | 22 | 23 | 25 | |
| 20 | 20 | 20 | 21 | 22 | 22 | 23 | 23 | 24 | 25 | 26 | |
| 21 | 21 | 22 | 9 | 23 | 2 | 9 | 2 | 2 | 27 | 28 | | $\begin{array}{lllll}23 & 23 & 24 & 24 & 2 \\ 24 & 25 & 25 & 26 & 2 \\ 26 & 27 & 27 & 28 & 2\end{array}$

[^48]The corners on a Base Line or Standard Parallel could be established from chords of the latitude curve, joining successive township corners; from a tangent to the true latitude curve at a point midway between the township corners; or from an intermediate straight line parallel to the lines above mentioned. In the first case, all the offsets would be measured south; in the second case, all offsets would be measured north; and, in both eases, the maximmm offset, or greatest distance of the latitude curve from the reference lines, would be onefourth of the greatest offset from a tangent six miles long, (i. e.) the offset found in table V, opposite the proper latitude, and in the colnmn lieaded " 3 miles"; while the initial bearings of the three lines, (i. e.) the angles K, M, and I , would be equal to each other; similar relations between the bearings at corresponding points, would obtain throngh a range.

The method of establishing corners on a true latitude curve by offisets from a line situated between and parallel to the chord and tangent, which was devised to meet a demand for short offsets, will now be described.

SECANT METHOD.
[See Plate II, figs. 1, 2, and 5.]
This method consists of running ont a connected series of straight lines, each six miles long, on snch comrses that any one of the lines will intersect the curve of the parallel of latitude in two points, separated by an interval of four miles; and, from the lines thus established, measuring north or sonth, as the case may be, to attain other required points on the latitude curve. For the sake of brevity, said straight lines will be called secants.

Table III.-Azimuths of the Secant, and Offisets, in Feet, to the Parallel.
Arguments: latitude in left hand column aml distance from starting point at top or botfom of the table.*

latitude.	Azimuths and otisets at-							Dettee- tion Angle and nat. tall. to Rad. 66 ft .
	0 miles.	$\frac{1}{2}$ mile.	1 mile.	$1 \frac{1}{2}$ milles.	\pm miles.	$2 \frac{1}{2}$ miles.	4 miles.	
30								
30	$\begin{aligned} & 89^{\circ} 58^{\prime} .5 \\ & \mathbf{1 . 9 3} \mathbf{N} . \end{aligned}$	$\begin{aligned} & 89 \circ 58^{\prime} .7 \\ & 0.5 \mathbf{N}^{\prime} . \end{aligned}$	$\begin{array}{r} 8959.0 \\ 0.00 \end{array}$	$\begin{aligned} & 8959^{\prime} .2 \\ & 0.6 \overbrace{}^{2} . \end{aligned}$	$\begin{aligned} & 89 \circ 59^{\prime} .5 \\ & 1.15 \mathrm{~S} . \end{aligned}$	$\begin{aligned} & 890.59 .7 \\ & 1.44 .5 . \end{aligned}$	$\begin{gathered} 93^{\circ}\left(\mathrm{E} . \operatorname{ur} W_{.}\right) \\ 1.5 .4 \mathrm{~s} . \end{gathered}$	$\begin{gathered} 3^{\prime} 00^{\prime \prime} .2 \\ 0.69 \text { ins. } \end{gathered}$
31	$\begin{aligned} & 89^{\circ} 58^{\prime} .4 \\ & 2.01 \mathbf{N}^{2} \end{aligned}$	$\begin{aligned} & 89 \\ & 0.98^{\prime} .6 \\ & 0.61 \end{aligned}$	$\begin{array}{r} 89^{\circ} 58^{\prime} .9 \\ \mathbf{0 . 0 0} \end{array}$	$\begin{aligned} & 88^{\circ} 53^{\prime} \because 2 \\ & 10.70 \mathrm{~N} . \end{aligned}$	$\begin{aligned} & 89^{\circ} 59^{\prime} .5 \\ & 1.20 \mathrm{s.} . \end{aligned}$	$\begin{aligned} & 89^{\circ} 59^{\prime} .7 \\ & 1.50 \times . \end{aligned}$	$\begin{array}{r} 90^{\circ} \text { (E. or W. } \\ 1.60 \mathrm{~A} . \end{array}$	$\begin{gathered} 3^{\prime} 07^{\prime \prime} .4 \\ 0.72 \text { ins. } \end{gathered}$
32	$\begin{array}{r} 89^{\circ} 58^{\prime} .4 \\ 2.09 \mathbf{N i}^{4} . \end{array}$	$\begin{aligned} & 89058^{\prime} .6 \\ & 1.04 \times . \end{aligned}$	$\begin{array}{r} 89^{\circ} 588^{\prime} .9 \\ \mathbf{0 . 0 0} \end{array}$	$\begin{aligned} & 890599^{\prime} .2 \\ & 0.73 \\ & 0 . \end{aligned}$	$\begin{aligned} & 89^{\circ} 59^{\prime} .5 \\ & 1.25 . \end{aligned}$	$\begin{aligned} & 89059^{9} .7 \\ & 1.545 . \end{aligned}$	$\begin{gathered} 90^{\circ}(\mathrm{E} . \operatorname{or} \mathrm{W} .) \\ 1.6 \% \mathrm{~S} . \end{gathered}$	$\begin{array}{r} 3^{\prime} 15^{\prime \prime} .0 \\ 0.75 \text { ins. } \end{array}$
83	$\begin{aligned} & 89058^{\prime} .3 \\ & 2.17 . \end{aligned}$	$\begin{aligned} & 89058^{\prime} .5 \\ & 0.97 \end{aligned}$	$\begin{array}{r} 89^{\circ} 58^{\prime} .8 \\ \mathbf{0 . 0 0} \end{array}$	$\begin{aligned} & 89^{\circ} 53^{\prime} .1 \\ & 10.76 .5 . \end{aligned}$	$\begin{aligned} & 83^{\circ} 59^{\prime} .4 \\ & 1.30 \mathrm{~S} . \end{aligned}$	$\begin{gathered} 89-59.7 \\ 1.62 .8 . \end{gathered}$	$\begin{gathered} 90^{\circ} \text { (E. or W. }{ }^{1.7: 3} \mathrm{~N} . \end{gathered}$	$\begin{gathered} 3^{\prime} 22^{\prime \prime} .6 \\ 0.8 \text { ins. }^{2} . \end{gathered}$
34		$\begin{aligned} & 8958^{\prime} .5 \\ & 1.01 \mathrm{X} . \end{aligned}$	$\begin{array}{r} 89^{\circ} 58^{\prime} .8 \\ \mathbf{0 . 0 0} \end{array}$	$\begin{gathered} 890^{5} 69^{\prime} .1 \\ 0.89 \mathrm{~s}^{2} . \end{gathered}$	$\begin{aligned} & 89059^{\prime} .4 \\ & 1.35 \mathbf{N}^{4} . \end{aligned}$	$\begin{array}{r} 89^{\circ} 59^{\prime} .7 \\ 1.69 \mathbf{S}^{\prime} . \end{array}$	$\begin{gathered} 90^{\circ}\left(\text { E. or } W^{\circ}\right) \\ 1.50 \% \end{gathered}$	$\begin{aligned} & 3^{\prime} 30^{\prime \prime} .4 \\ & \mathbf{0 . 8 1} \text { ins. } \end{aligned}$
35	$\begin{aligned} & 89^{\circ} 58^{\prime} \cdot 2.2 \\ & 2.33 \end{aligned}$	$\begin{aligned} & 89^{\circ} 58^{\prime} .5 \\ & 1.0 . .^{\prime} \mathrm{S} \end{aligned}$	$\begin{array}{r} 89^{\circ} 58^{\prime} .8 \\ 0.00 \end{array}$	$\begin{aligned} & 89059^{\prime} .1 \\ & 0.82 \mathbf{N}^{2} . \end{aligned}$	$\begin{aligned} & 89^{\circ} 59^{\prime} .4 \\ & 1.40 \text { s. } \end{aligned}$	$\begin{aligned} & 89059^{\prime} .7 \\ & 1.85^{\prime} \mathrm{S}^{2} . \end{aligned}$	$\begin{gathered} 90^{\circ} \text { (E. or W.) } \\ \text { 1.s7 } \end{gathered}$	$\begin{aligned} & 3^{3} 38^{\prime \prime} \cdot 4 \\ & 0.8^{4} \text { ins. } \end{aligned}$
36	$\begin{aligned} & 80^{80} 58^{\prime} .1 \\ & 2.4 \div \mathbf{N} . \end{aligned}$	$\begin{aligned} & 89058^{\prime} \cdot 4 \\ & 1.0: \mathbf{N}^{2} . \end{aligned}$	$\begin{array}{r} 89058^{\prime} .7 \\ 0.00 \end{array}$	$\begin{aligned} & 89 \\ & 0.89,0 \\ & 0.85 \\ & \hline \end{aligned}$	$\begin{gathered} 89^{\circ} 59^{\prime} .4 \\ 1.46^{\prime} \mathrm{s} . \end{gathered}$	$\begin{aligned} & 89^{\circ} 59^{\prime} .7 \\ & 1.52 .8 \end{aligned}$	$90^{\circ}\left(\mathrm{E} . \text { or } W^{\circ} .\right)$	$\begin{gathered} 3^{\prime} 46^{\prime \prime} .4 \\ 0.57 \text { ins. } \end{gathered}$
88	$\begin{aligned} & 89^{\circ} 58^{\prime} .0 \\ & 9.51 \mathrm{~N} . \end{aligned}$		$\begin{array}{r} 89^{\circ} 58^{\prime} .6 \\ \mathbf{0 . 0 0} \end{array}$	$\begin{aligned} & 89^{5} 58^{\prime} .9 \\ & 0.58 \mathbf{S}^{2} . \end{aligned}$	$\begin{aligned} & 89^{\circ} 59^{\prime} .3 \\ & 1.51 \mathrm{~N} . \end{aligned}$	$\begin{aligned} & 89^{\circ} 59^{\prime} .7 \\ & 1.59 .5 . \end{aligned}$	$\begin{gathered} 90^{\circ} \text { (E. or W. } \mathrm{W} \text {) } \\ \vdots .01 \mathrm{~S} . \end{gathered}$	$\begin{array}{r} 3^{\prime} 55^{\prime \prime} .0 \\ 0.90 \text { ins. } \end{array}$
38	$\begin{aligned} & 89058^{\prime} .0 \\ & 2.61 \mathrm{~N} . \end{aligned}$	$\begin{aligned} & 89058^{\prime} .3 \\ & 1.17 . \mathrm{N} . \end{aligned}$	$\begin{array}{r} 89^{\circ} 58^{\prime} .6 \\ 0.00 \end{array}$	$\begin{aligned} & 89058^{\prime} .9 \\ & 0.91 .5 . \end{aligned}$	$89^{\circ} 59^{\prime} .3$ $1.56 \mathrm{~N}$	$\begin{aligned} & 89^{\circ} 59^{\prime} .7 \\ & 1.95 \mathrm{~S} . \end{aligned}$	$\begin{gathered} 90^{\circ} \text { (E. or W. W.) } \\ \underline{0.0 S} \text { S. } \end{gathered}$	$\begin{aligned} & 4^{\prime} 03^{\prime \prime} .6 \\ & 0.98 \text { ins. } \end{aligned}$
89	$\begin{aligned} & 89057.959 .9 \\ & 2.70 \mathrm{~N} . \end{aligned}$	$\begin{aligned} & 89058^{\prime}, 2 \\ & 1.21 \mathbf{N}^{2} . \end{aligned}$	$\begin{array}{r} 89^{\circ} 58^{\prime} .6 \\ \mathbf{0 . 0 0} \end{array}$	$\begin{aligned} & 89058^{\prime} .9 \\ & 0.94 \div \text { S. } \end{aligned}$	$\begin{gathered} 89^{\circ} 59^{\prime} .3 \\ 1.62 .5 . \end{gathered}$	$\begin{gathered} 89059^{\prime} .7 \\ \hdashline .02 \mathrm{~S} . \end{gathered}$		$\begin{gathered} 4^{\prime} \frac{12^{\prime \prime} .6}{} \\ 0.97^{\text {ins. }} . \end{gathered}$
40	$\begin{aligned} & 89257^{\prime} 8 \\ & \hdashline . .9 \\ & \hdashline .9 \end{aligned}$	$\begin{aligned} & 80^{\circ} 5 s^{\prime} .1 \\ & 1.2 .5 \mathbf{N}^{2} . \end{aligned}$	$\begin{array}{r} 89^{\circ} 58^{\prime} .5 \\ \mathbf{0 . 0 0} \end{array}$	$\begin{aligned} & 89058^{\prime} .9 \\ & \mathbf{0 . 9 8} . \mathbf{S}^{2} . \end{aligned}$	$\begin{aligned} & 89^{\circ} 59^{\prime} .3 \\ & 1.6 S^{3} . \end{aligned}$	$\begin{gathered} 89059^{\prime} .7 \\ 2.10 \mathrm{~S}^{2} . \end{gathered}$	$\begin{gathered} 90^{\circ} \text { (E. or W.) } \\ 2.24 \mathrm{~S} . \end{gathered}$	$\begin{gathered} 4^{\prime} 21^{\prime \prime} .6 \\ 1.00 \text { ins. } \end{gathered}$
41	$\begin{aligned} & 89^{3} 57^{\prime} .7 \\ & \hdashline .59 . \end{aligned}$	$\begin{aligned} & 895.5^{\prime} 0 \\ & 1.30 \mathrm{~N} . \end{aligned}$	$\begin{array}{r} 89^{\circ} 58^{\prime}{ }^{4} \\ \mathbf{0 . 0 0} \end{array}$	$\begin{aligned} & 89^{\circ} 58^{\prime} .8 \\ & 1.0 \pm \$. \end{aligned}$	$\begin{aligned} & 89^{\circ} 59^{\prime} .2 \\ & 1.74 \mathrm{~s}^{2} \end{aligned}$	$\begin{aligned} & 89^{\circ} 59^{\prime} .6 \\ & 7^{\prime} . \end{aligned}$	$\begin{gathered} 90^{\circ} \text { (E. or W. } \\ 2.3 \pm \mathbf{N} . \end{gathered}$	$\begin{gathered} 4^{\prime} 31^{\prime \prime} .2 \\ 1.04 \text { ins. } \end{gathered}$
4:	$\begin{aligned} & 80057^{\prime} .7 \\ & 3.00 . \mathbf{X} . \end{aligned}$	$\begin{aligned} & 89.58^{\prime} .0 \\ & 1.3 .5 . \end{aligned}$	$\begin{array}{r} 89^{\circ} 58^{\prime} .4 \\ \mathbf{0 . 0 0} \end{array}$	$\begin{aligned} & 89 \circ 58^{\prime} .8 \\ & 1.05 \mathrm{~S} . \end{aligned}$	$\begin{aligned} & 89^{\circ} 59^{\prime} .2 \\ & 1.80 \mathrm{~S} \end{aligned}$		$\begin{gathered} 90^{\circ} \text { (E. or W.) } \\ 2.40 \text { S. } \end{gathered}$	$\begin{gathered} 4^{\prime} 40^{\prime \prime} .8 \\ 1.08 \text { ins. } \end{gathered}$
4:3	$\begin{aligned} & 89557^{\prime} .6 \\ & 3.11 \mathrm{~N} . \end{aligned}$	$\begin{aligned} & 8958^{\prime} .0 \\ & 1.40 \mathrm{~N} . \end{aligned}$	$\begin{array}{r} 89^{\circ} 58^{\prime} .4 \\ \mathbf{0 . 0 0} \end{array}$	$\begin{aligned} & 89^{\circ} 5 s^{\prime} .8 \\ & 1.0 \mathrm{~s} .8 . \end{aligned}$	$\begin{gathered} 89^{\circ} 59^{\prime} .2 \\ 1 . \times 6 \mathbf{S}^{2} . \end{gathered}$	$\begin{aligned} & 89059^{\prime} .6 \\ & 2.83 \mathbf{S}^{6} . \end{aligned}$	$\begin{gathered} 90^{\circ}(\mathrm{E} . \text { or W. W. }) \\ 2.4 \leftharpoonup . \mathrm{S} . \end{gathered}$	$\begin{aligned} & 4^{\prime} 50^{\prime \prime} .8 \\ & \text { 1. } 12 \text { ins. } \end{aligned}$
44	$\begin{aligned} & 84057^{\prime} 5 \\ & 3.22 \text { N. } \end{aligned}$	$\begin{aligned} & 89057^{\prime} .9 \\ & 1.4 .5 \mathrm{~N} . \end{aligned}$	$\begin{array}{r} 89^{\circ} 58^{\prime} .3 \\ \mathbf{0 . 0 0} \end{array}$	$\begin{aligned} & 8!058^{\prime} 7 \\ & 1.12 \mathbf{s}^{2} . \end{aligned}$	$\begin{gathered} 89^{\circ} 59^{\prime} .2 \\ 1.93^{\prime} . \end{gathered}$	$\begin{gathered} 899^{\circ} 59^{\prime} .6 \\ \hdashline .41 \mathrm{~N} . \end{gathered}$	$\begin{gathered} 90^{\circ} \text { (E. or } W_{.} \text {) } \\ 0.57 \mathrm{~S} . \end{gathered}$	$\begin{aligned} & 5^{\prime} 01^{\prime \prime} .0 \\ & 1.16 \text { ins. } \end{aligned}$
45	$\begin{aligned} & 89^{\circ} 57^{\prime} .4 \\ & 3.33 \mathrm{~N} . \end{aligned}$	$\begin{aligned} & 89^{\circ} 57^{\prime} .8 \\ & 1.50 . \mathrm{N.} \end{aligned}$	$\begin{array}{r} 89^{\circ} 58^{\prime} .3 \\ \mathbf{0 . 0 0} \end{array}$	$\begin{aligned} & 89^{\circ} 58^{\prime} .7 \\ & 1.16 \mathbf{S}^{2} . \end{aligned}$	$$	$\begin{gathered} 89^{\circ} 59^{\prime} .5 \\ 4.49 \mathbf{S}^{\prime} . \end{gathered}$	$90^{\circ}\left(\mathrm{E} . \text { or } \mathrm{TF}_{2.66} \text {. }\right)$	$\begin{array}{r} 5^{\prime} 11^{\prime \prime} .8 \\ 1.20 \text { ins. } \end{array}$
16	$\begin{aligned} & 89^{\circ} 57^{\prime} .3 \\ & 3.14 . \mathbf{N} . \end{aligned}$	$\begin{aligned} & 899^{5} 57^{\prime} .7 \\ & 1.5 .5 \mathbf{N}^{2} \end{aligned}$	$\begin{array}{r} 89^{\circ} 58^{\prime} .2 \\ 0.00 \end{array}$	$\begin{aligned} & 89^{\circ} 58^{\prime} .6 \\ & 1.01 \mathrm{~s} . \end{aligned}$	$\begin{aligned} & 89^{\circ} 59^{\prime} .1 \\ & 2.07 \\ & \hline \end{aligned}$	$\begin{gathered} 89^{\circ} 59^{\prime} .5 \\ 2.59 \mathrm{~S} . \end{gathered}$	$\begin{gathered} 90^{\circ}(\mathrm{E} .0 \mathrm{~W} \mathrm{~W} .) \\ 2.76 \mathrm{~S}) \end{gathered}$	$\begin{array}{r} 5^{\prime} 22^{\prime \prime} .8 \\ 1.44 \text { Ins. } \end{array}$
47	$\begin{aligned} & 89050^{\prime}: 2 \\ & 3.75 \\ & \hline \end{aligned}$	$\begin{aligned} & 89557^{\prime} .6 \\ & 1.61 \mathbf{N} . \end{aligned}$	$\begin{array}{r} 89^{\circ} 58^{\prime} .1 \\ \mathbf{0 . 0 0} \end{array}$	$\begin{aligned} & 89^{\circ} 58^{\prime} .6 \\ & 1.2 .5 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 89059^{\prime} .1 \\ & \geq .14 \mathbf{S}^{2} . \end{aligned}$	$\begin{gathered} 89^{\circ} 59^{\prime} .5 \\ 2 . .67^{\prime} \mathrm{S} . \end{gathered}$	$\begin{gathered} 90^{\circ} \text { (E. or W.) } \\ \text { Z. } \mathrm{St} \mathrm{~W}_{\mathrm{S}} \mathrm{~S} \text {. } \end{gathered}$	$\begin{gathered} 5^{\prime} 34^{\prime \prime} .2 \\ 1.28 \text { lns. } \end{gathered}$
48	$\begin{aligned} & 89057^{\prime}: 1 \\ & 3.70 \mathrm{~N} . \end{aligned}$	$\begin{aligned} & 899^{5} 57^{\prime} .5 \\ & 1.66 \mathrm{~N}^{2} \end{aligned}$	$\begin{array}{r} 89^{\circ} 58^{\prime} .0 \\ \mathbf{0 . 0 0} \end{array}$	$\begin{aligned} & 89^{\circ} 58^{\prime} .5 \\ & 1.30 \mathrm{s.} . \end{aligned}$	$\begin{aligned} & 89^{\circ} 59^{\prime} .0 \\ & \because . .2 .9^{2} . \end{aligned}$	$\begin{aligned} & 89^{\circ} 59^{\prime} .5 \\ & 2 . \mathbf{S N}^{2} .5 . \end{aligned}$	$90^{\circ} \text { (E. or W.) }$	$56^{\prime \prime}$ 1.33 ins.
49		$\begin{aligned} & 89557^{\prime} .5 \\ & 1.7 \pm \mathbf{N} . \end{aligned}$	$\begin{array}{r} 89^{\circ} 58^{\prime} .0 \\ 0.00 \end{array}$	$\begin{aligned} & 89^{\circ} 58^{\prime} .5 \\ & 1.34 .5 . \end{aligned}$	$\begin{aligned} & 89^{\circ} 59^{\prime} .0 \\ & -.30 \mathrm{~S} . \end{aligned}$	$\begin{aligned} & 89^{\circ} 59^{\prime} .5 \\ & 2.53^{\prime} \mathrm{S} . \end{aligned}$	$90^{\circ} \text { (E. or W. W. }$	$\begin{aligned} & 5^{\prime} 58^{\prime \prime} .6 \\ & 1.38 \text { ins. } \end{aligned}$
50	$\begin{aligned} & 89056^{\prime} .9 \\ & : 3.96 ; \mathrm{K} . \end{aligned}$	$\begin{aligned} & 89>57^{\prime} .4 \\ & 1.78^{2} \times . \end{aligned}$	$\begin{array}{r} 89 \circ \\ \quad 57.9 \\ 0.00 \end{array}$	$\begin{aligned} & 89^{\circ} 58^{\prime} .4 \\ & 1.39 \stackrel{5}{5} . \end{aligned}$	$\begin{aligned} & 89^{\circ} 59^{\prime} .0 \\ & 2.35 \mathrm{~s} . \end{aligned}$	$\begin{aligned} & 899^{\circ} 59^{\prime} .5 \\ & 2.97 \\ & \hline .96 . \end{aligned}$	$\begin{array}{r} 90^{\circ} \text { (E. or W.) } \\ 3.17 \mathrm{~S} . \end{array}$	$\begin{array}{r} 6^{\prime} 11^{\prime \prime} .4 \\ 1.48 \text { Ins. } \end{array}$
Intitule.	6 miles.	5 $\frac{1}{2}$ miles.	5 miles.	$4 \frac{1}{4}$ miles.	4 miles.	$3 \frac{1}{2}$ miles.	3 miles.	Deflection Ausle
	Azinuths and oflisets at-							tan. to Rad. 66 tit.

[^49]The direction of the first secant will be determined at its initial point by observations on Poluris at elongation, and similar observatious will be made at intervals not excceding 18 miles; while observations by the method given on page 107, et seq., or on Polaris at elongation (as the deputy may prefer), will be taken every night when practieable, to guard against mistakes, detect errors, and check the direction of the line.

The principal advantage of this method, over that by offsets from a tangent, results directly from the proximity of the secant and the parallel of latitude, and the consequent reduced length of the maximum offisets; thereby limiting the cutting, which will contain both secunt and parallel, to a single opening less than four feet in width; avoiding the necessity for clearing out roads for, and instrumentully laying off the long offsets inseparable from the tangent method; and permitting the noting of topographical features on the lines actually run, a convenience mattainable by the tangent method.

In any given case, the secant lines will bear such relations to the latitude enrve, that points on said secants, at one and five miles from either end of any secant, will be coincident with two points on the latitude curve four miles apart; between which points the latitude curve will lie south of the secants; while the curve will lie north of the secant lines on the first and sixth miles; therefore, each secant will run south of secs. 31 and 36 , in every range, and through all other sections on the north side of the base line or standard parallel, as the case may be. (See figs. 1 and 2.)

Each secant, the azimuth and offsets thereof, and the corresponding part of the parallel, will be symmetrically divided by the middle meridian of each range, (i. e.) the bearings and oftisets at equal distances on opposite sides of the central meridian will be equal; the bearings, which continually change, will always be north of east (or west), on the first three miles, and sonth of east (or west), on the last three miles of each secant. The changes of bearing should not be understood to imply a change of direction of any secant with respect to its initial direction; the change is due to the varying inclination of the meridians to the straight secant, (i. e.) the effert of "convergency of meridians." (See third column of Table \mathcal{X}, and Plate II, figs. 1, 2 , and 5 .)

Employing the data provided by Table III, the practical application of the method herein outlined will be conducted in the field as follows:

1. Set up the carefully adjusted transit south of the township corner at which the survey will begin, and at a distance therefiom to be interpolated for the given latitude, from the column headed "0 miles." By observations on Polaris at elongation, determine and mark a true meridian, in accordance with directions on page 105.

[^50]2. Lay off the azimuth, fomnd in the table umder " 0 miles," toward the cast (or west), as the case may be, and remeasure the angle a sufficient number of times to secure an accurate resnlt.
3. Produce the direction of the secant thas determined, a distance of six miles in a straight line, taking double back and fore sights at each setting of the instrument. At each half mile and mile point, establish on the standard parallel the proper quarter section and section corners by ofisets of correct length, north or south, as indicated in the table, by the initial letters "N." or "S."

The offsets being very short, their direction (perpendicnlar to the secant, withont sensible error), may be determined by the eye; the lenthth of offisets should be carefully measured.
4. At 6 miles on the serant, tum off to the north the proper deflection angle, given in the right hand column of the table, thereby defining the dinection of a new secant, from which points will be established on the parallel, as rlirected in clanse 3.

The deputy should clearly understand from the foregoing rules and directions that the correct establishment of a stamdard parallel on a true latitude curve, by offsets from secant lines, will depend in the order of sequence upon careful attention to the following points:
> 1. Accurate observations on Polaris at elongation, to determine a true meridian.
> 2. Close measurement of the azimuth angle, to define the initial direction of the secant. 3. Carcinl prolongation of the secant in a straght line.
> 4. Correet measmement of the deflection angle.

With ordinary field instruments, usually reading to single minntes only, fractional parts of the "least comut" are generally estimated by the eye. Greater acouracy may be attained by making use of a linear measure to lay off deflection angles. Table III supplies the remuisite data; "the natural tangent of the angle of deflection to a radius of one chain," inserted in the right-hand column, may be employed as follows:

Having taken a back sight at the 6 -mile point on the secant, at exactly one chain in advance of the center of the instrument, place upon the ground in a horizontal position, and precisely at right angles to the line, a rule or sale divided into derimal parts of an inch; move the scale north or sonth until one of its principal lines appears coincident with the vertical wire; then, with the tangent screw of the vernier pate, carry the wire over the scale toward the north, the required distance (i. e.), the length of tangent* in the right-hand column. The readings of the vernier will check the measurement and guard against mistakes.

To mark the dircetion of the new secant thus determined, set a Hag on line, and as far in advance of the instrment as practicable. The direction will be verified by another similar observation, to be made after revolving the azimuth circle 180°.

Theoretically, it is immaterial whether the scale be placed above or below the level of the telescope, provided the horizontal distance from the center of the instrmment is acenately one chain (66 ft.) ; practically, the most satisfactory result will be had on level ground, suitable for correct measmrement of the distance.

[^51]The secant method, adapted to transit instruments exclusively, is recommended for its simplicity and accuracy, and the facility with which the line may be extended over rough momtainous land or through dense undergrowth; in deep valleys or canyons where the sun can not be observed in farorable positions; or anywhere during the continnance of adverse weather conditions and under circminstances when the use of solar apparatus would be, if not impossible, at least inconvenient and unreliable.

The true bearing of a line joining any two points on a standard parallel will be obtained from Table IV, by taking it from the column headed with one-half of the distance between said points. Example, (Plate II, fig. थ.). Required the bearing from corner of secs. 32 and $33, \mathrm{R} .24 \mathrm{E}$. , to comer of secs. 32 and $33 \mathrm{E} .$, R. 21 E . The latitude is $45^{\circ} 34^{\prime} .5$, the distance (i milss. Consequently, the azimuth from the eolumu marked " 3 miles" for the given latitude, is N. $89^{\circ} 57^{\prime} 20^{\prime \prime} .9$ W., the required true bearing.

The Specimen Field Notes No. 1, page 142, exhibit the form for record of the survey of a standard parallel through two ranges, executed in accordance with these instructions, and the practical method of correeting the line when a small deviation from the true latitude curve has been detected by observations on Polaris at elongation.

Plate II, fig. 1, illustrates a theoretically correct survey of a standard parallel; exhibits the bearings along the secant and lengths of offisets; and the deflection angle (at D), and place for the scale or rule regnired for measurement of the angle; while fig. 2 illustrates the method dessribed in the field notes for correcting the line when error has been discovered. The topography is laid down on Plate III.

TANGENT METHOD.

[See Plate II, Fig. 3.]
This method consists in laying off from a true meridian, established by observations on Polaris at elongation, an angle of 90°, producing the direction thins determined, a distance of 6 miles, in a straight line, and measuring north therefrom, at half mile intervals, distances of correct length, taken from Table V (interpolated if necessary), for the given latitude, to attain other points on the latitude curve passing through the tangential or initial point.

Table IV.-Azimuths of the Tangent to the Parallel. ['The azimuth is the smallest angle the tangent makes with the true meridian and almays measured from the north and towards the tingential points.]

Latiinde.	1 mile.			2 miles.			3 miles.			4 miles.			5 miles.			6 miles.		
-	-	,	"	-	1	"	\bigcirc	1	"		,	"	-	1	"	-	,	"
30	89	59	30.0	89	58	59.9	89	58	29.9	89	57	59.9	89	57	29.9	89	56	59.8
31	89	59	28.8	89	58	57.5	89	58	26.3	89	57	55.0	89	57	23. 8	89	56	52.5
32	89	59	27.5	89	58	55.0	89	58	22.5	89	57	50.0	89	57	17.5	89	56	45.0
3:3	89	59	26.2	89	58	52.5	89	58	18.7	89	57	44.9	89	57	11.2	89	56	37.4
34	89	59	24.9	89	58	49.9	s9	58	14.8	89	57	39.7	89	57	04.6	89	56	29.6
85	89	-	23.6	89	58	47.2	89	58	10.8		57	34.4	89	56	58.0	89	56	21.6
36	89	59)	22.2	89	58	44.4	89	58	06.8	89	57	28.9	89	56	51.1	89	56	13.4
87	89	59	20.8	89	58	41.6	89		02.5		57	23.3	89	56	44.1	89	56	05.0
35	89	59	19.4	89	58	38.8	89	57	58.2	89	57	17.5	89	56	36.9	89	55	56.3
39	89	59	17.9	89	58	35.8	89	57	53.7	89	57	11.6	89	56	29.6	89	55	47.5
411	89	59	16.4	89	58	32.8	89	57	49.2	89	57	05.5	89	56	21.9	89	55	38.3
41	89	59	14.8	89	58	29.6	89	57	44.4	89	56	59.3	89	56	14.1	89	55	28.9
42	89	59	13.2	85	58	26.4	89	57	39.6		56	52.8	89	56	06.0	89	55	19.2
43	89	59	11.5	89	58	23.1	89	57	34.6	89		46.2		55	57.7	89		09.2
44	89	59	09.8	89	58	19.6	89	57	20.5	89	56	39.3	89	55	49.1	89	54	58.9
45	89	59	08.0	89	58	16.1		57	24.1	89	56	32.1	89	55	40.2	89	54	48.2
46	83	\%9	06.2	89	58	12.4	89	57	18.6	89	56	24.8	89	55	31.0	89	54	37.2
45	89	59	04.3	89	58	08.6	89	57	12.9		56	17.1	89	55	21.4	89	54	25.7
48	89	59	02.3	89	58	04.6	89	57	06.9	89	56	09.2	89	55	11.5		54	13.8
$4!$	89	59	01.2	89	58	00.5	89	57	00.7	89	56	00.9	89	55	01.2		54	01.4
50		58	58.1	89		56.2	89	56	. 54.3		55	52. 6		54	50.5	89	53	48.5
Latiinte.	7 miles.			8 miles.			9 miles.			10 miles.			11 miles.			12 miles.		
-	-	,	"	\bigcirc	,	"	\bigcirc	1	"	-	1	"	-	,	"	-	,	"
30	89	56	29.8	89	55	59.8	89	55	29.8	89	54	59.7	89	54	29.7	89	53	59.7
81	89	56	21.3	89	5.5	50.0	89	55	18.8	89	54	47.6	89	54	16.3	89	53	45.1
3:	89	56	12.5	89	55	40.0	89	55	07.6	89	54	35.1	89	54	02. 6	89	53	30.1
33	89	56	03. $\mathfrak{6}$	89	5.5	29.9	89	5	56.1	89	54	29.3	89	53	48.5	89	53	14.8
34	89	55	54. 5	89	5.5	19.4	89	54	44.4	89	54	09.3	89	53	34.2	89	52	59.1
3.$)$	89	55	45.2	89	55	08.8	89	54	32.3	89	53	$5 \overline{5} .9$	\$9	53	19.5	89	52	43.1
36	89	55	35.6	89	54	57.8	89	54	20.0	89	53	42.3	89	53	04.5	89	52	26.7
37	89	55	25.8	89	54	46.6	89	54	07.4	89	53	28.2	89	52	49.1	89	52	09.9
34	89	55	15.7	89	54	35.1	89	53	54.5	89	53	13.9	89	52	33.2	89	51	52.6
39	89	55	05.4	89	54	23.3	89	53	41.2	89	52	59.1	89	52	17.0	89	51	34.9
40	89	54	54.7	89	54	11.1	89		27.5	89	52	43.8	89	52	00.2	89	51	16.6
41	89	54	43.7	89	53	58.5	89	53	13.4	89	52	28.2	89	51	43.0	89	50	57.8
42	89	54	32.4	89	53	45.6	89	52	58.8	89	52	12.0	89	51	25.2	89	50	38.4
13	89	54	20.8	89	53	32.3	89	52	43.8	89	51	55.4	89	51	06.9	89	50	18.5
44	89	54	08.7	89	53	18.5		52	28.4		51	38.2		50	48.0	89	49	57.8
45	89	53	56.3	89		04.3	89		12.3	89	51	20.4	89	50	28.4	89		36.4
46	89	53	43.4	89	52	49.5	89	51	55.7	89	51	01.9	89	50	08.1	89	49	14.3
47	89	53	30.0	89	52	34.3	89	51	38.6	89	50	42.9	89	49	47.2	89	48	51.4
48	89	53	16. 1	89		18.4	89			89	50	23.0	89	49	25.3	89	48	27.6
49	89	53	01. 7	89	52	01.9	89	51	02.1	89	50	02.4	89	49	02. 6	89	48	02.8
50	89	52	46.6			44.7			42.8			40.9			39.0	89	47	37.1

The azimuth or bearing of the tangent at successive mile points will be taken from Table IV to the nearest whole minute only, and will be inserted in the field notes, no interpolation being required, except when test sights are taken. The true bearing between two points on a standard parallel will be derived from Table IV by taking it in the column head with one half of the distance between said points. (See example in the secant method, page 122.) The offsets at intervals of one mile are inserted in Table V ; to obtain the leugth of offsets at
the balf-mile points, take one-fourth of the offset corresponding to twice the distance of the half-mile point from the tangential point.

Example.-Required the offiset at $5 \frac{1}{2}$ miles, in latitude $450: 34^{\prime} .5$. The offset at 11 miles (interpolated for the given latitude) is $8 . .16 \mathrm{ft}$., which divided by 4 gives 20.54 ft., the offset required. Tables IV, V, and VI, are extended to 12 miles, in order to provide necessary data; but the tangent will be limited to six miles, as indicated by the full lines of fig. 3.

This methor is suitable for ruming standard parallels and latitudinal township lines in a level open comtry, where no intersections with topographical features will be required; but, in all cases the secant method will be found most convenient.
The specimen fied notes No. 1, page 150, exhibit the form of record of the survey of a Standard Paraliel throngh one range, executed by the tangent method, which notes, considered in comection with Plate II, fig. 3 , will fitly explain the process here outlined.

Table V.—Offsets, in feet, from Tangent to Parallel.

Latitude.	1 mile.	2 miles.	3 miles.	4 miles.	5miles.	6 miles.
\bigcirc	Fect.	Fect.	Fcet.	Fect.	Fcet.	Fect.
80	0.39	1.54	3.47	6.17	9.64	13.88
\%1	0. 40	1. 60	3.61	6. 12	10.03	14.44
83	0.42	1.67	3. 76	6.67	10.42	15.02
S:	0. 43	1. 73	3.90	6.93	10.82	15.60
; 1	0. 45	1.80	4.05	7.20	11. 25	16. 20
85	0.47	1.87	4.20	7.47	11. 68	16.81
:8	0.48	1. 94	4.36	7.75	12. 11	17.44
37	0.50	2.01	4.52	8.04	12. 57	18. 09
: $\%$	0.52	2.08	4.69	8.33	13.02	18.75
:!	0.54	2.16	4.86	8.63	13. 49	19.43
(i)	0. 56	2.24	5. 03	8.95	13.98	20.11
11	0.58	2.32	5.21	9.27	14.48	20.85
93	0. 60	2. 40	5.40	9.59	14. 99	21. 59
$4: 3$	0. 62	2. 48	5. 59	9.93	15. 52	22.35
41	0. 64	2.57	5. 79	10.29	16. 07	23.14
4.5	0.67	2.66	5.99	10.65	16. 64	23. 96
46	0. 69	2. 76	6. 20	11.02	17. 21	24. 80
17	0.71	2.85	6. 42	11.41	17.83	25.68
14	0. 74	2.95	6.65	11.82	18. 47	26.59
$4!$	0. 76	3.06	6.88	12.24	19.12	27.54
50	0.79	3.17	7. 13	12.68	19.80	28.52
Lali- tide.	7 miles.	8 miles.	9 miles.	10 miles.	11 miles.	12 miles.
0 $\therefore 3$	Fcet. 18.80	Fect. 24.67	Feet. 31.23	Feet. 38.55	Feet. 46. 65	Fcet. 55.52
3il	19.66	25.68	33. 49	40. 40	48.54	57.77
:3	20.44	26.69	33. 78	41.71	50.47	60.06
:\%	21.23	27. 74	35. 10	43.34	52.44	62. 41
$\because 1$	29.05	28. 80	36.45	45.00	54. 45	64.80
:3)	2:. 89	29.89	37.83	46. 71	56.62	67.26
:;	23.74	31.01	39. 25	48.45	58. 63	69. 77
87	24.62	32. 16	40.70	50.24	60.79	72.35
34	25.52	33. 33	42.19	52.08	63.02	75.00
:39	26.44	34.54	43. 71	53.97	65. 30	77.71
40	27.40	35.78	45. 29	55.91	67.65	80.51
41	28.37	37.16	46. 90	57.91	70.07	83.39
4:	29. 38	38.38	48.57	59.97	72.56	86. 35
4.1	30.42	39.71	50.29	62.09	75. 13	89. 41
41	31.50	41. 14	52. 17	64.28	77.78	92. 57
15)	32.61	42. 59	53.91	66.55	80.53	95.84
4 (i)	:33.76	44. 111	55. 81	68.90	83.37	99. 22
47	34.95	45.65	57.78	71.34	86. 34	102.72
45	36. 19	47. 27	50. 813	73.86	89.37	106.36
49)	37.18	48.95	61.96	76. 49	92.55	110.15
50	38.82	50.70	64.17	79.22	95.86	114. 08

Table VI.-Offsets, in Chains, from Tangent to Parallel.

Iatiinde.	I mile.	amiles.	3 miles.	4 miles.	5 miles.	f miles.
\bigcirc	Chains.	Chains.	Chains.	Chains.	Chains.	Chuins.
30	0.006	0.023	0. 053	C. 09	0.14	0.21
31	0.006	0.024	0.155	0.10	0.15	0.23
$8:$	0.006	0.025	0.057	0.10	0.16	0. 23
33	0.1007	0.026	0, 0.59	0. 10	0.16	0.94
: 4	0, 007	0.027	0. 061	0.11	0.17	0. 95
85	0.007	0.028	0.064	0.11	0.18	0.25
86	0.1007	0.029	0.066	0. 12	0.18	0.26
37	0.008	0. 1331	0. 068	0. 12	0.19	0.27
35	0.008	0.032	0.071	0.13	0.20	0.28
39	0.008	0.033	0.074	0.13	0.20	0.29
40	0. 1108	0. 0334	0.076	0. 13	0.21	0.30
41	0. 009	0. $0: 35$	0.079	0.14	0.22	0.32
42	0.009	0. 036	0. 082	0.14	0.23	0.33
43	0.009	0. 0338	0.085	0.15	0. 24	0.34
4.	0.110	0. 089	0.088	0.16	0.24	0.35
45	0.010	0.040	0.091	0.16	0.25	0.36
46	0.010	0.04\%	0.094	0.17	0. 26	0.37
47	0.011	0.044	0.097	0. 17	0. 27	0. 39
48	0.011	0.045	0.101	0.18	0.28	0. 40
$4!$	0.012	0. 046	0. 104	0.1!)	0.29	0.42
50	0.012	0.048	0.108	0.19	0.30	0.43
Latitule.	7 miles.	8 miles.	9 miles.	10 milen.	11 miles.	12 miles.
\bigcirc	Chains.	Chains.	Chains.	Chains.	Chains.	chains.
811	0. 29	0.37	0.47	0. 58	0.71	0.8. 4
31	0.30	0.39	0. 49	0.80	0.74	0.88
$3:$	0.31	0.40	0.51	0.63	0.76	0.91
:38	0.32	0.42	0. 53	0.65	0.79	0.95
34	0.33	0.43	0.55	0.68	0.8゙2	0.98
:3)	0.35	0.45	0.57	0.70	0.86	1.02
\%6	0.36	0.47	0.59)	0.73	0.89	1.06
37	0. 37	0.48	0.61	0.75	0.91	1.10
35	0.38	0.50	0.64	0.76	0.95	1.14
39	0.40	0.52	0.66	0.81	0.99	1.18
413	0. 41	0.54	0.68	0.81	1. 02	1. 22
41	0.43	0.56	0.70	0.87	1.06	1. 26
40	0.44	0.58	0.73	0.90	1.09	1.31
f:3	0.46	0.60	0.75	0.93	1. 14	1.35
41	0.48	0.62	0.79	0.97	1. 18	1.40
4	0.49	0. 6.4	0.81	1.00	1. 22	1.45
! !	0.51	0. 66	0.84	1.04	1.26	1,50
4%	0.53	0.68	0.87	1.07	1.31	1.56
48	0.55	0.71	0.91	1.12	1.35	1. 61
!!	0.57	0.74	0. 93	1. 16	1. 40	1. 67
50	0. 59	0.77	0.97	1. 20	1. 45	1. 73

SURVEY OF TOWNSHIP ENTERIORS BY TIIE SECANT OR TANGENA METIIODS.

When township lines are surveyed by either of these methods, three lines should be taken into accomet, as follows:

Hisst: The directing or reference line, which will be the secant or tan gent, as the case may be.
second: The line of temporary corners set by proper ofisets; which will be the random line.

Third: The true line or random line corrected for the falling in the usual manner, upon which the corners will be established.
By setting the temporary corners, including, as a matter of course, that of the objective township corner, all complications incidental to the combined falling and offset from the secant or tangent, will be eliminated.

Table VII.-Correction of Randoms-Links and Minutes of Arc.

VII $九$.-Correction, to nearest whole minute, for reducing random to truc bearings. Distance, 80 chains.

Falling.	Correc- tion.	Falling.	Correc- tion.
Linkis.	Minutes.	Links.	Minutes.
1	$0-$	31	13
2	1	32	14
3	1	33	14
4	2	34	15
5	2	35	15
6	3	36	15
7	3	37	16
8	3	38	16
9	4	39	17
10	4	40	17
11	5	41	18
12	5	42	18
13	6	43	18
14	6	44	19
15	6	45	19
16	7	46	20
17	7	47	20
18	8	48	21
19	8	49	21
20	9	50	21
21	9	51	22
22	9	52	22
23	10	53	23
24	10	54	23
25	11	55	24
26	11	56	24
27	12	57	24
28	12	58	25
29	12	59	25
30	13	60	26

VII B.-Showing departure in rumning SO.OO chs. at any conrse from 1 to 60 min utes (or differcnce in latitude for 90° minus angle.)

Angle.	Departure.	Angle.	Departure.
Mimutes.	Links.	Minutes.	Links.
1	$2 \frac{1}{81}$	31	$72 \frac{1}{2}$
2	$4{ }^{\frac{2}{3}}$	32	$74 \frac{4}{8}$
3	7	33	77
4	91	34	798
5	$11 \frac{8}{8}$	35	$81 \frac{8}{3}$
6	14	36	84
7	$16 \frac{1}{2}$	37	$86 \frac{1}{8}$
8	$18 \frac{8}{8}$	38	$88{ }^{2}$
9	21	39	91
10	$23 \frac{1}{8}$	40	$93 \frac{1}{3}$
11	$25 \frac{3}{3}$	41	$95{ }^{\frac{2}{8}}$
12	28	42	98
13	$30 \frac{1}{3}$	43	100 $\frac{1}{3}$
14	$32{ }^{\text {a }}$	44	102 ${ }^{\frac{2}{8}}$
15	35	45	105
16	$37 \frac{1}{1}$	46	1071
17	$39 \frac{3}{3}$	47	$109 \frac{2}{3}$
18	42	48	112
19	$44 \frac{1}{8}$	49	$114 \frac{1}{8}$
20	$46{ }^{\text {a }}$	50	116\%
21	49	51	119
22	$51 \frac{1}{8}$	52	$121 \frac{1}{3}$
23	$53{ }^{\text {\% }}$	53	$123 \frac{2}{8}$
24	56	54	126
25	$58 \frac{1}{3}$	55	$128 \frac{7}{8}$
26	$60 \frac{8}{8}$	56	130%
27	63	57	133
28	$6_{5}^{\frac{1}{3}}$	58	$135{ }^{\frac{1}{3}}$
29	${ }_{70}^{67}$	59	$137 \frac{3}{8}$
30	70	60	140

Table VII A. will be used to determine the return from the random course, by the following inles, the meridians being regarded as parallel.
1.-If the random line is run east or west, subtract the falling |in minutes of are] from 90°, reverse the departure letter of the random, and name the meridional letter N. or S., like the falling.
2.-When the random course is nearly east and west, take the sum of the random course and falling [in minutes of arc], if they are of the same name-that is, both north or both south-but their difference
when of different names; in either case changing the meridional and departure letters of the random line. [This is easily remembered by bearing in mind the initial letters of Sum and Same, and Difference and Different].
3.-In any case when the sum exceeds 90°, the return course is found by subtracting said sum from 180°, and retaining the meridional letter of the random course unchanged. If the sum is exactly 90°, the return course is evidently west [or east] to the starting poiut.
4.-Through the north tier of scetions. If the random line intersects at the objective corner, the return course will be the raudom course reversed. When the random falls east or west of the objective corner, reverse its bearing; then take the sum of the reversed random bearing and the falling [in minutes of are], if they are of the same name-that is, both east or both west-but their difference when of different names; in either case making the departure letter, E. or W., agree with that of the greater value. Should the difference come out zero, the return course will be south. [This rule may be memorized as suggested in 2.]

Table VII B, which is merely a fragment of a traverse table, may be consulted to determine the difference of latitude and the departures of the township lines tabnlated on page 128 , and in other similar cases when bearings and distances are within prescribed limits. (See page 59.)

The departure for one mile (80.00 chs.) will be multiplied by the length of the course expressed in miles, to obtain the departure of a meridional township line; while, practically, the difference of latitude will be equal to the length of the line.

To determine the difference of latitude between the ends of latitudinal township boundaries, subtract the bearing from 90°, and with the remainder as an argument for the table, take out the difference of latitude from the column headed "Departure"; the departure will be equal to the length of the line. (See Boundaries, etc., page 177.)

Tableş VIII and IX.
These tables, which require no special description, are useful for converting linear into angular, and angular into linear measures, as well as for determining the convergencies and divergencies of the meridians, on the spheroidal surface of the earth. As the tabular values are given in chains, the tables will be found convenieut for the surveyor's use. The following rules and examples will illustrate their application:

1. Given the latitudes of any two plaees on the same meridian, to find the distanee between them.

Rule.-Find from Table VIII the length of a degree of the meridian at each latitude, and take half their sum for the mean length of a degree. Then say, as 60 minutes is to the difference of latitude, so is the mean length of a degree to the distance required.

The latitude of the north boundary of Wyoming is $45^{\circ} \mathrm{N}$., and that of the 1 st Standard Parallel South, Montana, $45^{\circ} 26^{\prime} 4^{\prime \prime} .08$; what is the meridional distance between them?

As $60^{\prime}: 26^{\prime} 4^{\prime \prime} .08:: 5524.02: 2400$, the distance required.
2. Given the distance between any two places on the same merialan, and the latitude of one of them, to find the difference of latitude.

RULE.-Find from Table VIII the length of a degree of the meridian in the given latitude, and also in that differing from it, by the merid-
ional distance, converted into are at the rate of 52 seconds per mile, and take half their sum for the mean length of a degree. Then say, as the mean length of a degree is to the meridional distance, so is 60 minutes to the difference of latitude required.

The latitude of the north boundary of Wyoming is $45^{\circ} \mathrm{N}$.; what is the latitule of the 1st Standard Parallel Sonth, Montana, the meridional distance being 30 miles?

> clains. chains.
> As $5524.02: 2400:: 6 J^{\prime}: 26^{\prime} 4^{\prime \prime} .08$, the difference of latitude required.
3. Given the longitudes of any two places, on the same parallel, in a given latitude, to find the distance between them.

Rule.-Find from Table IX the length of a degree of longitude in the given latitude; and say, as 60 minutes is to the difference of longitude, so is the length of a degree of longitude to the distance required.

The longitude of the Willamette Meridian is $122^{\circ} 44^{\prime}$, and that of east boundary of range 6 east, $121059^{\prime} 31^{\prime \prime}$; what is the distance between them, on the Base Line, in latitude $45^{\circ} 30^{\prime}$?

$$
\text { As } 60^{\prime}: 44^{\prime \prime} 29^{\prime \prime}:: 3884.81: \text { chains }: 2880 \text {, the distance required. }
$$

4. Given the distance between any tioo places on the same parallel, in a given latitude, to find their difference of longitude.

Rule.-Find from Table IX the length of a degree of longitude in the given latitude; and say, as the leugth of the degree of longitude is to the giveu distance, so is 60 minutes to the difference of longitude.

The longitude of the Willamette Meridian is $122^{\circ} 44^{\prime}$; what is the difference of longitude to east boundary of range 6 east, the distance on the Base Line, in latitude $45^{\circ} 30^{\prime}$, being 36 miles?

$$
\begin{aligned}
& \text { chains. clains. } \\
& \text { As } 3851.81: 2880:: 60^{\prime}: 44^{\prime} 29^{\prime \prime} \text {, the difference of longitude required. }
\end{aligned}
$$

5. Given the distance between two meridians, on any parallel, in a given latitude, to find the convergency of the meridians for any distance north of that parallel.

RULE.-Find the length of a degree of longitude, at each latitude, by the foregoing rules; and say, as the greater of the two lengths is to their difference, so is the given distance to the convergency reguired.

The distance between the Principal Meridian and first range line west, in latitude $42^{\circ} 39^{\prime} 07^{\prime \prime}$, is 6 miles; what is the convergency of the two range lines at the Base Line, the meridional distance being 24 miles?

$$
\begin{aligned}
& \text { chains. chains. chains. chains. } \\
& \text { As } 4075.76: 22.80:: 480: 2.69 \text {, the convergency required. }
\end{aligned}
$$

6. Given the distance between two meridians, on any parallel in a given latitude, to find the divergency of the meridians for any distance south of that parallel.

RuLE.-Find the length of a degree of longitude, at each latitude, by the foregoing rules; and say, as the less of the two lengths is to their difference, so is the given distance to the divergency required.

The distance between the Principal Meridian and first range line on the Base Line in latitude 43°, is 5 miles 77.31 chains; what is the divergency of the two range lines at the parallel $42^{\circ} 39^{\prime} 07^{\prime \prime}$, the meridional distance being 24 miles?

131

Table VIII.-Length of a Degree of Latitude.

号	29°	30°	31°	32°	33°	34°	35°	36°	37°	38°	蔦
,	Chains.	Chains.	Chains.	Chains.	Chains.	Ohains.	Chains.	Chains.	Chains.	\%.	
0	5509.15	5519.97	5510. 82	5511.67	5512.55	5513.44	5514.34	5515.25	5516.18	5517.11	0
1	09.16	09. 99	10.83	11. 69	12.515	13. 45	14.35	15. 27	16. 19	17.13,	1
2	09.17	10.00	10.84	11.70	12. 58	13.47	14.37	15. 28	16.21	17.14	$\stackrel{\square}{2}$
3	09. 19	10.01	10.86	11. 72	12. 59	13. 48	14.38	15. 30	16. 22	17.16	3
4	09.20	10.03	10.87	11.73	12. 61	13. 50	14.40	15.31	16. 24	17.17	4
5	09.21	10.04	10.89	11.75	12. 62	13.51	14.12	15. 33	16.25	17.19	5
6	09. 23	10.06	10.90	11.76	12. 64	13. 53	14.43	15. 34	16.27	17. 20	6
7	09.24	10.07	10.91	11.78	12. 63	13. 54	14.45	15. 36	16. 28	17.22	7
8	09.25	10.08	10.93	11.79	12. 67	13.56	14.46	15.38	16.30	17.23	8
9	09. 27	10.10	10.94	11.81	12. 68	13.57	14.48	15. 39	16.32	17.25	9
10	u9. 28	10.11	10.96	11.82	12.70	13.59	14.49	15.41	16. 33	17.27	10
11	09.30	10.13	10.97	11.83	12. 71	13. 60	14.51	15.42	16.35	17.28	11
12	09.31	10.14	10.99	11.85	12. 73	13. 62	14.52	15.44	16.36	17.30	12
13	09.32	10.15	11.00	11.86	12. 74	13.63	14.54	15. 45	16.38	17.31	13
14	09.34	10.17	11.01	11.88	12.76	13. 65	14.55	15.47	16.39	17.33	14
15	09.35	70.18	11.03	11. 89	12. 77	13.6is	14.57	15. 48	16.41	17.34	15
16	09.36	10.19	11.04	11.91	12. 79	13. 68	14.58	15. 50	16.42	17.36	16
17	09.38	10.21	11.06	11. 92	12.80	13. 69	14.60	15. 51	16. 44	17. 38	17
18	09.39	10.22	11.07	11.94	12.81	13. 71	14.61	15.5.3	16.46	17.39	18
19	09.41	10.24	11.09	11.95	12.83	13.72	14.63	15.54	16.47	17.41	19
20	09.42	10.25	11.10	11.96	12.84	13.74	14.64	15. 56	16.49	17.42	20
21	09.43	10.26	11.11	11.98	12.86	13. 75	14.66	15.57	16.50	17.44	21
22	09. 45	10.28	11.13	11.99	12.87	13. 77	14. 67	15. 59	16. 52	17.45	22
23	09.46	10.29	11.14	12. 01	12.89	13.78	14.63	15. 61	16.53	17.47	23
24	09.47	10.31	11.16	12.02	12.90	13.80	14.70	15. 62	16.55	17.49	$\because 4$
25	09. 49	10. 32	11.17	12.04	12.92	13.81	14. 72	15. 64	16.56	17. 50	25
$\because 6$	09. 50	10.33	11.19	12. 05	12.93	13.83	14.73	15. 65	16. 58	17.52	26
27	09.51	10.35	11.20	12.07	12.95	13. 84	14.75	15. 67	16.60	17.53	27
28	09.53	10.36	11.21	12. 08	12.96	13. 86	14.76	15. 68	16. 61	17.55	28
99	09. 54	10.38	11.23	12. 10	12.98	13.87	14.78	15.70	16.63	17.56	29
30	09.56	10.39	11.24	12.11	12.99	13.89	14. 79	15. 71	16. 64	17.58	30
31	09.57	10. 41	11.26	12. 12	13. 01	13.90	14.81	15.73	16. 66	17.60	31
32	09. 58	10. 42	11.27	12.14	13.02	13.92	14.82	15. 74	16. 67	17.61	32
33	09. 60	10. 44	11. 29	12. 15	13. 04	13.93	14.84	15. 76	16.69	17. 63	38
84	09.61	10.45	11. 30	12.17	13.05	13.95	14.86	15.77	16. 70	17.64	34
35	09. 63	10. 46	11.31	12.18	13.07	13.96	14.87	15.79	16.72	17.66	35
36	09. 64	10.48	11. 33	12.20	13.08	13. 98	14.89	15.81	16.74	17.67	36
37	09. 65	10.49	11.34	12.21	13.10	13.99	14.90	15.82	16.75	17.69	37
38	09.67	10.50	11.36	12. 22	13.11	14.01	14.92	15.84	16. 77	17. 71	38
39	09.68	10.52	11.37	12. 24	13.13	14.02	14.93	15.85	16.78	17.72	39
40	09. 69	10.53	11.39	12. 26	13.14	14.04	14.95	15.87	16.80	17.74	40
41	09. 71	10. 55	11.40	12. 27	13.16	14.05	14.96	15.88	16. 81	17.75	41
42	09.72	10.56	11.42	12. 29	13.17	14.07	14.98	15.90	16.83	17.77	42
43	09.74	10.57	11.43	12. 30	13. 18	14.08	14.99	15. 91	16. 84	17.78	43
44	09.75	10.59	11.44	12. 31	13.20	14.10	15.01	15.93	16.86	17.80	44
45	09. 76	10.60	11.46	12. 33	13.21	14. 11	15.02	15. 94	16.88	17.82	45
46	09. 78	10.62	11.47	12.34	13.23	14.13	15. 04	15.96	16.89	17. 83	46
47	09.79	10.63	11.49	12. $\% 6$	13. 24	14.14	15.05	15.98	16.91	17.85	47
48	09.80	10.65	11.50	12. 37	13. 26	14. 16	15.07	15.99	16.92	17.86	48
49	09.82	10.66	11.52	12.39	13.27	14.17	15.08	16.01	16.94	17.88	49
50	09.83	10.67	11.53	12. 40	13.29	14.19	15.10	16. 02	16.95	17.89	ธ 0
51	09.85	10.69	11.54	12.42	13.30	14.20	15.11	16.04	16.97	17.91	51
5.	09.86	10.70	11.56	12. 43	13. 32	14.22	15.13	16. 05	16.98	17.93	52
53	09.87	10.72	11.57	12.45	13.33	14. 23	15.15	16.07	17.00	17. 94	53
54	09.89	10.73	11.59	12. 46	13.35	14.25	15.16	16.08	17.02	17.96	54
55	09.90	10.74	11.60	12. 48	13.36	14.26	15.18	16.10	17.03	17.97	55
56	09. 92	10.76	11. 62	12.49	13.38	14. 28	15.19	16.11	17.05	17.99	56
57	09.93	10.77	11. 63	12.51	13. 39	14. 29	15. 21	16. 13	17.06	18.00	57
58	09. 94	10.79	11.65	12.52	13.41	14.31	15. 22	16. 15	17.08	18. 02	58
¢9	09.96	10.80	11.66	12.53	13.42	14.32	15.24	16.16	17.09	18.04	69
60	5509.97	5510.82	5511.67	5512.55	5513.44	5514.34	5515. 25	5516.18	5517.11	5518.05	60

Table VIII.-Length of a Degree of Latitude-Concluded.

$\dot{甘}$	39°	40°	41°	420	43°	44°	45°	46°	47°	48°	$\stackrel{\text { ¢ }}{\substack{\text { ¢ } \\ H \\ \hline}}$
1	Chains.	1									
0	5518.05	5519.00	5519.96	5520.92	55*1.88	$552 \pm .85$	5523.81	5524. 78	5525.75	$55 \because 6.72$	0
1	18.07	19.02	19.97	20.93	21.90	22.86	28.83	24.80	25.77	26. 73	1
0	18. 08	19.03	13.99	20.95	21.91	22.88	23.85	24.82	25.78	26.75	2
3	18. 10	19.05	29. 00	20.96	21.93	22.89	23. 86	24.83	25.80	26.76	3
4	18.11	19.06	20.02	20.98	21.94	22.91	23.88	24.85	25.82	26.78	4
5	18.13	19.08	20.14	21.00	21.96	22.93	23.90	24.86	25.83	26. 80	5
6	18. 15	19.10	20.05	21.01	21.98	22.94	23. 91	24.88	25.85	26.81	6
7	18. 16	19.11	20.07	21.03	21.99	22.96	23.9:3	24.90	25.86	$\because 6.83$	7
8	18.18	19.13	20.08	21.04	23. 01	23.98	23.94	24.91	25.88	26.84	8
9	18.19	19. 14	20.10	21.06	22.02	20. 99	23.96	24.93	25.90	26.86	9
10	18. 21	19. 16	20.12	21.08	22. 04	23.01	23.98	21.94	25.91	26. 88	10
11	18.22	19.18	20.13	21.09	29. 06	23.02	23.99	34.96	25.93	26.89	11
12	18.24	19. 19	20.15	21. 11	22.07	23.04	24.01	24.98	25.94	26.91	12
18	18. 26	19. 21	20.16	21. 12	22.09	23. 06	24.02	24.99	25.96	26. 92	13
14	18. 27	19.22	20.18	21.14	22.11	23.07	24.04	25.01	25.98	26.94	14
15	18. 29	19.21	20.20	21.16	22. 12	23. 09	24.06	25.03	25.99	26.96	15
16	18.30	19.25	20.21	21. 17	22.14	23.10	24.07	25.04	26.01	26.97	16
17	18. 32	19.27	20.23	21. 19	22.15	23.12	24.09	25.06	26.02	26. 99	17
15	18.34	19.29	20.24	21. 20	23.17	23.14	24.11	25.07	26.04	27.00	18
19	18.35	19.30	20.26	21.22	22.19	23.15	24.12	25.09	26.06	27.02	19
20	18.37	19.32	20.28	21. 24	22.20	23.17	24.14	25.11	24.07	27.04	20
21	18.38	19.33	20.29	21.25	22.22	23.19	24.15	25.12	26.09	27.05	31
- -	18. 40	19.35	20.31	21.27	22.23	93.20	24.17	25.14	20.10	27.07	\cdots
203	18. 41	19.37	20.32	21. 29	22. 25	23.22	2-. 19	25.15	26.12	27.09	23
2.1	18. 43	19.38	20.34	21. 30	22.27	23.23	24.20	35.17	26.11	27.10	\cdots
2\%	18.45	19.40	20.36	21.32	29. 28	23. $25-$	24. 22	25.19	26.15	27. 12	\because
26	18.46	19.41	20.37	21.33	22.30	23. 27	24.38	25.20	26. 17	27.13	26
27	18.48	19.43	2039	21.35	22. 31	23. 28	24.25	25. 22	26.19	27.15	37
2s	18. 49	19.45	20.40	21.36	22.33	23. 30	24.27	25.23	26.20	$\because 7.17$	45
89	18.51	19.46	20.42	21.38	22.35	23.31	24.28	25.25	26.22	27.18	39
30	18. 53	19.48	20. 44	21. 40	22.36	23.33	24.30	25. 27	26.23	27. 20	30
31	18.54	19.49	20.45	21.41	22.38	23.35	24.32	25. 28	26.25	27.21	31
32	18. 56	19.51	20.47	21.43	22. 40	23.36	24.33	35.30	26.27	27.23	32
38	18.57	19.53	20.48	21.45	22.41	23. 38	24.35	25.32	26. 28	27.85	33
34	18.59	19.54	20.50	21.46	22. 43	23.40	24.36	25.33	26.30	27.26	84
35	18. 60	19.56	20.52	21. 48	22.44	23.41	24. 38	25.35	26.31	27.28	35
36	18.62	12.57	20.53	21. 49	22.46	23.43	24.40	25.36	26.33	27.29	36
37	18.64	19.59	20.55	21.51	22.48	23. 44	24.41	25.38	26.35	27.31	37
34	18.65	19.60	20.56	21.53	22.49	23.46	24.43	25.40	26.36	27.33	3.9
:30	18.67	19.62	20.58	21.54	22.51	23.48	24.44	25.41	26.38	27.34	39
40	18.68	19.61	20.60	21.56	22.52	23.49	24. 46	25.43	26. 39	27.36	40
41	18.70	19. 65	20.61	21.57	22. 54	23.51	24.48	25.44	26. 41	27.37	41
4.	18.72	19.67	20.63	21.59	22. 56	23.52	24.49	25.46	26.43	27.39	42
43	18.73	19.68	20.64	21.61	$2 \cdots .57$	23.51	24.51	25.48	26. 41	27.41	43
44	18.75	19.70	20.66	21.62	22. 59	23. 56	24.52	25.49	26.46	27.42	44
45	18. 76	19.72	20.68	21.64	22.60	23.57	24.54	25. 51	26. 47	27.44	45
46	18. 78	19.73	20.69	21.65	22. 62	23. 59	24.56	25. 52	26.49	27.45	46
47	18.79	19.75	30.71	21. 67	22. 61	23. 60	24. 57	25. 54	26.51	27.47	47
48	18.81	19.76	20.72	21.69	22.65	23.62	24.59	25.56	26.52	27.49	48
49	18.83	19.78	20.74	21.70	22.67	23.64	24.61	25.57	26.54	27.50	49
50	18.81	19.80	20.76	21.72	22. 69	23. 65	24.62	25. 59	26.56	27.52	50
51	18.86	19.81	20.77	21.74	22. 70	23.67	24.64	25.61	26.57	27.53	51
53	18.87	19.83	20.79	21.75	-2. 72	23. 69	24.65	25.62	26.59	27.55	5:
5:3	18.89	19.84	20. 80	21.77	-2. 73	23. 70	21.67	25. 64	26.60	27.57	53
is 4	18.91	19.86	30.82	21.78	29.75	23.72	24.69	25.65	26.62	27.58	54
50	18.92	19.88	20.84	21.80	22.77	23. 73	24.70	25.67	26. 64	27. 60	55
36	18.94	19.89	20.85	21.82	22.78	23. 75	24.72	25. 69	26. 65	27.61	51
37	18.95	19.91	20.87	21.83	22.80	23. 77	24.73	25. 70	26.67	27.63	57
	18.97	19.92	20.88	21.85	22. 81	23.78	24.75	25.72	26.68	27.65	55
59	18. 98	19.94	90. 90	21.86	22, 83	23.80	24.77	25.73	26.70	27.66	59
60	5519.00	5519.96	5520.92	5521.88	5522.85	5523.81	5524.78	559.5. 75	5526.72	5527.68	60

Table IX.-Length of a Degice of Longitude.

$\stackrel{\text { ¢ }}{\square}$	29°	30°	31°	320	33°	34°	35°	$36{ }^{\circ}$	37°	35°	$\stackrel{\text { cis }}{ }$
	Chrins.	Chains.									
0	48.43 .17	4795. 8	4747.01	4696. 75	4645. 06	4591.96	4537.45	4481.56	4424. 29	4365.68	0
1	4240	95.02	46.19	95.90	44. 19	91.06	36.53	80.61	23.33	64.69	1
2	41.62	94.22	45.36	95.05	43.32	90.16	35. 61	79.67	22.36	63.70	2
3	40.84	93. 42	44.53	94. 20	42.44	89. 26	34.69	78.73	21.40	62.72	3
4	40.06	92.61	43.71	93.35	41.57	85.37	33. 77	77.78	20.43	61.73	4
5	39.28	91.81	42.88	92.50	40. 69	87.47	32.84	76.84	19. 46	60.74	5
6	38. 50	91.01	42.05	91. 65	39.82	86.57	31.92	75.89	18.49	59.75	6
$\overline{7}$	37.72	90.20	41.22	90.80	38.94	85.67	31.00	74.95	17.53	58.76	7
8	:36.94	89. 40	40.39	89.94	38. 06	84.77	30.08	74.00	16.56	57.77	8
9	36.16	88.59	39.56	89.09	37.19	83.87	29.15	73.05	15.59	56.77	9
10	35.38	87.79	38.73	88.24	36.31	82.97	28.23	72.11	14.62	55. 78	10
11	34. 60	86.98	37.90	87.38	35.43	82.07	27.30	71.16	13. 65	54. 79	11
12	33.82	86.18	37.07	86.53	34. 55	81.17	26.38	70.21	12.68	53.80	12
13	33. 04	85. 37	36.24	85.67	33. 68	80.26	25. 46	69.26	11.71	52.81	13
14	32.26	84.56	35.41	84.82	32.80	79.36	24.53	68.32	10.74	51.81	14
15	31.47	83.76	34.58	83.96	31.92	78.46	23.60	67.37	09. 77	50.82	15
16	30.69	82.95	33. 75	83.11	31.04	77.56	22. 68	66.42	08.80	49.83	16
17	29.91	82.14	32.92	82.25	30.16	76. 65	21.75	65.47	07.82	48.83	17
18	29.12	81.33	32.08	81.40	29. 28	75.75	20.83	64.52	06.85	47.84	15
19	28.34	80.52	31. 25	80.54	28.40	74.85	19.90	63.57	05.88	46.84	19
20	27.65	79.71	30.42	79.68	27.52	73.94	18.97	62.62	04.91	45.85	20
21	26.77	78.90	29.58	78.82	26.64	73.04	18.04	61.67	03.93	44.85	21
22	25.98	78.09	28.75	77.97	25.75	72.13	17. 11	60.72	02.96	43.85	92
23	25. 20	77.28	27.92	77.11	24.87	71.23	16.19	59.77	01.98	42.86	43
24	24.41	76.47	27.08	76.25	23.99	70.32	15. 26	58.81	01.01	41.86	24
25	23.62	75.66	26. 25	75. 39	23. 11	69.41	14. 33	57.86	4400. 04	40.86	25
26	22.83	74.85	25.41	74.53	22. 22	68.51	13.40	56.91	4399. 06	39.87	26
87	22. 05	74.04	24. 57	73. 67	21.34	67. 60	12. 47	55.96	98.08	38.87	$\stackrel{27}{ }$
38	21. 26	73.22	23.74	72.81	20.45	66. 69	11.54	55.00	97.11	37.87	98
29	20.47	72. 41	22.90	71.95	19.57	65.78	10.61	54.05	96.13	36.87	49
30	19. 68	71.60	22.06	71.09	18. 69	64.88	09.67	53.09	95.16	35.87	30
31	18. 89	70.78	21.22	70.22	17.80	63.97	08.74	52.14	94.1 ¢	34.87	31
32	18. 10	69.97	20.39	69.36	16. 91	63. 06	07.81	51. 19	93. 20	33.87	32
33	17.31	69.16	19.55	68.50	16. 03	62.15	06.88	50.23	92.22	32.87	33
34	16.52	68.34	18.71	67.64	15.14	61.24	05.94	49.27	91.25	31.87	34
35	15.73	67.53	17.87	66.77	14.26	60.33	05.01	48.32	90.27	30.87	35
36	14.94	66.71	17.03	65.91	13.37	59.42	04.08	47.36	89. 29	29.87	36
37	14. 15	65.89	16. 19	65.05	12.48	58.51	03.14	46.41	88.31	28.87	37
38	13.35	65.08	15. 35	64.18	11. 59	57. 60	02.21	45.45	87.33	27.87	38
39	12.56	64.26	14.51	63.32	10.70	56.68	01.28	44.49	86.35	26.87	39
40	11.77	63.44	13.67	62.45	09.81	55.77	4500.34	43.53	85.37	25.86	40
41	10.98	62.52	12.82	61.59	08.93	54.86	4499.40	42.57	84.39	24.86	41
42	10.18	61.81	11.98	60.72	08.04	53.95	98.47	41.62	83.41	23.86	42
43	09.39	60.99	11.14	59.85	07.15	53.03	97.53	40.66	82.42	22.85	43
44	08.59	60.17	10.30	58.99	06.26	52.12	96.59	39.70	81.44	21.85	44
45	07.80	59.35	09.45	58.12	05.36	51.21	95.66	38. 74	80.46	20.85	45
46	07.00	58. 53	08.61	57.25	04. 47	50.29	94.72	37.78	79.48	19.84	46
47	06. 21	57.71	07.76	56. 38	03.58	49.38	93.78	36.82	78.49	18.84	47
48	05.41	56.89	06.92	55.51	02. 69	48. 46	92.84	35.86	77.51	17.83	48
49	04.61	56.07	06.07	54.65	01.80	47.55	91.91	34.89	76.53	16. 82	49
50	03.82	55.25	05.23	53.78	00.90	46. 63	90.97	33.93	75.54	15.82	50
51	03.02	54.43	04. 38	52.91	4600.01	45.71	90.03	32.97	74.56	14.81	51
5	02.22	53.60	03.54	52.04	4599.12	44.80	89.09	32.01	73.57	13.80	52
53	01.42	52.78	02.69	51.17	98.22	43.88	88.15	31.04	72.59	12.80	53
54	4800. 62	51.96	01.84	50.30	97.33	42.96	87.21	30.08	71.60	11.79	54
55	4799.82	51.13	01.00 4700.15	49. 42	96. 44	42. 04	86.27	29. 12	70.62	10.78	5\%
57	99.22	49.49	4699.30	47. 68	94.64	40.21	84.38	27.19	68. 64	08. 76	56
58	97.42	48.66	98.45	46.81	93.75	39.29	83.44	26.22	67. 66	07.75	55
59	96. 62	47.84	97.60	45.94	92.85	38.37	50	26	66.67	06.74	59
60	4795. 82	4747.01	4696.75	4645.06	4591.96	4537.45	4481.56	4424.29	4365. 68	4305.73	60

Table IX.-Length of a Degree of Longitude-Concluded.

+ +	39°	40°	41°	420	43°	44°	45°	46°	47°	48°	+ +
'	Chains.	Ohains.	,								
0	4305.73	4244. 47	4181.91	4118.06	4052.96	3986. 62	3919.05	3850.28	3780.33	3709. 22	0
1	04.72	43.44	80.85	16. 99	51.87	85.50	17.91	49.12	79.15	08. 03	1
2	08.71	42.41	79.80	15.91	50.77	84.38	16.78	47.97	77.98	06.83	${ }^{2}$
3	02. 70	41.37	78. 75	14.84	49.67	83.27	15. 64	46.81	76.80	05. 63	3
4	01.69	40.34	7\%.69	13. 76	48.58	82.15	14.50	45.65	75.63	04.44	4
5	4300.68	39.31	76. 64	12.69	47.48	81.03	13. 36	44.50	74.45	03.24	5
6	4299.67	38.27	75.58	11.61	46. 38	79. 91	12. 23	43.34	73.27	02.05	6
7	98.65	37.24	74.52	10.53	45. 28	78.79	11.09	42. 18	72.00	3700.85	7
8	97.64	36. 20	73.47	09.46	44.19	77. 68	09.95	41.02	70.92	3699.65	8
9	96.63	35.17	72.41	08.38	43. 09	76.56	08.81	39.86	69.74	98.46	9
10	95.61	34.13	71.36	07.30	41.99	75.44	07.67	38.70	68.56	97.26	10
11	94.60	33.10	70.30	06.22	40. 89	74.32	06.53	37.54	67.38	96.06	11
12	93.59	32.06	69.24	05.14	39.79	73. 20	05.39	36.38	66.20	94.86	12
13	92.57	31.02	68.18	04.07	38.69	72.08	04.25	35.22	65.02	93.66	13
14	91.56	29.99	67.12	02. 99	37.59	70.96	03.11	34.06	63.84	92.46	14
15	90.54	28.95	66.07	01.91	36. 49	69.84	01.97	32.90	62.66	91.26	15
16	89.52	27.91	65.01	4100.83	35.39	68.72	3900.83	31.74	61.48	90.06	16
17	88.51	16. 87	63.95	4099.75	34.29	67.59	3899. 69	30.58	60.30	88.86	17
18	87.49	25.84	62.89	98.67	33.19	66.47	98.54	29.42	59.12	87.66	18
19	86.48	24.80	61.83	97.58	32.09	65.35	97.40	28.26	57.94	86.46	19
20	85.46	23. 76	60.77	96.50	30.98	64.23	96.26	27.09	56. 76	85.26	20
21	84.44	22.72	59.71	95.42	29.88	63.11	95.12	25.93	55.57	84.06	21
22	83.42	21.68	58.65	94.34	28. 78	61.98	93.97	24.77	54.39	82.86	22
23	82.40	20.64	57.58	93.26	27.67	60.86	92.83	23. 60	53.21	81.66	23
24	81.39	19.60	56.52	92.17	26.57	59.73	91.68	22.44	52.02	80.46	24
25	80.37	18.56	55.46	91.09	25.47	58.61	90.54	21.28	50.84	79.25	25
26	79.35	17.52	54.40	90.01	24.36	57.49	89.40	20.11	49.66	78.05	96
27	78.33	16.48	53.44	88.92	23. 26	56.36	88.25	18.95	48.47	76.85	$\stackrel{27}{ }$
28	77.31	15.43	52.27	87.84	22.15	55.24	87.11	17. 78	47.29	75.64	28
29	76. 29	14. 39	51.21	86.75	21.05	54.11	85.96	16.62	46.10	74.44	29
30	75.27	13.35	50.14	85.67	19.94	52.98	84.81	15.45	44.92	73. 24	30
31	74.24	12.31	49.08	84.58	18.84	51.86	83.67	14.29	43.73	72.03	31
32	73.22	11.26	48.02	83.50	17.73	50.73	82.52	13.12	42.55	70.83	32
33	72.20	10.22	46.95	82.41	16. 62	49.60	81.37	11.95	41.30	69.62	33
34	71.18	09.18	45.89	81.33	15.52	48.48	80.23	16. 79	40.18	68.42	34
35	70.16	08.13	44.82	80.24	14.41	47.35	79.08	09.62	38.99	67.21	35
36	69.13	07.09	43.75	79. 15	13.30	46. 22	77.93	08.45	37.80	66.01	36
37	68.11	06.04	42. 69	78.07	12.19	45.09	76. 78	07.28	36. 62	64.80	37
38	67.09	05.00	41. 62	76.98	11.09	43.96	75.63	06.11	35.43	63.59	38
39	66.06	03.95	40.55	75.89	09.98	42.83	74.48	04.95	34.24	62.39	39
40	65.04	02.90	39.49	74.80	08.87	41.71	73. 34	03.78	33.05	61.18	40
41	64.01	01. 86	38.42	73.71	07.76	40.58	72.19	02.61	31.86	59.97	41
42	62.99	4200.81	37.35	72.62	06.65	39.45	71.04	01.44	30.67	58.76	42
43	61.96	4199.76	36.28	71.53	05.54	38.32	- 69.89	3800. 27	29.48	57.56	43
44	60.93	98.72	35.21	70.44	04.43	37.18	68.74	3799.10	28.30	56.35	44
45	59.91	97.67	34.14	69.35	03.32	30.05	67.58	97.93	27.11	55.14	45
46	58.88	96.62	33.08	68.26	02.21	34.92	66.43	96.76	25.92	53.93	46
47	57.85	95.57	32.01	67.17	4001. 10	33.79	65.28	95.59	- 24.73	52.72	47
48	56.83	94.52	30.93	66.08	3999.98	32.66	64.13	94.41	23.53	51.51	48
49	55.80	93.47	29.86	64.99	98.87	31.53	62.98	93.24	22.34	50.30	49
50	54.77	92.42	28.79	63.90	97.76	30.39	61.82	92.07	21.15	49.09	50
51	53.74	91.37	27.72	62.81	96. 65	29.26	60.67	90.90	19.96	47.88	61
52	52.71	90.32	26. 65	61.71	95.53	28.13	59.52	89.72	18.77	46.67	52
53	51.68	89.27	25.58	60.62	94. 42	26.99	58.36	88.55	17.58	45.46	53
54	50.60	88.22	24.51	59.53	93.31	25.86	57.21	87.38	16. 38	44.25	54
55	49.63	87.17	23.43	58.43	92.19	24.73	56.06	86.20	15.19	43.03	55
56	48.59	86.12	22.36	57.34	91.08	23.59	54.90	85.03	14.00	41.82	56
57	47. 56	85.07	21. 29	56.25	89.96	22.46	53.75	83.86	12.80	40.61	${ }^{5}$
58	46.53	84.02	20.21	-55. 15	88.85	21.32	52.59	82.68	11.61	39. 40	58
59	45.50	82.96	19.14	54.06	87.73	20.19	51.44	81.51	10.41	38.18	59
60	4244.47	4181.01	4118. 06	4052.96	3986. 62	3919.05	3850.28	3780.33	3709.22	3636.97	60

Table X.-Concergency of Meridians six miles long and six miles apart, and other relerant deta.

Latitude.	Conrergency.		Difference of longitude per range.		Longitude.	Difference of latitude fur-	
	On the parallel.	Angle.	In arc.	In time.	Arc of $1^{\prime \prime}$	1 mile iu arc.	$\begin{aligned} & 1 \text { T]. in } \\ & \text { arc. } \end{aligned}$
\bigcirc	Linkis.	$1 \prime$	11	Seconds.	Chains.		
30	41.9	30	$6 \quad 0.36$	24.02	1.332)	
31	43.6	37	$6 \quad 4.02$	24.27	1.319		
32	45.4	315	$6 \quad 7.93$	24.53	1.305) $0^{\prime} .871$	$5^{\prime} \cdot 525$
33	47.2	323	612.00	24. 80	1. 290		
34	49.1	330	616.31	25.09	1. 275)	
35	50.9	338	620.95	25.40	1. 260)	
36	52.7	346	625.60	25.71	1. 245		
37	54.7	355	630.59	26. 04	1. 229	\% 0.870	$5^{\prime} .221$
3.5	56.8	44	fi 35.81	26.39	1. 213		
39	58.8	413	641.34	26.76	1. 196		
40	60.9	422	647.13	27.14	1.179)	
41	63.1	431	653.22	27.55	1.162		
42	65.4	441	659.62	27.97	1. 144	\} $0^{\prime} .869$	$5^{\prime} .217$
43	67.7	451	76.27	28.42	1. 126		
44	70.1	51	713.44	28.90	1. 107)	
45	72.6	512	720.93	29.39	1. 089		
46	75.2	523	728.81	29.92	1. 070		
47	77.8	534	737.10	30.47	1.050	3 $0^{\prime} .869$	5'. 212
48	80.6	546	745.79	31.05	1.030		
49	83.5	559	755.12	31.67	1.010		
50	86.5	612	84.90	32.33	0.990	$0^{\prime} .868$	5'. 209

Convergency of meridians.-The second column of Table X contains the convergency of two meridians six miles long and six miles "port, measured on a parallel of latitude.

When the parallel of latitude passing through the sonth ends of such meridians, and forming the south boundary of the township of which the meridians form the meridional boundaries, is coincident with a tab, ular latitude given in the first column, the required convergency will be obtained directly from the second column (Plate VI, fig. 5); while for other than the tabular latitudes, it will be obtained by simple proportion (fig. 6).

The third column contains the angle of convergency. (abe, figs. 5 and 6.)

For the purpose of computing couvergency within the boundaries of a regular township, said boundaries may be regarded as straight lines and the township a plain figure, generally a trapezoid; the convergency of any rectangular part thereof, bounded by meridional and latitudinal section lines, will be determined, as follows:

Multiply the convergency for the township, determined as above directert, by the length* of the tract divided by 6 , and the product by the width* of the tract divided by 6 ; the resulting product will be the converg. ency required. (See Plate VI, fig. 5. .)

To obtain the convergency of the meridional boundaries of any tract bounded by section lines, or other lines of legal subdivision, within a township, proceed as follows: Divide the tract into the least possible number of rectangular parts and compute the convergency for each tract; then, take the sum of the convergencies thus determined. (See example, Plate VI, fig. 7.)

The convergency of two meridians of equal length, in the same latitude, is proportional to their distance apart; (e.g.) the eonvergency

[^52]of two meridians 6 miles long, separated by 5 ranges, latitude 35°, is $56.81 \mathrm{ks} \times 5=2.84$ chains.
Convergencies of meridians in the same latitude, and not exceeding 24 miles in length, may be computed by an approximate proportion, which combines the advantages of convenience with an accuracy sufficient for the ordinary wants of the land surveyor; the proportion is this:

The cosines of the latitudes are to each other as the lengths of the intercepted parallels.

Resume example 5, page 130; we have:
$\cos 42^{\circ} 39^{\prime} 07^{\prime \prime}: \cos 43^{\circ}:: 480.00$ chs.: 477.31 chs., which proportion may be worked with natural cosines, or more expeditiously by logarithms, as follows:

a. c. $\log \cos$	$42^{\circ} 39^{\prime} 07^{\prime \prime}$	0.133427
$\log \cos$	43°	9.864127
\log	480.00	$\underline{2.681241}$
\log	477.30	2.678795

The difference 2.70 chs. is the cont ergency required.
The convergency divisiou of Table X having beeu sufficiently explained, application of the remaining columns may be inferred from their titles.

OFFSETS AND TRIANGULATIONS.

Offsets from and to standard parallels, guide meridians, township or section lines, will always be run north, south, east, or west, as the case nay be, while the offset line will be rnu parallel to the random or true line, as prevailing conditions may require. Examples may be found in Specimen Field Notes No. 5, pages 188, 192 and 198 and on Plate IV.
Triangulations may be executed with either right-angled or oblique angled triangles, as may be found most convenient; but all triangles will be well conditioned (i. e., right-angled) triangles, and shomld have the angle opposite the required side less than 45°; in other words, the base shonld be longer than the side to be determined.

The angles of oblique angled triangles shall in no case be greater than 120° or less than 30°. All the angles of a triangle will be meas. ured when the angular points are accessible. It will avoid several sources of possible error to take the readings of the courses to the two ends of the base from the opposite angle, both at a single setting of the instrument. This may readily be done by leaving the base properly flagged for oloservation; or by having the base laid off on the objective side of the obstacle, and angles taken both before and after crossing.

Computation of particular cases in the field notes, inserted here, as examples. Sec pages 188 and 192.
$\log \tan 40^{\circ} 55^{\prime}$

$\log 20.00$$\quad$| 9.9379 |
| :--- |
| $\log 17.34$ |\quad| 0.3010 |
| :---: |
| a. c. $\log \sin 48^{\circ} 15^{\prime}$ |
| $\log \sin 64^{\circ} 47^{\prime}$ |
| $\log 15.00$ |

137

Page 211. By traverse table. From the sontlo end of the base, let fall a perpendicular to the required distance, dividing it into two parts, thus forming two right-angled triangles; call the perpendicular a meridian; and, from the base as a course (N. $30^{\circ} 30^{\prime}$ E., 36.00 chs.), determine the corresponding diff. lat. and departure, the latter being the length of the east part of the required distance; then, with the latitude just determined and bearing to flag, find the corresponding departure or west part of the required distance. The work may be arranged as follows:

Designation.	Bearings.	Distance.	Dificer. ence of latitude.	Departures.
Base	N. $30^{\circ} 30^{\prime} \mathrm{E}$.	36.00	31.02	18.27 (E. part).
Perpendieular.	North.	31.02		
From S. end of base to flag.	N. $37^{\circ} 30^{\prime} \mathrm{W}$.	(?)*	$\left\{\begin{array}{r} 30.94 \\ 0.08 \end{array}\right.$	$\left.\begin{array}{c} 23.74 \\ 0.06 \end{array}\right\} \text { (W. part). }$
		$(?)^{*}$	31.02	23.80 (W. part).

${ }^{*}$ These distances are not requixed. The departures will be found with the arguments "bearing" and "dill. lat."

Then, $18.27+23.80=42.07$ chs., the required distance. Same example by logarithms:

a. c. $\log \sin 52^{\circ} 30^{\prime}$	0.1005
$\log \sin 68^{\circ}$	9.9672
$\log 36.00$	1.5563
$\log 42.07$	1.6240

Four-place logarithms are quite sufficient if the tables are correct.

SPECIMEN FIELD NOTES. No. 1.

TITLE PAGE.
[See Plate II.]

FIELD NOTES

 of the survey of the
THIRD STANDARD PARALLEL NORTH

through

Ranges Nos. 21, 22, 23, and 24 East

OF THE

PRINCIPAL BASE AND MERIDIAN

 IN THESTATE OF MONTANA, $\triangle S$ SURVEYED BY

RICHARD ROODS, U. S. DEPUTY SURVEYOR,

UNDER HIS CONTRACT No. 97, DATED JULY 10, 1890.

Survey commenced August 22, 1890. Survey completed August 29, 1890.
[Second page.]

NAMES AND DUTIES OF ASSISTANTS.

Petel: Long	Chainman.
John Short	Chainman.
Eli Marker.	. Claainman.
William Tally	Chainman.
Lewis Link	Chaimman.
Henry Clay	Moundman.
William Stone	Moundman.
George Sharp	Axman.
Adam Dull	Axman.
James Banner	Flagman.

INDEX.
T. 13 N., R. 21 E.

Brd Standard Parallel N.
T. 13 N., R. 22 E.

3rd Standard Parallel N.
T. 13 N., R. 23 E.

3rd Standard Parallel N.
T. 13 N., R. 24 E.

[Third Page.]

PRELIMINARY OATHIS OF ASSISTANTS.

We, Peter Long, John Short, Eli Marker, and William Tally, do solemnly swear that we will well and faithfully execute the duties of chaimmen; that we will level the chain upon even and uneven grombl, and plumb the tally pins, either by sticking or dropping the same; that we will report the true distances to all notable objects, and the trine lengths of all lines that we assist in measuring, to the lest of our skill and ability, and in accordance with instructions given ns, in the sursey of the Third Stanlard Parallel North, through Ranges Nos. $21,22,23$, and 21 East, of the Principal liaso and Meridian, in the State of Montana.
l'eter Long, Chainman. Jonn Short, Chainman. Eli Marker, Chaiuman. William Tally, Chaiman.
Subscribed and sworn to before me this second day of Angust, 1890. [SEAL.]

William Maitin, Votary I'ublic.

We, Henry Clay and William Stone, do solemuly swear that we will well and truly perform the duties of moundmen, in the establishment of corners, according to the instructions given us, to the best of our skill and ability, in the survey of the Third Standard Parallel North, throngh Ranges Nos. 21, 22,23 , and 24 East, of the Principal Base and Meridian, in the State of Montana.

Henty Clay, Moundmem.
Willfam Stone, Moumhion.
Subscribed and sworn to before me this second day of Angust, 1890.
[seal.]
William Martin.
Notary Prblic.
We, George Sharp and Adam Dull, do solemnly swear that we will well and truly pertorm the duties of axmen, in the establishment of corners and other cutios, according to instructions given us, and to the best of our skill and ability, in tho survey of the Third Standard Parallel North, through Ranges Nos. $21,24,23$, aul 24 East, of the Principal Base and Meridian, in the State of Montana.

George Sharp, Axman. Adam Dull, Axman.
Subscribed and sworn to before me this second day of Angust, 1890. [seal.] . William Martin, Notary l'ublic.

I, James Banver, do solemnly swear that I will well and truly perform the duties of flagman, according to instructions given me, to the best of my skill and ability, in the survey of the Third Standard Parallel North, through Ranges Nos. 21, 2!2, 23, and 24 East, of the Principal Base and Meridian, in the State of Montana.

James Banner, Flugman.
Subscribed and sworn to before me this second day of Angust, 1890.
[seal.]
William Martin,
Votary P'ublic.
I, Lewis Link, do solemuly swear that I will well and faithfully execute the duties of chainman; that I will level the chain upon even and uneven ground, and phumb the tally pins, either ly sticking or dropping the same; that I will report the true distances to all notable objects, and the true length of all lines that I assist in measuring, to the best of my skill and ability, and in accordance with instrnctions given me, in the survey of the Third Standard Parallel North, throngh Ranges Nos. 23 and 24 East, of the Principal Base and Meridian, in the State of Montana.

Lewis Line, Chaimman.
Subscribed and sworn to before me this twenty-seventh day of Angust, 1890.
[seal.]
lichiard Roods,
U. S. Deputy Surveyor.

[^53]Third Standard Parallel North, through Range 21 East-Contimued.

Chains.	N
	Orer gently rolling prairie.
3.20	Road from Lake City to Ashland, bears N. $30^{\circ} \mathrm{W}$. and S. $30^{\circ} \mathrm{E}$.
12.40	Leave prairie, bears N. $25^{\circ} \mathrm{W}$. and S. 25°
17.50	Pine Creek, 50 lks . wide, 40 ft . below prairie, course S. $20^{\circ} \mathrm{E}$. ; clear water 5 ft . deep; rapid current, gravelly bottom; bauk 10 ft . high.
19.40	Top of bluff bank 25 ft . high, bears N. $20^{\circ} \mathrm{W}$. and S. 20° E.; enter heavy pine timber and begin steep ascent, over stony ground, sloping N. W. Difference between measurements of 40.00 chs ., by two sets of chainmen, is 24 lks . position of middle point By 1st set, 39.88 chs. By 2 ud set, 40.12 chs.; the mean of which is
40.00	S. 1.19 ft. from the secant, Set a grinite stone, $14 \times 8 \times 6$ ins., 9 ins. in the ground, for standard $\frac{1}{4}$ sec. cor., marked S. C. $\frac{1}{4}$ on N. face; from whick A pine 16 ins. diam., bears N. $37 \frac{1}{2} \mathrm{E}$ E., 48 lks dist., marked S. C. $\frac{1}{4}$ S. B. T. A pine, 14 ins. diam., bears N. $42^{\circ} \mathrm{W}$., 51 lks . dist., marked S. C. + S. B. T.
54.00	Leave heavy timber, bears N . and S .
74.00	Top of high granite ridge, $3: 0 \mathrm{tt}$. above Pine (Yreek, bears N. E. and S. W. Difference between measurements of 80.00 chs., by two sets of chainmen, is 22 lks . ; position of middle point By 1st set, 80.11 chs. By 2ud set, 79.89 chs.; the mean of which is
80.00	S. 2.04 ft. from the secant,
	Set a granite stone, $20 \times 8 \times 4$ ins., 15 ins. in the ground, for Standard Cor. of sees. 32 and 33 , marked S. C., on N., with 4 grooves on E. and 2 grooves on W. faces; and raise a mound of stone, 2 ft . base, $1 \frac{1}{2} \mathrm{ft}$. high, $\stackrel{\mathrm{N}}{\mathrm{N}}$. of cor. Pits inpracticable. Note.-I erect a signal at this corner for a test sight from one of the high points visible to the east. Land, mountainous. Soil, stony; 4th rate. Timber, pine and fir.

Note.-The sky was overcast during the entire night. Polaris not visible.

August 23, 1890.
N. $89^{\circ} 59^{\prime}$ E. on the secant, through sec. 33.

Over stony gromul on top of ridge.
8.10 Begin descent over rocky ground, sloping S. E.

Differchee between measurements of 40.00 chs., by two sets of chainmen, is 18 lks ; position of middle point

By 1st set, 39.91 chs.
By 2nd set, 40.09 chs. ; the mean of which is
S. 2.55 ft. from seeant,

Set a granite stone, $19 \times 8 \times 7$ ins., 14 ins. in the gromnd, for standard $\frac{1}{4}$ sec. cor., marked S. C. $\frac{1}{4}$ on N. face; and raise a mound of stone, 2 ft . base, $1 \frac{1}{2} \mathrm{ft}$. high, N. of cor. Pits impracticable.
This cor. is 40 tt . helow top of ridge.
76.30 Enter scattering, stmuted cedars, bearing N. and S.

Difference between measurements of 80.00 chs., by two sots of chainmen, is 16 lks . ; position of middle point

By 1st set, 80.08 chs.
By 2nd set, 79.92 chs.; the mean of which is
S. 2.72 ft. from the secant,

Set a granite stone, $19 \times 8 \times 6$ ins., 15 ins. in the ground, for standard cor. of secs. 33 and 31, marked S. C. on N., with 3 grooves on E. and W.
faces; from whieh
A cedar, 6 ins. diam., bears N. $22 \frac{1}{2}^{\circ}$ E., 32 lks. dist., marked T. 13 N., R. 21 R., S. 31, B. T.

A cedar, 8 ins. diam., bears N. $41 \frac{12}{2} \mathrm{~W} ., 45 \mathrm{ks}$. dist., marked
T. 13 N., R. 21 E., S. 33, B. T.
Chaius. This cor, is 100 ft . below top of ridge.
Land, monntainons.
Soil, rocky; thl rate.
Timber, scattering cedars.
Momutainous land, 80.00 chs.
East, on the socant, through sec. 34 .
Descend eastern slope throngh seattering cedars.
16. 10 Begin very steep descent to Black River Canon, hears N. E. and S. W.
20.00 Foot of descent, 300 ft . helow last cor., bears N. E. and S. W.
20.68 To right bank of Black River, conrse S. $28^{\circ} \mathrm{W}$.
S. $2.6+\mathrm{ft}$. ${ }^{*}$ from the secant,
Set a gramite stone, $19 \times 8 \times 5$ ins., 15 ins. in the ground, for meander cor.
on S. bily. ser. 34, marked
S. C. on N., and
M. C. on E. faces; dig a pit, 3 ft . sq., 8 ft . W., of stone; and raise a monnd of earth, 4 ft . base, 2 feet high, W. of cor.
To find the distance across the river, I set a tlag on the secant line, on east bank; then measure a base, N. 6.20 chs., to a point from which the flag bears S. $43^{\circ} 10^{\prime}$ E.; whiclo gives for the distance, tan. $43^{-} 10^{\prime} \times$ base, or 0938×6.20 chs $=5.82$ chs.
26.50 To left bank of Black River, conrse S. W. Banks, 12 ft . high; rapid current over stony bottom; elear water, about 5 ft . deep:
S. 2.64 ft .* from the secant.
Set a granite stone, $17 \times 9 \times 7 \mathrm{ins}$., 12 ins . in the ground, for meander cor.
on s. bdy. sec. 34, marked
S. C. on N., and
M. C. on W. faces; dig a pit, 3 ft . $\mathrm{sq} ., 8 \mathrm{ft}$. E. of stone; and raise a mound of earth, 4 ft . base, 2 ft . high, E. of cor.
Thence, up steep ascent through scattering cedars.
Difference letween the measurements of 40.00 chis., ly the two sets of chainmen, is 20 lks ; positiou of middle point
By 1st set, 39.90 chs.
By 2nd set, 40.10 chs. ; the mean of which is
S. 2.55 ft . from the secant:
A cedar, 7 ins. diam., for standard $\frac{1}{4}$ sec. cor., I mark S. C., $\frac{1}{4}$ S. on N. side; from which
A cedar, 4 ins. diam., bears N. 31° E., 20 lks. dist., marked S. C., $\frac{1}{4}$ S., B. T.
A cedar, 6 ins. diam., bears N. $64 \frac{10}{4}$ W., 18 lks. dist., marked S. C., $\frac{1}{4}$ S., B. T.
Thence up side of ridge, sloping S. W.
40. 40 Leave scattering cedars, bearing N. E. and S. W.
Difference between masmrements of 80.00 chs., by two sets of chainmen, is 18 lks ; position of middle point
By 1st set, 80.09 chs.
By 2nd set, 79.90 chs.; the mean of which is
S. 2.04 ft from the secant,
Set a granite stone, $21 \times 8 \times 5$ ins., 16 ins. in the ground, for standard cor. of sees. 34 and 35 , marked S. C. on N., with 2 grooves on E. and 4 grooves on W. faces: and raise a monnd of stone, 2 ft . base, $1 \frac{1}{2} \mathrm{ft}$. high, N. of cor. Pits impracticable.
This cor. is on top of a ridge, about 300 ft above Black River.
Land, mountainons.
Soil, rocky; 4th rate.
Timber, scattering cedars.
Mountainons land, 80.00 chs.

August 23, 1890 .
Notr, - Continmons rain since afternoon of Augnst 23 ; olservations on Polaris not possible.
Augnst 25, 1890, 7 a. m.
S. $8 y^{\circ} 59^{\prime}$ E. on the secant, through sec. 35.

[^54]Third Standard Parallel North, through Range 21 East-Continued.

Chains.	Descend over rongh
	Difference between measurements of 40.00 chs., by two sets of chainmen, is 14 lks . p position of middle point liy 1st set, 40.07 chs. By 2nd set, 39.93 chs.; the mean of which is
40.00	S.1.19 ft. from the secant,
	Set a granite stone, $15 \times 8 \times 5$ ins., 10 ins. in the ground, for standard $\frac{1}{4}$ sec. cor., markerl S.C. $\frac{1}{}$ on N. face; dig pits, $18 \times 18 \times 12$ ins., E. and W. of stone, 3 ft . dist.; and raise a mound of earth, $3 \frac{1}{2} \mathrm{ft}$. base, $1 \frac{1}{2} \mathrm{ft}$. high, N . of cor.
	This cor. is about 280 ft . below top of ridge.
50.10	Bottom of ravine, 10 lks . wide, course S. $20^{\circ} \mathrm{V}$. ; water in holes; thence, steep ascent over ground sloping W.
56.40	Enter pine timber, bears N. E.
	A pine, 16 ins. diam., on line, I
68.40	Leave piue timber, bears N. E. and S
68.50	Alexander Selkirk's house, bears S., 8.40 chs. dist.
73.50	Roand, bears N. and S.
	Difference between measurements of 80.00 chs., by two sets of chainmen, is 16 lks .; position of middle point By 1st set, 79.92 chs. By 2nd set, 80.08 chs.; the mean of which is
80.00	* Set a limestone, $20 \times 8 \times 6$ ius., 15 ius. in the ground, for standard cor. of secs. 35 and 36 , marked S. C. on N., with 1 groove on E. and 5 grooves on W. faces; dig pits, $24 \times 18 \times 12$ ins., crosswise on each line, E. and 1 ., 3 ft ., and N. of stone, 7 ft dist. ; and raise a mound of eartl, 4 ft . base, 2 ft . high, N . of cor. This cor. is about 60 ft . above ravine. Laud, mountainons. Soil, stony; 4 th rate. Timber, pine. Mountainous land, 80.00 chs .
	S. $89^{\circ} 58^{\prime}$ E. on the secant,
	Asceud over ground sloping
12. 70	Enter heavy oak timber, bears N. and S.
28.30	Top of ridge, 80 ft . above last cor., bears N . and S.
38.50	Leave heavy oak timber, bears N. and S
	Difference between measurements of 40.00 chs., by two sets of chainmen is 14 lks ; position of middle point By 1st set, 40.07 chis.
	li, 2ud set, 39.93 chs.; the mean of which is
40.00	N. 1.53 ft from the secant,
	Set a limestone, $16 \times 7 \times 5$ ins., 11 ins. in the ground, for standard $\frac{1}{}$ sec. stone, 3 ft . dist.; and raise a mound of earth, $3 \frac{1}{2} \mathrm{ft}$. base, $1 \frac{1}{2} \mathrm{ft}$. high, N . of cor.
	Road, bears N. 70° E. aud S. $60^{\circ} \mathrm{W}$.
68.10	Creek, 20 lks . wide, course $\mathrm{S} .50^{\circ} \mathrm{W} . ;$ ascend over ground sloping W., about 90 ft . Difference between measurements of 80.00 chs., by two sets of chainmen, is 18 lks . ; position of middle point By 1st set, 79.91 chs.
	N. 3.39 ft . from the secant,
80.00	Set a granite stone, $20 \times 7 \times 6$ ins., 15 ins. in the ground, for standard cor. of Tps. 13 N., Rs. 21 and 22 E., marked \dagger S. C., 13 N . on N., 22 E. on E., and
	21 E . on W. faces; with 6 grooves on N. E., and W. faces; dig pits, $30 \times 24 \times 12$ ius., crosswise on each line, E. and W., 4 ft . ; and N . of stone, 8 ft . dist.; and raise a mound of earth, 5 ft . base, $2 \frac{1}{2} \mathrm{ft}$. high, N . of cor. Land, inountainous.

[^55]Third Standard Parallel North, through Range 21 East-Concluded.

Chains. Soil, stony; 3rd and 4th rate.
Timber, oak.
Momatainous or heavily timbered land, 80.00 chs.
Angust 25, 1890,

Third Standard Parallel North, through Range 22 East.

Chains. At the last point determined on the secant, which is 6 miles from the starting point and 3.39 ft . south of the corner of Tps. 13 N., Ins. 21 and 22 E., I deflect an angle* of 5^{\prime} to the north and run
N. $89^{\circ} 57^{\prime}$ E., on the secant, S. of sec. 31.
U_{1} steep ascent, over stony ground sloping west.
30.10

To colge of mesa, 60 lt. above Tp. cor., bears N. and S.
Difference between measurements of 40.00 chs., by two sets of chaimmen, is 14 kks ; position of middle point

By 1st set. 40.07 chs.
By end set, 39.93 chs.; the mean of which is
40.00 N. 1.53 ft . from the secant; the point for standard $\frac{1}{4}$ sec. cor. falls on rock in place, $6 \times 3 \times 2 \mathrm{ft}$. above ground, on which
Cut a cross (\times) at the exact corner point, for standard $\frac{1}{4}$ sec. cor., marked S. C. $\frac{1}{\frac{1}{2}}$ on N. side of cross; and raise a mound of stone, 2 ft . base, $1 \frac{1}{2}$ ft. ligh, N. of cor. Pits impracticable.
Angnst 26, 1890: At this stanlard $\frac{1}{4}$ sic. cor., I observe Polaris at $5^{b} 9^{1 m}$ a. m., by my watch, which is $2{ }^{241} 47^{5}$ fast of local mean time, and mark the direction thus deterinined, by a tack driven in a picket timmly set, 5 chains north of the cor.

Astron. time by watch, Ang. 25			${ }_{17}{ }^{\text {r }}$	${ }_{9.0}^{\text {m. }}$	
Watch fast				2.8	
Astrou. 1. m. t. of olos. Ang. 25........			17	6.2	
U. C. Polaris, Aug. $25 . .$. 15 15 0.9			15	0.9	
Ilour angle of Polaris and time argumeat............			2	\%. 3	

(Note.-The true meridian conld be defined by laying off the azimuth to the east, but this is unnccessary; the bearing of the signal will be found as follows:)
I measure the angle between the direction thus determined, and the signal cstablished at the standard cor. of sees. 32 and 33, as follows:

1. 885945
2. 890030
3. $8900: 30$

Add the azimuth
Mean, 89001.5
The observed bearing is N. 895745.0 W .
The the bearing tis.... N. 895800.7 W .
The difference, 00015.7 , is the deviation of the standard, som th of the true latitude curve. As the difference is probably less than the errors of ohservation, J continne the secant as marked on the gromud.
Over level mesa.

[^56]Chains. Difference between measurements of 80.00 chs., by two sets of chainmen,
is 6 lks ; position of midlle point
By 1st set, 79.97 ehs.
Ly 2nd set, 80.03 chs; the mean of which is
80.00

* Set a sandstone, $15 \times 7 \times 6$ ins., 10 ins. in the $\begin{gathered}\text { wround, for standard cor. }\end{gathered}$ of secs. 31 and 32, marked S. C., on N.; with five grooves on E. and 1 groove on W. faces; and raise a mound of stone, 2 ft . base, $1 \frac{1}{2} \mathrm{ft}$. high, N. of cor. Pits impracticable.
Land, mountainons and mesa.
Soil, stony; 4th rate. No timber.
Mountainous land, 36.10 chs.
N. $89^{\circ} 58^{\prime}$ E. on the secant, through sec. 32.

Over level mesa.
18. 00

Road, bears N. and S.
32. 20 Edge of mesa, bears N. W. and S.; descend abruptly 50 ft . Difference between measurements of 40.00 chs., by two sets of chainmen, is 14 lks.; position of middle point

By 1st set, 40.07 chs.
By 2nd set, 39.93 chs.; the mean of which is
S. 1.19 ft from the secant, falls on a boulder, $8 \times 6 \times 3 \mathrm{ft}$ above ground, on which
I cut a cross (x) at the exact corner point, for standard $\frac{1}{4}$ sec. cor., marked S.C. $\frac{1}{4}$ on N. side of cross; and raise a mound of stone, 2 ft . base, $1 \frac{1}{3} \mathrm{ft}$. high, N. of cor. Pits impracticable.
Enter scattering cotton wood timber, bears N.W. aud S. E. ; descend 80 ft . to
Left bank of Cow Creek, 20 lks . wide, course N. W.; banks, 10 ft . high; water, pure and cold, 2 ft . deep; swift current over rock bottom.
64.50 Leare scattering cottonwood timber, bears N. W. and S.E.; legin steep
75.00

Top of granite ridge 230 ft . above Cow Creek, bears N. W. and S. E.
Difference betreen measurements of 80.00 ehs., by two sets of chainmen is 16 lks . ; position of middle point

Br. 1 st set, 79.92 ehs.
By 2nd set, 80.08 chs.; the mean of which is
80.00 s. 2.04 ft . from the secant,

Set a granite stone, $15 \times 8 \times 6$ ins., 10 ins. in the ground, for standard cor. of sees. 32 and 33, marked S.C., on N.: with 4 grooves on E. and 2 grooves on W . faces; and raise a mound of stone, 2 ft . base, $1 \frac{1}{2} \mathrm{ft}$. high, N. of cor. Pits impracticable.

Land, mountainons and level.
Soil, stony; 4th rate.
Timber, seattering cottonwood.
Mountainous land, 47.80 chains.
Aggust 26, 1890.

[^57]| Chains. | is the deviation of the standard parallel sonth of the true latitude curve; therefore, this corner is 4.80 ft . sonth of its true place on the parallel of latitude passing through the signal.
 I will correct the line east of this corner and return to the trne latitude curve, at the corner of Tps. 13 N., Rs. 22 and 23 E . The nat. tanl of the angle subtended by 4.80 feet at a distance of 4 miles, will be 4.80 ft . divided by 4 miles (expressed in feet) and the angle itself will be $0^{\prime} 47^{\prime \prime}$; which added to the deviation of the secant, $0^{\prime} 31^{\prime \prime}$, determined by obserration, gives $1^{\prime} 18^{\prime \prime}$ for the total deflection of the secant to make the curve of the parallel attain the Tp. cor.*
 The new reference line thus determined, will be called the correction secunt. The bearings of said "correction secant" at successive mile points, will be those of Table III, corrected by the total deflection ($1^{\prime} 18^{\prime \prime}$); while the offfets will remain unchanged. The corrected bearings will be as follows:
 At corner of secs. 32 \& 33 .; secs. 33 \& 34 . ; secs. 34 d 35. ; secs. 35 d 36 . Corrected bearings: N. 89° ธ8 E. ; N. $89^{\circ} 59^{\prime}$ E. ; East; S. $89^{\circ} 59^{\prime}$ E. |
| :---: | :---: |

N. $89^{\circ} 58^{\prime}$ E. on the secant, through sec. 33.

Over rough barren ground.
26. 00 Foot of descent, about 250 ft . below top of ridge, bears N. W. and S.E. Spring of pure water, 2 ft . deep, bears S., 4 chs. dist.: thence, over rolling land.
Spring branch, 2 lks . wide, course N. E. ; sinks in the ground within 20 chs.
Difterence between measurements of 40.00 chs., by two seis of chaimmen is 12 lks ; position of middle point

By ist set, 39.94 chs.
By 2 ud set, 40.06 chs. ; the mean of which is
S. 2.55 ft . from the secant,

Set a granite stone, $15 \times 8 \times 8$ ins., 10 ins. in the ground, for standard $\frac{1}{2}$ sec. cor., marked S. C. $\frac{1}{4}$ on N. face; and raise a mound of stone, 2 ft . base, $1 \frac{1}{2} \mathrm{ft}$. high, N. of cor. Pits impracticable.
Difference hetween measurements of 80.00 chs., by two sets of chainmen, is 8 lks ; position of middle point

By 1 st set, 80.04 chs.
By 2 nd set, 79.96 chs. ; the mean of which is
S. 2.72 ft from the secant,

Set a granite stone, $21 \times 8 \times 4$ ins., 16 ins., in the ground, for standard cor. of secs. 33 and 34 , marked S. C., on N.; with 3 grooves on E. and W. faces; dig pits, $24 \times 18 \times 12$ ins., crosswise on each line. E. and W., 3 ft ., and N. of stone, 7 ft . dist. ; and raise a mound of earth, 4 ft . base, 2 ft . high, N. of cor.
Land, mountainons, and rolling.
Soil, stony; 4th rate.
No timber.
Mountainous land, 27.00 chs.
N. $89^{\circ} 59^{\prime}$ E., on the secant, throngh sec. 34.

Over gently rolling land.
Difference betwcen measurements of 40.00 chs., by two sets of chainmen, is 6 lks . ; positiou of middle point

By 1st set, 39.97 chs.
By 2nd set, 40.03 chs.; the mean of which is
S. 2.55 ft . from the secant,

Set a sandstone, $19 \times 7 \times 5$ ins., 15 ins. in the ground, for standard $\frac{1}{4}$ sec. cor.. marked S. U. \ddagger on N. face; dig pits, $18 \times 18 \times 12$ ins., E. and W. of stone, 3 ft . Mist. ; and raise a mound of earth, $3 \frac{1}{2} \mathrm{ft}$. base, $1 \frac{1}{2} \mathrm{ft}$. high, N. of cor.

[^58]Third Standurd P'arallel North, throu!gh Range 22 East-Continued.

East, on the secant, throngh sec. 35.
Over rolling, stony gromd.
Creek 10 lks . wifle, iu ravine 20 ft . decp, eourse N. E.
Difference letween measurements of 40.00 chs., by two sets of chainmen, is 8 lks . p position of middle point

By 1st set, 39.96 clis.
liy ${ }^{2}$ 2nd set, 40.04 chs.; the mean of which is
S. 1.19 ft . from the secant,

Set a sandstone. $15 \times 8 \times 5$ ins., 10 ins. in the gromud, for standard $\frac{1}{4}$ sec. cor., maked S.C. $\frac{1}{2}$, on N. face; and raise a mound of stone, 2 ft . base, $1 \frac{1}{2}$ tt. ligh, N. of cor. Pits impracticable.
Difference between measurements of 80.00 chs., by two sets of chainmen, is 6 lks ; pusition of middle point is
$13 y$ 1st set, 80.03 ehs.
By 2ud set, 79.97 chs.; the mean of which is:
80.00 Set a sandstone, $16 \times 8 \times 6$ ins., 11 ins. in the gronnd, for standard cor. of secs. 35 and 36 , marked S. C., on N., with 1 groove on E. and 5 grooves on W. faces; and raise a mound of stone, 2 ft . base, $1 \frac{1}{2} \mathrm{ft}$. high, N. of cor. Pits impracticable.
Land, gently rolling.
Soil, stony; 4th rate.
no timber.
S. $89^{\circ} 59^{\prime} \mathrm{E}$. on the secant, S. of sec. 36.

Over gently roling land.
Difference of measurements of 40.00 chs., by two sets of chaimmen, is 10 lks. ; position of middle point

By 1st set, 39.95 clis.
By 2nd set, 40.05 chs.; the mean of which is
N. 1.53 ft. from the secant,

Set a sandstone, $17 \times 8 \times 4$ ins., 11 ins. in the gronnd, for standard $\frac{1}{4}$ sec. cor. marked S. C. $\frac{7}{4}$, on N. face; dig pits, $18 \times 8 \times 12$ ins., E. and if. of
 of cor.
Difference of measurements of 80.00 chs., ly two sets of chainmen, is 6 lks.; position of middle point

By 1st set, 80.03 chs.
By ond set, 79.97 chs, ; the mean of which is
N. 3.39 ft. from the secant,

Set a samdstone, $20 \times 8 \times 5$ ins., 15 ins. in the ground, for standard cor. of
Tps. 13 N., Rs. 22 and 23 E., marked
S. C., 13 N. on N.,

23 E. on E., and
22 E. on W. faces; witlı 6 grooves on N., E., and W. faces; dig pits $30 \times 24 \times 12$ ins., crosswise on each line, E. and W., 4 ft., and N. of stone, 8 ft . dist.; and raise a mound of earth, 5 ft base, $2 \frac{1}{2} \mathrm{ft}$. high, N. of cor.
Land, geutly rolling.
Soil, stouy ; 4th rate.
No timber.
Note.-This day I discharge John Short, chainman, to whom I adminis-
ter the proper final oath. I employ Lewis Link to perform the duties of

Chains.	chainman, and administer to him the required preliminary oath. Noperson anthorized to administer oaths, other than myself, is available without great delay and expeuse. (See pages 64 and $6 \overline{\text { an. .) }}$ Richard Roods, U. S. Deputy Surveyor. Angust 27, 1890.

[These specimen field notes of the survey of the third standard parallel north will le continned throngh range 23 east, to illustrate the method by offsets from a tangent to the latitude curve at a township corner; see "Tangent Method," page 124, and Plate II, fig. 3.]

Third Standard Parallel North, through Range 23 East.

[^59]| Chains. | Land, level.
 Soil, gravelly loam; 3rd rate. Timber, oak, with some beech and whitu ash. Heavily timbered land, 30.00 chs. |
| :---: | :---: |
| 14. 73 | S. $89^{\circ} 59^{\prime} \mathrm{E}$. on the tangent, S. of sec. 32. |
| | Over level gromil, throngh heavy oak timber. |
| | An oak, 14 ius diam., on line, I mark with 2 notehes, on E. and W. sides. Difference between measurements of 40.00 chs., by two sets of chaimmen, |
| | is 6 lks . ; position of middle point |
| | By 1st set, 40.03 ehs. |
| | B. 2 d set, 39.97 chs ; the mean of which is |
| 40.00 | Set an oak post, 3 ft . long, 3 in . sq., 24 ins . in the gromnd, for standard $\frac{1}{4}$ sec. cor., marked
 S. C., $\ddagger \mathrm{S}$. on N. face.; from whieh
 An oak, 17 ins. dia., bears N. $21 \frac{10}{2}$ E., 37 lks. dist., marked S. C. $\frac{1}{4}$ S., B. T.
 A white ash, 16 ins. diam., bears N. 69° W., 41 lks. dist., marked S. C. $\frac{1}{4}$ S., B. T. |
| $\begin{aligned} & 64.00 \\ & 74.50 \end{aligned}$ | Leave heavy oak timber, enter prairio land, bears N. W. and S. E. |
| | Spring of pure water, 3 ft . deep, hears N. 7 ehs. dist.
 Difference between measurements of 80.00 chs., by two sets of chainmen, is 8 lks .; position of middle point
 By 1 st set, 79.96 ehs. |
| | By 2 nd set, 80.04 chs.; the mean of which is |
| 80.00 | Set a sandstone, $19 \times 6 \times 5$ ins., 15 ins. in the ground, for standard cor. of sees. 32 and 33 , marked S. C.. on N.; with 4 grooves on E. and 2 grooves on W. faces; dig pits, $24 \times 18 \times 12$ ins., crosswise on each line, E. and W., 3 ft ., and N. of stone, 7 ft . dist.; and raise a monnd of earth, 4 ft . base, 2 ft . high, N. of cor.
 Land, level and gently rolling.
 Soil, sandy loam; 2nd rate.
 Timber, oak, with some ash and beech.
 Heavily timbered land, 56.00 ehs. |

S. $89^{\circ} 58^{\prime}$ E. on the tangent, S. of sec. 33.

Over broken, stouy ground.
7. 10 Spring branch, pmre water, 3 lks. wide, course S. E.

Clear Creek, 12 lks . wide, conrse N. E.
Difference between measurements of 40.00 chs., by two sets of chaimmen, is 12 kss ; position of middle point

By 1st set, 40.06 els.
By 2nd set, 39.94 ehs. ; the mean of which is
N. 4.24 ft . from the tangent,

Set a sandstone, $17 \times 7 \times 5$ ins., 12 ins. in the ground, for standard $\frac{1}{4}$ sece, cor., marked S. C. $\frac{1}{4}$, on N. face; and raise a momul of stone, 2 ft . base, $1 \frac{1}{2} \mathrm{ft}$. high, N. of cor. Pits impracticable.
Clear Creek, 15 lks . wide, 1 ft . deep, course S. E.
79.60

Top of ridge, 70 ft . above Clear Creek, bears N. W. and S. E.
Difference between measurements of 80.00 chs., by two sets of ehaimmen, is 18 lks ; position of middle point
$13 y$ 1st set, 79.91 chs.
By 2nd set, 80.09 ehs.; the mean of which is
80.00
N. 6.11 ft . from the tangent,

Set a granite stone, $20 \times 6 \times 6$ ins., 15 ins. in the gromnd, for standard cor. of sees. 33 and 34 , marked S. C. on N., with three grooves on E. and W. faces; and raise a mound of stone'2 ft . base, $1 \frac{1}{2} \mathrm{ft}$. high, N. of eor. I'its impracticable.

[^60] ft., the required offset a $1 \frac{1}{2}$ miles from the tangential point. See rules, and table, page 126.

152

Third Standard Parallel North, through Range 23 East-Continned.

Chains.
Land, broken and hilly.
Soil, gravelly; 3rd and 4th rate. No timber.
S. $89^{\circ} 57^{\prime}$ E. on the tangent, s. of sec. 34.

Descend east side of ridge, over rocky ground.
Foot of descent bears N. and S.; thence, over rolling ground.
Rock Creek, 20 lks . wide; rapid current over stony bottom; clear water, 2 ft . deep; banks, 4 ft. high; course S . This creek is the ontlet of Catfish Lake, 4 chs. N.
East end of Catfish Lake, bears N., 10 chs. dist.
Difference between measurements of 40.00 chs., by two sets of chainmen, is 20 lks . ; position of middle point

By 1st set, 40.10 chs.
By 2nd set, 39.90 chs. ; the mean of which is
N. 8.32 ft . from the tangent,

Set a saidstone, $15 \times 8 \times 6$ ins., 10 ins. in the ground, for standard $\frac{1}{4} \mathrm{sec}$. cor., marked S. C. $\frac{1}{4}$ on N. face; and raise a mound of stone, 2 ft . hase, $1 \frac{1}{2} \mathrm{ft}$. high, N. of cor. Pits impracticable.
Begin descent from upland to bottom land, bears N. and S. E.
Foot of descent, 20 ft . below upland, bears N. and S. E.; enter cottonwood timber.
S. $89^{\circ} 56^{\circ} \mathbf{E}$. on the tangent, S. of sec. 35.

Throngh cottonwood timber.
At 11. 40 chs.t intersect right bank of Turtle River, course S. E. At this point, the distance between the tangent and standard, is 11.65 feet, or $18 \mathrm{lks} .$, nearly ; the bank of the stream bears abont N. $47 \frac{1}{2} \mathrm{O}$. W .; therefore, N. $47 \frac{10}{2} \mathrm{~W} ., 26 \mathrm{lks}$., determines the point for the meander cor. at
Land, rolling and level.
Soil, stony and alluvial; 3rd and 1st rate.
Timber, cottonwood, with some sycamore.

On the standard parallel, where I

Set a cedar post, 3 ft. long, 4 ins. sq., 24 ins. in the gronnd, for meander cor. on S. bdy. sec. 35, marked
S. C., T. 13 N . on N.,
M. C.; on E. and
R. 23 E., S. 35 on W. faces; from which

A syeamore, 34 ins. diam., bears N. $8180^{\circ} \mathrm{W} ., 22 \mathrm{kks}$ dist., marked S. C., M. C., T. 13 N., R. 23 E., S. $3 \overline{5}$, B. TT.

A cottonwood, 15 ins, diam., bears N. 54\% W ., 34 lks dist., marked. S. C., M. C., T. 13 N., R. 23 E., S. 35, R. T.

Turtle River is a turbill stream, with muddy bauks 3 to 5 ft . ligh; water, 4 to 10 ft . deep; sluggish current, over mud bottom. To determine tho distauce across the river, I set a flag on line, \ddagger on the left bank; then measure a base liue, S. 0001^{\prime} W., 6.00 chs., to a point, from which

[^61]Cbains. the flag hears N. $37-31^{\prime} \mathrm{E}$. Therefore, tan. $37^{\circ} 30^{\circ} \times$ base, or $0.767 \times$ $6.00=4.60$ chs., the distance arrnss; which, added to 11 . 40 chs., makes 16.00 chs., measured on the fangent, to left bank of river. At the point thas determined, the distance between the tangent and standard, is 11.97 ft . or 18 lks . nearly ; the bank bears about N. 52 W .; therefore, $\times .520{ }^{1}$., 29 lks ., determines the point for the meander cor. at
Set a cellar post, 3 ft. long, 4 ins, sq., 24 ins. in the ground, for meander cor. on S. bdy. sec. 35 , marked
S. C., T. 13 N. on N.,
M. C. on W., and
k. 23 E., S. 35 ; on E. faces, from whiel
A cottonwood, 19 ins. diam., hears N. 40° E., 36 lks . dist., marked S. C., M1. C., T. 13 N., R. 23 E., S. 35, 13. T.
A sycamore, 34 ins. diam., bears N. $51 \frac{1}{4}$ W.. 28 lks, dist., marked S. C., M. C., T. 13 N., R. 23 C., S. 35, 13. T.
Enter heary sycamore and cottonwnod timber.
Difference between measurements of 40.00 clis., by two sets of chainmen is 6 lks, ; position of middle point
$13 y$ 1st set, 40.03 chs.
By 2nd set, 39.97 chs. ; the mean of which is
N. 13.75 ft from the tangent,
set a cedlar post, 3 ft . long, 4 ins. sq., 24 ins. in the ground, for standard $\frac{1}{4}$ see. cor. marked, S. C., $\frac{1}{4}$ S., on N. face; from which
A sycamore, 28 ins. diam., bears N. $14 \frac{1}{2} \mathrm{C}$ E., 27 llis, dist., marked S. C. $\frac{1}{4}$ S., B. 'T.
A cottonwood, 14 ins. diam., bears N. $74_{4}^{\circ} \mathrm{W} ., 42 \mathrm{lks}$. dist., marked S. C. ${ }^{\frac{1}{4}}$ S., B. T.
Sycamore Creek, 10 lks . wide, course S. $10^{\circ} \mathrm{W}$.
70.00 leave heavy sycamore and cottonwood timber; enter meadow land, bears N. 10° E. and S. $10^{\circ} \mathrm{W}$.
Difference between measurements of 80.00 chs., by two sets of chaimmen, is 4 lks ; position of middle point
By 1st set, 79.98 chs.
By $2 d$ set, 80.02 chs. : the mean of which is
N. 16.97 ft from the tangent,
Sot a cedar post, 3 ft . long, 4 ins. sq., 24 ius., in the ground, for standard cor. of sees. 35 and 36 , marked
S. C., T. 13 N., R. 23 E. on N.
S. 36 on E., and
S. 35 on W. faces; with 1 groove on E. and 5 grooves on W. faces; dig pits, $24 \times 18 \times 12$ ins., E. and W., 3 ft., and N. of post, 7 ft . dist.; and raise a mound of earth, 4 ft. base, 2 ft . high, N. of cor.
Land, level.
Soil, alluvial; 1st rate.
Timber, sycamore and cottontrood.
Heavily timbered land, 52.23 chs.
S. $89^{\circ} 56^{\prime} \mathrm{E}$. on the tangeit, S . of sec. 30 .

Orer meadow land.
Difference between the measurements of $40 . c 0$ chs., by the two sets of chaimmen, is 4 lks .; position of middle point

By 1st set, 40.02 chs.
By 2nd set, 39.98 chs.; the mean of which is
N. 20.54 ft . from the tangent,

Set a sandstone, $19 \times 7 \times 5$ ins., 15 ins. in the gromd, for standard $\frac{1}{4}$-see. cor. marked S. C. $\frac{1}{4}$ on N. face; dig pits, $18 \times 18 \times 12$ ins., E. and W. of stoue, 3 ft . dist.; and raise a mound of earth, $3 \frac{1}{2} \mathrm{ft}$. base, $1 \frac{1}{2} \mathrm{ft}$. high, N. of cor.
42. C0 Leare meadow land, hears N. 10° E. and S.; begin ascent of ridge.
71.50 Top of granite ridge 300 ft . above meadow, hears N. and s.

Difference between measurements of 80.00 chs., by two sets of chainmen is 22 lks ; position of middle point

By 1 st set, 79.89 chs.
By 2 nd set, 80.11 chs. ; the mean of which is

154

Third Standard Parallel North, through Range 23 East-Concluded.

Chains.	
80.00	N. 24.44 ft. from the tangent,
	Set a granite stone, $22 \times 7 \times 5$ ins., 17 ins. in the ground, for standard cor.
of TP. 13 N., Rs. 23 and 24 E., marked S.C., on N.; with 6 grooves on	
	N., E., and W. faces; and raise a mound of stone, 2 ft. base, $1 \frac{1}{2}$ ft.
high, N. of cor. Pits impracticable.	

For the purpose of illnstration, these specimen field notes of the survey of the third standard parallel north, will be continued throngh range 24 east; assmming that the survey has been executed with a solar compass or a transit with solar attachment.

Third Standard Parallel North, through Range 24 East.

Abstract

Chains. Survey commenced Angnst 28, 1890, and executed with a light mountain transit with solar attachment, No. -, made by W. \& L. E. Gurley. The horizontal limb is provided with two opposite verniers, reading to $30^{\prime \prime}$ of arc, which is also the least count of the verniers of the latitude and declination ares. I hegin at the Standard Corner of Townships 13 North, Ranges 23 and 24 East, which I established August 28, 1890.* Latitude $45^{\circ} 34^{\prime} .5$ N., longitude $107^{\circ} 31^{\prime} \mathrm{W}$. In order to test the solar apparatus, by comparing the resnlts of obserrations on the sun, made during a. m. and p. m. hours, with a true meridinn, determined by observations on Polaris, I proceed as follows: At $4^{\mathrm{h}} 2^{\mathrm{m}} \mathrm{p}$. m., local mean time, I set off $45^{\circ} 34^{\prime} .5$ on the latitude are; 9° $30^{\prime} .5 \mathrm{~N}$., on the declination arc; and mark the true meridicu thus determined with the solar, by a cross on a stone firmly set in the ground, 5 chs. N. of the instrument. At $8^{\mathrm{g}} 56^{\mathrm{m}} 1 \mathrm{p} . \mathrm{m}$., by my watch, which is 2^{m} fast of local mean time, I observe Polaris at eastern elongation, in accordance with instructions in the Mannal, and mark the line thus determined, by a tack driven in a wooden plug set in the ground, 5 chains north of my station.

Angust 28, 1890.
Ausust 29: At 6 a.m., I lay off the azimuth of Polaris, $1^{\circ} 49^{\prime} .5$, to the rest and mark the true meridian thas determined, by cutting a small groove in the stone set last evening, on which the true meridian falls 0.2 ins. west of the mark determined by the solar.

At $8^{\mathrm{h}} \mathrm{a}$. m., I set off $45^{\circ} 34^{\prime} .5$, on the lat. are; $9^{\circ} 16^{\prime} \mathrm{N}$., on the decl. are, and mark the true meridian determined with the solar, by a cross on the stone already set 5 chs. N. of my station; this mark falls 0.3 ins. west of the true meridian established by the Polaris observatiou.
The solar apparatus, by p.m. and a.m. observations, detines positions for true meridians, about $0^{\prime} 11^{\prime \prime *}$ east, and $0^{\prime} 16^{\prime \prime *}$ west of the meridian established by the P'olaris observation; therefore, I conclude that the adjustments of the instrument are satisfactory.
Tho magnetic bearing of the true meridian, at $8^{l \prime}$ a.m., is $\mathrm{N} .18^{\circ} 10^{\prime} \mathrm{W}$.; the angle thus doternined, raduced by the table, page 100 , gives the mean mag. decl. $18^{\circ} 04^{\prime}$ east.
From the standard cor. above described, I run
Last, on S. body. sec. 31.
Over stony ground.
20.40 Jegin descent from ridge, bears N. and S.

[^62]Third Standard Parallel North, through Range 24 Eust-Continned.

```
Chains. of secs. 31 and 32, marked S. C., on N., with 5 grooves on E. and 1 groove on W. faces; from which
A pine, 26 ins. diam., bears N. \(22^{\circ}\) E., 15 lks . dist., marked T. 13 N., R. 24 E., S. 32, B. T.
A pine, 30 ins. diam., bears N. \(67^{\circ} \mathrm{W} ., 21 \mathrm{lks}\). dist., marked T. 13 N., R. 24 E., S.31, B. T.
Land, mountainons and level.
Soil, stony and loan; 2nd and 4th rate.
Timber, pine and some ash.
Mountainous or heavily timbered land, 70.00 chs.
```

East, on S. bdy. sec. 32.
Through heavy pine timber.
3.80 Creek, 7 lks. wide in ravine, 9 ft deep; course S.
20. 50 Creek, 10 lks . wide in ravine, 12 ft . deep; course S. $21^{\circ} \mathrm{E}$.

Difference between measurements of 40.00 chs., by two sets of chainmen, is 6 lks ; position of middle point

By 1st set, 40.03 chs.
By 2nd set, 39.97 chs.; the mean of which is
40.00

A pine, 19 ins. diam., for standard $\frac{1}{4}$ sec. cor., 1 mark
S. C., $\frac{1}{4}$ S. on N. side; from which

A pine, 22 ins, diam., bears N. 41° E., 24 lks . dist., marked S. C., $\frac{1}{4}$ S., B. T.

An ash, 18 ins. diam., bears N. $47^{\circ} \mathrm{W} ., 31 \mathrm{lks}$. dist., marked S. C., $\frac{1}{4}$ S., B. T.
40. 50
56.00

Leave hcavy pine timber, bears N. and S.; begin steep ascent.
Top of bare granite ridge, 200 ft . high, bears N. and S.
Begin descent of E. slope.
Creek, 10 lks . wide; in ravine 20 ft . deep, 230 ft . below top of ridge; course S.
Enter heavy pine timber, bears N. and S.; thence over level land.
Difference between measurements of 80.00 chs., by two sets of chaimmen, is 8 lks . ; position of middle point

By 1st set, 79.96 chs.
By 2nd set, 80.04 chs.; the mean of which is
Set a granite stone, $24 \times 8 \times 4$ ins., 18 ins . in the gronnd, for standard cor. of secs. 32 and 33 , narked S. C. on N., with 4 grooves on E. and 2 grooves on W. faces; from which

A pine, 18 in. diam., bears N. $62 \frac{1}{2}^{\circ}$ E., 26 lks. dist., marked
T. 13 N., R. 24 E., S. 33., B. T.

A pine, 28 ins. diam., bears N. $266^{\frac{1}{4}}$ W., 31 lks. dist., marked
T. 13 N., R. 24 E., S. 32 B. T.

Land, level and monntainous.
Soil, loam and rock; 1st and 4th rate.
Timber, pine.
Mountainons or heavily timbered land, 80.00 chs.
la:ins
4. 20
16. 00
2.2 .30
41.00
51.00
55.00
70.50
80. 0.
9.32
10. 00
15. 8()
25. 90
36.00
37.00

East, on S. bdy. sec. 33 .
Through heavy pine timber, over level land.
Indian trail, bears N. $18^{\circ} \mathrm{W}$. and S. $18^{\circ} \mathrm{E}$.
Leave heary pine timber, bears N. $15^{\circ} \mathrm{W}$. and S.
Indian trail, bears N. 31° E. and S. $31^{\circ} \mathrm{W}$.
Difference between measurements of 40.10 clss., by two scts of chainmon, is 8 lks ; position of middle point

By 1st set, 39.96 chs.
By 2nd set, 40.04 ehs. ; the mean of which is
Set a granite stonc, $15 \times 8 \times 6$ ins., 10 ins , in the gromnd, for standard $\frac{1}{4}$ sec. eor., marked S. C. $\frac{1}{2}$ on N. face; and raise a mound of stone, 2 ft . base, $1 \frac{1}{2} \mathrm{ft}$. high, N. of cor. lits impracticable.
Leave level lamd, begin ascent of stony ridge, bears N. and S.
Indiau trail, bears N. 22 W . and S. 22 E.
lop of ridge, 130 ft . high, bears N. and S .
Begin descent of E. slope.
Boot of descent, enter heavy oak timber on level land, bears N. and S.
Difference between measurements of 80.00 chs., by two sets of chainmen, is 18 lks ; position of middle point

By 1st set, 80.09 ehs .
By 2nd set, 79.91 chs.; the mean of which is
In oak, 20 ins. diam., for standard cor. of secs. 33 and 34 , I mark
S. C., 'T. 13 N., R. 24 E. on N.,
S. 34 on E., and
S. 33 on W. sides; from which

An oak, 25 ins. diam., bears N. 71° E., 22 lks. dist., marked T. 13 N., R. 24 E., S. 34, B. T.

An oak, 27 ins. dliam., bears N. $18 \frac{10}{4} \mathrm{~W} ., 26 \mathrm{kks}$ dist., marked T. 13 N., R. 24 E., S. 33, B. T.

Land, level and monntainons.
Soil, stony and gravelly loam; 2nd and 3rd rate.
Timber, pine and oak.
Mountainous or heavily timbered land, 56.00 chs.

Angust 29, 1890: I set off $9^{\circ} 12^{\prime} .5$ on the deel, are; and, at $12^{\text {l3 }} 00^{\mathrm{ma}} 44^{s}$ by my watch, which is 3^{m} fist of local moan time, observe the sun on the meridian, and obtain on the lat. are the reading $45^{\circ} 35^{\prime}$, which is the lat., nearly.
East, on S. bdy. sec. 34.
Through heavy oak timber.
An oak, 28 ins. dian., on line, I mark with 2 notehes on E and W. sides. Leave heary oak timher, hears N. and S.
Greek. 6 lks. wide, in ravine 13 ft . deep, comrse S .
Enter dense aspen thicket, extends. N. ahout 14 chs. and S. abont 10 ehs.
Leave dense aspen thicket, hears N. 22° E. and S. $22^{\circ} \mathrm{WV}$.
At 38.10 chs., right bank of shallow stream
Difference between measurements of 40.00 ehs., by two sets of chainmon, is 14 lks ; position of middle point

By 1st set, 39.93 chs.
By 2nd set, 40.07 chs. ; the mean of which, 40.00 chs., falls in stream with quieksand bottom; therofore, I perpetuate the corner on solid cromed, as follows:
Sct a granite stone, $15 \times 9 \times 6$ ins., 10 ins, in the ground, for witness eor. to standard $\frac{1}{t}$ soc. cor., markon W. C., S. C. $\frac{1}{4}$, on N. face; from whicls

An aspen, 4 ins. cliam., bears N. $88 \frac{1}{4}^{9}$ W., 102 lks. dist., marked W. C., S. C. $\frac{1}{4}$ S., B. 'T.

An aspen, 3 ins. diam., bears N. $55^{\circ} \mathrm{W} ., 110 \mathrm{lks}$. dist., marked W. C. S. C. $\frac{1}{2}$ S., B. T.

Right hank of shallow stream; bank 1 ft . high; clear water, 2 to 6 ins . deop; gentle eurrent, over quieksanĭ bottom; course S. $17^{\circ} \mathrm{W}$. Point for $\frac{1}{4}$ see cor falls in strean.
Leave shallow stream; bank, 2 ft . high, brars S. $17^{\circ} \mathrm{W}$.
Loavo level land, begin ascent of ridge, bears N. and S.
Top of ridge, 250 ft . high, bears N. and S.

157

Third Standard Parallel North, through Range 21 East-Continued.

Chains. Difference between measurements of 80.00 chs., by two sets of chainmen, is 201 ks . ; position of middle point

By 1st set, 79.90 chs.
By 2nd set, 80.10 chs.; the mean of which is
80.00 Set a granite stone, $16 \times 8 \times 6$ ins., 11 ins. in the ground, for standard cor. of secs. 34 and 35 , marked S. C. on N., with 2 grooves on E. and 4 gronves on W. faces; and raise a momnd of stoue, 2 ft . high, $1 \frac{1}{2} \mathrm{ft}$. high, N. of cor. Pits impracticable.
At this cor. I erect a signal for a test sight from some point to the east.
Land, mountainous and level.
Soil, stony aud sandy; 3rd and 4th rate.
Timber, oak, pine, and young asjen.
Mountainous or heavily timbered land, or land covered with dense undergrowth, 47.60 chs.

East, on S. bly. sec. 35.
Over stony gronnd.
2.50 liegin descent.
36.00 Foot of descent, 280 ft . below top of ridge, bears N. 15° E. and S. $15^{\circ} \mathrm{W}$.
36.50 Creek, 12 lks . wide, in ravine 40 ft . deep, conrse N. 15 E .; begin steep ascent.
Difference between measurements of 40.00 chs., by two sets of chainmen, is 18 lks . p positicu of middle point

By 1st set, 40.09 chs.
By 2nd set, 39.91 chs; the mean of which is
Falls on a boulder, $7 \times 6 \times 4 \mathrm{ft}$. above ground:
I cut a cross (X) at the exact cor. point for standard 4 sce. cor., mark S. C., $\frac{1}{4}$, on the N. side; and raise a monnd of stone, 2 ft . base, $1 \frac{1}{2} \mathrm{ft}$. high, N. of cor. Pits impracticable.
45.30 Top of ridge, 160 ft . above ravine, bears N. $15^{\circ} \mathrm{E}$. and S. $15^{\circ} \mathrm{W}$.
49.90 Begin descent of E. slope.
59.50 Foot of descent, 140 below top of ridge, bears N. $15^{\circ} \mathrm{E}$. and S. $15^{\circ} \mathrm{W}$.; thence over level gronnd.
Difference between measurements of 80.00 chs., by two sets of chainmen, is 16 lks . ; position of middle point

By 1st set, 79.92 chs .
By 2nd set, 80.08 chs.; the mean of which is
80.00 Set a granite stone, $15 \times 7 \times 6$ ins., 10 ins. in the ground, for tandard cor. of secs. 35 and 36 , marked S. C., on N., with 1 groove on L and 5 grooves on W. faces; and raise a mound of stone, 2 ft . base, $1 \frac{1}{2} \mathrm{ft}$. high, N. of cor. Pits impracticable.
Land, mountainous and level.
Soil stony; 3rd and 4th rate.
No timber.
Mountainous land, 59.50 chs.

East, on S. bdy. sec. 36.
Ascend over rough, stony ground.
Tol of ridge, 50 ft . high, bears N . and S .
10.00

Begin descent of E. slope.
16.50
20.00

Linter dense aspen thicket, extends N. and S., abont 15 chs.
Foot of descent, about 50 ft . below top of ridge, bears N. and S.; thence over level land.
26.00

Leave dense aspen thicket, bears N. and S.
Difference between measmements of 40.00 chs., by two sets of chainmen, is 14 lks . ; position of middle point

$$
\text { By 1st set, } 40.07 \text { chs. }
$$

By 2nd set, 39.93 chs.; the mean of which is
40.00 Deposit a marked stone, 12 ins. in the gronud, for standard $\frac{1}{4}$ sec. cor.; dig pits, $18 \times 18 \times 12$ ins., E. and W. of cor., 4 ft . dist.; and raise a mound of earth, $3 \frac{1}{2} \mathrm{ft}$. base, $1 \frac{1}{2} \mathrm{ft}$. high, over deposit.
In E. pit drive a cedar stake, 2 ft . long, 2 ins. sq., 12 ins. in the groumd, marked $\frac{1}{4}$ S. ou N. face.
41.50 Enter dense willow and cottonwood undergrowth, extends N., 12, and S., 8 chs.

Third Standard Parallel North, through Range 21 East-Concluded.

Chains.

56.00 Leave dense undergrowth, bears N. and S.
61.00 Enter dense cottonwood brush, extends N. and S., 9 to 14 chs.
72.00 Leave dense cottonwood brush, bears N. and S.
78.10 Creek, 81 ks . wide, in ravine 20 ft . deep, course N. 35° E.; ascend.

Difference between measurements of 80.00 chs., by two sets of chainmen, is 12 lks . p position of middle point

By 1st set, 79.94 chs.
By 2nd set, 80.06 chs. ; the mean of which is
80.00

Set a granite stone, $20 \times 6 \times 5$ ins., 15 ins. in the ground, for standard cor. of TTps. 13 N., Rs. 24 and 25 E., marked S. C., on N., with 6 grooves on N., E., and W. faces; clig pits, $30 \times 24 \times 12$ ins., crosswise on each line, E. and W., 4 ft ., and N. of stone, 8 ft . dist.; and raise a mound of earth, 5 ft . base, $2 \frac{1}{2} \mathrm{ft}$. high, N . of cor.
This cor, is abont 40 ft . above bottom of ravine.
Land, mountainous and level.
Suil, stony and sandy loan; 2nd and 4th rates.
Timber, small aspens; cottonwood and willow undergrowth.
Mountainous land, or land covered with dense undergrowth, 51.50 chs.
August 29, 1890: I set up the instrument at the last described Tp. cor. and immediately after sunset, at $6^{\text {h }} 39^{\mathrm{m}}$ p. m., l. m. t., direct the telescope to the signal established at the cor. of secs. 34 and 35 , and note the readings of the horizontal limb, as follows.

| Vernier A, | 3 | 47 | 30 |
| :--- | :--- | :--- | :--- | :--- |
| Vernier B, | 3 | 47 | 00 |
| | 3 | 47 | 15 |

At $7^{\mathrm{h}} 13^{\mathrm{m}} \mathrm{p}$. m., I unclamp the vernier plate, observe Polaris in accordance with instructions in the manual, and mark the direction thus determined by a tack driven in a wooden plug firmly set in the ground, 5 chs. north of the corner. The realings of the horizontal limb at the instant of observation are as follows:

$\begin{aligned} & \text { Vernier A, } \\ & \text { Vernier B, } \end{aligned}$	92	07	
	92	07	
Mean, Ist mean,	92	07	
	3	47	
ngle,			

Time argument for Tahle III $7 \quad 32.2$

The difference $000 \quad 13$ is the deviation of the last two miles of the standard parallel, north of east; which, being less than the probable errors of observation, I deem the standard parallel satisfactorily established.

GENERAL DESCRIPTION.

Through ranges 21 and 22 this line runs across low mountain ridges and streams having a northeasterly trend, while low level prairies are traversed through ranges 22 and 23 , and low-timbered ridges with a northerly trend in range 24 .
The land south of the line is of a monntainous and broken character, well watered and containing large groves of pine, oak, and fir timber of a fair quality, while that to the north consists of rolling prairic and meadow land, whech shonld he subdivided. Richard loods,
U. S. Deputy Surveyor.

FINAL OATHS OF DEPUTY SURVEYORS AND THEIR ASSISTANTS.

LIST OF NAMES.

A list of the names of the individuals employed by Richard Roods, U. S. deputy surveyor, to assist in running, measnring, and marking the lines and corners described in the foregoing field notes of the survey of the Third Standard Parallel North, throngh Ranges Nos. 21,22, 23, anl 24 East of tho Principal Base and Meridian in the State of Montana, showing the respective eapacities in which they acted.

FINAL OATHS OF ASSISTANTS.

I hereby certify that I assisted Richard Roods, United States deputs surveyor, in surveying all those parts or portions of the Third Standard Pasallel Morth, through Ranges Nos. 21 and 22 East of the Principal Base and Meridian in the State of Montana, which are represented in the foregoing field notes as having leen surveced by him and under his direction; and that said survey has been in all respects, to the best of our knowledge and belief, well and faithfnlly survered, and the corner monmments established according to the instructions furnished by the United States surveyor general for Montana.

John Short, Chainman.
Subscribed and sworn to before me this 27th day of August, 1890.
Richard Roods, U. S. Deputy Surveyor.

We hereby certify that we assisted Richard Roods, United States depnty surveyor, in surveving all those parts or portions of the Third Standard Parallel North, throngh Ranges Nos. 21, 22, 23, and 24 East of the Principal Base and Meridian in the State of Montana, which are represented in the foregoing field notes as having beensurveyed by him and under his direction; and that sald survey has been in all respects, to the best of our knowledge and belief, well and faithfully surveyed, and the corner monmments established aceorling to the instructions furnished by the United States survejor general for Montana.

> Peter Long, Chaiman.
> Elr Marker, Chaiman.
> William Tally, Cheimman.
> Hevry Clay, Moundman.
> William Stone, Momdman.
> George Sharp, Axman.
> Adam Dull, Axman.
> James Banner, Fhagman.

Subscribed and sworn to before me this first day of September, 1890.

I herely certify that I assisted Richard Roods, United States deputy survevor, in surveying all those parts or portions of the Third Standard Parallel North, throngh Ranges Nos. 23 and 24 East of the Principal Base and Meridian in the State of Montana, which are represented in the foregoing field notes, as having been surveyed by him and under his direction; and that said surver has been in all respects, to the best of our knowlenge and belief, well and faithfully surveyed, and the corner monuments estahlished according to the instructions furnished by the United States surveyor general for Montina.

Lewis Link. Chainman.
Sulseribed and sworn to before me, this first day of September, 1890.

$$
\begin{aligned}
& \text { [SEAL.] WiLLIAM Martin, } \\
& \text { Notary P'ublic. }
\end{aligned}
$$

FINAL OATH OF UNITED STATES DEPUTY SURVEYOR.

I, Richard Roods, United States deputy surveyor, do selemnly swear that in pursuance of a contract received from A — B-C, United States surveyor general for Montana, bearing date of the tenth day of July, 1889, I have well, faithfnlly, and truly, in my own proper person, and in strict conformity with the instructions furnished by the United States surveyor general for Montana, the Manual of Surveving Instrnctions. and the laws of the United States, surveyed all those parts or portions of the Third Standard Parallel North through Ranges Nos. 21,22, 23 and 24 East of the Principal Base and Mcridian in the State of Montana, which are represented in the foregoing field notes as having been surveyed by me and under my direction; and I do further solemnly swear that all the corners of said surveys have been established and perpetuated in strict accordance with the Manual of Surveying Instructions and the special instructions of the United States surveyor general for Montana, aud in the specific manner described in the field notes, and that the foregoing are the original field notes of such survey; and should any fraud be detected I will suffer the penalty of perjury uuder the provisions of an act of Congress approved Angust \&, 1846. Richalid Roons, U. S. Deputy Surveyor.

Subscribeci by said Richard Roods and sworn to before me this first day of September, 1890.
[SEAL.]
U. S. Surveyor Gencral for Montana.

SPECIMEN FTELD NOTES.

No. 2.

TITLE PAGE.

(See Plate III.)

FIELD NOTES

OF THE SURVEV OF THE

SIXTII GUIDE MERIDIAN EAST

TIIROUGII

Townships No. 1:3 North
Between Ranges Nos. 24 and 25 East
OF THE
PRINCIPAL BASEAND MERIDIAN
IN TIIE
SHATHOM MONTANA,
AS SULVVEVED HY

RIGHARI) R(OIOS, U. \& DEPCTY SURVEYOR,

UNDER HAS CONTRACT No. 97, DATED JULY 10, 1590.

Sureey commenced August :39, 1890.

[Seeond Page.]
 NAMES AND DUTIES OF ASSISTANTS,

Petier Long	Chainman.
Joun Short.	. Chainman.
Eli Marker	Chainman.
William Tabie	Chaimman.
Henry Clay.	Monndman.
William Stome	.. Moundman.
George Sharp.	..Axman.
Adam Dull	Axman.
James Banner .	.Flagman.

163

[Third l'age.]

PRELIMINARY OATHS OF ASSISTANTS.

We, Peter Long, John Short, Eli Marker, and William Tally, do solemnly swear that we will well and faithfully excute the duties of chainmen; that we will level the chain upon even and meven gronnd, and plumb the tally pins, either by sticking or dropping the same; that we will report the true distances to all notable objects, and the true lengths of all lines that we assist in measuring, to the best of our skill and ability, and in accordance with instructions given as, in the survey of the Sixth Guide Meridian East, throngh Townships No. 13 North, between Ranges 24 and 25 East of the Principal Base and Meridian, in the State of Montana.

Peter Long, Chainman.
JOhn Short, Chainman.
Eli Marker, Chainnan.
William Tally, Chainman.
Snbscribed and sworn to before me this second day of Augnst, 1890.
[seal.]
William Martin,
Notary Public.
We, Henry Clay and William Stone, do solemmly swear that we will well and truly perform the inties of monndmen, in the establishment of corners, according to the instructions given us, to the best of our skill and ability, in the survey of the Sixth Guide Meridian East, through Townships No. 13 North, hetween Ranges 24 and 25 East of the Principal Base and Meridian, in the State of Montana.

Menry (llay, Moundman. William Stone, Moundman.
Subscribed and sworn to before me this second day of August, 1890. [SEAL.]

William Martin,
Notary P'ublic.
We, George Sharp and Adam Dull, do solemnly swear that we will well and truly perform the duties of axmen, in the establishment of corners and other duties, according to the instructions given us, and to the best of our skill and ability, in the survey of the Sixth Guide Meridian East, through Townships No. 13 North, between Ranges 24 and 25 East of the Principal Meridian in the State of Montana.

George Silarp, Axman.
Adari Dull, Axman.
Subscribed and sworn to before me this second day of Angust, 1890.
[seal.] William Martin, Notary Public.

I, James Banner, do solemnly swear that I will well and truly perform the duties of flagman, according to instructions given me, to the best of my skill and ability, in the survey of the Sixth Guide Meridian East, throngh Townships No. 13 North, between Ranges 24 and 25 East of the Principal Base and Meridian, in the State of Montana.

James Banner, Flagman.
Subscribed and sworn to before me this second day of Angust, 1890.
[SEAL.]
Wilifam Maften,
Notary I'ublic.
Chains. Surver commenced August 29, 1890, and executed with a W. \& L. E. Gurley light monntain transit, No.-, the horizontal limb being provided with two opposite reruices reading to $30^{\prime \prime}$ of are.
I begin at the Standard Corner of Township 13 North, Ranges 24 and 25 East, which I established August 29, 18 50 .* Latitude $45^{\circ} 34^{\prime} .5$ N., lowgitude $107^{\circ} 24^{\prime} \mathrm{W}$.
At this corner. at $8^{\text {l }} 54^{\mathrm{mm}}$ p. m., by my watch, which is $3^{\mathrm{mm}} 49^{\text {s }}$ fast of local mean time, I olserve Polaris at eastern elongation in accordance with instructions in the mamal, t and mark the point in the line thus determined be a tack drisen in a wooden plag set in the gromnd, 5.00 chs. north of my station.
Angnst 29, 1890.

Angnst 30 : At $6^{\mathrm{h}} 30^{\mathrm{m}}$ a.m., I lay off the azimuth of Polaris, $1^{\circ} 49^{\prime} .5$ to the uest, and mark the True Meridian thus determined by a cross on a stone firmly set in the gromad, west of the point established last night. The magneticbearing \ddagger of the trne meridian is N. $18^{\circ} 0 \overline{5}^{\prime}$ W., which reduced by the table on page 100 of the Mannal gives the mean mag. decl. 18° $0 z^{\prime} E$.
From the standard cor. I run
North, bet. Secs. 31 and 36.
Descend orer ground sloping N. W.
Creek 10 lks . wide in ravine, 45 ft . beln the Tp. cor., course N. $32^{\circ} \mathrm{W}$.
To edge of table land, bears N. E. and S. W.; thence orer level land.
17. 40
19.00
22. 00
40.00

Bluff hank, bears N. $58^{\circ} \mathrm{W}$. and S .58 E E.; descend abrupty 40 ft .
Edge of table land, bears s. $58^{\circ} \mathrm{E}$. imm N. $58^{\circ} \mathrm{W}$.; thence over level land.
Difference between measurements of 40.00 chs., by two sets of chainmen, is 18 lks ; position of mildle point

By 1st set. 40.09 clis.
By 2nd set, 30.91 chs.: the meau of which is
Set a limestoue, $16 \times 7 \times 5$ ins., 11 ins. in the ground, for $\frac{1}{4}$ sec. "or., marked $\frac{1}{4}$ on W . face, and raise a mound of stone, 2 ft . base, $1 \frac{1}{2} \mathrm{ft}$. high. W. of cor.
42.60

Stream, 61 ks . wide, in ravine 15 ft deep, course $\mathrm{N} .60^{\circ} \mathrm{W}$.
47.00

Enter lieary oak timber, bears E. and 11.
53.00 An oak, 30 ins. diam., on line, I mark with 2 notehes on E. and W. sides. 5.20 (reek, 20 lks . wite, 1 ft . lecep, course N. $830^{\circ} \mathrm{W}$.
5.). 40 Right bank of creek, begin very steep rocky ascent.
61% Tol of ridge, 250 tt. abore creek, bears N. so H°. and S. $80^{\circ} \mathrm{E}$.

Begin dessent.

Difference bet. measurements of 80.00 chs., hy two whaimmen, is 22 lks ; position of middle point

By 1st set, 79.89 chs.
Bey end set, 80.11 chs.; the mean of which is
80.00

The point for sec. col., 150 ft . below top of ridge, falls on a flat rock in place, 10 ft . E. and W. hy 6 ft . N. and s., on which I
Cut a cross (X) at the exaet cor. point, for cor. of sees. $25,30,31$, and 36 , marked with 5 grooves on N and 1 growe on s. sides; from which

An onk, 10 ins. diam., hears N. 2! E., 54 llis. dist., marked T. 13 N., R. 25 E., S. 30 , B.'T.

A doywool, 5 ins. diam., hears N. $64 \frac{2}{2}$ E., 40 lks , dist., marked T. 13 N., K. 25 E., S. 31, B. T.
An ash, 13 ins. diam. bears S. 51 W., 37 links dist., marked T. 13 N., R. 34 E., s. 3i, B. 'T.

An oak, 9 ins. in diam., hears N. $34^{\circ} \mathrm{W}$., 42 lks . dist., marked T . 13 N., R. 24 E., S. 25, 1.' 'T'.
Land, level and momtainons.
Soil, wravel and rock; 4tw rate.
Timber, oak.
Mombtainous or heavily-timbered land, :33.00 chs.

Gth G'uide Meridian East, through Tps. 13 N., ete.-Continued.

Clatins.
North, bet. seces. 25 and 30 .
Deseend through lieavy oak timber.
2.00
3.50

Precipitons descent of 60 ft .. down which I can not clain; set a Hag on lime at foot of precipice: measme a base east 4 chas. to a point, from which the flag bears N. 68 : W. ; which wives for the distance (by traverse table) 1.50 chs., which, added to 2.00 chs., makes
3.50 Tu foot of precipice, bears L. and W.; thence, descent.
8. 50 Leave heavy oak timber, bears L. and W.
13.00 Beqin abrupit descent.
17. 10 To ereek, 10 lks wide, pure water, course N. $70^{\circ} \mathrm{W} . ; 240 \mathrm{ft}$ below top of ridge. Ascend 20 ft . to
20.90 Edue of level plain, bears N. 80 W . and S. $80^{\circ} \mathrm{E}$.

Difierence bet. measurements of 40.00 rhs., by two sets of chaimmen, is 20 lks ; position of middle point

By 1st set, 39.90 chs.
By 2nd set, 40.10 ehs.; the mean of which is
40.00 Set a cedar post, 3 ft . long, 3 ins. sq., with marked stone, 24 ins. in the ground, for $\frac{1}{4}$ sec. cor., marked $\frac{1}{4}$ S., on W. face; dig pits, $18 \times 18 \times 12$ ins., N. and S. of post, 3 ft. dist. ; and raise a mound of earth, $3 \frac{1}{2}$ ft. base, $1 \frac{1}{2} \mathrm{ft}$. high, W. of cor.
Ditf. between measurements of 80.00 chs., by two sets of chaimmen, is 6 lks. ; position of middle point

By 1st set, 80.03 chs.
By 2nd set, 79.97 chs.; the mean of which is
Set a cedar post, 3 ft . long, 4 ins. 8 q., with marked stone, 24 ins. in the ground. for cor. of secs. 19, 24, 25, and 30, marked
T. 13 N., S. 19 on N. E.
R. 25 E., S. 30 on S. E.
S. 25 ons. W., and
R. $2 t$ E., S. 24 on N. W. faces; with 4 notches on N. and 2 notches on S. edges; dig pits, $18 \times 18 \times 12$ ins., in each sec., $5 \frac{1}{2} \mathrm{ft}$. dist.; and raise a mound of earth, 4 ft . base, 2 ft . high, W. of cor.
Land, monntanous and level.
Soil, stony and sandy; 4 th rate.
Timber, oak.
Mountainous or heavily-timbered land, 20.90 chs.

North, bet. secs. 19 and 24.
Over descending ground.
35. 00 Ravine, 20 ft . wide. 8 ft . deep, course E .

Difference between measurements of 40.00 chs., by two sets of chaimmen, is 6 lks . ; position of middle point

By 1st set, 39.97 chs.
By 2nd set, 40.03 chs.; the mean of which is
40.00

Set a cedar post, 3 ft. long. 3 ins. $8 q$., with marked stone, 24 ins . in the fromed, for $\frac{1}{4}$ sec. cor., marked $\frac{1}{4} \mathrm{~S}$., on W . face; dig pits, $18 \times 18 \times 12$ ins., N. and S. of post, 3 ft . dist.; and raise a momd of earth, $3 \frac{1}{2} \mathrm{ft}$. base, $1 \frac{1}{2}$, t't. high, Wr. of cor.
40.30
44.00

Enter willow brush, bears E. and W.
Leare willow brush, bears E. and W.; Ford's Creek, 22 lks. wide; banks, 3 ft . high; pure water, gentle current; course E.
48.50

Forl's Creek, 24 lks . wide, conrse W.
55. 00 Ford's Creek, 26 lks wide. conrse N. 70° E.
61. 70 Rarine, 15 ft wide, 6 ft deep, course E.

Difference between measurements of 80.00 chs., by two sets of chainmen, is 12 lks ; position of middle point
liy lst set, 80.06 chs.
$13 y$ 2nd set, 79.94 chs. ; the mean of which is
Deposit a quart of charcoal, 12 ins. in the groand, for cor. of secs. 13,18 , 19, and 24: dig pits, $18 \times 18 \times 12$ ins., m each sec., 4 ft . dist. : and raise a momed of earth, 4 ft . base, 2 ft . high, over deposit.

In S. E. pit Crive a stake, 2 ft . long, 2 ins. sq., $12 \mathrm{ins}$. in the ground, marked
T. 13 N., S. 18 on N. E.,
R. 25 E., S. 19 on S. L.,
S. 24 on S. Wr., and
R. 24 E., S. 13 on N. W. faces; with 3 notrhes on N. and S. edges.

Land, nearly all level.
Soil, sandy loam and clay; 1st and 4 th rate.
No timber.

North, bet, secs. 13 and 18.
Over nearly leyel plain; gradnally ascend.
29.00
31.10
35. 20
37.50

Top of ridge, 60 ft . above plain, bears E. and W.
Begin descent from ridge.
Foot of descent; branch, 10 kss . wide in ravine 5 ft . deep; course E. ascend.
Difference between measurements of 40.00 chs., by two sets of chainmen, is 16 lks ; position of middle point

By 1st set, 39.92 chs.
By 2nd set, 40.08 chs.; the mean of which is
Set a granite stone, $15 \times 8 \times 5$ ins., 10 ins. in the gromnd, for $\frac{1}{4}$ sec. cor., marked $\frac{1}{4}$ on W. face; and raise a mound of stone, $\because \mathrm{ft}$. base, $1 \frac{1}{2} \mathrm{ft}$. high, W. of cor. Pits impracticable.
Begin ascent of ridge, bears E. and W.
56.50
63.00

Top of ridge, 400 ft . above plain, bears E. ant W.
Begin descent.
Difference between measmrements of 80.00 chs., by two sets of chainmen, is 221 ks ; position of middle point
liy 1 st set, 80.11 chs.
By 2nd set, 79.89 chs.; the mean of which is
80.00

Set a granite stone, $15 \times 8 \times 6$ ins., 10 ins. in the ground, for cor. of secs. $7,12,13$, and 18 , mirked with 2 notches on N. and 4 notches on S. edges; and raise a mound of stone, 2 ft . loase, $1 \frac{1}{2} \mathrm{ft}$. high, W. of cor. Pits impracticable.
This cor. stands on a bench, about 350 ft . below top of ridge.
Land, level and mountainous.
Soil, sandy loam and rocky; 2nd and 4 th rate.
No timber.
Mountainous land, 11.50 chs.

North, bet. sees. 7 and 12.
Over level laud.
Begin ascent, bears E. and W.
7. 50 'Top of low ridge, 20 ft . above sec. cor., bears E . and W^{\top}. ; thence, descend gradually.
37.00
40.00
71.00

Branch, 6 lks . wide, in ravine, 10 ft . deep, course E.
Difference between measurements of $40,00 \mathrm{chs} .$, by two sets of chainmen, is 12 lks. ; position of middle point

By 1st set, 39.94 chs.
By 2nd set, 40.06 chs.; the mean of which is
Set a cedar post, 3 ft . long, 3 ins. sq., with a marked stone, 24 ins. in the gronnd, for $\frac{1}{4}$ sec. cor., marked $\frac{1}{4} \mathrm{~S}$. on W. face; dig pits, $18 \times 18 \times 12$ ins., N . and S. of post, 3 ft . dist.; and raise a mound of earth, $3 \frac{1}{2} \mathrm{ft}$. base, $1 \frac{1}{2}$ ft. high, W. of cor.
Thence over plain gradually ascending.
7.00 Begin descent to creek, bears E. and II.
74.00 Foot of descent; creek, 12 kks , wide, course E. Ascend.
79.50 To top of ascent and edge of level plain, bears E. and N. $75^{\circ} \mathrm{W}$.

Diflorence between measurements of 80.00 chs., by two sets of chainmen, is 14 lks ; position of middle point

By 1st set, 80.07 chs.
By 2nd set, 79.93 chs.; the mean of which is
80.00

Set a cedar post, 3 ft . long, 11 ins. sq., with marked stone, 24 ins. in the gromul, for cor, of secs. $7,12,13$, and 18 , marked
'I'. 13 N., S. 6 on N. E.,
R. 25 E., S. 7 on S. E.,
S. $1201 \mathrm{~S} . \mathrm{W}^{2}$, and
l. 24 E., S. 1 on N. W. faces; with 1 notch on N. and 5 notches on S. cdges; dig pits, $18 \times 18 \times 12$ ius., in each sec., $5 \frac{1}{2} \mathrm{ft}$. dist.; and raise a mound of earth, 4 ft . luse, 2 ft . high, W. of cor.

6th Guide Meridian East, through Tps. 13 N., etc.-Concluded.

Chains.	Land, nearly level. Soil, sandy loam; 2nd rate. No timber.
18.00	North, bet. secs. 1 and 6. Over level land.
	Branch 4 lks . wide, in ravine 6 ft . dcep, course E.
	Difference between measurements of 40.00 chs., by two sets of chainmen, is 6 ks . ; position of middle point By 1st set, 39.97 chs.
	By 2nd set, 40.03 chs; the mean of which is
40.00	Deposit a marked stone, 12 ins. in the ground, for $\frac{1}{4}$ sec. cor., dig pits, $18 \times 18 \times 12$ ius., N . and S . of cor., 4 ft . dist. ; and raise a mound of earth, $3 \frac{1}{2} \mathrm{ft}$. base, $1 \frac{1}{2} \mathrm{ft}$. high, over deposit. In S. pit drive a cedar stake, 2 ft . long, 2 ins. sq., 12 ins. in the ground, marked
61.00	Creek, 12 lks. wide, course S. 23° E. Difference between ineasurements of 80.00 chs., by two sets of chainmen, is 4 lks ; position of mildle point By 1st set, 80.02 chs. By 2nd set, 79.98 chs.; the mean of which is
80.00	Set a cedlar post, 3 ft . long, 4 ins. sq., with quart of charcoal, 24 ins . in the ground, for cor. of Tps. 13 and 14 N., Rs. 24 and 25 E., marked T. 14 N., S. 31 on N. E., R. 25 E., S. 6 on S. E., T. 13 N., S. 1 on S. W., and R. 24 E., S. 36 on N. W. faces; with 6 notches on each edge; dig pits, N., E., and W., 4 ft . and S . of post, 8 ft . dist.; and raise a mound of earth, 5 ft . base, $2 \frac{1}{2} \mathrm{ft}$. high, S . of cor. Land, level. Soil, sandy loam; 1st rate. No timber.
	August 30, 1890.

GENERAL DESCRIPTION.

Townships 13 N., Ranges 24 and 25 East, are generally rolling table-lands, producing an abundant growth of grass, and there is some good land along Ford's Creek and its tributaries. About two miles east of the coruer of Tps. 13 and 14 N., Rs. 24 and 25 E., is a lake some two and half miles long by two miles wide, lying in Tps. 13 and 14 N., R. 25 E.

Richard Roods, U. S. Deputy Surreyor.

August 30, 1890.

FINAL OATHS OF DEPUTY SURVEYORS AND THEIR ASSISTANTS.

LINT OF NAMES.

A list of the names of the individuals employed by Richard Roods, U. S. deputy surveyor, to assist in running, measuring, and marking the lines and corners described in the foregoing field notes of the survey of the Sixth Guide Meridian East, throngh Townships 13 North, between Ranges 24 and 25 East, of the Principal Base and Meridian in the State of Montana, showing the respective capacities in which they acted.

Peter long	Chainman.
. bons short	Chainman.
Elimarker	Chainman.
Willaar Talis	Chainman.
Hexry Clay	Moundman.
Whlliam Stone	Moundman.
George Sharp	Axman:
Adam Dull	
Itames Banner	Flagman.

FINAL OATHS OF ASSISTANTS.

We hereby certify that we assisted Richaril Roods, U.S.depaty surveyor, in survesing all those parts or portions of the Sixth Guide Meridian East, throngh Townships 13 North, between Ranges 24 and 25 Last, of the Principal Base and Meridian in the State of Montana, which are represented in the foregoing field notes as hating been surveyed by him and under his direction; and that said survey has been in all respects, to the best of our knowledge and belief, well and faithfully surveyed, and the corner monments established according to the instructions furnisheal by the United States survegor general for Montana.
Peter Long, Chainman.
John Short, Chaimman.
Eli Marker, Chaiman.
Whllam Tally, Chaiman.
Mentey Clay, Moundman.
William Stone, Moudman.
George Sharp, Axman.
Adam Dull, Axman.
James Banner, Flagman.

Subscribed and sworn to before me this tirst day of September, 1890.
[ivale] William Mabins, Notury Public.

FHNAL OATH OF CNITEI STATES DEPUTY SURVEVOR.

1, Richard Roods, United States deputy surveyor, lo solemnly swear that in pursuance of a contract received from $A-B-$ - United States surveyor general for Montana, bearing date of the teuth day of July, 1890. I have well, faithfully, and truly, in my own proper person, and in strict conformity with the instructions furnished by the United States surveyor general for Montana, the Mannal of Surveying Instructions, and the laws of the Unitel States, surveyed all those parts or portions of the Sixth Gnide Meridian East, throngh Townships 13 North, between Ranges 24 and 25 East, of the Principal Base and Meridian in the State of Montana, which are represented in the foregoing field notes as having been surveyed by me and under my direction; and I do further solemmly swear that all the conners of said surveys have been established and perpetuated in strict accordance with the Manual of Surveying Instructions, and the special instructions of the United Nates surveyor general for Montana, and in the specific manner described in the field notes, and that the foregoing are the original hield notes of such survey; and should any frand be detected I will suffer the penalty of perjury under the provisions of an act of Congress approved Angust 8, 1846.

> Richard Roons,
> I. S. Deputy Surveyor.

Subseribed by said Richard Roods and sworn to before me this tirst rlay of Soptember, 1890.
[seal.]
$\mathrm{A}-\mathrm{B}-$,
U. S. Surteyor General for Montana.

SPECIMEN FIELD NOTES．

 No． 3.TITLE PAGE．

［See Plate III．］

FIELD NOTES OF THE SURVEV OF THE

 EAST AND NORTH BOUNDARIES

 EAST AND NORTH BOUNDARIES
 0 F

Township No． 13 North，Raxge No． 21 East
OF＇TIIF
PRINCIPAL BASE AND MERIDIAN
IN THE

STATE OF MONTANA，

AS SURVEYED BY

RICIHARD ROOISS， U．S．DEPU゙TY SURV゙EゲOR，

UNDER HIS CONTRACT No．97， DATED JULY 10， 1890.

Suriey commencel September S， 18.30. Survey completed September 13， 1890.
[Second Page.]

NAMES AND DUTIES OF ASSISTANTS.

Peter Long
Chainman.
Jонм Shorт .. Chainman.
Henix Clay ... Moundman.
Willian Stone.. . Moundman.
George Sharp... Axman.
Adam Dell .. Axman.
James Binner Flagman.

INDEX.

T. 13 N., R. 21 E .

$24 \quad 174$
19

$25 \quad 173 \quad 30$

$36 \quad 172$
31

171

[Third page.]

PRELIMINARY OATHS OF ASSISTANTS.

We, Peter Long and John Short, do solemnly swear that we will well and faithfully execute the duties of chaimen; that we will level the chain upon even and uneven ground, and plumb the tally pins, either by sticking or dropping the same; that we will report the true distances to all notable objects and the true lengths of all lines that we assist in measuring, to the best of our skill and ability, and in accordance with instructions given us, in the survey of the East and North boundaries of Township No. 13 North, Range No. 21 East, of the Principal Base and Meridian, in the State of Montana.

Peter Long, Chainman.
Johy Short, Chaimman. John Short, Chaimman.
Subscribed and sworn to before me this second day of September, 1890.
[skal..]
William Martin, Notary P'ublic.

We, Henry Clay and William Stone, do solemuly swear that we will well and truly perform the duties of moundmen in the establishment of corners, according to the instructions given us, to the best of our skill and ability, in the survey of the East aud North Boundaries of Township No. 13 North, Range No. 21 East, of the Principal Base and Meridian, in the State of Montana.

> Henry Clay, Moundman. William Stone, Momaman.

Subscribed and sworn to before me this second day of September, 1890.
[seal.]
IVilliam Martin, Notary Public.

We, George Sharp and Adam Dnll, do solemnly swear that we will well and truly perform the duties of axmen, in the establishment of corners and other duties, according to instructions given us, and to the best of our skill and ability, in the survey of the East and North Bcundaries of Township No. 13 North, Range No. 21 East, of the Principal Base and Meridian, in the State of Montana.

> George Sharp, Axman.
> Aday DUlL, Axman.

Subscribed and sworn to before me this second day of September, 1890.
[seale]
William Martin, Totary Public.

I, James Banner, do solemuly swear that I will well and truly perform the duties of flagman, according to instructions given me, to the best of my skill and ability, in the survey of the East and North Bonndaries of Township No. 13 North, Range No. 21 East, of the Principal Base and Meridian, in the State of Montana.

James Banner, Flagmun.
Subscribed and sworn to before me this second day of September, 1890.
[seal.]
William Martin, Notary Public.

East boundary of T. 13 N., R. 21 E.

Abstract

Chains.

Survey commenced September 8,1890 , and executed with a lonug \& Sons light mountain transit, No. - with solar attachment. The horizontal limb is provided with two double verniers placed opposite to each other, reading to single mimites of arc, which is also the least count of the verniers of the latitude and declination arcs. The instrument was examined, tested on the true meridian at Helena, fornd correct, and was approved by the surveyor general for Montana, September 1, 1890. I examine the adjnstments of the transit, and correct the level and collimation errors; then, to test the solar apparatus by comparing its indieations, resulting from solar observations made during a.m. and p . m. hours, with a true meridian determined by observations on Polaris, I proceed as follows: September 8: At the standard corner of Tps. 13 N., Rs. 21 and 22 E., latitude $45^{\circ} 34^{\prime} .5 \mathrm{~N}$., longitude $107^{\circ} 46^{\prime}$ W., at $4^{\mathrm{b}} 57^{\mathrm{m}} \mathrm{p}$. m., l. m. t., I set off $45^{\circ} 35^{\prime}$ on the lat. are ; $5^{\circ} 29^{\prime} \mathrm{N}$. on the decl. are (these settings leing the nearest practicable to the true minutes and fractions thereof required); determine with the solar a true meridian; and mark a point thereof on a stone set firmly in the ground, 5.00 chs . N. of the cor. At $8^{\mathrm{h}} 15^{\mathrm{m}} .5 \mathrm{p} . \mathrm{m}$., by my wateh, which is $4^{\mathrm{m}} 23^{\mathrm{s}}$ fast of $\mathrm{l} . \mathrm{m}$. t., I observe Polaris at eastern elongation, in accordance with Manual of Instructions,* and mark a point on the line thus determined on a plug driven in the gronnd, 5.00 chs . N. of my station.

September 8, 1890.

September 9: At $6^{\text {n }} 30^{\mathrm{m}}$ a.m.. 1.m.t., I lay off the azimuth of Polaris, 1° $49^{\prime} .6$, to the west and mark the True Maridian thus determined, by cutting a small groove in the stone set september 8 , on which the true meridian falls 0.25 ins. west of the mark determined by the solar.
At $6^{\mathrm{h}} 58^{\mathrm{m}}$ a. m., l. m. t., I set off $45^{\circ} 35^{\prime}$ on the lat. are ; $5^{\circ} 15^{\prime} \mathrm{N}$. , on the decl. are; and mark a point in the true meridian determined with the solar, by a cross on the stome already set 5.00 chs. N. of my station; this mark falls 0.3 ins. west of the true meridian established by the Polaris observation.
The solar apparatus, by p. m. and a. m. observations, defines positions for true meridians, respectively about $0^{\prime} 13^{\prime \prime}$ east and $0^{\prime} 16^{\prime \prime}$ west of the true meridian establisherl by the Polaris observations; therefore, I conclude the adjustments of the instrument are satisfactory.
The magnetic bearing of the true meridian,t at 7 a a. m., is $\mathrm{N} .18^{\circ} 10^{\prime} \mathrm{W}$.; the angle thus determined, reduced by the table, page 100 , gives the mear mag. decl. $18^{\circ} 0 \gamma^{\prime} E$.
I begin at the standard corner of Tps. 13 N., Rs. 21 and $2 \underline{1}$ E., which I established August 25.
Thence I run
North, bet. secs. 31 and 36.
Descend abmptly over stony gronnd, sloping N. W.
Creek, 80 tt. below Tp. cor., 15 lks . wide, clear water, course S. $75^{\circ} \mathrm{W}$.; ascend.
Road, bears N. 60° E. and S. $60^{\circ} \mathrm{W}$.
24.50 Top of ridge, 200 ft above creek, bears E. and W.

Begin descent.
Foot of descent, 150 ft . helow top of ridge, bears E.aud W. Branch 2
legin descent.
Foot of descent, 30 ft . below bench, hears E. and W .; thence over level
Set a sandstone, $15 \times 8 \times 6$ ins., 10 ins. in the ground, for sec. cor., marked $\frac{1}{4}$ on W. face ; dig pits, $18 \times 18 \times 12 \mathrm{ins}$., N. and S . of stone, 3 ft . dist. : and raise a momid of earth, $3 \frac{2}{2}$ tt. hase, $1 \frac{1}{2}$ ft. high, W. of cor. Creek 10 lks , wide, pure water, 8 ins, deep, comse E. legin ascent.
49. 50 Top of ridge, bears $\AA .70^{\circ} \mathrm{E}$. and N. 80° W., 50 ft. above creek.
$50.00 \mid$ Begin descent.

East boumdary of T. 13 N., R. 21 E.-Continued.

Chains.
54.00
62. 50
73.00
74.79
80.00

Branch 6 lks. wide, in ravine 3 chs. wide, 30 ft . decp, course E.; thence, over level laml.
Creek 12 lks . wide, 1 ft . deep, pure water, conrse S. 60° E.
Enter cedar timlier, bears E. and W.
A cedar, 10 ins. diam., on line, I mark with 2 notehes on N. and S. sides. A cedar, 8 ins. diam., for cor. of sees. 25, 30, 31, and 36, I mark
T. 13 N., S. 30 on N. E.,

1R. 22 E., S. 31 on S. E.,
S. 36 on S. W., and
R. 21 E., S. 25 on N. W. sides; with 5 notches on N. and 1 notch on S. sides; from which

A cedar, 7 ins. diam., bears N. 301_{2}° E., 20 Iks. dist., marked T. 13 N., R. 22 E., s. 30, B. 'T.

A cedar, 6 ins. diam., bears S. $63 \frac{1}{4}^{\circ}$ E., 18 lks. dist., marked T. 13 N., R. 22 E., S. 31, B. T.

A cedar, 9 ins. diam., bears S. $23 \frac{1}{4}$ W., 21 lks . dist., marked T. 13 N., R. 21 E., S. 36, B. T.

A cedar, 8 ins. diam., bears N. $64 \frac{1}{2}{ }^{\circ}$ W., 19 lks. dist., marked T. 13 N., R. 21 E., S. 2.", B. T.

Land, monntainous and level.
Scil, stony and loam; 2nd and 4th rate.
Timber, cedar.
Mountainous land, 54.00 chs.

North, bet. secs. 2.) and 30.
Over level land, throngh cedar timber.
9.00
20.40 27.50

Set a cedar post, 3 ft. long, t ins. sq., with quart of charcoal, 24 ins. in the gromud, for cor. of secs. 19, 24, 25, and 30; marked
T. 13 N., S. 19 on N. E.,
R. 22 E., S. 30 on S. E.,
S. 25 on S. W., and
R. 21 E., S. 24 on N. W. faces; with 4 notches on N. and 2 notches on S. edges; dig pits, $18 \times 18 \times 12$ ins., in each sec. $5 \frac{1}{2}$ ft. dist.; and raise a mound of earth, 4 ft . base, 2 ft . high, W. of cor.
Lant, level.
Soil, sandy loam; 2nd rate.
Timber, cedar.

North, bet. secs. 19 and 24 .
Over level land.
6. 00

Branch +1 lks . wide, course S. 70° E. ; ascend.
17. 00
22.00
36.50
40.00
47. 50
(61. 00

Top of ridge, 40 ft . high, bears E . and W.
Begin descent.
Foot of descent, hears E . and W.; thence over level land.
Set a sandstone, $15 \times 8 \times 6$ ins., 10 ins. in the ground, for $\frac{1}{4}$ sec. cor., marked $\frac{1}{4}$ on W . face; dig pits, $18 \times 18 \times 12$ ins., N . and S . of stone, 3

Creek 15 lks . wide, pure water, low hanks, conrse N. 70 II.
Creek 16 lks. wide, pure water, low banks, course S. 65 E.

Chains.
 80.00

Set a cedar post, 3 ft . long, 4 ins. sq., with charred stake, 24 ins. in the ground, for cor. of sees. $13,18,19$, and 24 , marked
T. 13 N., S. 18 on N. E.,
R. 20 E., S. 19 on S. E.,
S. 0^{4} on S. W., and
R. 21, S. 13 on N. W. faces; with 3 notches on N. and S. edges; dig pits, $18 \times 18 \times 12$ ins., in each sec., $5 \frac{1}{2}$ ft. dist.; and raise a monnd of earth, 4 ft . base, 2 ft . high, W. of cor.
Land, level.
Soil, sandy loam; 1st rate.
No timber.
September 9, 1890.

Sepotember 10: At $7^{\mathrm{b}} 56.8^{\mathrm{mm}}$ a. m., I set off $45^{\circ} 37^{\prime}$ on the lat. arc; 4° 47^{\prime} N., on the decl. are; and determine a trne meridian with the solar, at the cor. of secs. $13,18,19$, and 24.
Thence I run
North, bet. secs. 13 and 18.
40.00 Set a cedar post, 3 ft . long, 3 ins. sq., with marked stone, 24 ins. in the ground, for $\frac{1}{4}$ sec. cor., marked $\frac{1}{4}$ S. on W. face; dig pits, $18 \times 18 \times 12$ ins., N. and S. of post, 3 ft . dist; and raise a mound of earth, $3 \frac{1}{2} \mathrm{ft}$. base, $1 \frac{1}{2} \mathrm{ft}$. high, W. of cor.
80.00

Set a limestone, $20 \times 8 \times 4$ ins., 15 ins. in the ground, for cor. of secs. 7,12 , 13, and 18, marked with 2 notches on N. and 4 notches on S. edges; dig pits, $18 \times 18 \times 12$ ins., in each sec., $5 \frac{1}{2}$ ft. dist.; and raise a mound of earth, 4 ft . base, 2 ft . high, W. of cor.
Land, level.
Soil, sandy loam; 1st rate.
No timber.

North, bet. secs. 7 and 12.
Over level land.
40.00 Set a cedar post, 3 ft . long, 3 ins. sq., with quart of charcoal, 24 ins. in the ground, for $\frac{1}{4}$ sec. cor. marked $\frac{1}{4}$ S., on W. face; dig pits, $18 \times 18 \times 12$ ins., N. and S. of post, 3 ft . dist. ; and raise a mound of earth, $3 \frac{1}{2} \mathrm{ft}$. base, $1 \frac{1}{2} \mathrm{ft}$. high, W. of cor.
55.00

Set a limestone, $19 \times 8 \times 6$ ins., 15 ins. in the ground, for cor. of secs. 1, 6, 7, and 12, marked with 1 notch on N. and 5 notches on S. edges; dig pits, $18 \times 18 \times 12$ ins., in each sec., $5 \frac{1}{2} \mathrm{ft}$. dist.; and raise a mound of earth, 4 ft . base, 2 ft . high, W. of cor.
Land, level.
Soil, sandy loam; 1st rate.
No timber.
September 10: At this cor. I set off $4^{\circ} 44^{\prime} \mathrm{N}$. on the decl. are: and at 11^{h} $56^{\mathrm{m}} .8 \mathrm{~lm}$. t., observe the sum on the meridian; the resulting lat. is 45° 39^{\prime}, which is abont $0^{\prime} .1$ more than the proper lat.

Nortl, het. secs. 1 and 6.
eck, 15 lks. wide, impure water, sluggish rirrent, low muddy banks, course E.
Set a locnst post, 3 ft . long, 3 ins. sq.. with quart of charcoal, 24 ins. in the gronnd, for $\frac{+}{4}$ sec. cor., marked $\frac{1}{4}$ S., ou W. face ; dig pits, $18 \times 18 \times 12$ ins., N . and S . of post, 3 ft . dist.; and raise a mound of earth, $3 \frac{1}{2} \mathrm{ft}$. base, $1 \frac{1}{2} \mathrm{ft}$. high, W. of cor.
Set a limestone, $15 \times 8 \times 7$ ins., 10 ins. in the gromend, for cor. of Tps. 13 and 14 N., Rs. 21 and 22 E., marked with 6 notches on each edge; dig pits, $24 \times 24 \times 12$ ins., on arch line, N., E., and W., 4 ft ., and S. of stone, 8 ft . dist., and raise a mound of earth, 5 ft . base, $2 \frac{1}{2} \mathrm{ft}$. high, S . of cor.

September 10, 1890.

North boundary of T. 13 N., R. 21 E.

Deposit a quart of charcoal, 12 ins. in the ground, for cor. of secs. $4,5,32$,
and $33 ;$ dig pits, $18 \times 18 \times 12$ ins., in each sec., 4 ft. dist.; and raise a
Deposit a quart of charcoal, 12 ins. in the ground, for cor. of secs. $4,5,32$,
and $33 ;$ dig pits, $18 \times 18 \times 12$ ins., in each sec., 4 ft. dist. ; and raise a mound of earth, 4 ft . base, 2 ft . high, over deposit.
In S. E. pit drive a cedar stake, 2 ft . $10 n \mathrm{~g}, 2 \mathrm{ins}$, sq., 12 ins. in the ground,
marked
T. 14 N., S. 33 on N. E.,
R. 21 E., S. 4 on S. E.,
T. 13 N., S. 5 on S. W., and
S. 32 on N. W. faces; with 4 notches on E. and 2 notches on W. edges.
Land, level.
Soil, sandy loam ; 1st rate.
No timber.
September 12: At this cor., I set off $4053^{\prime} \mathrm{N}$., on the decl. arc ; and, at $11^{\mathrm{h}} 5^{\mathrm{m}} .1,1 . \mathrm{m} . \mathrm{t}$., ohserve the sun on the meridian; the resulting lat. is
$14^{\circ}{ }^{\circ} 40^{\prime}$, , which is about $0^{\prime} .3$ greater than the proper lat.
September 12, 1890.
N. $89^{\circ} 57^{\prime}$ E., bet. secs. 4 and 33 .
7.00

Branch, 4 lks . wide, course S. $35^{\mathrm{C}} \mathrm{W}$.
Set a limestone, $15 \times 8 \times 5$ ins., 10 ins. in the ground, for $\frac{1}{4}$ sec. cor. marked $\frac{1}{4}$ on N. face; dig pits, $18 \times 18 \times 12$ ins., E. and W., of stone, 3 ft. dist. ; and raise a monnd of earth, $3 \frac{2}{2} \mathrm{ft}$. base, $1 \frac{1}{3} \mathrm{ft}$. high, N . of cor. 55.00 Enter heary oak timber, hears N. and S.
68.00

September 11: At $7^{\mathrm{h}} 56.4^{\mathrm{m}}$ a. m., l. m. t.. I set off $45^{\circ} 40^{\prime}$ on the lat. are; $4^{\circ} 25^{\prime}$ N., on the deel. are; and determine true meridian with the solar, at the cor. of Tps. 13 and 14 N ., Rs. 21 and 22 E .
Thence I ruu
West on a random line, along the N. bdy. of Tp. 13 N., R. 21 E., setting temp. $\frac{1}{4}$ sec. and sec. cors. at intervals of 40.00 chs.; and, at 479.25 chs., intersect the 5 th Guide Meridian, 42 lks . N. of the cor. of Tps. 13 and 14 N., Rs. 20 and 21 E., which is a limestone, $5 \times 8 \times 6$ ins. above ground, marked and witnessed as described by the surveyor general. The falling answers to a correction of $0^{\circ} 03^{\prime}$, or 7 lks . S. per mile. counting from the N. E. cor. of the Tp.; therefore I run
N. $89^{\circ \prime \prime} 57^{\prime}$ E., bet. secs. 6 and 31.

Over level land.
Set a cedar post, 3 ft . long, 3 ins. sq., with marked stone, 24 ins. in the ground, for $\frac{1}{4}$ sec. cor., marked $\frac{1}{4}$ S., oul N. face; dig pits, $18 \times 18 \times$ 12 ins., E. and W . of post, 3 ft . dist. ; and raise a monnd of earth, $3 \frac{1}{2} \mathrm{ft}$. base, $1 \frac{1}{2} \mathrm{ft}$. high, N. of cor.
Set a limestone, $20 \times 8 \times 4$ ins., 15 ins. in the ground, for cor of secs. 5 , 6, 31, and 32, marked with 5 notches on E. and 1 notch on W. edges; dig pits $18 \times 18 \times 12$ ins., in each sec., $\frac{5}{2} \frac{1}{2} \mathrm{ft}$. dist.; and raise a mound of earth, 4 ft . base, 2 ft . high, W. of cor.
Land, level.
Soil, sandy loam; 1st rate.
No timber.
September 11, 1890.

September 12: At $-^{b}-^{m}$ a. m., l.m.t., I set off $455^{\circ} 40^{\prime}$ on the lat. are; $4^{\circ} 02^{\prime} \mathrm{N}$., on the decl. are; and determine a true meridian with the solar, at the cor. of secs. $5,6,31$, and 32 .
Thence I run
N. $89^{\circ} 57^{\prime}$ E., bet. secs. 5 and 32.

Set a jnniper post, 3 ft . long, 3 ins. sq., with quart of charcoal, 24 ins . m the ground, for $\frac{1}{4}$ sec. cor., marked $\frac{1}{4}$ S., on N. face; dig pits, $18 \times 18 \times 12$ ins., E. and W. of post, 3 ft . dist.; and raise a mon'd of earth, $3 \frac{1}{2} \mathrm{ft}$. base, $1 \frac{1}{2} \mathrm{ft}$. high, N. of cor.
Creek 15 lks . wide, good water, sluggish current, course S.E.
monnd of earth, 4 ft . base, 2 ft . high , over deposit.

Brauch, 3 lks. wide, course N. 30° E.

North boundary of T. 13 N., R. 21 E.-Continued.

('hains.
80.00

An oak, 14 ins. diam., for cor. of sees. $3,4,33$, and 34 , I mark
T. 14 N., S. 34 N. E.,
R. 21 E., S. 3 on S. E.,
T. 13 N., S. 4 on S. W., and
S. 33 ou N. W. sides; with 3 notches on E. and W. sides; from which An oak, 12 ins diam., bears N. $13 \frac{1}{2}^{\circ}$ E., 21 lks dist., marked T. 14 N., R. 21 E., S. 34 B. T.

An oak, 14 ins. diam., bears S. $78 \frac{1}{4}^{\circ}$ E., 25 lks . dist., marked T. 13 N., R. 21 E., S. 3, B. 'Г.

An ash, 10 ins. diam., bears S. 639° W., 34 lks. dist., marked T. 13 N., R. 21 E., S. 4, B. T'.

A dogwood, 7 ins. diam., bears N. 26° W., 32 lks. dist., marked T. 14 N., R. 21 E., S. 33, B. T.

Land, level.
Soil, sandy loam; 1st rate.
Timber, oak.
Heavily timbered land, 25.00 chs.

September 13: At - ${ }^{h}-m, 1 . m$. t., I set off $45<40^{\prime}$ on the lat. are; - ${ }^{\circ}$ -
N., on the decl. are; and determine a troe meridian with the solar, at the eor. of secs. $3,4,33$. and 34 .
Thence I run
N. $89^{\circ} 57^{\prime}$ E., bet. sees. 3 and 34.

Over level land, throngh heavy oak timber.

Leave heavy oak timber, bears N. and S.
S0. 00 Set a limestone, $22 \times 8 \times 7$ ins., 17 ins. in the gromud, for cor, of secs. 2,3 ,

 earth, 4 ft. base, 2 ft . high, W. of cor.
Land, level.
Soil, sandy loam; 1st rate.
'Timber, oak.
Heavily timbered lamd, 63.00 chs.
N. $89^{\circ} 57^{\prime}$ E., bet. sees. 2 atull 3 .

Over level land.
30. 00 South fork of Spring Crcek, 22 lks. wide, pure water, gentle eurcht, low hanks, comrse N. $38^{\circ} \mathrm{E}$.
Set a luenst post, 3 ft . long, 3 in . sq., with marked stone, 24 ins . in the gronnd, for $\frac{1}{4}$ sec. cor'. marked $\frac{1}{4}$ s. on N. fice; dig pits, $18 \times 18 \times 12$ ins., E. amd W. of post, 3 ft . dist.; and raise a momnd of carth, $3 \frac{1}{2} \mathrm{ft}$ hase, $1 \frac{1}{2} \mathrm{ft}^{\mathrm{t}}$. high, N. of eor.
Set a limestone, $15 \times 8 \times 6$ ins.., 10 ins. in the gromm, for cor. of secs, 1,2 , 35 , and 36 , marked with 1 not 6 on E. and 5 notehes on W. edges; dig pits, $18 \times 18 \times 12$ ins.. in encll sec.. id ft. dist. ; and raise a monnd of earth, 4 ft . hase, 2 ft . high, W. of cor.
Land. lovel.
Soil, sandy loan; Ist rato.
Notimber.
September 18: At this cor., I set otl- - - ${ }^{-}$N., on the decl. are: and at -h - ${ }^{m 11}$ l. m. t., observe the sum on the meridian; the resmlting lat. is $4: 939^{\prime}$, which is abont $\theta^{\prime} .7$ less than the proper lat.

[^63]Over level lindi.
An oak, 18 ins. diam., for $\frac{1}{4}$ see. cor., I mark $\frac{1}{4}$ S., on N. side ; from which

An oak, 14 ins. diam., bears N. 42° E., 27 lks. dist., marked T'. 14 N., R. 21 E., S. 34, B. T'.

An ash, 13 ins. diam., bears S. $48 \frac{1}{4}$ E., 25 lks dist., marked T. 13 N ., R. 21 E., S. 3, B. T.
ean,

Set a limestont, $18 \times 18 \times 12$ ins., 12 ins.in the ground, for see. cor.,

North boundary of T. 13 N., R. 21 E.-Concluded.

Chains.	marked $\frac{1}{4}$ on N. face; dig pits, $18 \times 18 \times 12$ ius., E. and W. of stone, 3 ft . dist.; amd raise a monnd of carth, $3 \frac{1}{2} \mathrm{ft}$. base, $1 \frac{1}{2} \mathrm{ft}$. high, N. of cor.
58.00	Branch 4 lks. wide, course N. 30 E.
70.00	Same branch, filis. wide courses.
80.00	
	Land, level.
	Noil, sandy loam; 1st rate.
	(september 13, 1890.

Bounduries of T. 13 N., R. 21 E.
Latitudes, departures, and elosing errors.

Line designated.	True bearing.	Distance.	Latitudes.		Departures.	
			N.	S.	E.	W.
3rd Standard Parallel N	$\begin{aligned} & \text { West } \\ & \text { North....... } \\ & \text { N. } 59^{\circ} 57^{\prime} \text { E } \\ & \text { South....... } \end{aligned}$	Chs. 480.00 480. (w) 479.25 480.00	Chs.	Chs.	Chs.	$\begin{aligned} & \text { Chs. } \\ & 480.00 \end{aligned}$
5th G. Meridian E.						
N. bdy. 't. 13 N., R. 21 E			0. 42		479.25	
1. briy. I. 13 N., R. 21 E				480.00		
Convergency*					0.74	
Totals			$\begin{aligned} & 480 .+2 \\ & 480.00 \end{aligned}$	480.00	479.99	$\begin{aligned} & 480.110 \\ & 479.99 \end{aligned}$
Error in lat.			0.42	Error in dep		0.01

[^64]
FINAL OATHS OF DEPUTY SURVEYORA AND TIIEIR ASSISTANTS.

LIST OF NAMES.

A list of the names of the individuals employed by Richard Roods, U. S. deputy surveyor, to assist in running, measuring, and marking the lines and corners described in the toregoing field notes of the survey of the east and north boundaries of 'Township No. 13 North, Range No. 21 East, of the Principal Base and Meridian, in the state of Montana.

Peter Long	. Chaimman.
John Short	Chaimman.
Henry Clay	Moundman.
William stone	Moundman.
George Sharp.	Axman.
Adam Dell	Axman.
James Bann	Flagman.

We hereby certify that we assisterl Richard Roods, Lnited States deputy surveyor, in surveying all those parts or portions of the east and north boundaries of Township No: 13 North, Range No, 21 East, of the Principal Base and Meridian, in the
$386-12$

State of Montana, which are represented in the foregoing field notes as having been surveyed by him and under his direction; and that said survey has been in all respects, to the best of our knowledge and belief, well and faithfully surveyed, and the corner monuments established according to the instructions furnished by the United States surveyor general for Montana.

Peter long, Chainman.
John Short, Chaimman.
Menry Clay, Moundman.
William Stone, Moundman. George Sharp, Axman. Adam Dull, Axman. James Banner, Flagman.

Subscribed and sworn to before me this fifteenth day of September, 1890.

FINAL OATH OF UNITED STATES DEPUTY SURVEYOR.

I, Richard Roods, United States deputy surveyor, do solemnly swear that in pursuance of a contract received from $\mathrm{A}-\mathrm{B}$-, United States surveyor general for Montana, bearing date of the tenth day of July, 1890, I have well, faithfully, and truly, in my own proper person, and in strict conformity with the instructions furnished by the United States surveyor general for Montana, the Manual of Surveying Instructions, and the laws of the United States, surveyed all those parts or portions of the east and north boundaries of Township No. 13 North, Range No. 21 East, of the Principal Base and Meridian in the State of Montana, which are represented in the foregoing field notes as having been surveyed by me and under my direction; and I do turther colemnly swear that all the comers of said surveys have been established and perpetuated in strict accordance with the Manual of Surveying Instructions, and the special instructions of the United States surveyor general for Montana, and in the specific manner described in the field notes, and that the foregoing are the original field notes of such survey; and should any fraud be detected I will suffer the penalty of perjury under the provisions of an act of Congress approved August 8, 1846.

Richard Roods,
 U. S. Deputy Surveyor.

Subscribed by said Richard Roods and sworn to before me this fifteenth day of September, 1890.
[seal.]

> U. S. Surveyor General for Montana.

Specimen Field Notes.-No. 4.
Resurvey of the E. bdy. of T. 25 Y., R. 2 W., Willamette Meridian.
(Note.-Field notes of retracements and resurveys will be incorporated with the field notes of the smblivisions to which they are direetly related, and will be corered bs the preliminary and final oaths of said subdivisional tield motes. (See page 71.)
In case the deputy does not know from recent observations that his instrument is in aljustment, he will make the observations prescribed at the beginning of specimen tield notes No. 2, or No. 5, as the character of the instrument employed may require.
A transit with solar attachment is the instrument employed for this resurver.)

Preliminary to commeneing the subdivision of this township, I run north on a blank line, on the east bonndary of sec. 36 ; at 40.00 chs . I find the $\frac{1}{4}$ sec. cor., N. $80^{\circ} \mathrm{E} ., 30 \mathrm{kks}$. dist., and at 80.00 ehs., the cor. of secs. $25,30,31$ and 36 , east, 58 lks. dist. ; therefore, I continne my line north, find no part of the E. loly. in alimement, and that many of the corners are nearly obliterated. At 5 miles 79.83 chs., intersect E. and W . line, 42 lks . E. of the cor. of Tps. 25 and 36 N. , lis. 1 and 2 W ., and as these townships have not been subdividel, I resurver the range line between them, as follows:
The old stanclard cor. of Tps. 25 N., Rs. 1 and 2 W ., is a post greatly rlecayed, and the marks are neany obliterated. I destroy all traces of the old corner and reëstablish it at the same point, as follows:
Set a saudstone, $18 \times 8 \times 5$ ins., 12 ins, in the grombl, for standard eor. of Tps. 25 N., Rs. 1 and 2 W. marked S. (., on N. face, with 6 grooves on N., E., and W. faces: dig pits, $30 \times 24 \times 12$ ins., crosswise on each line, E. and W., 4 ft ., and N . of stone, 8 ft . dist.: and raise a mound of earth, 5 ft . base, $2 \frac{1}{2} \mathrm{ft}$. high, N. of cor.
Thence I run
N. $0^{\circ} 3^{\prime}$ W.. bet. secs. 31 and 36 .
18.00 Through timber. Ascend.
40.00 Top of ridge, abont 10 ft . high, bears E. and IV.

Set a sandstone, $20 \times 8 \times 1$ ins. 15 ins. in the ground. for $\frac{1}{4}$ sec. cor. marked $\frac{1}{4}$ on W. face; from whieh

A pine $20 \mathrm{ins}$. diam., bears N. 200 E.. 24 lks , dist. marked $\frac{1}{4} \mathrm{~S} . \mathrm{B} . \mathrm{T}$.
Anoak, 16 ins, diam., bears N. $68 \frac{10}{4}$ W., 27 lks. dist., marked $\frac{1}{4}$ S. B. T.
From this point, the old $\frac{1}{4}$ sec. cor., which is a clecased stake, with marks almost obliterated, bears N. 80 E. . 33 lks . dist. I rlestroy this stake and the marks on the stump of a beech tree, lescribed as a bearing tree in the field notes of the original survey. No trace can be fonnd of a poplar, described as a bearing trec.
An oak, 14 ins. diam., on line, I mark with 2 notches on E. and Wr. sides. Descend.
57.00

Foot of ridge, bears E. and W.; enter rich level laud.
Leave timber, bears N. E. and S. W.
80.00 Set a cedar post, 3 ft . long, 4 ins. sf., with markerl stone, 24 ins. in the ground, for corner of sees. 25, 30, 31, and 36, ma:ked
T. 25 N., S. 30 on N. E.,
R. 1 W., S. 31 on S. E.,
S. 36 on S. W., and
R. 2 W ., S. 25 on N. W. faces; with 5 notebes on N. and 1 notch on S. edges; dig pits, $18 \times 18 \times 12$ ins. in each see., $5 \frac{1}{2} \mathrm{ft}$. rlist.; and raise a monnd of earth, 4 ft . base, 2 ft . high. W. of cor.
From this cor. the old cor., a deeayed post, bears E. 65 lks. I destroy all traces of the old cor.
Land, rolling and level.
Soil, N. and S. parts, rich loam; 1st rate: middle part, sandy; 2ud rate. Timber, pine and oak.

Resurvey of the E. bdy. of T. 25 N., R. 2 W., etc.-Continued.

```
Chains.
N. 0 3' W., bet. secs. 25 and 30 .
Over level land.
40.00
Set a loenst post, 3 ft. long, 3 ins. sq., with quart of eharcoal, 24 ins. in the ground, for \(\frac{1}{4}\) sec. cor. marked \(\frac{1}{4} \mathrm{~s} .\), on W . face; dig pits, \(18 \times 18 \times 12\) ins., N. and S. of post, 3 ft . dist.; and raise a monnd of earth, \(3 \frac{1}{3} \mathrm{ft}\). hase, \(1 \frac{1}{2} \mathrm{ft}\) high, W, of cor.
All indications of the old cor. have disappearen.
Set a granite stone, \(15 \times 8 \times 7\) ins., 10 ins. in the ground, for cor. of sees. 19, 24, 25 and 30 , marked with 4 notches on N. and 2 notehes on S. edges; dig pits, \(18 \times 18 \times 12\) ins., in each sec., \(5^{\frac{1}{2}} \mathrm{ft}\). dist. ; and raise a monnd of earth, 4 ft . base, 2 it high, W. of cor.
From this point, the old sec. cor., a post, bears N. 50 E., 41 lks. dist. I destroy the cor.
Land, level prairie.
Soil, rich loam; 1st rate.
No timber.
```


N. 0 . 3^{\prime}., bet. secs. 19 and 24.

Over level prairie.
Set an oak post, 3 ft . long, $\mathfrak{b i n s}$. sq., with charred stake, 24 ins. in the gronnd, for $\frac{1}{4}$ sec, cor., marked $\frac{1}{4} \mathrm{~S}$. on W. face; dig pits, $18 \times 18 \times 12$ ins., N. aud s. of post, 3 t't. dist.; and raise a monnd of earth, $3 \frac{1}{2} \mathrm{ft}$. hase, $1 \frac{1}{2} \mathrm{ft}$. high, W. of eor.
From this point, the old $\frac{1}{4}$ sec. cor., a decayed post, bears N. $51 \frac{1}{3}$ E., 47 liks. dist. I destroy this post, and marks on old hearing trees.
rent, conrse N. W1.
Set a limestone, $18 \times 8 \times 5$ ins., 12 ins. in the gromd, for eor. of sers. 13 , 18,19 and 24 , marked with 3 notches on N. and S. edges; dig pits, $18 \times 18 \times 12$ ins.. in each ser., $5 \frac{1}{2} \mathrm{ft}$. dist. ; and raise a monnd of earth, 4 ft . base, 2 ft . high, W . of cor.
Aftrr diligent search no signs of the old cor. can he found.
Land, level prairie.
Soil, rich loam; 1st rate.
No timber.
N. $0^{\circ} 3^{\prime}$ W., bet. sees. 13 and 18 .

Qver prairie land.
Coon Creek, 60 lks . wide, 2 ft . deep, good water, course W.
Set a cedar post, 3 ft . long. 3 ins, $s \mathrm{c}$., with quart of charcoal, 24 ins . in the gronnd, for $\frac{1}{4}$ sec. cor. marked $\frac{1}{4} \mathrm{~s}$. on II°. face ; dig pits, $18 \times 18 \times 12$ ins., N. and S. of post, $: 3 \mathrm{ft}$. dist. ; and raise a monnd of earth, $3_{\frac{1}{3}} \mathrm{ft}$. hase, $1 \frac{1}{3} \mathrm{ft}$. high, W. of cor.
I cin find no traces of old cor. post, but find slight traces of pits N. 86 E. 46 lks. dist., which 1 destroy.
Sut a limestone, $20 \times 8 \times+$ ins., 17 ins, in the ground, for cor. of sees. 7 , 12,13 and 18 , marked with 2 notches on N. and 4 notches on S. edges; dig pits, $18 \times 18 \times 12$ ins., in each see., st $\frac{1}{2}$. dist.; and raise a nomed of earth, 4 ft. base, 2 fr. high, W. of cor.
The whe cor. whirh was a post, has disappeared, but indistinct remains of the pits, nearly in their proper places, still remain. The new pits sufficiontly obliterate the old ones.
Land, gently molling parie.
Soil, rich loam; 1st rate.
No timlier.
April12, 1892: I set off 96^{\prime} N., on the deel. are; and at $12^{\mathrm{h}} 0.3^{\mathrm{m}} \mathrm{p} . \mathrm{m}$., 1. m. t., observe the smon the meridian; the resulting lat., is $47^{\circ} 35^{\prime} \mathrm{N}$.

N. $0 \times 3^{\prime}$ W'. , bet. sees. 7 and 12.

Over prairie land.
17. 50 Maple Creek, 10 lks wille, 1 ft . Ileep, good water, gentle current, course S. W.

181

Resurcey of the E. brly. of T. 2.j N., R. \sim W., etc.-Continued.

$\begin{gathered} \text { Chains. } \\ 40.00 \end{gathered}$	Set a cedar post, 3 ft. long, 3 ins. sg., with charred stake, 24 ins. in the gromnd, for $\frac{1}{4}$ sec. cor., marked $\frac{1}{4} \mathrm{~S}$. on W. face; dig pits, $18 \times 18 \times 12$ ins., N. and S. of post, 3 ft . dist.; and raise a mound of earth, $3 \frac{1}{2} \mathrm{ft}$. base, $1 \frac{1}{2} \mathrm{ft}$. high, W. of eor.
80.00	Set a limestone, $20 \times 8 \times 5$ ins., with marked stone. 24 ins. in the ground, for cor of sees. $1,6,7$, and 12 , marked with 1 notch on N. and 5 notches on s. edges ; dig pits, $18 \times 18 \times 12$ ins., in eael sec., $5 \frac{1}{2}$ ft dist.; and raise a momnd of earth, 4 ft . base, 2 ft . high, W. of cor. The old eor. which was a post, has been entirely destroyed by fire, no sigus of pits. Land, level prairie. Soil, rich loam; 1st rate. No timber.

April 12, 1892: At 4 p. m., l. m. t., I set off $47^{\circ} 36^{\prime}$ on the lat. are; - $^{\circ}$, on the decl. are; and determine a true meridian, at the cor. of secs. 1, 6, 7, aud 12.
Thence 1 run
N. $0^{\circ} 3^{\prime}$ W., bet. secs. 1 and 6 .

Over prairie land.
10.40

A spring branch, 3 lks . wide, good water, course S. $70^{\circ} \mathrm{W}$.
22.00 Spring of pure water, 3 ft . dian., 2 ft . deep, bears E., 6.00 chs. dist.
40.00 Set a locust, post, 3 it. loug, 3 ins. sy., with quart of charcoal, 24 ins. in the grounll, for $\frac{1}{4}$ sec. eor., marked $\frac{1}{4} \mathrm{~S}$. , on W. face.; dig puts, $18 \times 18 \times$
12 ins., N. and S . of post, 3 ft . dist.; and raise a mond of earth, $3 \frac{1}{2}$ ft . base, $1 \frac{1}{2} \mathrm{ft}$. high, W. of cor.
After diligent search no ohd $\frac{1}{4}$ sec. cor. can be found.
The old cor. of Tps. 25 and 26 N., Rs. 1 and 2 W ., which is an oak post, burned off at the surface of the ground. I reeistablish the cor. at the same point, as follows: Set a cedar post, $\ddot{3} \mathrm{ft}$. long, $4 \mathrm{ins} . \mathrm{s}$. ., with charred stake and the old post, 24 ins. in the ground, for cor. of Tps. 25 and 26 N., Rs. 1 and 2 W . marked
T. 26 N., S. 31 on N. E.,'
R. 1 W., S. 6 ous. E.,
T. 25 N., s. 1 ous. W., and
R. 2 W., s. 36 on N. W. faces; with 6 notches on each edge; from which
A eherry, 6 ins, diam., bears N. 402° E., 14 kks . dist., marked T. 26 N., R. 1 W., s. 31, B. T.

A white oak, 5 ius. diam., bears S. $51 \frac{1}{4}{ }^{\circ}$ E., 24 lks . dist., marked T. 25 N., R. 1 W., s. 6, B.'T.
A hickory, 8 ins. diam., bears S. 371° W., 30 lks . dist., marked T. 25 N., R. 2 W., S. 1, B. T.
A chestnut, 6 ins. diam., bears N. $52{ }^{9} \circ$ W., 13 lks. dist., marked T. 26 N., R. 2 W., S. 36, B. T.
Land, level.
Soil, rieh loan, 1st rate.
Timber, oak, hickory, and chestunt.
April 12, 1892.

The field notes of the subdivision of this township read in part as follows:
"N. $89^{\circ} 57^{\prime}$ W., on a random line bet. secs. 7 and 18.
Set temp. $\frac{1}{4}$ sec. cor.
79.61

The cor. of secs. 7, 12, 13, and 18 can not be found.
I find the $\frac{1}{4}$ sec. cor. bet. secs. 13 and 18 , whieh is a locust post, 1 ft . high,
3 ins. si_{1}, marked and witnessed as deseribed by the surveyor general.
Thence I run
North, on a random line bet. secs. 13 and 18.

Resurvey of the E. brty. of T. 25 N., R. 2 W., etc.-Concluded.

Chains.
40.00
79.95

Set temp. sec. cor. At this point I again make carefnl search for the see, cor., which is described by the surveyor general, as a post, with pits and monud of earth W. of cor., bnt am mable to find any traces of' post, pits, or monnd. 'Thence, bet. sees. 7 and 12.
Intersect E. and W. line, 5 ks . E. of the $\frac{1}{4}$ sec. cor. bet. secs. 7 and 12 , which is a sandstone, $\overline{5} \times 10 \times 4$ ins.above ground, marked and witnessed as described by the surveyor general.
Thence I rum
S. $0^{\circ} 2^{\prime}$ E., on a true line bet. secs. 7 and 12.

Over rolling laud.
$: 88.00$ Fence, hears E. and W.. enter plowed gromud.
39. $97 \frac{1}{2}$ Reëstablish the cor. as follows:

Set a cedar post, 3 ft . long, 4 ins. sq.. with marked stone, 24 ins. in the ground, for cor. of secs. 7, 12, 13, and 20, markerl
T. 25 N.S. 7 on N.E..
R. 2 W. S. 18 on S. E.,
S. 13 on S. W., and
R. 3 W.. S. 12 on N. W. faces; with 2 notehes on N. and 4 notches on S. erlges: dig pits, $18 \times 18 \times 12$ ins., in each sec., $5 \frac{1}{2} \mathrm{ft}$. dist.; and raise a mound of earth, 4 ft . hase, 2 tt . high, W. of cor.

April 18, 1892."

SPECIMEN FIELD NOTES.
No. 5.
TITLE PAGE.
(See Plate IV.)

FIELD NOTES
 OF THE SURVEX OF THE
 SUbdivision and lieander lines
 OF

Townshly No. 15 North, Range No. 20 East, of the

PRINCIPAL BASE AND MERIDIAN in the STATEOF MONTANA, As surveyed by

ROBERTACRES, U. S. DEPUTY SURVEYOR,

UNDER HIS CONTRACT, No. 207, DATED MARCH 22, 1893.

Survey commenced August 4, 1893. Survey completed August 19, 1893.
[Second page.]

NAMES AND DUTIES OF ASSISTANTS.

Peter Long	Chaimman.
John Short	Chainman.
Cyrus Clay	Moundman.
Henry Rock	Monndman.
George sharip	Axman.
Adam Dull	Axman.
James Banner	Flagman.
Edward Ensilin	Flagman.

INDEX.

Township 15 north. R. 20 east.

Note.-When practicable, the diagram will show meander lines with the page references written apon them.

[Third Page.]

PRLILIMINARY OATHS OF ASSISTANTS.

We, Peter Long and John Short, do solemnly swear that we will well and faithfully execute the duties of chaimmen; that we will level the chain over even and uneven gromnd, and plumb the tally pins either by sticking or dropping the same; that we will report the true distances to all notable objects, and the true lengths of all lines that we assist in measuring, to the best of our skill and ability, and in accordance with instructions given us in the survey of the snbdivision and meander lines of Township No. 15 North, of Range No. 20 East, of the Principal Base and Meridian in the State of Montana.

> Peter Long, Chiminan. John Short, Chaimman.

Subscribed and sworn to before me this second day of August, 1893.
[SEAL.]
Henry Doolittle, Notary P'ublic.

We, Cyrus Clay and Henry Rock, do solemnly swear that we will well and truly perform the duties of monndmen, in the establishment of corners, according to the instructions given us, to the best of our skill and ability, in the survey of the sul)division and meander lines of Township No. 15 North, of lange No. 20 East, of the Principal Base and Meridian in the State of Montana.

Cyrus Clay, Moundman. Hexry Rock, Moundman.
Sulscribed and sworn to before me this second day of A:!gnst, 1893. [seal.]

Henry Duolittie, .Votary Public.

We, George Sharp and Adam Dull, do solemnly swear that we will well and truly perforn the duties of axmen in the establishment of corners and other duties, according to instructions given to us, and to the best of our skill and ability, in the survey of the subdivision and meander lines of Township No. 15 North, of Range No. 20 East, of the Principal Base and Meridiau in the State of Montana.

George shatr, itman.
Adam Dull, Ammen.
Subscribed and sworn to before me this second day of Angust, 1893.
[seal.] Henry Doolittle,

- Notary I'ablic.

I, James Banner, do solemnly swear that I will well and truly perform the duties of llagman according to instructions given me, to the best of my skill and ability, in the survey of the subdivision and meander lines of Township No. 15 North, of Range No. 20 East, of the Principal Base and Meridian in the state of Montana.

James lianner, Flagman.
Subseribed and sworn to before me this second day of Augnst, 1893.
[seal..]
Henry Doolittle,
Notary P'ublic.
I, Edward Ensign, do solemnly swear that I will well and truly perform the duties of thaman according to instructions given me, to the best of my skill and ability, in the survey of the subdivision and meander lines of 'Township No. 15 North, of Range No. 20 East, of the Principal Base and Meridian in the State of Montana.

Edward Ensign, Flagman.
Subscribed and sworu to before me this eleventh day of Angust, 1893.
Robert Acres, U. S. Deputy Surveyor.

Abstract

Chains. Survey commenced August 4, 1893, and executed with a Young \& Sons light mountain transit, No.-, with solar attachment. The horizontal limb is provided with two donble veruiers placer opposite to each other, reading to single minutes of arc, which is also the least count of the verniers of the latitude and declination ares. The instrument was examined, tested on the true meridian at Helena, found correct, and was approved by the surveyor general for Montana, Augnst 1, 1893. I examine the adjustments of the transit, and correct the level and collimation errors;* then, to test the solar apparatus, by comparing its indicatious, resulting from solar olservations made during a. m. and p. m. liours, with a true meridian determined by observations on Polaris, I proceed as follows: At the cor. of Tps. 14 and $15 \mathrm{~N} .$, Rs. 20 and 21 E .; latitude $45^{\circ} 45^{\prime}$ N., longitude $107^{\circ} 5 t^{\prime} \mathrm{W}$.; I set off $45^{\circ} 45^{\prime} \mathrm{N}$., on the lat. are; $17^{\circ} 1^{\prime} \mathrm{N}$., on the decl. are; and, at $4^{\mathrm{b}} 6^{\mathrm{m}}$ p. m., l. m. t., determine with the solar a true meridian and mark a point thereof, on a stone firmly set in the ground, 5 chs. N. of the cor. At $10^{\text {li }} 24^{\text {m }} 3 \mathrm{p}$. m. by my watch, which is $3^{\text {ma }} 43^{\text {s }}$ slow of l. m. t., I observe Polaris at eastern elongation, in accordance with Manual of Instrnctions, \dagger anl mark a point in the line thus determined, on a plug driven in the ground, 5 chs. N. of my station.

Augnst 4, 1893.

August 5: At $6 \mathrm{a} . \mathrm{m} ., 1 \mathrm{~m} . \mathrm{t}$., I lay off the azimuth of Polaris, $1^{\circ} 48^{\prime}$, to the west, and mark the true meridian thus determined, by cutting a small groove in the stone set Augnst 4, on which the true meridian falls 0.4 ins. cast of the mark determined by the solar.

At $8^{\text {ha }} 6^{\text {ni }}$ a. m., l. m. t., 1 set off $45^{\circ} 45^{\prime}$, on the lat. are; $16^{\circ} 50^{\prime}$ N., on the decl. are; and mark a point in the true meridian determined with the solar, by a cross ou the stone already set 5 chs. N. of my station; this mark falls 0.3 ins. east of the true meridian established by the Polaris observation. \ddagger
The solar apparatus, by p.m. and a. m. observations, defines positions for true meridians, respectively about $0^{\prime} 21^{\prime \prime}$ west \S and $0^{\prime} 16^{\prime \prime}$ east \S of the meridian established by the Polaris observations; therefore, I conclude that the adjustments of the instrument are satisfactory.
The magnetic bearing $\left\|\|\right.$ of the true meridian, at $8^{\mathrm{b}} 30^{\mathrm{m}}$ a. m., is N. $18^{\circ} 15^{\prime}$ W.; the angle thus determined, reduced by the table, page 100 , gives the mean mag. decl. $18^{\circ} 10^{\prime} \mathrm{E}$.

From the Tp. cor. already described, I run
North, on the 5th Guide Meridian and E. bdy. of sec. 36; and, at 40.01 chs., intersect the $\frac{1}{4}$ sec. cor.; and, at 79.98 chs., fall 1 lk . W. of the cor. of sees. $25,30,31$ and 36 ; therefore, the line bears north.
From the Tp. cor. I ruu N. $89^{\circ} 57^{\prime}$ W., on the S. bdy. of sec. 36 ; at 39.99 chs., fall $0 \frac{1}{2} \mathrm{lk}$. N. of the $\frac{1}{4} \mathrm{sec}$. cor.; and at 80.01 chs. fall 1 lk . S. of the cor. of secs. 1, 2, 35, and :6, on S. bdy. of the Tp.; consequently, the S. bdy. of the sec. 36 bears N. $89^{\circ} 57^{\prime}$ W.
Therefore, the bearings are as stated by the surveyor general, and my chaining practically agrees with the field notes of the original survey.
*The instrument will not necessarily be in arljustment at the beginning of the survey because it was found corvect when approved by the surveyor general. The deputy should clearly understand that he is required to know that his instrument is in aljustment whon he commences work and at all other times when he employs said instrument to determine directions aud run lines, from proper observations personally couducted.
i See page 105 .
\ddagger The observations bere recorded have a twofold object; first, to determine a true meridian; second, to test the solar apparatus theroon. When a transit is employed, truemeridians. determined by Polaris observations, will be regarded as reference, or directing limes of the survey; and from them all other directions and bearings will be initiated by angular measurcments on the horizontal limb of the instrument.
§To detcrmine these small angles in seconds of arc, divide the fallings, expressed in inches, by 0.019 (See foot note, page 154.)

II When this magnetic bearing shall have been taken, the deputy will have no further use for the maqnetic needle on this surver, and it might be removed from the compass box, and left in camp, without affecting the subdivision of the township in any manner.

Subdivision of T. 15 N., R. 20 E.-Continued.

S. $89^{\circ} 57^{\prime}$ E., on a random line bet. secs. 25 and 36.

Set temp. $\frac{1}{4}$ sec. cor.
Intersect E. bdy. of Tp. 3 lks . N. of cor. of secs. $25,30,31$, and 36 , which is a sandstone, $5 \times 8 \times 5$ ins. above ground, marked and witnessed as described by the surveyor general.
Thence I run
N. $89^{\circ} 56^{\prime}$ W., on a true line bet. secs. 25 and 36.

Over level bottom land, through scattering timber.
13.00

Leave scattering timber, bears N. and S.
18. 60 Cherry Creek, 12 lks . wide; clear water, 1 ft . deep; gentle current, sandy bottom; course N.
20.50

Snter heavy timber, bears N. and S.

Chains.
32. 50 Leave heavy timber, bears N. W. and S. E.
39.98 Deposit a quart of charcoal, 12 ins. in the ground, for $\frac{1}{4}$ sec. cor.; dig pits, $18 \times 18 \times 12$ ins., E. and IV . of cor., 4 ft . dist.; and raise a mound of earth, $3 \frac{1}{2}$ ft. base, $1 \frac{1}{2} \mathrm{ft}$. high, over deposit. In E. pit drive a cedar stake, 2 ft . long, 2 ins. sq., 12 ins. in the ground, marked $\frac{1}{4} \mathrm{~s}$. on N. face.
46.50 Enter heavy timber, bears N. and S.
76.00 Leave heavy, enter scattering timber, bears N. 25° E. and S. $25^{\circ} \mathrm{W}$.
79.96 The cor. of secs. $25,26,35$, and 36 .

Land nearly level; mostiy subject to overflow 2 to 5 ft . deep.
Heavily timbered land, 41.50 chs.
N. $0 \quad 1^{\prime}$ W., bet. sees. 25 and 26 .

Over level bottom land, throngh scattering timber.

Enter shallow channel, 1 to 2 ft . deep.
Across shallow channel, 64 lks . wide, to sand bar parallel to river bank; thence on sand bar.
32. 12

To right bank of wain channel, course E. ; point for triangulation.
40.00

Point for $\frac{1}{4}$ sec. cor. falls in river.
To determine the dist. across, I set a flag on line, on left bank; then measure a base, N. $89^{\circ} 59^{\prime}$ E., 20.00 chs. to a point, from which the flag bears N. $49^{\circ} 06^{\prime}$ W.; from the flag the E. end of base bears S. 49° $6^{\prime} \mathrm{E}$.; therefore, the dist. is tan. $40^{\circ} 55^{\prime} \times$ base, or $0.867 \times 20.00=17.34$ chs.;* making the whole distance from meander cor., $0.64+6.12+$ $17.34=2.10$ chs., which added to 25.36 , makes
To left bank of Yellowstone River; bank, 12 ft . high.
Deposit a marked stone, 12 ins. in the ground for meander cor. of fracl. sees. 25 and 26 , dig a pit, $36 \times 36 \times 12$ ins., 5 ft . N. of cor. and raise a mound of earth, 4 ft . base, 2 ft . high, over deposit.
In the pit drive a cedar stake, 2 ft . long, 2 ins. sq., 12 ins. in the ground, marked
M. C. on S.,
T. 15 N . on N.,
R. 20 E., S. 26 on W., and
S. 25 on E. faces.

Thence over level bottom land. Some small cottonwoods, none within limits suitable for bearing trees.
Leave bottom, begin ascent, hears E. and W.
53.60 Top of aseent and edge of samdy plain, 40 ft . above river, bears E . and W .
Wire fence, bears E . and W .
55.70
62.80
80.00

Telegraph line, bears E. and W.
Sct a cedar post, 3 ft . long, 4 ins. sif., with marked stone, 24 ins. in the gromid, for cor. of secs. $23,24,25$, and 26 , marked
T. 15 N., S. 24 on N. E.,
R. 20 E., S. 25 on S.E.,
S. 26 on S. W., and
S. 23 on N. W. fares; with 2 notches on S. and 1 noteh on E. edges; dig pits, $18 \times 18 \times 12$ ins. in cach see. $5 \frac{1}{2}$ ft. dist. ; and raise a mound of earth, 4 ft . base, $\bullet \mathrm{ft}$. high, W. of cor.
Land, level.

Subdivision of T. 15 N., R. 20 E.-Continued.

Chains. Soil, allnvial and sandy; 1st and ond rate.
Timber, cottonwood aud syeamore.
Angust \%: At this cor. I set oft $16-47^{\prime}$ N., on the decl. are; and, at $0^{h_{1}}$ Gin $^{\prime \prime \prime}$ P.m., l. m. t., observe the snn on the meridian; the resulting lat. is 45 $5^{\prime} .0$ or about $0^{\prime} .3$ greater than the proper lat.

Set temp. $\frac{1}{4}$ sec. cor.
 is a sandstone, $5 \times 9 \times 4$ ins.above gromm, marked and witnessed as described by the surveyor general.

Thence I run

N. $899^{\circ} 55^{\prime} 1 V$., on a true line bet. secs. 24 and 25.

Over level land.
20.00 Fletcher's Station hears S. 64 W.
39.99 Set a cedar post, 3 ft . long, 3 ins. sq., with marked stone, 24 ins . in the ground, for $\frac{1}{4}$ sec. cor., marked $\frac{1}{4} \mathrm{~S}$. on N. fire; dig pits, $18 \times 18 \times 12$ ins., E. and W. 3 ft . dist. ; and raise a monnd of earth, $3 \frac{1}{2} \mathrm{ft}$. base, $1 \frac{1}{2}$ tit. high. N. of cor.
Fletrher's Station bears S. 7 E.
58.00

Short Creek, 3 lks. wide, alkali water, 8 ins. deep, conrse S. $20^{\circ} \mathrm{E}$.
7!. 98 The cor of secs. 23, 24, 25, and 26 .
Land, level.
soil, samly ; 3rd rate.
No timber.
N. 0 1' W., bet. sees. 23 and 24.

Orer level land.
21. 00 Enter alkali flat, hears N. 70 W . and S. 70 E .
40.00 Set it sandstone, $16 \times 8 \times 16$ ins., 11 ins. in the gromnd, for $\frac{1}{4}$ sec. cor, marked $\frac{1}{4}$ on W . face; dig pits, $18 \times 1 \times \times 12$ ins., N . and S . of stone, 3 f^{\prime}. dist.. and raise a mound of earth, $3 \frac{1}{2} \mathrm{ft}$. base. $1 \frac{1}{2} \mathrm{ft}$. high, W. of cor. Alkali flat extends abont 65.00 chs. E. and 35.00 chs. ${ }^{W}$.
Leave alkali Hat, bears E. and W.
78.0n Alkali creek (dry), course E.
80.00 Set a samdstome, $20 \times 7 \times 5$ ins., 15 ins. in the grommd, for cor. of secs. $13,14,23$ and $\because 4$, marked with 3 notehes on S. and 1 noteh on E. edges; dig pits, $18 \times 18 \times 12$ ins., in each sec., $5 \frac{1}{2} \mathrm{ft}$. dist. ; and raise a monnd of earth, 4 ft . lase, '2 ft. high, W. of cor.
Lamd, leve!.
soil, samd! and alkali; th rate.
Notimber.
S. 89-55' E., on a random line, bet. sees. 13 and 24.

Over level, land.
40. 00 set temp. $\frac{1}{4}$ sec. cor.
80.01 Intersect E. bry. of the Tp. at the eor' of secs. 13, 18, 19. and 21, which is a locust post 1 ft . above ground, 4 ins. sq., marked and witnessed as described by the surveror general.
Thence 1 rum
N. $89055^{\prime} 11 .$. on a true line bet. secs. 13 and 24 .

Orer samdy alkali land.
$40.00 \frac{1}{2}$ Set a juniper post, 3 ft . long, 3 ins. sq., with marked stone, 21 ins. in the rround, for $\frac{1}{4}$ sece cor. marked $\frac{1}{4}$ s., on N. face; dig pits, $18 \times 18 \times 1$ ㄹ ins., E. and W^{\prime}. of pust, 3 ft . dist.; and raise a monnd ot earth, $3 \frac{1}{2} \mathrm{ft}$. base, $1 \frac{1}{2} \mathrm{ft}$. high, N. of cor.
The cor. of secs. $13,14,23$, and 21 .
Alkali creek (now dry), runs eastward about 4.00 chs. south of this line. Land, level.
Soil, alkali sand: the rate.
No timber.

Subdivision of T. 15 N., R. 20 E.-Continued.

Angust 5: At $4^{\text {b }} 35^{m}$ p. m.. l. m. t., I set off $45^{\circ} 49^{\prime}$ on the lat. are; 16 45' N., on the deel. are; and determine a true meridian with the solar, at the corner of sees. $11,12,13$, and 14 .
Thence 1 rmin
N. $0^{\circ} 1^{\prime}$ W., bet. sees. 11 and 12.

Ascend over rongh stony iromma sloping W.
11.00 Top of ascent, bears about N. $50^{\circ} \mathrm{V}$., and S. $50^{\circ} \mathrm{E}$.

Thenee over level land.
36. 60 Intersect W. bely of Rancho San Blas at a point from which the N. W. cor. of the rancho bears $N, 19 \frac{10}{\circ} \mathrm{~W} ., 7.40$ chs, flist.

Sublivision of T. 15 N., R. 20 E.-Contimued.

[^65]Subrivision of T. 15 N., R. 20 E.-Continued.

```
Chains. N. 0- 1' W... on a ramdom line bet. secs. 1 and 2.
    40.00 Set temp. \frac{1}{4}\mathrm{ see. cor.}
    79.77 Intersect N. bly. of Tp. at cor. of secs. 1, 2, 35, and 36, which is a lime-
        stone, 6\times6\times5 ins., above gromm, marked and witnessed as deseribed by
        the surveyor general.
    Thence l rma
    S. 0-1'E., on a true line bet. secs. 1 and 2.
    Over rolling land.
    30.50 Ravine, 3.50 chs. wide, 30 ft. dee], comrse N. }70\mathrm{ l. 
    39.77 Deposit a marked stone, 12 ins. in the gromm, for \frac{1}{4} sec. cor.; dig pits,
        18\times18\times12 ins. N. and S. of cor., 4 ft. dist.; and raise a mound of
        earth, 3\frac{1}{4}\textrm{ft.}\mathrm{ base, 1. ft. high, over deposit.}
    In s.pit drive a cedar stake, 2 ft. long, 2 ins. sq., 12 ins. in the ground
        marked \frac{1}{4}\mathrm{ S. on W. face.}
    The cor. of secs. 1, 2, 11, and 12.
    Land, rolling.
    Soil. clay and loam; 3rd and 4thrate.
    No timber.
    Aug. 5, 1893.
From the cor. of secs. \(2,3,34\), and 35 , on S . bely. of the \(\mathrm{T}^{1}\)., which is a locust post, 4 ins. sq., 12 ins. high, marked and witnessed as described by the surveyor general, I rm
N. \(0^{c} 2^{\prime}\) W., bet. sees., 34 and 35.
Over local bottom land.
S. \(8957^{\prime}\) E.. on a random line bet. secs. 26 and 35.
set temp. \(\frac{1}{4}\) sec. cor.
48.13 To left bank of Yellowstone Riser, set temp. meander cor.

To determine the dist. arross*, I set a flag on line on right bank of the river; thon measure a hase lines. \(22^{\circ} 58^{\prime} \mathrm{E} .15 .00\) clas. to a point, whence the flag bears N. \(41^{\circ} 47^{\prime} \mathrm{E}\). From the flag the S . end of the base bears S. \(41-47^{\prime} \mathrm{W}\).; therefore the angles taken in order of measurement aro respectively \(66^{\circ} 59^{\prime}, 64^{\circ} 48^{\prime}\), and \(48^{\circ} 16^{\prime}\); their sum being \(180^{\circ} 03^{\prime}\), or \(3^{\prime}\) too great. I liminish each angle by one-third of the excess and eompute the distance across the river, as follows:
\[
\sin 64^{\circ}+7^{\prime} \times \text { base, or } \frac{0.90^{-}}{0.746} \times 15=18.19 \text { chst. ; also, }
\]

\section*{\(48.13+18.19\) makes}
66.32

To right bank of river; set temp, meandor cor.
80.06 Intersect N . and N . line, 3 lks . H . of cor of sec's. \(25,26,35\), and 36 ; thence 1 rin
N. \(89^{\circ} 58^{\prime} \mathrm{W}^{\prime}\)., on a true line het. secs. 26 and \(3 \overline{3}\).

\footnotetext{
* The triangulation will alwars be mate on the random line when a random line is run. See page 61: and llate II, fig. 4.
† See page 136,
}

\section*{Subrlivision of T. 15 N., R. 20 E.-Continued.}

N. \(0^{\circ} 2^{\prime}\) W., bet. secs. 26 and 27.

Over nearly level land.
4. 50 Road from Monud City to Lake City, bears N. \(65^{\circ}\) W. and S. \(60^{\circ}\) E.

Set a locust post, 3 ft . long, 3 ins. \(8 q\), with marked stone, 24 ins . in the gromnd, for \(\frac{1}{4}\) sec. cor. Marked \(\frac{1}{4}\) s. on W. face; dig pits, \(18 \times 18 \times 12\) ins., N. and S . of post, 3 ft . dist. ; and raise a monnd of earth, \(3 \frac{1}{2} \mathrm{ft}\). base, \(1 \frac{1}{2} \mathrm{ft}\). high, W. of cor.
44. 20

Telegraph line, bears N. \(70^{\circ} \mathrm{E}\). and S. \(70^{\circ} \mathrm{W}\).
48.50

Spring branch, 2 lks. wide, course S.E.; flows from a spring of pure water, 3 ft diam., 2 ft derp, which bears N. \(63^{\circ} \mathrm{W} ., 4.00\) chs. dist.

Set a cedar post, 3 ft . long, 4 ins. sq., with marked stone, 24 ins. in the gromend, for cor. of sees. \(22,23,26\), and 27 , marked
T. 15 N., S. 23 on N.E.,
R. 20 E., S. 26 on S.E.,
S. 27 on S.W., and
S. \(2 \cdot\) on N.W. faces; with 2 notches on S. aud E. edges; dig pits, \(18 \times 18 \times 12\) ins., in each sec., \(5 \frac{1}{2} \mathrm{ft}\). dist.; and raise a mound of earth, 4 ft . base, 2 ft . high, W. of cov.
Land, level.
Soii, sindy loam; 1st and 2 nd rate.
No timber.
S. \(89^{\circ} 58^{\prime}\) E., on a random line bet. secs. 23 and 26.
80.01

Set temp. \(\frac{1}{4}\) sec. cor.
Intersect N. and S. line, 5 lks . N. of cor. of secs. 23, 24, 25, and 26.
Thence I rum
N. \(89^{\circ} 56^{\prime}\) W., on a true line bet. secs. 23 and 26.

Over level land.
\(40.00 \frac{1}{2}\) Deposit a quart of charcoal, 12 ins. in the gromul, for \(\frac{1}{4}\) sec. cor.; dig pits, \(18 \times 18 \times 12\) ins., E. and W . of cor., 4 ft . dist.; and raise a mound of eartl, \(3 \frac{1}{2} \mathrm{f}^{\prime t}\). base, \(1 \frac{1}{2} \mathrm{ft}\). high, over deposit. In E. pit drive a cedar stake, 2 ft . \(\operatorname{long}, 2\) ius. sq., 12 ins. in the gromnd, marked \(\frac{1}{4} \mathrm{~S}\)., on N . face.
Road from Mound City to Lake City, bears N. \(50^{\circ}\) E. and S. \(50^{\circ} \mathrm{W}\).; wire fence bears S. \(53^{\circ} \mathrm{E}\).
80.01 The cor. of secs. 22, 23, 26, and 27.

Subdivision of T. 15 N., R. 20 E.-Continued.
\begin{tabular}{|c|c|}
\hline Chains. & \begin{tabular}{l}
Land, level. \\
Soil, sandy loam; 1st and 2nd rate. No timber.
\end{tabular} \\
\hline & N. \(0^{\circ} 2^{\prime}\) W., bet. secs. 22 and 23. Over nearly level land. \\
\hline 37. 50 & Old Military Road, bears N. \(65^{\circ} \mathrm{W}\). and S. \(65^{\circ} \mathrm{E}\). \\
\hline 40.00 & Set a limestone, \(15 \times 8 \times 5\) ins., 10 ins . in the ground, for \(\frac{1}{4}\) sec. cor., marked \(\frac{1}{\frac{1}{2}}\) on W . face; and raise a momnd of stone, 2 ft . base, \(1 \frac{1}{2} \mathrm{ft}\). high, W. of cor. Pits impracticable. \\
\hline & Begin ascent of steep slope, over stony ground. \\
\hline 55.00 & Top of ascent and elge of table land, 90 ft. above \(\frac{1}{4}\) sec. cor., bears E. and W.; thence, over hard mesa. \\
\hline 80.00 & \begin{tabular}{l}
Set a limestone, \(16 \times 9 \times 4\) ins., 11 ins. in the gronnd, for cor. of secs. 14 , 15, 22, and 23, marked with 3 notches on S. and 2 notches on E. edges; and raise a mound of stone, 2 ft . base, \(1_{\frac{1}{2}} \mathrm{ft}\). high, W. of cor. Pits impracticable. \\
Land, level. except ascent of mesa. \\
Soil, sandy loam on first half mile, remainder gravelly and stony; \(2 d\) and 4th rate. \\
No timber.
\end{tabular} \\
\hline 40.00 & S. \(89^{\circ} 56^{\prime}\) E., on a random line bet. secs. 14 and 23. Set temp. \(\frac{1}{4}\) sec. cor. \\
\hline \multirow[t]{3}{*}{79.81} & Intersect N. and S. line, 7 lks . N. of cor. of secs. 13, 14, 23, and 24. \\
\hline & Thence I run \\
\hline & N. \(89^{\circ} 53^{\prime}\) W., on a truc line bet. secs. 14 and 23 \\
\hline 13.00 & Begin steep rocky ascent to mesa, bears N. and S.. \\
\hline 20.00 & Top, of ascent and edge of mesa, 80 ft . above sec. cor., bears N. and S. \\
\hline 39.92 & Set a sandstone, \(14 \times 8 \times 6\) ins., 10 ins. in the ground, for \(\frac{1}{4}\) sec. cor. marked \(\frac{1}{4}\) on N . face; and raise a mound of stone, 2 ft . base, \(1 \frac{1}{2} \mathrm{ft}\). high, N. of cor. Pits impracticable. \\
\hline \multirow[t]{4}{*}{79.84} & The cor. of secs. \(14,15,22\), and 23. \\
\hline & \\
\hline & Soil, hard and gravelly ; 4th rate. No timber. \\
\hline & N. \(0^{\circ} 2^{\prime}\) W., bet. secs. 14 and 15. Over level mesa. \\
\hline 9.50 & Edge of mesa, bears N. \(80^{\circ} \mathrm{E}\). and S. \(80^{\circ} \mathrm{W}\). ; begin steep descent over rocky ground. \\
\hline 13.00 & Foot of descent, 60 ft . below mesar ; enter cedar timber, bears E. and W. \\
\hline 18.00 & Leave cedar timber, bears E. and W.; begin ascent. \\
\hline 21.70 & Top of round butte, 50 ft . high; thence, over level ground. \\
\hline 23.50 & Begin descent. \\
\hline 27.00 & Foot of descent, enter cedar timber, bears E. and W. \\
\hline 31.50 & Leave celar timber, bears E. and W. \\
\hline \multirow[t]{2}{*}{40.00} & Wood road, hears N. \(65^{\circ}\) E. and S. \(65^{\circ} \mathrm{W}\). \\
\hline & Deposit a quart of charcoal, 12 ins. in the ground, for \(\frac{1}{4}\) sec. cor.; dig pits, \(18 \times 18 \times 12\) ins., N. and S. of cor., 4 ft. dist.; and raise a mound of earth, \(3 \frac{1}{2} \mathrm{ft}\). base, \(1 \frac{1}{2} \mathrm{ft}\). high, over deposit. In S. pit drive a cedar stake, 2 ft . long, 2 ins. sq., 12 ins. in the ground, marked \(\frac{1}{4} \mathrm{~S}\). on W. face. \\
\hline 44.00 & Begin steep rocky ascent.
Ton of ascent and elge of mosa, 75 ft . above last \(\frac{1}{4}\) sec. cor., bears N . \\
\hline 44.00 & Top of ascent and enge of mesa, 75 ft . above last \(\frac{1}{4} \mathrm{sec}\). cor., bears N . \(70^{\circ} \mathrm{W}\). and S. \(70^{\circ} \mathrm{E}\). \\
\hline \multirow[t]{2}{*}{80.00} & Thence over hard mesa, gradually ascending. \\
\hline & \begin{tabular}{l}
Set a limestone, \(15 \times 8 \times 5\) ins., 10 ins. in the ground, for cor. of secs. 10 , 11, 14, and 15, marked with 4 notches on S. and 2 notches on E. edges; and raise a monnd of stone, 2 ft . base, \(1 \frac{1}{2} \mathrm{ft}\). high, W. of cor. Pits impracticable. \\
Land, level and broken.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Chains. & \begin{tabular}{l}
Soil, hard aud gravelly; 4th rate. \\
No timber. \\
August 7: At this cor. I set off \(16^{\circ} 14^{\prime}\) N. on the deel. are; and at \(0^{11} 6^{m 1}\) p. MI., l. m. t., observe the sun on the meridian ; the resulting lat. is \(45^{\circ}\) \(48^{\prime}\).
\end{tabular} \\
\hline 40.00 & S. \(89^{\circ} 53^{\prime}\) E., on a random line bet. sees. 11 and 14. Set temp. \(\frac{1}{}\) see. cor. \\
\hline 80.00 & \begin{tabular}{l}
Interseet N . and S . line, 10 ks . N . of the cor. of secs. \(11,12,13\) and 14. Thence I rum \\
N. \(89^{\circ} 49^{\prime}\) W., on a trme line bet. sees. 11 and 14. \\
Descend rapidly over stony ground and boulders.
\end{tabular} \\
\hline 7.50 & To bench, 110 ft . below sec. cor.; thence, over level bench, bears N . and S . \\
\hline 9.60 & Begin steep descent to caūon, bears N. and S. \\
\hline 14.50 & Foot of descent, 140 ft . below see. cor.; dry bed of stream in cañon, 15 lks. wide, water in holes, course S . \\
\hline 16.00 & Begin precipitons ascent to mesa. \\
\hline 19.50 & Top of ascent and edge of mesa, 190 ft .above bottom of eañon, bears N . and S.; thence, over hard, level ground. \\
\hline 40.04 & Set a limestone, \(15 \times 8 \times 6\) ins., 10 ins. in the ground, for \(\frac{1}{4}\) see. eor., marked \(\frac{1}{4}\) S. on N. face; and raise a mound of stone 2 ft . base, \(1 \frac{1}{2} \mathrm{ft}\). high, N. of cor. Pits impracticable. \\
\hline \multirow[t]{4}{*}{80.08} & The cor. of sees. \(10,11,14\), and 15. \\
\hline & \\
\hline & Soil, boulders and hard gravel; 4th rate. \\
\hline & \begin{tabular}{l}
No timber. \\
Mountainous land, 19.50 ehs.
\end{tabular} \\
\hline
\end{tabular}
N. \(0^{\circ} 2^{\prime}\) W., bet. secs. 10 and 11.

Over gradually ascending ground.
Ravine, 18 ft. deep, course S. \(30^{\circ}\) E.
30.50
.
Set a granite stone, \(16 \times 6 \times 6\) ins., 11 ins. in the ground, for \(\frac{1}{4}\) sec. cor. marked \(\frac{1}{4}\) on W . face; and raise a mound of stone, 2 ft . base, \(1 \frac{1}{2} \mathrm{ft}\). high, W. of cor. Pits impracticable.
This \(\frac{1}{4}\) sec. cor. stands on S. slope of ridge, 50 ft . above the sec. cor.
'Top of sharp rocky ridge, 20 ft . above the \(\frac{1}{4}\) sec. cor., bears N. \(75^{\circ}\) E. and S. \(75^{\circ} \mathrm{W}\).
43.50
48.50
53.00
\[
60.00
\]
80.00

Begin descent.
Foot of descent, 25 ft . below top of ridge, bears E. and W.; thence, ascend aloug S. E. slope of spur.
Enter heavy oak and pine timber, bears E. and W.
A point, 200 ft . above \(\frac{1}{4}\) see. cor. ; thence, descend into ravino, 50 ft . deep, comrse S. \(35^{\circ} \mathrm{E}\). ; ascend very steep slope to
A pine, 27 ins. dian., for cor. of sees. \(2,3,10\) and 11, I mark
T. 15 N., S. 12 on N. E.,
R. 20 E., S. 11 on S. E.,
S. 10 on S. W., and
S. 3 on N. W. sides; with 5 notches on S. and 2 notches on E. sides; from which
An oak, 12 ins. diam., bears N. \(22^{\circ}\) E., 17 lks. dist., marked T. 15 N., R. 20 E., S. 2, B. 'T.

A pine, 14 ins, diam., bears S. \(65 \frac{10}{20}\) E., 21 kks . dist., marked T. 15 N., R. 20 E., S. 11, B. T'.

A pine, 15 ins. diam., bears S. \(41_{\frac{1}{2}}{ }^{\circ}\) W., 27 lks . dist., marked T. 15 N., R. 20 E., S. 10, B. 'T.

An oak, 14 ins. diam., bears N. \(484^{\circ} \mathrm{W} ., 23 \mathrm{lks}\) dist., marked T. 15 N., R. 20 E., S. 3, B. 'T.
This cor. stands on a S. E. spur of the Little Snowy Mountains, 560 ft . above cor. of sees. \(10,11,14\), and 15.
Land, mountainous.
Soil, stony; 4th rate.
Timber, oak and pine.
Mountainous or heavily timbered land, 59.50 chs.

\section*{Subdivision of T. 15 N., R. 20 E.-Continued.}
\begin{tabular}{|c|c|}
\hline Chains. & S. \(89^{\circ} 49^{\prime}\) E., on a random line bet. sees. 2 and 11. \\
\hline 40.00 & Set temp. \(\frac{1}{4}\) sec. cor. \\
\hline 80.17 & \begin{tabular}{l}
Interseet N. and S. line, 23 lks . S. of the cor. of sees. 1, 2, 11, and 12. Thence I run \\
N. \(89^{\circ} 59^{\prime} \mathrm{W}\).. on a true line bet. sece. 2 and 11. Over rolling land.
\end{tabular} \\
\hline 19.00 & Enter heavy oak timber, bears N. \(10^{\circ} \mathrm{E}\). and S. \(10^{\circ} \mathrm{W}\). \\
\hline 19.90 & Branch, 4 liks. wide, course S. \(60^{\circ} \mathrm{E}\). \\
\hline 26.00 & Begin ascent of mountain spur, bears about S. \(20^{\circ} \mathrm{W}\). \\
\hline \(40.08 \frac{1}{2}\) & \begin{tabular}{l}
Top of spur, 80 ft . above sec. cor. \\
Set a eedar post, 3 ft . long, 3 ins. sq., 24 ins . in the ground, for \(\frac{1}{4}\) sec. cor., marked \(\frac{1}{4} \mathrm{~S}\). on N. face; from which \\
An oak, 11 ins. diam., bears S. \(54 \frac{10}{3}\) E., 24 lks. dist., marked \(\frac{1}{4} \mathrm{~S}\). B. T. \\
A pine, 13 ins. diam., bears S. \(36 \frac{1}{2}\) E., 18 lks. dist., marked \(\frac{1}{4} \mathrm{~S}\). B. T.
\end{tabular} \\
\hline & Thence along south side of spur. \\
\hline 57.00 & Leave heavy oak timber, hears N. and S. ; descend abruptly. \\
\hline 61.00 & Bottom of ravine, 40 ft . deep, course S .60 E. ; ascend very steep rocky slope. \\
\hline 71.00 & Enter heavy pine timber, bears N. E. and S. W. \\
\hline 80.17 & \begin{tabular}{l}
The cor. of secs. \(2,3,10\), and 11. \\
Land, mountainous. \\
Soil, rocky; 4th rate. \\
Timber, oak and pine. \\
Momtainous or heavily timbered land, 61.00 chs .
\end{tabular} \\
\hline
\end{tabular}
N. \(0^{\circ} 2^{\prime}\) W., on a random line, bet. secs. 2 and 3 .

Intersect N. bdy. of the Tp. 5 lks. W. of the cor. of sees. 2, 3, 34, and 35, which is a granite stone, \(5 \times 8 \times 5\) ins. above ground, marked and witnessed as described by the surveyor general.
August 7: At \(5^{\text {h }} 60^{m}\) p.m., l.m.t., I set off \(16^{\circ} 11^{\prime}\) N., on the decl.arc; \(45^{\circ} 50^{\prime}\), on the lat. are; and determine a true meridian with the solar, at the cor. of sces 2, 3, 34 , and 35 .
Thence I run
South, on a true line bet. secs. 2 and 3.
Over rolling ground on the summit of the southern end of the Little Snowy Mountains, \(1,200 \mathrm{ft}\). high.
Begin descent of eastern slope of momitain.
30.00 Head of ravine, 200 ft . below sec. cor., conrse S. \(60^{\circ}\) E.; thence, over broken gronnd.
Set a lava stone, \(17 \times 8 \times 5 \mathrm{ins}\)., 12 ins. in the gronnd, for \(\frac{1}{4}\) soc. cor. marked \(\frac{1}{4}\) on W. face; and raise a mound of stone, 2 ft . base, \(1 \frac{1}{2} \mathrm{ft}\). high, W. of cor. Pits impracticable.
Enter heavy pine timber; bears E. and W. ; descend rapidly.
54.00 Head of ravine, 170 ft . below \(\frac{1}{4}\) sec. cor., course S. E.; thence ascend over rough stony ridges.
80.15

The cor. of sees. \(2,3,10\), and 11 .
Land, mountainous.
Soil, rockr: 4th rate.
Timber, pino and oak.
Mountainons or heavily timbered land, 80.15 chs.
Angust 7, 1893.

From the cor. of secs. 3, 4, 33 and 34 , on S . boly. of the Tp., which is a cedar post, 4 ins. sq., 12 ins. high, marked and wituessed as described by the surveyor general, I run
N. \(0^{\circ} 3^{\prime} \mathrm{W}^{\prime}\)., bet. secs. 33 and 34 .

Over level land.
2. 00 Creck, 14 lks . wide, good water, course S. \(65^{\circ} \mathrm{E}\).
40.00 Set a cedar post, 3 ft . long, 3 ins. sq ., with quart of charcoal, 24 ins. in the gromml, for sec. cor. marked \(\frac{1}{4} \mathrm{~S}\). on W . face; ilig pits, \(18 \times 18 \times 12 \mathrm{ins}\)., N . and S. of post, 3 ft . dist., and raise a monnd of earth, \(3 \frac{1}{2} \mathrm{ft}\). base, \(1 \frac{1}{4}\) ft . high, W. of cor.

Subdivision of T. 15 N., R. 20 E.-Continued.
\begin{tabular}{|c|c|}
\hline \[
\begin{gathered}
\text { Chains. } \\
45.50 \\
60.00 \\
80.00
\end{gathered}
\] & \begin{tabular}{l}
Branch, 8 lks. wide, pure water, conrse N. \(60^{\circ}\) E.; enter meadow land. Leave meadow land, bears E. and Wr. \\
Deposit a quart of charcoal, 12 ins. in the ground, for cor. of sces. 27, 28, 33 , and 34 ; dig pits, \(18 \times 18 \times 12\) ins., in each sec., 4 ft . dist.; and raise a mound of earth, 4 ft . base, 2 it . high, orer deposit. In S. E. pit drive a cerlar stake, 2 ft . long, 2 ins. sq ., 12 ins. in the ground, marked \\
T. 15 N., S. 27 ou N.E., \\
R. 20 E., S. 34 on S.E., \\
S. 33 on S.W., and \\
Land, level. \\
S. 28 on N. W. faces; with 1 noteh on S. and 3 notches on E. edges. \\
Soil, riel loam; 1st rate. \\
No timber.
\end{tabular} \\
\hline 40.00
79.87 & \begin{tabular}{l}
S. \(89^{\circ} 57^{\prime}\) E., on a raudom line bet. sees. 27 and 34. \\
Set temp. \(\frac{1}{4}\) sec. cor. \\
Intersect N. and S. line, 3 lks . S. of the cor. of sees. 26, 27, 34, and 35. \\
Thence I ran \\
N. \(89^{\circ} 58^{\prime}\) W., on a raudom line bet. sees. 27 and 34. \\
Over level land.
\end{tabular} \\
\hline 39.932 & Set a limestone, \(20 \times 7 \times 5\) ins., 15 ins. in the ground, for \(\frac{1}{4}\) sec. cor., marked \(\frac{1}{4}\) on N. face; dig pits, \(18 \times 18 \times 12\) ins., E. and WV. of stone, 3 ft . dist.; and raise a monnd of eartli, \(3 \frac{1}{\frac{1}{2}} \mathrm{ft}\). base, \(1 \frac{1}{2} \mathrm{ft}\). high, N. of cor. \\
\hline \multirow[t]{2}{*}{79.87} & \begin{tabular}{l}
The cor. of sees. 27, 28, 33 and 34 . \\
Land, level. \\
Soil, sandy loam; 1st rate. \\
No timber
\end{tabular} \\
\hline & N. \(0^{\circ} 3^{\prime}\) W., bet. sees. 27 and 28. Over level land. \\
\hline 1. 70 & Branch, 7 lks wide, good water, course S. W. \\
\hline 3.30 & Same braucl, 7 lks . wide, course E. \\
\hline 27.40 & Telegraph line, bears E. and W. \\
\hline & Road from Monnd City to Lake City, bears N. \(73^{\circ} \mathrm{W}\). and S. \(73^{\circ} \mathrm{E}\). \\
\hline 40.00 & Set a locust post, 3 ft. long, 3 ins. sy., with marked stone, 24 ins. in the gromed, for \(\frac{1}{4}\) see. cor., marked \(\frac{1}{4}\) S. on W. face; dig pits, \(18 \times 18 \times 12\) ins.. N. and S. of post, 3 ft . dist.; and raise a monnd of earth, \(3 \frac{\mathrm{l}}{\mathrm{ft}}\). base, \(1 \frac{1}{2} \mathrm{ft}\). high, W. of cor. \\
\hline 80.00 & \begin{tabular}{l}
Set an oak post, 3 ft. long, 4 ins. sy., with charred stake, 24 ins. in the ground, for cor. of secs. \(21,22,27\) and 28 , marked \\
T. 15 N., S. 24 on N. E., \\
R. 20 E., S. 27 on S. E., \\
S. 28 on S. W., and \\
S. 21 on N. W. faces; with 2 notches on S. and 3 notehes on E. elges; dig pits, \(18 \times 18 \times 12\) ins., in eaeh sec., \(5 \frac{1}{2} \mathrm{ft}\). dist.; and \\
Land, level. raise a mound of earth, 4 ft . base, 2 ft . high, W . of cor. \\
Soil, sandy loam; 1st rate. \\
No timber.
\end{tabular} \\
\hline 40.00 & S. \(89^{\circ} 58^{\prime}\) E., on a random line bet. sees. 22 and 27. Set temp. \(\frac{1}{1}\) sec. cor. \\
\hline 79.89 & Interseet N. and S. line, 2 lks . S. of cor. of secs. \(22,23,26\) and 27. Thence I run \\
\hline & N. \(89^{\circ} 59^{\prime}\) W., ou a true line bet. sees. 22 and 27. Over level land. \\
\hline 39.944 & Set a limestone, \(15 \times 8 \times 5\) ins., 10 ins. in the ground, for \(\frac{1}{4}\) sec. cor., marked \(\frac{1}{4}\) on N. face; dig pits, \(18 \times 18 \times 12\) ins., E. and W. of stone, 3 ft. dist.; and raise a mound of earth 31 ft base, 1 ft bigh, N of \\
\hline 79.89 & \begin{tabular}{l}
The cor. of sees. 21, 22, 27, and 28. \\
Land, level. \\
Soil, samily loam; 1st rate. \\
No timber.
\end{tabular} \\
\hline
\end{tabular}

\section*{198}

Subdivision of T. 15 N., R. 20 E.-Continued.
\begin{tabular}{|c|c|}
\hline Chains. & N. \(0^{\circ} 3^{\prime}\) W., bet. secs. 21 and 22. Over level land. \\
\hline 13.90 & \begin{tabular}{l}
To the margin of an impassable swamp, bears E. and W. \\
Set a cedar post, 3 ft . long, 3 ins. sy., with marken stone, 24 ins . in the gromd, for witness point, marked W. P., on W. face; dig pits, \(18 \times\) \(18 \times 12\) ins., N. and S. of post, 3 ft . dist.; and raise a mound of earth, \(3 \frac{1}{2} \mathrm{ft}\). base, \(1 \frac{1}{2} \mathrm{ft}\). high, W. of cor. \\
To pass the swamp I offset as follows: \\
East, 18.00 chs. \\
N. \(0^{\circ} 3^{\prime}\) W., 26.10 chs. \\
West, 5.00 chs. to a point ou margin of swamp * 13.00 chs. E. of
\end{tabular} \\
\hline 40.00 & \begin{tabular}{l}
The point for \(\frac{1}{4}\) sec. cor., in swanp. \\
N. \(0^{\circ} 3^{\prime}\) W., 19.00 chs. \\
West, 13.00 chs. \(t_{0}\) a point on line bet. secs. 21 and 22 ; thence, S . \\
\(0^{\circ} 3^{\prime}\) E., 5.40 chs., to
\end{tabular} \\
\hline 53.60 & \begin{tabular}{l}
North side of impassahle swamp, on line. \\
Set a juniper post, 3 ft. long, 3 ins. sq., with charred stake, 24 ins. in the gromul, for witness cor. to \(\frac{1}{4}\) sec. cor., marked W. C., \(\frac{1}{4}\) S., on W. face; dig pits, \(18 \times 18 \times 12 \mathrm{ins}\)., N. and S. of post, 3 ft . dist.; and raise a momd of earth, \(3 \frac{1}{\frac{1}{2}} \mathrm{ft}\). base, \(1 \frac{1}{2} \mathrm{ft} . \mathrm{high}\), W. of cor. \\
Thence, N. \(0{ }^{\circ} 3^{\prime}\) W., 26.40 chs., to the point for sec. cor., which falls in Old Military Road, bears N. \(55^{\circ} \mathrm{W}\), and S. 55 E. Therefore at
\end{tabular} \\
\hline 79.40 & \begin{tabular}{l}
Set a juniper post, 3 ft . long, 4 ins. sq , with marked stone, 24 ins. in the ground, for witness cor. to cor. of secs. 15, 16, 21 and 22, marked \\
W. C., T. 15 N., S. 15 on N. E., \\
R. 20 E., S. 22 on S. E., \\
S. 21 on S. W., and \\
S. 16 on N. W. faces; with 3 notches on S. and E. edges; dig pits, \(18 \times 18 \times 12\) ins., N. E., S. E., S. W., and N. W. of cor., \(5 \frac{1}{2} \mathrm{ft}\). dist.; and raise a mound of earth, 4 ft. hase, 2 ft . high, W . of cor.
\end{tabular} \\
\hline 80.00 & \begin{tabular}{l}
Deposit a quart of charcoal, 24 ins. in the ground, for cor. of secs. 15, 16 , 21 and 22. \\
Land, level. \\
Soil, rich loam; 1st rate. \\
No timber.
\end{tabular} \\
\hline
\end{tabular}
S. 89 :9 E., on a random line bet. secs. 15 and 22.
\(\begin{array}{ll}40.00 & \text { Set temp. } \frac{1}{4} \text { sec. cor. } \\ 79.97 & \text { Intersect N. and S. line } 12 \mathrm{ks} \text {. N. of the cor. of secs. 14, } 15,22 \text { and } 23 .\end{array}\)
Thence I rin
N. \(89^{\circ} 54^{\prime}\) W., on a true line bet. secs. 15 and 22 .

Over hard lerel mesa.
11. 50 To edge of mesa, hears N. and S .; hegin descent over stony gromnd.
16. 00 Foot of descent, 60 ft. below mesa, bears N. and S.
17. 50 Wood road, bears \(N\). and S.
39. \(98 \frac{1}{2}\) Set a limestone, \(15 \times 8 \times 5 \mathrm{ins},. 10 \mathrm{ins}\). in the gromud, for \(\frac{1}{4}\) sec. cor. marked \(\frac{1}{4}\) on N. face; dig pits, \(18 \times 18 \times 12\) ins., E. and W. of stone, 3 ft . dist.; and raise a mound of earth, \(3 \frac{1}{2} \mathrm{ft}\). base, \(1 \frac{1}{2} \mathrm{f}^{\mathrm{t}}\). high, N. of cor.
79.97

The cor. of sees. \(15,16,21\) and 22.
Land, level; except descent from mesa.
Soil, loam and stony; 2nd and 4 th rate.
No timber.
N. \(0^{\circ} 3^{\prime} \mathrm{W}\)., bet. sces. 15 and 16 .

Over level land.
0.60

Deposit a marked stone, \(1^{\circ}\) ins. in the gronud, for witness cor. to cor. of secs. \(15,16,21\) and 22 ; dig pits, \(18 \times 18 \times 12\) ins., N. E., S. E., S. W., and N. W. of cor., \(4 \mathrm{f}^{\prime} \mathrm{t}\). dist.; and raisc a monnl of earth, 4 ft . base, 2

\footnotetext{
* A Witnese Corner to the \(\frac{3}{4}\) sec. cor. would be established at this point, in case no witness corner could be placed on line within 20.00 chs. of the \(\frac{1}{4}\) see. cor.
}

Subdivision of T. 15 N., R. 20 E.-Continued.

Chains.
ft. high, over depesit. In S. E. pit drive a cedar stake, 2 ft . long, 2 ins. sq., 12 ins. in the ground, marked
W. C., T. 15 N., S. 15 on N.E.
R. 20 E., S. 22 on S. E.,
S. 21 on S. W., and
S. 16 on N. W. faces; with 3 notches on S. and E. elges.
40.00

Set a cedar post, 3 ft . long, 3 ins. sq., with charred stake, 24 ins. in the gromd, for \(\frac{1}{4}\) sec. cor. marked \(\frac{1}{4}\) S., on W. face; lig pits, \(18 \times 18 \times 12\) ins., N. and S. of post, 3 ft . dist. ; and raise a mound of earth, \(3 \frac{1}{2} \mathrm{ft}\). base, \(1 \frac{1}{2}\) ft. high, W. of cor.
45. 00 William Wells' house, bears W., 6.00 chs. dist.
46. 00 East end of a clear water pond, bears W. about 11.00 chs.; its shores extend N. and W.
80.00 a limestone, \(18 \times 18 \times 12\) ins., 12 ins. in the ground, for cor of secs. 9 , 10,15 and 16, marked with 4 netches on S. and 3 notehes on E.edges; dig pits, \(18 \times 18 \times 12\) ins., in each sec., \(\frac{5}{2} \frac{\mathrm{ft}}{\mathrm{f}}\). dist.; and raise a mound of earth, 4 ft . base, 2 ft . high, W. of cor.
Land, level.
Soil, loam; 1st and 2nd rate.
No timber.
Angust 10: At this cor., I set off \(15^{\circ} 22^{\prime} \mathrm{N}\)., on the decl. arc; and, at \(0^{6} 5^{\mathrm{m}} \mathrm{p} . \mathrm{m} ., 1\). m. t., ebserve the sun on the meridian; the resulting lat. is \(45^{\circ} 48^{\prime}\), which is about \(0^{\prime} .5\) less than the proper lat.
S. \(89^{\circ} 54^{\prime}\) E., on a random line bet. secs. 10 and 15.
79.05 Set templ. \(\frac{1}{4}\) sec. cor.
79. 95 Intersect N. and S. line 12 lks . S. of the cor. of secs. \(10,11,14\) and 15. Thence I rum
N. \(89^{\circ} 59^{\prime}\) W., on a randem line bet. secs. 10 and 15.

Over hard level mesa.
23.00 Begin descent from mesa, bears N. and S.
28.00 Foot of descent from mesa, bears N. W. and S. E.
\(39.97 \frac{1}{2}\) Set a limestone, \(15 \times 8 \times 8\) ins., 10 ins. in the ground, for \(\frac{1}{4}\) sec. cor., marked \(\frac{1}{4}\) on N. face; dig pits, \(18 \times 18 \times 12\) ins., E. and W. of stone, 3 ft . dist.; and raise a mound of earth, \(3 \frac{1}{3} \mathrm{ft}\). base, \(1 \frac{1}{2} \mathrm{ft}\). high, N. of cor.
The cor. of secs. \(9,10,15\) and 16.
Land, level.
Soil, leam and hard clay and gravel; 1st and 4 th rate.
No timber.
N. \({ }^{\circ} 3^{\prime}\) W.. bet. secs. 9 and 10.

Over gently rolliug land.
4. 50 Enter heary pine timber, bears N. \(55^{\circ}\) E. and N. \(80^{\circ} \mathrm{W}\).
22.00 Begin ascent of spur, bears N. E. and S. W.
39. 00 Leave heavy timber, bears N. W. and N. \(25^{\circ}\) E.
40.00 Top of ridge, 60 ft above sec. cor., desceuts towards the S. W.

Set a granite stone, \(15 \times 8 \times 7\) ins., 10 ins. in the gromml, for \(\ddagger\) sce. cor., marked \(\frac{1}{4}\) on W . face; and raise a mound of stone, 2 ft . lase, \(1 \frac{1}{2} \mathrm{ft}\). high, W. of cor. Pits impracticable.
Thence, along IV. slope of spur, over ravines and rongh stony ground.
60.00

Entcr heavy pine timber.
72.00 lavine, 40 ft . deep, course W.; thence up steep ascent.
80.00 A pine, 12 ins. diam., for cor. of secs. 3, 4, 9 and 10, I mark
T. 15 N., S. 3 on N. E.,
R. 20 E., S. 10 on S. E.,
S. 9 on S. W., and
S. 4 on N. W. sides; with 5 notches on S. and 3 notches on E. sides; dig pits, \(18 \times 18 \times 12\) ins., in each sec., \(5 \frac{1}{2} \mathrm{ft}\). dist.; and raise a nound of earth aromid trec.
This cor. stands about 300 ft . above the general level of the surrounding country.
Land, roiling and monntainous.
Soil, gravelly loan aml rocky; 3rd and 4th rate.
Timber, pine, with some oak:
Mountainons or heavily timbered land, 5800 chains.

\section*{Subdivision of T. 15 N., R. 20 E.-Continued.}
```

Chains.
40.00 Set temp. $\frac{1}{4}$ sec. cor.
S. $89^{\circ} 59^{\prime}$ E., on a rantom line bet. secs. 3 and 10.
80. 23 Intersect N . and S . line at the cor. of secs. $2,3,10$, and 11 .
Thence I run
N. $89^{\circ} 59^{\prime}$ W., on a true lime bet. secs. 3 and 10.
Ascend over rough gronnd, throngh lieavy timber.
4. 00 Leave heary timber, bears N. E. and S. W.
15.00 A point about 600 ft . above base of momitain; descend.
18.00 Enter scattering timber, bears N. and S. W.
23. 00 Leave scattering timber, bears N. E. and S. W.
40. $11 \frac{1}{2}$ Set it granite stone, $15 \times 8 \times 5$ ins 10 ins, in the ground for $\frac{1}{4}$ sec. cor.
marked $\frac{1}{4}$ on N. face; and raise a mound of stone, $2 \frac{1}{2} \mathrm{ft}$. base, $1 \frac{1}{2} \mathrm{ft}$.
high, N. of cor.
52.00 Ravine, 40 ft . below $\frac{1}{4}$ sec. cor., course $\mathrm{S} .60^{\circ} \mathrm{W}$.; thence ascend over
spur.
60.50 Euter heavy pine timber, bears N. and S.
80. 23 The cor. of sees. 3, 4, 9, and 10 .
Land, mountainons.
Soil, stony; 4th rate.
Timber, pine.
Mountainous or heavily timbered land, 80.23 chs..

```
    N. \(0^{\circ} 3^{\prime} \mathrm{W}\)., on a random line bet. secs. 3 and 4.
    Set temp. \(\frac{1}{4}\) sec. cor.
    Intersect N. bdy. of the Tp. 2 lks. E. of cor. of secs. \(3,4,33\), and 34 , which
        is a gramite stone, \(6 \times 8 \times 4\) ins. above ground, marked and witnessed as
        described by the surveyor general.
    Angust 10: At \(5^{\mathrm{h}} 5^{\mathrm{m}}\) 1). m., l.m.t., I set off \(45^{\circ} 50^{\prime}\) on the lat. are; \(15^{\circ}\)
        \(19^{\prime} \mathrm{N}\)., on the decl. arc ; and determine a true meridian with the solar,
        at the cor. of secs. \(3,4,33\), and 34 .
    Thence I run
    S. \(0^{\circ} 4^{\prime}\) E., on a trme line bet. secs. 3 and 4 .
    Ascend spur extending west.
    7.00 Top of spur, 20 ft . above sec. cor., bears E. and W.; descend.
    18.00 Ravine, 20 ft . below top of ridge, conrse N. \(85^{\circ} \mathrm{W}\).; ascend spur.
    27.00 Top of spur, 25 ft . above ravine, bears E. and W.; descend.
    36.00 Ravine, 30 ft . below top of ridge, course N. \(75^{\circ} \mathrm{W}\).; ascend.
37.50 Enter heavy pine timber.
40. 19 An oak, 9 ins. diam., for \(\frac{1}{4}\) sec. cor., I mark \(\frac{1}{4}\) S., on W. side; from which
    A pine, 8 ins. diam., bears S. \(14^{\circ} \mathrm{E},. 20 \mathrm{lks}\). dist., marked \(\frac{1}{4}\) S. B. 'T'.
    An oak, 10 ins. diam., bears S. \(75 \frac{10}{2} \mathrm{WV}\)., 19 lks . dist., marked \(\frac{1}{4} \mathrm{~S}\).
        B. T.
    47.00 Top of spur, 65 ft . above ravine, bears N: \(70^{\circ} \mathrm{W}\). and \(\mathrm{S} .70^{\circ} \mathrm{E}\).; descend.
    51.00 Leave heavy pine timber, bears N. \(70^{\circ} \mathrm{W}\). and S. \(70^{\circ} \mathrm{E}\).
58.00 Foot of descent, 20 ft . below top of ridge, bears N. \(85^{\circ} \mathrm{W}\). and S. \(85^{\circ} \mathrm{E}\). ;
    ascend.
63.00 Enter heavy pine timber, bears N. W. and E.
65.00 'Tol' of ridge, 150 ft . above foot of spmr, bears E. and W. ; descend.
67.50 Leave heavy pine timber, bears N. \(60^{\circ} \mathrm{W}\). and S. \(60^{\circ} \mathrm{E}\); thence over
        broken, stony ground.
74.00 Begin ascent.
80. 19 The cor. of sees. 3, 4, 9 and 10 .
    Land, mountainons.
    Soil, stony; 4th rate.
    Timber, pine with some oak.
    Monntainous or heavily timbered land, 80.19 chs .
                                    Angust 10, 1893.

This 11th day of August, 1893, I discharge James Banner and employ Edward Ensign, to perform the dutiesof flagman. No ofticer authorized to administer oaths, other than myself, being available, without great inconvenience, delay, and expense, I administer the required preliminary and final oathis.

Subdivision of T. 15 N., R. 20 E.-Continued.
```

Chains.
Note.-Clear Lake, a body of deep water, more than 25 acres in extent,
not drainable or likely to dry up, situated about the middle of sec. 33 ,
I prepare to meander, as follows:
The sky is overeast and solar observations are impossible.
Ifind the $\frac{1}{4}$ sec. cor. on S. bely. of sec. 33 , which is a limestone $5 \times 8 \times 5$ ins.,
above ground, marked and witnessed as described by the surveyor
general, on line with the section comers which are visible from said $\frac{1}{4}$
sec.cor.; therefore, from a sight on the S. W. cor. of sec. 33 , I turn off
an angle of $89^{\circ} 53^{\prime}$ to the nortli, and run
N. $0^{\circ} 3^{\prime}$ W., bet. the E. and W. halves of sec. 33.
Over level land.
17. 80 Enter scattering timber, bears E. and W.
20.42 'To bank ol' Clear Lake.
Set a cedar post, 3 ft . long, 3 ins. sq., 24 ins. in tho ground, for special
mender cor. of tracl. E. and W. halves of sec. 33 , marked
S. M. C. on N.,
T. 15 N. on S.,
R. 20 F., S. 33 on E., and
S. 23 om W . faces; from whieh
A maple, 8 ins. diam., bears S. $21 \frac{1}{2}^{\circ}$ E., 15 lks . dist., marked T. 15
N., R. 20 E., S. 33 , S. M. C. B. T.
An ash, 12 ins. diam., lears S. $724^{\circ} \mathrm{W} ., 21 \mathrm{lks}$. dist., marked T. 15
N., R. 20 L. S., 33 , S. M. C. B. 'T.
Land, level.
soil, rich loim; 1st rate.
Timber, oak, ash, and maple.
Note.-At 9 a.m., heavy rain prevents further work this day.
Augnst 11, 1893.

```

Angust 12: At \(7^{\mathrm{h}} 5^{\mathrm{m}}\) a. m., l. m. t., I set off \(45^{\circ} t^{\prime}\) on the lat. are; \(14^{\circ} 51^{\prime}\) N., on the decl. arc.; and determine a true meridian with the solar at the cor. of secs. \(4,5,32\), and 33 , on the s . bdy. of the Tp., which is a limestone, \(6 \times 6 \times 4\) ins., above ground, marked and witnessed as deseribed by the survejor general.
N. \(0^{\circ} 4^{\prime}\) W., bet. secs. 32 and 33 .

Over level land.
Set a juniper post, 3 ft . long, 3 ins. sq., with marked stone, 24 ins. in the ground, for \(\frac{1}{4}\) sec. cor., marked \(\frac{1}{4}\) S. on W. face; dig pits. \(18 \times 18 \times 12\) ins., N. and \(s\). of post, 3 ft . dist.; and raise a monnd of earth, \(3 \frac{1}{2} \mathrm{ft}\). base, \(1 \frac{1}{2}\) ft. high, W. of cor.
Spring branch, 6 lks. widle, pure water, course S. \(40^{\circ} \mathrm{E}\).
80.00 Set a locust post, 3 ft . long., 3 ins. sq., with quart of charcoal, 24 ins. in the gromed for cor. of secs. \(28,29,32\), and 33 , marked
T. 15 N., s. 28 on N. E.,
R. 20 E., S. 33 on S. E.,
S. 32 on S. W.. and
S. 29 on N. W. faces; with 1 notch on S. and 4 notehes on E. edges; dig pits, \(18 \times 18 \times 12\) ins., in each sec., \(5 \frac{1}{2} \mathrm{ft}\). dist.; and raise a mound of earth, 4 ft . base, 2 ft . high, W. of cor.
Land, level.
Soil, rich loam; 1st rate.
No timber.

Subdivision of T. 15 N., R. 20 E.-Continued.
\begin{tabular}{|c|c|}
\hline \[
\begin{array}{r}
\text { Chains. } \\
40.00 \\
\\
43.00 \\
80.00
\end{array}
\] & \begin{tabular}{l}
Deposit a quart of charcoal, 12 ins. in the gromed, for \(\frac{1}{4}\) sec. cor.; dig pits, \(18 \times 18 \times 12\) ins., E. and W. of cor., 4 ft . dist. ; and raise a mound of earth, \(3 \frac{1}{2} \mathrm{ft}\). base, \(1 \frac{1}{2} \mathrm{ft}\). high, over deposit. \\
In E. pit drive a cedar stake, 2 ft . long, 2 ins. sq., 12 ins. in the ground, marked \(\frac{1}{4} \mathrm{~S}\)., on N. face. \\
Spring branch, 8 lks. wide, pure water, course S. \(30^{\circ}\) E. \\
The cor. of secs. \(28,29,32\), and 33. \\
Laud, level. \\
Soil, rich loam; 1st rate. \\
No timber.
\end{tabular} \\
\hline 3.50
24.00 & \begin{tabular}{l}
From the \(\frac{1}{4}\) sec. cor. bet. secs. 28 and 33, I rm \\
S. \(0^{\circ} 3^{\prime}\) E., leet. the E. and W. halves of sec. 33. \\
Over level land. \\
Spring brauch, 8 lks . wide, pure water, course S. \(80^{\circ} \mathrm{E}\). \\
To bank of Clear Lake. \\
Set a limestone, \(20 \times 6 \times 6\) ins., 15 ins, in the gromnd, for special meander \\
cor. of fracl. E. and W. halves of sec. 33, marked \\
S. M. C ; on S. face; dig a pit, \(36 \times 36 \times 12\) ins., 8 ft . N. of stone; and \\
Land, level. raise a momd of earth, 4 ft . base, 2 ft . high, N. of cor. \\
Soil, rich loam; 1st rate. \\
No timber.
\end{tabular} \\
\hline 12.50 & \begin{tabular}{l}
N. \(0^{\circ} 4^{\prime}\) W., bet. secs. 28 and 29. Over level land. \\
Bevin ascent bears E and W
\end{tabular} \\
\hline 14.50 & Tol, of ascent aud edge of sandy plain, 25 ft . above sec. cor., bears N. E., and W. \\
\hline 40.00 & Set a jumiper post, 3 ft . long, 3 ins. sq., with marked stone, 24 ins. in the ground for \(\frac{1}{4}\) sec. cor., marked \(\frac{1}{4}\) S., on W. fare; dig pits, \(18 \times 18 \times 12\) ins., N. and S. of post, 3 ft . dist. ; and raise a mound of earth, \(3 \frac{1}{2} \mathrm{ft}\). base, \(1 \frac{1}{2}\) ft. high, W. of cor. \\
\hline 41.50 & Telegraph line, bears N. \(70^{\circ} \mathrm{W}\). and S. \(70^{\circ} \mathrm{E}\). \\
\hline 66.20 & load from Mound City to Lake City, bears N. \(70^{\circ} \mathrm{W}\). and S. \(70^{\circ} \mathrm{E}\). \\
\hline 50.00 & Begin descent, bears S. E. and W. \\
\hline 50.70 & Foot of descent, 18 ft . below plain, bears E. and \\
\hline 52.00 & Spring branch, 4 Iks. wide, pure water, course S. \(60^{\circ}\) E. ; flows from spring, 3 ft. diam., 2 ft. deep, which bears N. \(60^{\circ}\) W., 7.00 chs. dist. \\
\hline 64.00 & Begin ascent, bears R.and W. \\
\hline 65.00 & Top of ascent of 20 ft ., and edge of sandy plain, bears E. and W. \\
\hline 80.00 & \begin{tabular}{l}
Set a limestone, \(20 \times 7 \times 5\) ins., 15 ins. in the gromad, fur eor. of secs. \(20,21,28\), and 29, marked with2 notches on S. and 4 notches on E. edges; dig pits, \(18 \times 18 \times 12\) ins., in carch sec., \(5 \frac{1}{2}\) ft. dist.; and raise a monnd of earth, 4 ft . base, 2 ft . high, \(W\). of cor. \\
Land, level. \\
Soil, sandy; 3rd aud 4th rate. \\
No timber.
\end{tabular} \\
\hline & East, on a random line bet. secs. 21 and 28. \\
\hline 79.96 & \begin{tabular}{l}
Intersect N. and S. line, 2 Iks . N. of cor. of sces. \(21,22,27\), and 28. Thence I rum \\
N. \(89^{\circ} 59^{\prime}\) W., on a true line bet. secs. 21 and 28. \\
Over level limal.
\end{tabular} \\
\hline 2.50 & Begin ascent, bears N. and S. \\
\hline 4.50 & Top of ascent and edge of sandy plain, 20 ft. above sec. cor., bears N . and s. \\
\hline 39.98 & Set an oak post, 3 ft. long, 3 ins. sty., with charrel stake, 24 ins. in the gromud, for f sec. cor., marked \(\frac{1}{4}\) S. on N. face; dig pits, \(18 \times 18 \times 12\) ins., E. and W. of post, 3 ft . dist.; and raise a mound of earth, \(3 \frac{1}{2} \mathrm{ft}\). base, \(1 \frac{1}{2}\) ft. high, N. of cor. \\
\hline
\end{tabular}

Subdivision of T. 15 N., R. 20 E.-Coutinued.

Chains.
The cor. of sees. 20, 21, 28, and 29 .
Land, level.
Soil, sandy; 4th rate.
No timber.
N. \(0^{\circ} 4^{\prime} \mathrm{W} .\), bet. secs. 20 and 21.

Over level land.
28.00 Begin iescent, hears L. and W.
31.00 Foot of descent, 25 ft . below plain, bears E. and W.
40.00 Set a limestone, \(18 \times 6 \times 6\) ins., 12 ins. in the gronnd, for \(\frac{1}{5}\) sec. cor. marked \(\frac{1}{4}\) on W. face; dig pits, \(18 \times 18 \times 12\) ins., N. and S. of stone, 3 ft . dist. ; and raise a monnd of earth, \(3 \frac{1}{2} \mathrm{ft}\). base, \(1 \frac{1}{2} \mathrm{ft}\). high, W. of cor.
Angust 12: At this \(\frac{1}{4}\) sec. cor., bet. secs. 20 and 21 , I set off \(14^{\circ} 46^{\prime}\) N., on the decl. arc; and, at \(0^{\mathrm{h}} 5^{\mathrm{m}}\) p.m., l. m. t., observe the sun on the meridian; the resnlting lat. is \(45 \overline{7}^{\prime}\), which is abont \(0^{\prime} .1\) less than the proper lat.
W. end of a swamp, bears E. abont 5.00 chs. dist.

Set a limestone, \(18 \times 8 \times+\) ins., 12 ins. in the gronnd, for cor. of secs. 16,17 , 20, and 21, markel with 3 notehes on S. and 4 notches on E.erges; dig pits, \(18 \times 18 \times 12\) ins., in each sec. \(\overline{5} \frac{1}{2} \mathrm{ft}\). dist; and raise a mound of earth, 4 ft . base, 2 ft . high, W. of cor.
Land, level.
Soil, sandy and rich loam; on plain, 4th rate, remainder 1 st rate.
No timber.
Angust 12, 1893.

Heary rain prevented work until afternoon Augnst 14, 1893.
The cor. of secs. \(15,16,21\), and \(2 \because\), being plainly visible,*
I run for said cor.
S. \(89^{\circ} 59^{\prime}\) E., on a random line bet. secs. 16 and 21.

To margin of impassable swamp; set a temp. wituess point.t Then offset as follows:

North, 9.50 chs.; then, on the off set line:
S. \(89^{\circ} 59^{\prime}\) E., 40.00 chs.; set temp. witness cor. to \(\frac{1}{4}\) sec. cor.;
s. \(89^{\circ} 59^{\prime}\) E., 61.00 chs. (comnted from sec. cor.) ; then,

South, 9.50 chs. to the random line, on which, at
79.92

Intersect N . and S . line at cor. of secs. \(15,16,21\), and 22.
Thence I run
N. \(89^{\circ} 59^{\prime}\) W., on a true line bet. secs. 16 and 21.

Over level land.
To maryin of impassable swamp.
Set a cedar post, 3 ft . long, 3 ins. sq., with eharred stake, \(24 \mathrm{ins}\). in the gromm, for wituess point, marked W. P. on N. face; dig uits, \(18 \times 18 \times 12\) ins., E. and W. of post, 3 ft . dist. ; and raise a monnd of earth, \(3 \frac{1}{2} \mathrm{ft}\). base, \(1 \frac{1}{2} \mathrm{ft}\). high, N. of cor.
Thence, offset N., 9.50 ehs.; then, run on offset lime, N. \(89^{\circ} 59^{\prime} \mathrm{W}\).
Set a juniper post, 3 ft . long, 3 ins . sq., with marked stone, 24 ins. in the gronnd, for witness cor. to \(\frac{1}{4}\) sec. cor., marked W. C. \(\frac{1}{4}\) ‥, on N. face; dig pits, \(18 \times 18 \times 12\) ins., E. and \(W\). of post, 3 ft . dist.; and raise a mound of earth, \(3 \frac{1}{2} \mathrm{ft}\). hase, \(1 \frac{1}{2} \mathrm{ft}^{\mathrm{t}}\). high, N. ot' cor.
Offset south 9.50 clis., to true line.
Set an oak post, 3 ft . \(\operatorname{lon} g, 3\) ins. sq., with quart of chareoal, 24 ins. in the ground, for witness point, marked W. P., on N. face; dig pits, \(18 \times 18\) \(\times 12\) ins., E. and W. of post, 3 ft . dist.; and raise a mound of earth, \(3 \frac{1}{2} \mathrm{ft}\). base, \(1 \frac{1}{2} \mathrm{ft}\). high. N. of cor.
The swamp can be drained into Lin's Lake.
The cor of secs. 16, 17, 20, aul 21.
Land, leve].
Soil, rich loam; 1st rate.
No timber.
*Wherever this condition obtains, the randon will be run and recorded as above stated.
†When offsets are made from random latitudinal section lines, temporary marks will be left for Wit. ness Points and Witness Corners. as illnstrated above.

\section*{204}

Subdivision of T. 15 N., R. 20 E.-Continued.
\begin{tabular}{|c|c|}
\hline Chain & N. \\
\hline & Over level \\
\hline 34.00 & S. E. cor. of James Wilkie's field, extends W., 18.00 chs., and alo \\
\hline 40.00 & Set a cedar post, 3 ft . long, 3 ins. sq., with cuart of charcoal, 24 ins. the ground, for \(\frac{1}{2}\) sec. cor., marked \(\frac{1}{4}\) S., on W. face; dig pits \(18 \times 18 \times 12\) ins., N. and S. of post, 3 ft . dist.; and raise a monud of earth, \(3 \frac{1}{2} \mathrm{ft}\). base, \(1 \frac{1}{2} \mathrm{ft}\). high, W. of cor. \\
\hline 46.00 & Old Military Road, bears N. \(65^{\circ} \mathrm{W}\). and S. \(65^{\circ} \mathrm{E}\). \\
\hline 47.00 & \begin{tabular}{l}
Branch, 4 lks. wile, pure water, swift current, course S. \(40^{\circ} \mathrm{W}\). \\
This branch is the ontlet of the pond in sec. 16, fed by numerous fine sprines in sec. 9.
\end{tabular} \\
\hline 50.20 & Aceftuia, 8 lks . wide, conrse N. \(86^{\circ} \mathrm{W}\). Thence gradually ascending. \\
\hline 80.00 & \begin{tabular}{l}
Set a limestonc, \(21 \times 7 \times 5\) ins., 16 ins. in the ground, for cor. of secs. 8,9 , 16, and 17, marked with 4 notehes on S. and E. edges; dig pits, \(18 \times 18 \times 12\) ins., in cach sec.. \(5 \frac{1}{2} \mathrm{ft}\). dist. ; and raise a mound of earth, 4 ft . base, 2 ft. high, W. of cor. \\
Land, level and rolling. \\
Soil, rich loam; 1st rate. \\
No timber.
\end{tabular} \\
\hline
\end{tabular}

9 and 16
79.90 Intersect N. and S. line 9 lks . N. of cor. of secs. \(9,10,15\), and 16.

Thence I run
N. \(89^{\circ} 55^{\prime}\) ! W., ou a true line bet. secs. 9 and 16.

Over rolling land.
31.40 Spring branch, 3 lks . wide, course S.; enters pond about 6.00 chs. S.
39.95 Set a cerlar post. 3 ft. long, 3 ins. sq., with marked stone, 24 ins. in the ground, for \(\frac{1}{4}\) sec. cor., marked \(\frac{1}{4}\) S. on N. face; dig pits, \(18 \times 18 \times 12\) ins., E. and \(W\). of post, 3 ft . dist. ; and raise a monnd of carth, \(3 \frac{1}{2} \mathrm{ft}\). base, \(1 \frac{1}{2}\) ft. ligh, N. of cor.
49. 20 Spring branch, 3 lks. wide, course S; euters pond about 8.00 chs. \(S\).

The hranches crossing this line are fed by numerous large springs 4.00 to 10.00 chs. N. of the line.
79.90 The cor. of secs. \(8,9,16\), and 17.

Land, rolling.
Soil, gravelly loam; 2ud rate.
No timber.
N. \(0^{\circ} 4^{\prime}\) W., bet. secs. 8 and 9.

Over rolling land.
38.00 To S. bank of limestone quarry, bears E. and W. To pass the quarry, I offset 2.00 chs. E., then, N. \(0^{\circ} \boldsymbol{t}^{\prime}\) W., on the offiset line.
40.00 The point for \(\frac{1}{4}\) sec. cor. fialls in fuarry. Continue offset line to 40.60 chs.; then, W., 2.00 chs., to true line.
40. 60 Set a limestone, \(15 \times 9 \times 5\) ins., 10 ins. in the gromd, for witness cor. to \(\frac{1}{4}\) sec. cor. marked W. C. \(\frac{1}{4}\) on W. face; and raise a monnd of stone, 2 ft . base, \(1 \frac{1}{2} \mathrm{ft}\). high, W. of cor. P'its impracticable.
66.00 Middle of single track of the Montana and Manitoba Railroad, bears N . 42 E . and S. 120 W .
68.00 Telegraph line, hears N. 420 E. and S. 420 W .
80.00 Set a limestone, \(17 \times 9 \times 5\) ins., 12 ins. iu the gromd, for cor. of sees. 4,5 , 8, and 9, marked with 5 notches on \(\mathrm{S}^{\text {. and }} 4\) notches on E. edges; dig pits, \(18 \times 18 \times 12\) ins., in each sec., \(5 \frac{1}{2}\) ft. dist. ; and raive a monnd of earth, 4 ft . base, 2 ft . high, W. of cor.
From this eor. the U. S. mineral monument in see. 5 hears N. \(59 \mathrm{~m}^{\circ} \mathrm{W}\). Soil, thin and gravelly, with many limestone ontcrops; 3rd and 4th rate. No timber.

August 1.1: At \(4^{\text {h }} 30^{m}\) 1. m. 1. m. t., I set off \(45^{\circ} 49^{\prime}\) on the lat. are; \(14^{\circ} 6^{\prime} \mathrm{N}\). on the decl. are; and determine a true meridian with the solar, at the cor. of secs. \(4, \overline{5}, 8\) and 9 .
Thence I run
S. \(89^{\circ} 55^{\prime}\) E., on a random line bet. sees. 4 and 9.

Subdivision of T. 15 N., R. 20 E.-Continued.


\begin{tabular}{|c|c|}
\hline Chains. & N. \(0^{\circ} 5^{\prime}\) W., bet. secs. 29 and 30. Over level land. \\
\hline 40.03 & \begin{tabular}{l}
Deposit a marked stone, 12 ins. in the gronnd, for \(\frac{1}{4}\) see. cor.; dig pits, \(18 \times 18 \times 12\) ins. ; N. and S. of cor., 4 ft dist; and raise a mound of earth, \(3 \frac{1}{2} \mathrm{ft}\). base \(1 \frac{1}{2} \mathrm{ft}\). high, over deposit. In S. pit drive a cedar stake, 2 ft . long, 2 ins. sq., marked \(\frac{1}{4}\) s., on W. face. \\
From this \(\frac{1}{4}\) sec. cor. the N.E. cor. of James Parker's Desert Land Claim bears S. \(80^{\circ} \mathrm{E}\).
\end{tabular} \\
\hline 56.00 & Telegraph line, bears E. and W. \\
\hline 59.00 & Road leading to Lake City and Mound City, hears E. and W. \\
\hline 76.50 & Begin descent over rocky ground, bears E. and W. \\
\hline 80.00 & \begin{tabular}{l}
Set a simdstone, \(15 \times 8 \times 6\) ins., 10 ins. in the ground, for cor. of secs. 19, 20 , 29, and 30, marked with 2 noteles on S. and 5 notches on E. edges; and raise a monnd of stone, 2 ft . lase, \(1 \frac{1}{2} \mathrm{ft}\). high, W . of cor. Pits impracticable. \\
This cor. stands on stony ground sloping N., about 25 ft . below level of the plain.
\end{tabular} \\
\hline 40.00 & S. \(89^{\circ} 54^{\prime}\) E., on a random line bet. secs. 20 and 29. Set temp. 1 see eor \\
\hline \multirow[t]{4}{*}{79.93} & Intersect N. and S. line at cor. of secs. \(20,21,28\), and 20. \\
\hline & Thence I rmm \\
\hline & N. \(89^{\circ} 54^{\prime}\) W., on a true line bet. secs. 20 and 29. \\
\hline & Over level land. \\
\hline 16.50 & Telegraph line, bears N. and S. \\
\hline 21.00 & Road leading to Lake City, bears N. and S. \\
\hline \(39.96 \frac{1}{2}\) & Set a cedar post, 3 feet long, 3 ins. sq., with quart of charenal, 24 ins. in the gronnd, for \(\frac{1}{4}\) sec. eor. marked \(\frac{1}{4}\) S., on N. face; dig pits, \(18 \times 18 \times 12\) ins., E. and W. of post 3 ft . dist. and raise a mound of earth, \(3 \frac{1}{\frac{1}{2}}\) ft. hase, \(1 \frac{1}{2} \mathrm{ft}\). high, N . of cor. \\
\hline 63.00 & Begiu descent from plain, bears N. and S. \\
\hline 66.00 & Foot of descent, \(3 \overline{\mathrm{ft}}\). below plain, bears N. and S.; thence over broken ground to \\
\hline \multirow[t]{4}{*}{79.93} & The cor. of secs. 19, 20, 29 and 30. \\
\hline & Land, level. \\
\hline & Soil, sand and stony; 4th rate. No timber. \\
\hline & N. \(89^{\circ} 57^{\prime}\) W., on a random line bet. secs. 19 and 30. Over rough stony ground. \\
\hline \multirow[t]{4}{*}{78.21} & Intersect W. bdy. of the Tp. 3 lks . N. of the eor. of secs. \(19,24,25\), and \\
\hline & 30 , which is a juniper post, 18 ins above ground, 4 ius. sq., marked and witnessed as described by the surveyor general. Thence 1 rmn \\
\hline & S. \(89^{\circ} 58^{\prime}\) E., on a true line bet. sees 19 and 30. \\
\hline & Over level land. \\
\hline 38.21 & Set a maple post, 3 ft . long, 3 ins. sq., with charred stake, 24 ins. in the ground, for \(\frac{1}{4}\) sec. cor. marked \(\frac{1}{4}\) S., on N. face; dig pits, \(18 \times 18 \times 12\) ins., E. and W. of post, 3 ft . dist. ; and raise a mond of carth, \(3 \frac{1}{2}\) ft. base, \(1 \frac{1}{2} \mathrm{ft}\). high, N. of cor. \\
\hline 72.21 & Begin ascent, over stony ground. \\
\hline \multirow[t]{4}{*}{78.21} & The cor. of secs. \(19,20,29\), and 30. \\
\hline & \begin{tabular}{l}
, level. \\
Soil, sandy loam; 3rd and 4th rate.
\end{tabular} \\
\hline & No timber. \\
\hline & N. \(0^{\circ} 5^{\prime}\) W., bet. secs. 19 and 20. \\
\hline 2.00 & Foot of descent, 10 ft. below sec. cor., and 35 ft . below the sandy plain, bears E. and W. Thence gradual descent to ward Lin's Lake. \\
\hline
\end{tabular}

\section*{Subdivision of T. 15 N., R. 20 E.-Continued.}


Subrlicision of T. 15 N., R. 20 E.-Continued.
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Chains. } \\
55.00
\end{gathered}
\]} & \\
\hline & Old Military Road, bears N. W. aud S. E. The road brawches abont 2.00 chs. S. J. \\
\hline 60.00 & Finter road, leading to Lake City, hears W.; thence, along middle of road. \\
\hline 61.00 & Middle of single track of the Montana and Manitoba Railroad, bears N. \(60^{\circ} \mathrm{E}\). and S. \(60^{\circ} \mathrm{W}\). \\
\hline 63.50 & Telegraph line, bears N. \(60^{\circ}\) E. and S. \(60^{\circ} \mathrm{W}\). \\
\hline \multirow[t]{2}{*}{80.00} & The point tor soc.cor. falls in the road; the \\
\hline & \begin{tabular}{l}
Deposit it marked stone, 24 ius. in the ground, for cor. of secs. 7, 8, 17 and 18. \\
Land, rolling. \\
Soil, sandy loam; 3rd rate. \\
No timber.
\end{tabular} \\
\hline \multirow[b]{2}{*}{0.50} & From the cor. for secs. 7, 8, 17 and 18, which falls in road, I run S. \(0^{\circ} 5^{\prime}\) E., bet. secs. 17 and 18. Over rolling land; descending towards Lin's Lake. \\
\hline & Set a limestone, \({ }^{\text {, }} 15 \times 8 \times 7\) ins., 10 ins. in the gromnd, for witness cor. to cor. of secs. 7, 8,17 and 18 , marked W. C., on N. E. face; with 4 notches on S. and 5 notehes on E. edges; dig pits, \(18 \times 18 \times 12\) ins., N. E., S. E., S. W., aud N. W. of cor., \(5 \frac{1}{2} \mathrm{ft}\). dist.; and raise a mound of earth, 4 ft . base, 2 ft . high, W. of cor. \\
\hline 4. 00 & Telegraph line, bears N. \(84^{\circ} \mathrm{E}\). and S. \(81^{\circ} \mathrm{W}\). \\
\hline 5.20 & Middle of the single track of the Montana and Manitoba Railroad, bears N. \(84^{\circ}\) and S. \(84^{\circ} \mathrm{W}\). \\
\hline \multirow[t]{6}{*}{20.19} & To bank of Lin's Lake. \\
\hline & Set a limestone, \(15 \times 9 \times 6\) ins., 10 ins . in the gronnd, for meander cor. of fracl, sees. 17 and 18, marked M. C. on S. face, with 5 grooves on E. face; and raise a mound of stone, 2 ft . base, \(1 \frac{1}{2} \mathrm{ft}\). high, N. of cor. Pits impracticable. \\
\hline & Limestone onterops near the lake. \\
\hline & Land, rolling. Soil, rocky; 4t \\
\hline & No timber. \\
\hline & Angnst 16: At this meander cor. I set off \(13^{\circ} 31^{\prime} \mathrm{N}\). on the decl. are; and at \(0^{4} 4^{\mathrm{mm}}\) p. m., l. w. t., observe the sum on the meridian; the resulting lat. is \(45^{\circ} 48^{\prime}\). \\
\hline
\end{tabular}

From the cor. of sces. 7, 8, 17 and 18, established this day, I run
N. \(89^{\circ} 57^{\prime}\) W., on a random line bet. sces. 7 and 18.
40.00

Sct temp. \(\frac{1}{4}\) sec. cor.
77.90 Intersect W. hdy. of the Tp., 3 lks. S. of the cor. of secs. 7, 12, 13, and 18, which is a limestone, \(6 \times 8 \times 6\) ins. above gronnd, marked and witnessed as described by the survejor general.

\section*{Thence I ran}
S. \(89^{\circ} 56^{\prime}\) E., on a true line bet. secs. 7 and 18.

Over gently rolling gronnd.
17.90

The N. W. cor., which is au oak post, 2 ft . above ground, 12 ins. sq., marked N. W. cor. L. C., bears N. \(0^{\circ} 5^{\prime}\) W., 40.00 chs. dist. The S. W. cor., which is a limestone, \(8 \times 6 \times 6\) ins., above ground, marked S. VV. cor. L. C., bears S. \(0^{\circ} 5^{\prime}\) E., 29.50 chs. dist.
Methodist church bears S. \(33^{\circ}\) E.
18.20

Mirldle of West street, 40 ft . wide, bears N. \(0^{\circ} 5^{\prime}\) W. and S. \(0^{\circ} 5^{\prime}\) E.
Thence along middle of Fourth street, 60 ft . wide.
23.70

Middle of Cedar street, 60 ft . wide, bears N. \(0^{\circ} 5^{\prime} \mathrm{W}\). aud S. \(0^{\circ} 5^{\prime} \mathrm{E}\).
27.00
29.20

Baptist church bears N., 3.00 chs. dist.
Middle of Pine street, 60 ft . wide, bears N. \(0^{\circ} 5^{\prime} \mathrm{W}\). and S. \(0^{\circ} 5^{\prime}\) E. Methodist church bears S. \(43^{\circ} \mathrm{W}\).
35.00 Midlle of Main street, 100 ft. wide, bears N. \(0^{\circ} 5^{\prime} W^{r}\) and S. \(0^{\circ} 5^{\prime}\) E. Court house bears N. \(4^{\circ}\) W., 22.00 chs. dist. Wharf bears S. \(0^{\circ} 5^{\prime}\) E. 16.50 chs. dist. Catholic church hears N. \(39^{\circ}\) E.

\footnotetext{
*A Titness Corner to a section corner will always have the letters " W. C." conspicuously displayed on the northeast face.
}

\title{
Subdicision of T. 15 N., R. 20 E.-Continued.
}

Chains.
37.90

Deposit a limestone, \(12 \times 8 \times 6\) ins., 24 ins. in the ground, for \(\frac{1}{4}\) sec. cor., markel \(\times \frac{1}{4}\); from which

A granite stone, \(16 \times 8 \times 7\) ins., set 11 ins. in the ground, marked \(W\). C. \(\frac{1}{4}\), on N. face, bears N., 45 lks. dist.

A granite stone \(20 \times 9 \times 6\) ins., set \(15 \mathrm{ins}\). in the ground, marked W. C. \(\frac{1}{4}\), on N. face, bears S., 45 kks . dist. Pits impracticable.

No natural bearing objects available.
40.80

Middle of Elm street, 60 ft . wide, bears N. \(0^{\circ} 5^{\prime} \mathrm{W}\). and S. \(0^{\circ} 5^{\prime}\) E.
46. 30 Middle of Walnut street, 60 ft . wide, bears N. \(0^{\circ} 5^{\prime}\) W., and S. \(0^{\circ} 5^{\prime}\) E.

Railroad station bears S. \(14^{\circ}\) E., 6.00 chs. dist.
51.80 Middle of East street, 40 ft . wide, bears N. \(0^{\circ} 5^{\prime}\) W. and S. \(0^{\circ} 5^{\prime}\) E. Catholic church bears N. \(21^{\circ} \mathrm{W}\).
52. 10 Intersect E. bly. of Lake City. The N. E. cor., which is a limestone, \(14 \times\) \(9 \times 7\) ins. above ground, marked N. E. cor. L. C., bears N. \(0^{\circ} 5^{\prime}\) W., 40.00 chs. dist. The s. W. cor., which is a limestone, \(9 \times 6 \times 6\) ins. above ground, S. W. cor. L. C., , bears S. \(0^{\circ} 5{ }^{\prime}\) E., 7.53 chs. dist.
Thence along the mildle of the Mound City road.
The cor. of sees. \(7,8,17\), and 18 .
Land, gently rolling.
Soil, sandy loam; 1st rate.
No timber.
August 16, 1893.

Angust 17: At \(7^{\text {b }} 4^{\mathrm{m}}\) a. m., l. m. t., I set off \(45^{\circ} 49^{\prime}\) on the lat. are; \(13^{\circ} 17^{\prime} \mathrm{N}\). , on the deel. are; and determine a true meridian with the solar, at the point for cor. of secs. 7, 8, 17 and 18, which falls in the road, and is described on page 209.
Thence I run
N. \(0^{\circ} 5^{\prime}\) W., bet. secs. 7 and 8.

Over rolling land.
32.00
40.00
67. 50
75.50
80.00
3.3. 00

Road to Lake City, bears N. \(75^{\circ} \mathrm{W}\). and S. \(75^{\circ} \mathrm{E}\).
Old Miliary Road, bears N. \(35^{\circ}\) W. and S. \(35^{\circ} \mathrm{L}\).
Set a jmiper post, 3 ft . long, 3 ins. sq., with marked stone, 24 ins. in the grounl, for \(\frac{1}{4}\) sec. cor. marked \(\frac{1}{4}\) S., on W. face; dig pits, \(18 \times 18 \times 12\) ins. N. and S. of post, 3 ft . tlist.; and raise a mound of earth, \(3 \frac{1}{2} \mathrm{ft}\). base, \(1 \frac{1}{2} \mathrm{ft}\). high, W. of cor.
S. E. cor. of cemetery bears W., 5.00 chs. dist.
.
Set a limestone, \(20 \times 8 \times 4\) ins., 15 ins. in the ground, for cor. of secs. 5, 6 , 7, and 8, marked with 5 notehes on S. and E. edges; dug pits, \(18 \times 18 \times 12\) ins., in each sec., \(5 \frac{1}{4} \mathrm{ft}\). dist., and raise a mound of earth, 4 ft . base, 2 ft . high, W. of cor.
Land, rolling.
Soil, wrawelly loam; 2nd and 3rd rate.
No timber.
S. \(89^{\circ} 57^{\prime}\) E., on a random line bet. sees. 5 and 8.

Net temp. \(\frac{1}{4}\) see. cor.
79.96 Intersect N. and s . line 3 lks . S. of the cor. of secs. 4, 5, 8 and 9 .

Thence I rum

Wer rolling land.
Begin ascent, bears N. E. and s. W.
et a limestone \(15 \times 8 \times 7\) ins., 10 ins. in the ground, for witness cor. to cor. of sees. 7, 8,17 and 18, marked W. C., on N. E. face: with 4 notehes on S. and 5 notehes on E. erlges; dig pits, \(18 \times 18 \times 12\) ins., N. E., S. E., S. W., and N.W. of cor., \(5 \frac{1}{2} \mathrm{ft}\). dist.; and raise a mound of earth, 4 ft . base, 2 ft ligh, W. of cor.

Top of spur, bears N. and S.; descend.
Fent of deseent, bears N. \(35^{\circ} \mathrm{W}\). and S. \(35^{\circ} \mathrm{E}\).

Subdivision of T. 1.5 N., li. no E.-Contimued.
\begin{tabular}{|c|c|}
\hline Chaius. 39.98 & Sct a limestone, \(14 \times 8 \times 6\) ins., 10 ins. in the gromml, for \(\frac{1}{4}\) sec. cor. marked \(\frac{4}{4}\) on N. face; dig pits, \(18 \times 18 \times 12\) ins., E. and W. of stone, 3 ft. dist.; and raise a monnd of earth, \(3 \frac{1}{2} \mathrm{ft}\). hase, \(1 \frac{1}{3} \mathrm{ft}\) high, N . of cor. From this \(\frac{1}{4}\) sec. cor. the U. S. mineral monument in sec. 5 bears N. 370 \(30^{\prime}\) E. \\
\hline 64.00 & Road, bears N. and s. \\
\hline 79.96 & \begin{tabular}{l}
The cor. of sees. 5, 6, 7, and 8 . \\
Land, rolling. \\
Soil. gravelly lomm 2ud and 3rd rate. \\
No timber.
\end{tabular} \\
\hline & N. \(89^{\circ} 56^{\prime}\) W., on a raudom line bct. secs. 6 and 7. \\
\hline 77.87 & \begin{tabular}{l}
lutersect W . bedy. of the Tp. 9 lks . S. of the cor. of sces. 1,6,7, and 12, which is a limestone, \(6 \times 8 \times 6\) ins. abore ground, marked and witnesserl as tlescribed by the surveyor general. \\
Thence 1 rim \\
S. \(89^{\circ} 52^{\prime}\) E., ou a true liue bet. secs. 6 and 7. \\
Over rolling land.
\end{tabular} \\
\hline 37.87 & Set a limestone, \(15 \times 8 \times 6\) ins., 10 ins. in the gromm, for \(\frac{1}{4}\) sec. cor., marked \(\frac{1}{4}\) on the N. face ; dig pits, \(18 \times 18 \times 12\) ins., E. and W. of stone, 3 ft . dist.; and raise a momel of earth, \(3 \frac{1}{\frac{1}{2}} \mathrm{ft}\). base, \(1 \frac{1}{2} \mathrm{ft}\). high, N. of cor. \\
\hline 51.00 & Old Military road, bears N. \(30^{\circ}\) E. and S. \(30^{\circ} \mathrm{W}\). \\
\hline 57. 50 & The N. W. cor. of cemetery, bears S., 5.00 chis. dist. \\
\hline \%2.00 & The N. E. cor. of cemetery, bears S., 5.00 chs. dist. \\
\hline 77.87 & \begin{tabular}{l}
The cor of secs. 5, 6, 7, and 8 . Land, rolling. \\
Soil, aravelly loam; 2nd rate. No timber.
\end{tabular} \\
\hline
\end{tabular}
N. \(0^{\circ} 5^{\prime} \mathrm{W}\)., on a raudom line bet. sees. 5 and 6.

Set temp. \(\frac{1}{4}\) sec. cor.
Intersect N. bly. of the Tp. 3 lks . E. of the cor. of secs. 5, 6, 31 and 32 , which is a limestone marked and wituessed as described by the sur-veyor-general.
Thence I run
S. \(0^{\circ} 6^{\prime}\) L., on a true line bet. sees. 5 and 6.

Over rolling ground.
 \(\frac{1}{4}\) on W . face; dig pits, \(18 \times 18 \times 12\) ins., N. and S. of the stone, 3 ft . dist.; and raise a momid of earth, \(3 \frac{1}{2} \mathrm{ft}\). base, \(1 \frac{1}{2} \mathrm{ft}\). high, W. of cor.
The cor. of secs. \(5,6,7\), and 8 .
Larid, rollius.
Soil, gravelly loam; 2nd rate.
No timber.
11 a. m., Angust 17, 1893.

In order to locate Ivy Island, I procecd as follows:
I begill at the meander cor. of fracl. sees. 17 and 20, at \(0^{\mathrm{h}} 45^{\mathrm{m}} \mathrm{p}\). 1 n ., which being too near noon to secure accurate results with the solar, I take a back sight on the cor. of secs. \(16,17,20\) and 21 , prolong the direction, N. \(89^{\circ} 57^{\prime}\) W., bet. secs. 17 aud 20 , and set a flag on line, on the \(S\). E. side of the island. 'To determine the distance to the flag, I lay off' a hase line, S. \(30-32^{\prime} \mathrm{W} ., 36.00\) chs., to a point, at which the angle bet. flag and meander cor. measures \(68^{\circ} 01^{\prime}\); from the flag, the base line snl)tends an angle of \(52^{\circ} 31^{\prime}\). The sum of the three angles is \(180^{\circ} 03^{\prime}\); therefore the conrected angles, taken in the order of theirmeasnrement, are, respectively, \(59^{\circ} 30^{\prime}, 68^{\circ} 00^{\prime}\), and \(52^{\circ} 30^{\prime}\); and the distance is
\(\frac{\sin .68 \times 36}{\sin .52^{\circ} 30^{\prime}}\) or \(\frac{0.527 .2 \times 36}{0.7934}=42.07 \mathrm{chs}{ }^{*}\)
*For other methods of computing the distance, see page 136.

* See pages 44 and 58.

Meanders, T. 15 N., R. 20 E.

\section*{Mernders of the right brank of Yellowstone River, \(n p\) stream.}

I commence at the meauder cor. of fracl. sees. 25 and 30 , on the E. Wry. of the Tp., which is a sandstone, \(6 \times 9 \times 7\) ins. above gromd, marked and witnessed as ilescribed by the surveyor general.
At this cor.. Angust 8,1 set off 450 on the lat. are: \(166^{\circ} 1^{\prime} \mathrm{N}\), on the leel. are; and at \(7^{\text {h }} 35^{\text {mn }}\) a. m., 1. m. t., determine a true meridian with the solar.
Thence I rmo with meamlers in sec. 25 .
Throngh heavy timber.
S. 850 W. 13.00 chs. Bank 20 ft . high.
S. 720 W. 7.10 " Bank 9 ft. high.
S. \(64 \frac{1}{2} \mathrm{C}\) W. 13.00 "
S. 40 W. 5.40 " Low hank 5 ft . high. Head of course, leave heavy timber, enterdense willow and cottonwood madergrowth, bears s.
S. \(777^{\circ} \mathrm{W}\) W. 7.00 " At 3.20 chs., month of Cherry Creek, 14 ks . wide,
N. 76 W. 7.50 "
comse N.
Bank 7 ft. high. At 2.00 chs., leave dense undergrowth, enter heavy timber, bears S.
S. \(80^{\circ} \mathrm{W} .12 .00\) " At end of course, lower end of sand har, bears N.,
S. \(81^{\circ}\) W. 19.39 " 2.00 chis. list.

Bank 4 ft. high. At 5.00 chs. leave heavy, enter scattering timber, bears S. To the meander cor. of fracl. sees. 25 and 26 .

MLeanders, T. 15 N., R. 20 E.-Continued.

Meanders of the right bank of Yelloustone River, up stream-Continued.
Land, river bottom.
Soil, alluvial; 1st rate.
Timber, cottonwood, syeanore, ash, and walnut,
Heavily timbered land or land covered with dense undergrewth, 70.00 chs.

Thence in sec. 26.
Through scattering timber.
S. \(81^{\circ} \mathrm{W} .8 .70\) chs. Bank 8 ft . high.
S. \(70{ }^{30} 0\) W. 4.90 " At 2.30 chs., upper end of bar, bears N. about 2.00
S. \(44{ }^{\circ}{ }^{\circ}\) W. 3.60 "
S. \(21^{\circ}\) W. 3.50 "
S. \(5_{\frac{1}{4}}^{10}\) W. 4.20 "

Sonth. 4.30 "
S. \(91^{\circ}\) E. 3.80 "
S. \(34{ }_{2}^{\circ} \circ\) E. a .27 " To meander cor. of fracl. secs. 26 and 35.

Land, level.
Soil, alluvial; 1st rate.
Timber, seattering ash, hickory, walnnt, and cottonwood.

Thence in sec. 35.
Angust 8: At the meander cor. of frael. sees. 26 and 35, I set off \(15^{\circ} 57^{\prime}\)
N., on the decl. are.; and, at \(0^{4} 5^{\text {m2 }} \mathrm{p} .1 \mathrm{~m} ., \mathrm{l}\). m.t., observe the sun on the meridian ; the resulting lat. is \(45^{\circ} 46^{\prime}\).
Throngh scattering timber.
S. \(28^{\circ}\) E., 8.80 ehs. Bank 8 ft. high.
S. \(0 \frac{3}{4}{ }^{\circ}\) E., 7.70 " At 4.30 chs., leave scattering timber, enter dense cottonwood and willow undergrowth, bears N. \(60^{\circ} \mathrm{E}\).
S. G12 W. 10.00 " Low bank 4 ft . high. At end of course, road to Mound City, bears S. \(70^{\circ}\) E. Ferry, and road to Lake City, bears N. - \({ }^{\circ}\) W.
S. \(31^{\circ}\) W. 12.00 " At 5.50 clis. leave dense undergrowth, bears N. \(65^{\circ}\) E. ; enter Pat Curran's field, bears E. At end of course, house bears S. 62 E., 5.00 chs. dist.
S. \(38^{\circ}\) W. 5.50 " Bank 13 ft. high. At 5.10 chs., leave Pat Curran's tield, fence bears E. At 5.30 chs. middle of road, bears E .
S. \(43 \frac{1}{2}^{\circ}\) W. 7.70 " At 1.50 chs., N. W'. cor. of Alexander's field, bears
S. \(47 \frac{1}{2}^{\circ}\) W. 6.50 "
S. \(37 \frac{1}{2}^{\circ}\) W. 2.00 "
S. \(58^{\circ}\) W. 2.10 "
S. \(42 \frac{10}{10}\) W. 5.10 "" At 3.30 chs., wire fence, bears S. E.
S. \(47^{\circ}\) W. 4.80 "
S. \(50^{\circ}\) W. 4.90 "
S. \(57^{\circ}\) W. 9.50 "
S. \(48 \frac{1}{2}^{\circ}\) W. 16.68 " To meander eor. of fracl. secs. 2 and 35, on S. bdy. of the Tp., which is a limestone \(5 \times 8 \times 6\) ins. above ground, marked and witnessed as deseribed by the surveyor general.
Land, nearly level.
Soil, alluvial; 1st rate. Nortli of Curran's field subject to inundation, 2 to 5 ft . deep.
Timber, seattering ash, walnut, and cottonwood.
Dense undergrowth, 18.90 chs.

\section*{Meanders, T. 15 N., R. 20 E.-Continued.}

\section*{Meanders of the left bank of Fellowstone River, down stream.}

I commence at the meander cor. of fracl. secs. 2 and 35 , on the S. bely. of the Tp., which is a limestone \(6 \times 7 \times 5\) ins. above gronnd, marked and witnessed as described by the surveyor general.
At this cor., August 9, I set off \(45^{\circ} 45^{\prime}\) on the lat. are ; \(15^{\circ} 44^{\prime} \mathrm{N}\)., on the decl. are; and at \(7^{\mathrm{h}} 5^{\mathrm{m}}\) a. m., 1 . m. t., determine a true meridian with the solar.
Thence I run with meanders in sec. 35 .
Over level bottom land.
N. \(38{ }^{30} 0\) E. 9.10 chs. Bank 12 ft high. From the meander cor. the S . end of sand ridge in sec. 34 , bears N. \(16 \frac{1}{2}^{\circ} \mathrm{W}\).
N. \(31 \frac{8 \pi}{4} \circ\) E. 20.00 " At end of course, N. E. end of sand ridge hears
N. \(51^{c}\) E. 14.00 " Sand ridge, parallel to river, N. W., about 25 chs.
N. \(0100^{\text {d. }} 15.00\) dist.
N. \(61 \frac{83}{4}{ }^{\circ}\) E. 15.00 " At end of course, S. end of sand rilge, bears S. \(87 \frac{1}{2}^{\circ}\) W. N. E. end, bears N. \(64^{\circ} \mathrm{W}\).
N. \(35 \frac{1}{\circ}\) E. 7.50 "
N. 42 E. 9.40 "
N. \(19^{\circ}\) E. 7.10 "
N. \(53^{30}\) W. 8.90 " Bank 9 ft . high. At 1.50 chs. enter scattering timber, bears N.W.
N. \(29^{\circ}\) W. 12.95 "

To the meander cor. of fracl. secs. 26 and 35 .
Land, level.
Soil, sandy loam; 1st and 2nd rate.
Timber, scattering ash, cottonwood, and sycamore.

Augnst 9: At this meander cor. I set off \(15^{\circ} 39^{\prime} \mathrm{N} .\), ou the deel. are; and at \(0^{n} 5^{\mathrm{m}} ., \mathrm{p} . \mathrm{m} ., \mathrm{l} . \mathrm{m} . \mathrm{t}\), olserve the sun on the meridian; the resulting lat. is \(45^{\circ} 46^{\prime}\), the true lat., nearly.
Thence in sec. 26.
Throngh seattering timber.
N. \(22 \frac{10}{1}\) W. 6.00 chs. Bank 12 ft . high.
N. \(9 \frac{1}{2} \circ\) W. 6.40 "

North. 8.60 " At 6.00 chs. leave scattering timber, bears W.; thence, over sandy loam.
N. \(11 \frac{1}{4}^{\circ}\) E. 7.50 "
N. \(25^{\circ}\) E. 7.00 "
N. \(40^{\circ}\) E. 7.60 " \(\quad\) Bank 15 ft .high.
N. \(57^{\circ}\) E. 5.70 "
N. \(69 \frac{1}{2}^{\circ}\) E. 7.90 " At 4.40 chs. enter seatteringtimber, bears N. Along the last six courses the bank is rapidly wearing away by action of the current which sets strong against the bank.
N. \(74 \frac{1}{2}^{\circ}\) E. 7.40 "
N. \(76 \frac{1}{c}^{c}\) E. 6.81 " To the meander cor. of fracl. sees. 25 and 26.

Land, level.
Soil, alluvial; 1st and 2nd rate.
Timber, scattering eottonwood, sycamore and black walnut.

Thence in sec. 25.
Through scattering timber.
S. \(86 \frac{1}{2}^{\circ}\) E. 9.70 chs. lank 12 ft . high.
S. \(74^{\circ}\) E. 10.00 "
S. \(82 \frac{2}{2}\) E. 6.00 " At 5.00 chs. leave scattering timber, hears N. W.
N. \(822^{10}\) E. 8.00 " At end of course, wire fence, hears N. \(60^{\circ} \mathrm{W}\).
N. \(69{ }^{\circ}{ }^{\circ}\) E. 7.30 " Bank 7 ft .high.
N. \(61^{\circ}\) E. 4.10 " At 2.90 chis., mouth of short creek, 10 lks . wide,
N. \(533^{3}{ }^{\circ}\) E. 8.30 "
N. \(66 \frac{1}{2}^{\circ}\) E. 10.00 "
N. \(779^{\circ}\) E. 5.50 " Bank 9 ft. high.
N. \(89^{\circ}\) E. 13.00 "

Meanders, T. 15 N., R. 20 E.-Continued.

Meanders of the left bank of Sellorstone River, down stream-Continucd.
N. \(35^{\circ}\) E. 3.79 " Bank 11 ft . high. To meander cor. of secs. 25 ant 3001 F . hdy. of the TP., which is a cedar post, 1 ft . hight, 4 ins. \(s f_{1}\)., marked and witnessed as described by the surveyor general.

August 9, 1893.

\section*{Meauders of Clear Lake in Sec. 33.}

I commence at the special meander cor. bet. the E. and W.halves of sec. 33 , on the N. side of the lake.
Thence I run with meanders in E. \(\frac{1}{2}\) of sce. 33.
Over rolling ground.
S. \(53^{\circ}\) E. 17.00 chs. Bank 10 ft . high. At 11.00 chs. enter scattering timber, bears N. E.
S. 30 E. 13.00 " Bank 8 ft. high. At 12.50 chs. leave scattering timber, bears N. E.
S. \(0 \frac{1}{2}{ }^{\circ} \mathrm{W} .7 .20\) " At cnd of coursc, ontlet of lake, 10 lks , wide, course S. E.
S. \(70^{\circ} \mathrm{W} .15 .11\) " At 2.00 elis., enter scattering timher, bears S.

To the special meander cor. bet. E. and W. halves of sec. 33 , on S. side of the lake.
Thence in \(W\). \(\frac{1}{2}\) of sec. 33.
N. \(63{ }^{\circ} \mathrm{W} .10 .00\) chs. Bank 8 ft . high. At 7.00 chs. leave scattering
timber, bears S . W
N. \(13^{\circ}\) W. 21.00 " Bank 6 to 7 ft . high. At end of course, stream of clear, pure water, 8 lks. wide, enters lake, course S. \(70^{\circ}\) E. Along this line I discovered remarkable fossil remains of animals, well worthy the attention of naturalists.
N. \(52{ }^{\circ}\) E. 17.34 "

Bank 7 to 10 ft . high, enter scattering timber. At 8 clis., leave scattering timber, bears W. To the special meander cor. on N . side of lake.
This is a beantiful lake of pure, clear water, with well defined banks, 6 to 10 ft . high. Water abont 14 ft . deep.
Land, rolling.
Soil, 1st rate.
Timber, scattering maple, oak, and elm.
August 12, 1893.

Meanders of the east end of Lin's Lake, in Sces. 17, 18, 19, and 20.
I commence at the meander cor. on W. bdy. of the Tp., which is a limestone \(6 \times 8 \times 4\) ins., above ground, marked and witnessed as deseribed by the surveyor general.
Auginst 18: At \(8^{\mathrm{n}} 4^{\mathrm{m}}\) a. m., \(1, \mathrm{~m} . \operatorname{t}\)., I set off \(45^{\circ} 48^{\prime}\) on the lat. are; \(12^{\circ} 56^{\prime}\) N., on the decl. are; and determine a true meridian with the solar, at the above described meander comer.
Thence I run with meauders in sec. 19.
Along gravelly beach.
S. \(56^{\text {© }}\) E. 7. 20 chis.
S. \(46 \frac{1}{2}^{\mathrm{C}}\) E. 3.40 "
S. \(44^{\circ}\) E. 2. 40 "
S. \(433_{10}{ }^{\circ}\) E. 5. 70 "
S. \(45 \frac{1}{3}{ }^{\circ}\) E. 4.40 "
S. \(44 \frac{\text { 最 }}{}\) E. \(\quad\) 5. 80 "
S. \(45{ }^{\frac{10}{4}}\) E. 2. 00 "
S. \(499_{4}^{\circ}\) E. 4.00 "
S. \(54 \not{ }^{\circ}\) E. 5.00
S. \(677^{\circ} \mathrm{E}\) E. 2.00
S. \(77{ }^{\circ}{ }^{\circ}\) E. 6.60 "
N. \(85 \frac{1}{2}^{\circ}\) E. 2.00 "

\section*{Meanders of the east end of Lin's Lake, in Secs. 17, 18, 19, and 20-Cont'd.}
N. \(777^{\frac{3}{2}}\) E. 11.00 " At 6.50 chs., A. J. Smith's house bears S. \(15^{\circ}\) E., 1.00 ch. dist.
S. \(77 \pi^{\frac{3}{4} 0}\) E. 7.20 " At beginning of course enter scattering timber, S. \(74^{\circ}\) E. 21.11 " To tho meander cor. of fracl. secs. 19 and 20.

Land, level.
Soil. sandy loam; away from the beach, 2nd rate.
Timber, maple, ash, and oak.
Angust 18: At this meander cor. I set off \(12^{\circ} 52^{\prime} \mathrm{N}\). , on the decl. are; and at \(0^{\mathrm{b}} 4^{\mathrm{m}} \mathrm{p}\). m., l.m.t., observe the sun on the meridian; the resulting lat., \(45^{\circ} 47^{\prime}\).

Thence in sec. 20.
Along gravelly beach, throngh scattering timber.
S. \(89 \frac{9}{4}{ }^{\circ}\) E. 6.10 chs.
N. \(57^{\circ}\) E. 12.00 " At 5.00 chs., leave scattering timber.
N. \(37 \frac{17}{}{ }^{\circ}\) E. 10.50 "
N. \(46^{5}\) E. 5. 00 " At end of course enter scattering timber, bears \(\mathbf{E}\).
N. \(23 \frac{1}{1}^{\circ}\) E. 9.90 "
N. \(399_{\frac{3}{4} \circ} \circ\) E. 10.48 " To the meander cor. of fracl. secs. 17 and 20.

Land, level.
Soil, gravelly on beach; away from beach rich loam; 1st rate.
Timber, maple, ash, oak, and syeamore.
August 18, 1893.

Angust 19: At \(7^{\text {in }} 3^{\mathrm{m}}\) a. m., 1 . m.t., I set off \(45^{\circ} 48^{\prime}\) on the lat. are; \(12^{\circ}\)
\(38^{\prime}\) N., on the decl. are; and determine a true meridiau at meander cor. of fracl. secs. 17 and 20 .
Thence in sec. 17.
Along gravelly beach, through scattering timber.
N. \(19^{\circ}\) E. 10.00 chs.
N. \(15{ }^{3}{ }^{\circ}\) E. 10.00 " At 6.50 chs., month of branch 7 lks . wide, the outlet of pond in sec. 16 , course N. \(70^{\circ} \mathrm{W}\).
N. \(80^{\circ}\) W. 6.00 "
N. \(681^{\circ} \mathrm{W} .7 .10\) "
N. \(88^{\circ}\) W. 6. 70 "

At end of course, leave scattering timber, bears N. E.
N. \(38 \frac{1}{4}^{\circ}\) W. 9.50 " At end of course, fence, bears N. \(43^{\circ}\) E.; enter irrigated field.
N. \(277^{\circ}{ }^{\circ}\) W. 5. 00 "
N. \(27 \mathrm{t}^{\circ}\) W. 8.00 "
N. \(10_{1}^{10}\) W. 6.00 "
N. \(38 \frac{1}{2}\) º W. 2.80 "
N. \(46 \ddagger^{\circ} \mathrm{W} .9 .50\) " At 2.00 chs., leave irrigated field, bears N. \(43^{\circ}\) E.
N. 3312 W. 3. 74 " To meander cor. of fracl. secs. 17 and 18.

Land, level.
Soil, gravelly on beach; away from beach, rich loam, rocky near meander cor.; 1st and 3rd rate.
Timber, maple, ash, oak, and sycamore.

Thence in sec. 18.
Along gravelly heach.
N. 38 年 0 W. 15.00 chs.

Bank 6 ft. high.
N. \(63 \%\) W. 5.00 " At end of course, middle of main track of Montana and Manitoba Railroad, 70 lks. N.
S. \(84^{\circ}\) W. 13.00 " Bank 8 ft. high. At 12.00 chs., S. E. cor. of Lake City. Thence, along S. side of Water street, 100 ft. wide. At 12.30 middle of East street, bears N. \(0^{\circ} 5^{\prime} \mathrm{W}\).

Meanders of the east end of Lin's Lake, in Secs. 17, 18, 19 and 20-Cont'd.
S. \(611^{\circ}\) W. 19.00 " Bank 9 ft . high. At 5.55 chs., middle of Walnut strect, bears N. \(0^{\circ} 5^{\prime} \mathrm{W}\). Railroad station bears N. 3.00 chs. dist. At 11.80 , middle of Elm street, bears \(\mathrm{N} .0^{5} 5^{\prime} \mathrm{W}\). At 17.00, ascend from beach to top of bank 10 ft . high; N. E.cor. of wharf. At 18.00 chs., midelle of Main strect, bears N. \(0^{3} 5^{\prime}\) W. At end of course, N. W. cor. of wharf.
S. \(43^{\circ}\) W. 13.00 " Bluff bank 9 ft. high; no beach. At 8.50 chs., middle of Pino street, bears N. \(0^{\circ} 5^{\prime} \mathrm{W}\).
S. \(55 \frac{1}{2}^{\circ}\) W. 4.00 " At 2.90 chs., mildle of Cedar street, bears N. \(0^{\circ}\)
S. \(74^{3.30}\) W. 4.70 " Bank 7 ft . high; no beach.
S. \(79^{\circ}\) W. 5.60 " Bank 5 ft . high. At 0.10 chs., middle of West street, bears N. \(0^{\circ} 5^{\prime} \mathrm{W}\). At 0.42 chs., S. W. cor. of Lake City.
S. \(86 \frac{1}{4}^{\circ}\) W. 12.31 " To the meanter cor. of fracl. sees. 13 and 18, on W. bdy. of the Tp. which is a juniper post, 1 ft . higll, 4 ins. st., marked and witnessed as described by the surveyor general.
Land, gently rolling.
Soil, saudy loam; 1st rate. No timber.
I return to the meridian established Ang. 4, from Polaris. At \(4 \mathrm{p} . \mathrm{m} . \mathrm{I}\) set off - \({ }^{\circ}\) on the decl. arc, and test the adjustment of my solar, finding it gives the same meridian as before, and adjustments correct. August 19, 1893.

Meanders of Ivy Island in sees. 18 and 19.
I commence at the meander cor. of fracl. sees. 18 and 19, on the east side of the island.
August 17: At 3 p. m., l. m. t., I set off \(45^{\circ} 48^{\prime}\) on the lat. are; \(13^{\circ}\) \(9^{i} \mathrm{~N}\)., on the decl. are ; and determine a true meridian at this moander cor.
Thence I run with meandors in sec, 19 along gravelly beach.
S. \(471^{\circ} \mathrm{W} .2 .50\) chs. Low bank, 2 ft . high.
N. \(52^{\circ} \mathrm{W} .2 .82\) chis. To meander cor. bet. fracl. secs. 18 and 19.

Soil, gravel ; off beach, loam, 1st rate. No timber.

Thence in sec. 18.
Aloug gravelly beach.
N. \(5 \frac{1}{2}{ }^{\circ}\) W. 2.90 chs.
N. \(35^{\circ}\) W. 1.60 " Row of 2 cottages and pavilion, parallel to beach,
S. \(45 \frac{1}{4}{ }^{\circ}\) W. 1.40 " At beginning of conrse, hotel bears N. \(30^{\circ} \mathrm{W}\). ; at end of course, cottage bears N. \(30^{\circ} \mathrm{W} ., 2.00\) chs. dist.
S. \(56^{\circ}\) W. 2.30 "
N. \(73 \frac{1}{2}^{\circ}\) W. 4.50 "
N. \(38^{\circ}\) W. 6.40 "

Row of cottages, parallel to beach, 2.00 chs. dist.
At 2.00 chs., bank 3 ft . high; at 3.00 chs., bank 15 ft. high; narrow rocky beach.
N. \(12^{\circ}\) E. 4.20 " Bank, 25 ft. high; large rocks along narrow beach.
N. \(59 \frac{1}{2}^{\circ}\) E. 5.30 " Bank, rock nearly vertical, 35 ft. high; narrow beach of roek and gravel.
East. 2.60 "
S. \(36^{\circ}\) E. \(3.80 "\)
S. \(56 \frac{1}{}^{\circ}\) E. 6.40 " At 2.00 chs., biank 9 ft. high ; at 3.00 chs., 5 ft . high. Scattering timber off beach.
S. \(29^{\circ}\) E. 7.00 " Low bank 4 ft. high. Seattering timber off beach.
S. \(471^{\circ}\) W. 3.40 " To the meanter cor. of fracl. secg. 18 and 19.

Meanders, T. 15 N., R. 20 E.-Concluded.

\section*{Meanders of the cast end of Lin's Lake, in Secs. 17, 18, 19 and 20-Conc'd.}

Land, high on north part of island, low on S. E. part.
Soil; rich loan on east end; stony on west end of island; 1st and 3rd rate. Timber, oak, maple and ash; undergrowth, on west end of island, hazel bushes and tangle of grape vines and wild ivy on the high ground; a few scattering water elms and sycamores on low part of island.

August 17, 1893.

Meanders of a small island, called Diamond Rock, in See. 19.
I commence at the anxiliary meander cor. on sonth side of the island.
Thence with meanders in sec. 19.
N. \(161^{\circ} \mathrm{W} .2 .70\) chs.
N. \(61^{\circ}\) E. 2. 90 "
S. \(481^{\circ}\) E. 3.50 "
S. \(27 \frac{2}{2}^{\circ}\) W. 2.20 "
N. \(85^{\circ}\) W. 3.30 " To anxiliary meander cor. and place of beginning.

Land, level.
Soil, gravelly loam; 3rd rate.
No timber.
This island is abont 4 ft above the water, not snbject to inumdation; has no vegetation, except grass; and is without improvements.

Angust 17, 1890.

\section*{GENERAL DESCRIPTION.}

This township contains nearly every variety of land from plains to monntains, and the soil ranges from alkali to rich loam. The soil of the bottom land along the Yellowstone River and in the central part of the township, is generally rich, black loam, eapable of producing abundant crops without irrigation. The soil of the remaining portion of the township. except the alkali flat in secs. 23 and 24 , and the mountainous land, can nearly ali be classed as second rate, is covered with an abundint grow th of rich and nutritions grasses, and will produce crops without irrigation. In the southwestern portion of the township is an arid plain, and irrigation will be necessary.

Cottonwood, sycamore, ash, and other kinds of timber are found along the Yellowstoue River, and some scattering along the creeks. The Little Snowy Mountains are covered with a denso growth of pine, oak, and fir timber, many of the trees being very large.

There is one limestone quarry in secs. 8 and 9 which affords excellent building stone, and, from surface indications, it is probable that large bodies of limestone and sandstone underlie other portions of the township. Iron ore was found in sec.3, and gold in secs. 4 and 5.

The township is well watered by the Yellowstone River, which runs through the southeastern portion, and by many small springs and brooks. The eastern end of Lin's Lake, comprising only a small portion thereof, is included in this township. This lake is about 10 miles long, aud its greatest width is abont 4 miles. The water is clear and pure, and varies in depth from 10 to 200 feet.
Iry Island, in Lin's Lake, contains nearly seventeen acres of land. About the middle of the island is a fine large spring of pure, cold water, which supplies the hotel and cottages situated on the sonth shore. This island is a favorite resort for residents of Lake City and the surronnding conntry.

The town of lake City, the county scat of Humboldt Comnty, contains a conrthouse, threo churches, two hotels, several stores, and about 50 dwelling houses. Its estimated population is 300 .
There are two settlers in sec. 35 , and one each in secs. 16, 17, 19, and 25.
James Parker's desert-laud claim in sec. 32 may be irrigated by an artesian well, which is now being driven.

Robert Acres, U. S. Deputy Surveyor.

\title{
FINAL OATHS OF DEPUTY SURVEYOR AND HIS ASSISTANTS.
}

\section*{LIST OF NAMES.}

A list of the names of the individuals employed by Robert Acres, U. S. deputy surveyor, to assist in raming, measming, and marking the lines and corners deseribed in the feregoing field notes of the survey of the subdivision and meander lines of Township Fo. 15 North, of Kange No. 20 East, of the Prineipal Base and Meridian, in the State of Montana, showing the respective capaeities in which they acted:


\section*{FINAL UATIIS OF ASSISTANTS.}

I hereby certify that I assisted Robert Acres, United States deputy surveyor, in surveying all those parts or portions of the subdivision and meander lines in the east half of Township No. 15 North, of Range No. 20 East, of the Principal Base and Meridian, State of Montana, which are represented in the foregoing field notes as having beensurveyed by him and under his direction; and that saill survey has been in all respects, to the best of my knowledge and belief, well and faithfully surveyed, and the eorner momments established, according to the instructions furnished by the U. S. surveyor general for Montana.

Janes Banner, Flagman.
Subscribed and sworn to before me this eleventh day of August, 1893.
Robert Acres, U.S. Deputy Surveyor.

We herehy certify that we assisted Robert Acres, U. S. deputy surveyor, in surveying all those parts ur portions of the sublivision and meander lines of Township No. 15. North, of Range No. 20 east, of the Principal Base and Meridian, State of Montana, which are represented in the foregoing field notes as having been surveyed by him and muder his dircetion; and that said survey has been in all respects, to the best of our knowledge and belief, well and faithtully surveyed, and the corner monmments established, according to the instructions furnished by the U. S. surveyor general for Montana.

> Peter Long, Chainman. John Short, Chainman. CYrus Clar, Moundman. Henry Rock, Moundman. George Sharp, Axman. Adan DUll, Axman.

> Snbseribed and sworn to before me this twenty-third day of August, 1893. [sEal.]
> HENRY Doolitice, Notary Public.

I hereby certify that I assisted Robert Acres, Uuited States deputy- surveyor, in survering all those parts or portions of the subdivision and meander lines in the west half of To wnship No. 15 North, of Range No. 20 East, of the Principal Base and Meridiau, State of Moutana, which are represented in the foregoing field notes as having been surveyed by hin and under his direction; and that said survey has been in all respects, to the best of my knowledge and belief, well and faithfully surveyed, and the corner monmments established, according to the instructions firnished by the U.S. surveyor general for Montana.

Edward Exsign, Flagman.
Subscribed and sworn to before me this twenty-third day of Angust, 1893. [sEAL.]

Heniry Doolittle,
Notary Public.

\section*{FINAL OATII OF U. S. DEPUTY SURVEYOR.}

I, Robert Acres, U.S. deputy surveyor, do solemuly swear that in pursuance of a contract received from A-B B U. S. surveyor general for Montana, bearing date of the twenty-second day of March, 1893, I have well, faithfully, and truly, in my own proper person, and in strict conformity with the instructions furnished by the U.S.surveyor gencral for Montana, the Manual of Surveying Instructions, and the laws of the United States, surveyed all those parts or portions of the subdivision and meander lines of Township No. 15 North, of Range No. 20 East, of the Principal Base and Meridian, in the State of Montana, which are represented in the foregoing field notes as having been surveyed by me and under my direction; and I do further solemmly swear that all the corners of said survey have been established and perpetuated in strict accordance with the Manual of Surveying Instructions, and the special written instructions of the U.S.surveyor general for Montana, and in the specific manner described in the field notes, and that the foregoing are the original ficld notes of such survey; and should any fraud be detected, I will suffer the penalty of perjury under the provisions of an act of Congress approved August 8, 1846.

> Robert Acres, U.S. Depuly Surveyor.

Subscribed by said Robert Acres, and sworn to before me this thirty-first day of Angust, 1893.
[sEaL.]

> U. S. Surveyor General for Montana.

To each of the original field books the surveyor general will append his official approval, according to the following form, or so varied as to suit the facts in the case:

> Office of the U. S. Surveyor General, Helena, Montana, September 1, 1889.

The foregoing field notes of the survey of [here describe the survey], executed by Robert Acres under his contract No. 87 , dated March 22,1893 , having been critically examined, and the necessary corrections and explanations made, the said fieid notes, aud the surveys they describe, are hereby approved.
U.S. Surveyor General.

To the copics of the ficld notes transmitted to the Gencral Land Office the surveyor gencral will append the following certificate:
1 certify that the forcgoing transcript of the field notes of the survey of the [here describe the character of the surveys, whether meridian, base line, standard parallel, exterior to wnship lines, or subdivision lines and meanders of a particular township], in the State [or Territory] of .............................. has lseen correctly copied from the original notes on file in this office.

\section*{PliIVATE LAND CLAIM SURVEIS.}
1. Before ordering any survey of a private land claim the surveyor general will receive fuli instructions from this office, by which he will be governed in issuing his instractions to the deputy. The instructions to the deputy must be entered in full at the commencement of the field notes of such survey.
2. The instruments used in the survey of private land claims must be the same as those required for the survey of public lands, and must be registered and tested in like mamer at the surveyor general's office previons to the deputy's commencing work; and the instrnctions for the survey of public lands must, as far as applicable, be strictly observed in the survey of private land claims.
3. The true magnetic variation must be noted at the beginning point of each survey, and wherever the variation of the needle is observed to change along the line the same must be noted and the reasons therefor stated, if known.
4. At the end of each mile along a boundary, the character of the soil and amount of timber, grass, ete., will be stated; and the date of each day's work in the field must be moted at the end of the record thereof.
5. The requirements in the "Summary of objects and data required to be noted," as set forth in the instrnctions for the survey of public. lands, must be observed by the deputy in the survey of private land claims. Where practicable, bearings must be taken from at least two points on the line to all prominent or otherwise notable objects in the vicinity, and where only one bearing can be taken the estimated distance must be noted.
6. At the begimning point upon the boundaries of each grant survey, a corner must be established of the same character, size, and materials as preseribed for township corners upon the lines of the survey of public lands, except that only two pits will be dug, one on each side of the corner, on the line. Upon the side of such corner facing the claim, the initial letters of the name of the grant, and immediately under the same the letters "Beg. Cor. 1 " (for beginning corner one) must be neatly cut or chiseled.
7. Each of the mile corners or stations of survey must be established in the manner prescribed for the establishment of section corners upon the lines of public surveys, extept that they will be marked on the side facing the grant with the initials of the grant and the number of the station or mile, as the case may be; and only two pits will be dug, one on each side of the corner, on the line.
8. Where mile corners are established, except upon meandered portions of the line, half-mile corners will also be established in the manner
- prescribed for the establishment of quarter-section corners upon the lines of public surveys, except that they will be marked upon the side facing the grant with the initials of the grant.
9. Such other marks, in addition to those above described, will be placed upon the corners as may be required by the surveyor general in his special written instructions.
10. As far as practicable, bearings and distances must be taken from each of the corners or stations to two or more trees, or prominent natural objects, if any, within a convenient distance, in the same manner as required in the iustructions for the survey of public lands, and such trees or objects must be marked with the initials of the grant, and unlerneath same the letters "B. T." or "B. O.," as the case may be.
11. Witness corners will be established, where necessary, in the same manner as required in the instructions for the survey of public lands.

1!. In all cases where the lines of the grant boundary surveys intersect established lines of survey of public lands or private land claims, the course and distance from such point of intersection to the nearest corner on the line of the prior survey must be carefully run, measured, and noted, and whenever nceessary such comer must be reëstablished.
13. The survey of a private land claim must always be connected by a line actually run and measured in the field with some corner of the public survers, if any such have been established within a distance not exceeding two miles from any point on the boundary lines of the private land claim.
14. Boundinies or portions of boundaries of previously established grant surveys, which also form a portion of the boundaries of the claim to besurveyed, will be adopted so far as common to both grants, but no payment will be made for such common boundaries unless it is necessary to reëstablish the same.
15. The field notes must embrace a full, clear, and concise statement of the deputy's reasons for his location and establishment of each boundary.
16. A general description of each tract must be given at the end of the field notes of the survey of same, which description must embrace a brief statement of the main features of the tract surveyed, character of the land, timber, and other natural growth, kinds of mineral, if any, population of towns and settlements, characteristics of mountains, streams, springs, etc., and such other data as may be of importance.
17. The depaty must particularly note all facts relative to present inhabitancy of the land and desiguate all tracts occupied by actual settlers or residents.
18. The deputy surveyor must return with the field notes a topographical map or plat of the survey. As far as practicable all objects described in ficld notes, and the main features of the tract surveyed, including towns, streams, momntains, roads, etc., must be protracted on such plat as accurately as possible.
19. The field-note books must embrace a list of assistants, and preliminary and final oaths, as required in the instructions for the survey of publie lamds.
20. The deputy will note all objections to his survey that may be bronght to his knowledge, and the surveyor general will promptly report to the Commissioner of the General Land Office all complaints made to him, and send up all protests filed in his office, together with a full report thereon.
21. Official plats of the smrvey of private land claims will not be furnished to any person until the cost of surveying and platting the same shall have been paid to the United States.

\section*{APPENDIX RELATIVE TO ACCOUNTS FOR SURVEYING AND EXAMINATION.}
U. S. surveyors general and deputy surveyors are required to eomply strictly with the following instructions:

All surveying accounts transmitted to the General Land Office for adjustment must be in clupiicate and in a separate letter from that forwarding the plats and tield notes of the survey. The name of the deputy surveyor, date and mmber of the contract, the amomit of the estimated liability, and whether said liability is limited or not, should be noted on the face of the depnty's account.

The amount of the account and the appropriation from which it is to le paid should be stated both in the letter of transmittal and in the account rendered. The deputy's affidavit that the survey was exeeuted by him, and that it was just and correct, should be attached to the account.

The date of the surveyor general's approval shonld appear in the certificate thereto, and the destination of the draft or drafts, the name of the payee or payees, with the post-office address, should be added.

When the survey is chargeable to "Deposits by individuals for surveying the public lands," it should be so stated, and the deposit to which the field work is chargeable should be listed by mumber and date of certificate of deposit, with number of township and range for which the deposit is made, and the amount of each certificate.

When the amount of an account is in excess of the liability of the contract, a copy of office letter anthorizing the excess must always accompany the account.

When stating an expeuse account for examination in the field or office on surveys, the number of the contract under which the survey was made, the name of the surveyor, with the number of township and range examined, should be inserted in the account, aceompanied by a copy of letter of anthorization, said aceount and vouchers to be furnished in duplicate and to have the affidavit of the examiner as to the correctuess of the charges and the approval of the surveyor general attached.

When surveys are continued and exeented beyond the time limited in the contract and the contract has expired, and there has been no properly-granted extension of time thereto, the compensation of the deputy surveyor for the lines of survey executed after the expiration of the contract will be reduced, and said lines completed at such rates as the Commissioner of the General Land Office may in his judgment determine to be proper, taking into consideration the value of the work and the limitations of the appropriation from which the account must be paid.

The field notes of a U. S. deputy surveyor, which are the data upon which his surveying account is stated by the surveyor general, and
subsequently adjusted by the Commissioner of the General Land Office, should describe the surface, soil, etc., at the end of each mile or fractional mile of survey, and should state the number of chains and links which are "mountainous," "heavily timbered," or covered with "dense undergrowth," using always the exact phraseology of the appropriation act which establishes the rates for said lines of surveys.

By dense undergrowth is meant thick bushes, boughs, or other vegetable growth of such height as to obstruct the use of the transit, and require cutting away to obtain sights along line; also bushes, brush, vines or other vegetation which is of such tangled and difficult character as to seriously impede the work of chaining the line.

Connecting lines, showing closing distances to closing corners, will be paid for at the minimum rate allowed in the contract for that class of line which is run to the closing comer, unless otherwise specially provided in the contract.

The practice of allowing deputies to retrace any and all lines which they may deem necessary in connection with their work, and compensating them therefor, has been discontinued.

If it becomes necessary to retrace any of the exterior lines in order to properly close their lines of survey it must be done at the deputy's own expense as a legitimate contingent in executing the contract. If it should be found to be absolutely necessary to resurvey and retrace any portion of the exterior township lines, except such as are clearly provided for in the article on pages 72,73 , and 74 , the deputy should report the facts immediately to the surveyor general and await further instructions. The facts as reported to him will be promptly laid before the Commissioner of the Gencral Land Office, specifying the number of miles of retracement required, and, if snch resurvey is authorized, the deputy will be immediately notified. In no other case will any resurvey be paid for which is not specifically authorized by the Commissioner.

PROCEDURE OF COUNTY \(\triangle N D\) PRIVATE SURVEYORS IN RESTORING LOST AND OBLITERATED CORNERS AND SUBDIVIDING SECTIONS.

The General Land Office assumes no control or direction over the acts of local and county surveyors in the reestablishment of extinct corners of original surveys. It follows the general rule that disputes, arising from uncertain or erroneons location of original corners, are to be settled by the proper local authorities or by amicable adjustment; and to aid in this result it furnishes a circular pamphlet which is merely advisory and explanatory of the principles which should prevail in performing such duties.

Surveyors who have been United States deputies should bear in mind that in their private capacity they must act under somewhat different rules of law from those governing original surveys, and should carefully distinguish between the provisions of the statnte which guide a Govermment depnty and those which apply to retracement of lines once surveyed. The failure to observe this distinction has been prolific of erroncous work and injustice to land owners.

The circular on "Restoration of lost and obliterated corners," dated March 13, 1883, and the circular on subdividing a section, dated June 2, 1857, are furnished to applicants.

\section*{INDEX.}
A.
Page.
Abbreviations allowed in field notes ..... 23.65
Accounts for surveys and examinations ..... 223
Acreage of fractional lots, compatation of ..... 68-70
Affidavits of qualification of sureties ..... 16,17
Affidavits or final oaths of deputy and assistants, forms of ..... 63
Alinement, limits of error of, in section and township lines ..... 59, 66, 72
Alteration of field notes prohibited ..... 64
Annual change of magnetic declination for each state ..... 98
Annual magnetic variation, table showing ..... 96, 97
Appointment of deputies by surveyor general ..... 10, 14
Approval of surveying eontract by Commissioner ..... 12
Arabic figures to be used in marking at corners ..... 22
Areas of certain tracts to appear on plats ..... 67
Areas of lots, how computed ..... 68-70
Argument, definition given ..... 112
Ascertaining true meridian from Polaris, by hour angle ..... 109-119
Assistant, discharge or change of duties of ..... 65
Assistant, specimen field notes of discharge of. ..... 149, 200
Assistants, forms of affidavits of ..... 63
Astronomical and civil day, difference explained between ..... 109, 110
Auxiliary meander corners ..... \(44,58,212\)
Azimnths of Polaris at elongation, tables of ..... 103, 104
Azimuths of Polaris for any hour, table of. ..... 118, 119
Azimuths of secant to the parallel and ofisets in feet, table of ..... 121
Azimuths of tangent to the parallel, table of. ..... 125
B.
Base and meridian lines, and correction lines ..... 10
Base and standard lines surveyed by offsets ..... 120-128
Base lines and principal meridians of various States ..... 81-84
Base lines, how run ..... 51
Bearing trees, location and marking of ..... 24, 49, 50
Blazing of trees along line ..... 21
Bond and contract for surveying, form of ..... 15, 16
Bond, official, of surveyor general ..... 10
Bond to be given by deputy surveyor ..... 11
Boulder, marked for corner, specimen field notes of ..... 157
Boundaries and contents of lands, law for ascertaining ..... 12
Boundaries of townships considered defective ..... 72
Boundaries of townships, latitude and departure of ..... 61, 129
Boundaries of townships, specimen field notes of ..... 169-182
Boundary corner monnments, deseriptions of ..... 45-17
Boundary of rancho, specimen notes of line intersecting ..... 190, 191
Bushes to be lopped along line ..... 21

\section*{C.}
Cassiopeia, diagram of constellation ..... 108
Cedar and live-oak lands reserved for navy ..... 13
Certificates of deposit by settlers, for surveys ..... 13
Chain, standard to bo kept by depnty ..... 20
Chaining, double, specimen field notes of ..... 142-158, 164-167
Page
Chaining, how performed ..... 20
Chains of length, in degrees of latitude, table of ..... 131, 132 ..... 131, 132
Chains of length, in degrees of longitnde, table of. ..... 133, 134
Chains of length, in one second of longitude, table of ..... 135
Chains to be leveled and pins set plumb ..... 21
Chains to be tested and compared ..... 20
Charts of isogonic lines explained ..... 84-86
City or village, specimen tield notes of intersection of ..... 209, 210
Civil day and astronomical day, difference shown between ..... 109, 110
Claims, mineral, comection of, with public surveys
221, 222
Claims, private land, rules for survey of ..... 190, 205
Claims, private land, specimen field notes of intersection of ..... 
10, 13 ..... 
10, 13
Classification of lines of public surveys
Classification of lines of public surveys ..... 50 ..... 50
Closing comers, connecting liues to ..... 27, 35, 55, 224
Closing corners on grant lines, specimen field notes of ..... 190, 191
Closing corners, rules for position of ..... 27
Closing errors in exteriors, table showing ..... 177 ..... 177
Closing limits for exterior boundaries ..... 59, 66, 72
Closing limits for meauders ..... 60
Closing limits for sections ..... 59, 60
Closing lines, connectiou distances on standard parallel ..... 27
Closing lines defined ..... 27
Closing township comers, descriptions of ..... 25-27
Coast and Geodetic Survey, article on magnetic declination from. ..... 84-105
Commissioner may make regulations to enforce law ..... 9, 10
Commissioner of General Land Office, act creating office of ..... 7
Commissioner of General Land Office, duties of ..... 7,9
Commissioner's instrnctions made part of every contract ..... 9
Commissioner's letter to surveyors general anthorizing Manual ..... 3
Commissioner, when to act as surveyor general ..... 9, 10
Compass, only solar or trausit allowed on snrveys ..... 19
Compensation of deputies, how established ..... 12
Compensation of special examiners ..... 10
Computation of areas of fractional lots ..... 68-70
Computation of convergencies, rnles for ..... 135, 136
Computation of distances along meridian lines ..... 129
Computation of distances along parallels ..... 130
Compratation of triangulations ..... 136, 137
Connecting lines at closing corners ..... 27, 35, 55, 224
Connection lines for meandering islands. ..... 57
Contents and boundaries of pmblic lands, law for ascertaining ..... 12
Continental Congress, committee of, to originate surveying system ..... 5
Contract and bond for surveying, form of ..... 15,16
Contract for survey not valid mitil approved ..... 12
Contract for survey to include Mannal and other instructions ..... 8, 9, 12
Couvergency of meridians 6 miles long, table of. ..... 135
Convergency of meridians, method of computing ..... 135, 136
Convergency of section lines, table of corrections for ..... 54
Convergency, rules for compitation of ..... 135
Corner in road, deposit at point for ..... 48, 187, 198, 209
Corner monuments, orientation of ..... 50
Corner monuments to be durably built ..... 22, 50
Coruers all to he built conforming to descriptions in Mannal ..... 22, 23
Corners, anxiliary meander ..... \(44,58,212\)
Corners described:
Township corners, standard ..... 23-25
closing. ..... 25-27
common to four townships ..... 28,29
common to two townships ..... 29-31
referring to one township only ..... 31, 32
Section corners, standard ..... 32-34
closing ..... 34, 35
common to four sections ..... 35-37
common to two sections ..... 37-39
referring to one scetion only ..... 39, 40
Quartcr-soction corners ..... 40-42
Quarter-scetion corners, standard ..... 42
Meander corners ..... 42-44
Corners described-Continued. ..... Page.
Reservation boundary corners ..... 45-47
Witness corners ..... 47, 48
Witness points ..... 48
Rocks in place or boulders used as corners ..... 48
Corners, descriptions of all kinds of ..... 23-50
Corners, durable materials to be used for ..... 22,50
Corners, obliteration of, on resurvey ..... \(73,179,180\)
Corners, special meander ..... 44,57
Corners, tools for marking ..... 22
Corners, witness, rules for establishing ..... 44, 47, 48, 56
Correction lines or standard parallels ..... 52
Correction line, sectional ..... 76
Correction of convergency of section lines, table of ..... 54
Correction of courses of randoms, rules for ..... 128, 129
Correction of declination of needle, for daily mean, table for ..... 100
Correction of defective exteriors ..... 72-74
Correction of Polaris observations for month, table of ..... 104
Correction of random lines (falling and course), table of ..... 128
Correction of random section lines ..... 54
Correction of random township lines ..... 52, 53
Correction of standard parallel, specimen field notes of ..... 147, 148
Correction table for convergency of section lines ..... 54
Comity and local surveyors, advice to ..... 224
Colmination of Polaris, observed by stars Zeta and Delta ..... 105, 107-109
Culmination of Polaris, table showing times of ..... 102
Culmination of Polaris, upper, table of times of ..... 113
Curve of standard parallels, how established ..... 120-128
Custody of surveying records by State ..... 9, 10
D.
Day, astronomical and civil, difference shown between ..... 109, 110
Declination, annual change of magnetic for each State ..... 98
Declination, magnetic, article by C. A. Schott upon ..... 84-105
Declination, magnetic, specimen field notes of ..... \(150,164,186\)
Declination of needle, correction for daily mean ..... 100
Declination of needle, when to be noted by survesors ..... 59
Defective exteriors, correction of ..... 72-74
Defective exteriors, how definel. ..... 72
Defective exteriors, when to be retraced without compensation ..... 224
Deflection angle for parallels, and inches of offset to 1 chain ..... 121-123
Degrees of latitude, lengths of, in chains, table ..... 131, 132
Degrees of longitude, lengths of, in chains, table ..... 133, 134
Delta Cassiopeix, method of obtaining true meridian by ..... 107, 108
Dense undergrowth defined ..... 224
Dense undergrowth, to be noted, for higher rate per mile ..... 61
Deposit of money by settlers, for survers ..... 13
Deposit under corner monument, with record ..... 46
Deposit under point for corner, at intersection of road ..... 48, 198, 209
Deputy survecor, bond for faithful performance of duty ..... 11
Deputy surveyor may swear assistants when necessary ..... 64
Deputy surveyors, appointment and removal of ..... 10, 14
Deputy surveyor's bond and contract, form of ..... 15, 16
Deputy surveyors to take oath of allegiance ..... 14
Description, general, of lands surveyed ..... 62
Descriptions of corners of all kinds (see Corners described) ..... 23-50
Descriptions of corners, all field work to conform to the given ..... 22, 23
Descriptive notes of corners, etc., sent to local land office. ..... 68
Desert-land claim, specimen field notes concerning ..... 205-207
Destroying corners on resurvey, specimen field notes of ..... 179, 180
Diagram of north-polar constellations ..... 108
Diagram, rongl, of topography in township, to be retnrned ..... 61
Diagrams furnished with special instructions ..... 61, 65
Diagrans, index, to specimen field notes ..... 140, 162, 170, 184
Diagrams, rongh, of topography on exteriors, in field notes ..... 61
Discharge of assistant, or change of duties ..... 65
Discharge of assistant, specimen field notes of. ..... 149, 200
Distance, limits of error of, in section and township lines ..... 59, 60, 66
Page.
Diurnal change of magnetic declination ..... 98-100
Diurnal variation, table for mean corrections of ..... 100
Donble chaining on standard lines, specimen field notes of ..... 142-158, 164-167
Duties of Commissioner of General Land Office ..... 7,9
Duties of surveyors general ..... 10
E.
Ellicott, Andrew, method nsed by, in 1785 ..... 105, 108
Elongation, azimuths of Polaris at, tables of ..... 103, 104
Elongation of Polaris, how to find meridian by ..... 105-107
Elongation of Polaris, specimen notes of observations on ..... 142, 147, 150
Elongation of Polaris, table showing times of. ..... 102
Erroneous survess, adjustment of ..... 72-80
Error, limits of, allowable in surveys of exteriors ..... 59, 66, 72
Error in closings, limits allowed, in subdivisions ..... 59, 60
Establishment of corners to be permanent ..... 22, 50
Examination of field work ..... 10, 11
Examinations, preparation of accounts for ..... 223
Examiner, special, pay and expenses of ..... 10, 11
Expense of survey of railroad lands to be repaid ..... 12
Extension of new surveys from old, methods of ..... 75-78
Exterior boundaries, unnecessary retracement of, prohibited ..... 224
Exterior boundaries, when defective ..... 72
Exterior boundaries, when to be retraced withont compensation ..... 224
Exteriors of townships, how run ..... 52, 53
Exteriors of townships, specimen field notes of ..... 169-182
Exteriors of townships, tabular statement of ..... 61, 129, 177
Exteriors surveyed by secant or tangent method. ..... 127, 128
Exteriors, traverse or table of, specimen field notes of ..... 177
F.
Falling, minutes of are shown by links of, table of ..... 128
Field notes, abbreviations allowed in ..... 23, 65
Field notes and transcripts, requisites of ..... 58-66
Field notes, form of specimens to be adhered to ..... 66
Field notes, list of notable objects for ..... 58-61
Field notes not to be changed after filing ..... 64
Field notes of meanders, what to contain ..... 58, 59
Field notes, original, defined ..... 60
Field notes, specimen forms of. (See Specimen field notes.)
Figures, Arabic, to be used in marking corners ..... 22
Final oaths of assistants, form of ..... 63
Final oath of deputy surveyor, form of ..... 63
Final oath of deputy, what officers may administer ..... 64
Final oath required of deputy surveyor ..... 11, 14, 63
First rectangular survey in United States, "Seven Ranges" ..... 5
Form of deputy surveyor's bond and contract ..... 15, 16
Form of specimen field notes to be followed ..... 66
Forms of preliminary and final oaths ..... 62, 63
Fractional lots, method of computing areas of ..... 68-70
Fractional lots, method of numbering ..... 67
Fractional sections on N. and W., first law allowing ..... 7
Fractional sections, subdivision of ..... 12
Fragmentary subdivision of township ..... 80
Fraudulent survey, prosecution for ..... 11, 14
G.
General deseription of lands surveyed ..... 62
General Land Office, act creating offiee of Commissioner of ..... 7
General Land Office, act establishing in 1812 ..... 7
General Land Office, act reorganizing in 1836 ..... 8
General Land Office removed from Treasury to Interior Department ..... 8
Goverument surveys, ontlines of system of ..... 17-19
Guide meridians and standard parallels, how located and run ..... 18,52
Guide meridians, sectional ..... 38, 76
Guide meridians, specimen field notes of ..... 161-168
H.
Page.
Heavily timbered land to be noted, for higher rate per mile ..... 61
Hiatuses and overlaps in public surveys. ..... 78-80
History of rectangular surveying in United States ..... 5-8
Horizontal measurement required ..... 21
Hour angle method of observing Polaris, specimen field notes of. ..... 146, 158
Hour angle of Polaris, method of finding meridian by ..... 109-119
I.
Impassable obstacles, to be passed by offset ..... 22
Index diagrams to field notes ..... \(140,162,170,184\)
Initial points for surveys ..... 50
Inspection and testing of instruments ..... 19, 20
Inspection of field work by surveyor general or agent ..... 10
Instructions, first manual of, 1855 ..... 8
Instructions to deputy surveyors, special ..... 61, 65
Instruments to be tested and inspected ..... 19, 20
Instruments required to be used in surveys ..... 19, 20
Insuperable objects on line, and offisets ..... \(2 ?\)
Insuperable obstacles on line, specimen field notes of ..... 198, 203
Interfering closing corners, rules for coustructing ..... 27
Island, meanders and councetion of ..... 57,58
Islands, specimen field notes of triangulation to. ..... 211, 212
Isogonic and magnetic meridian charts explained ..... 8.-86
L.
Lakes, meanderable ..... 57
Lakes, meanders of, specimen field notes of ..... 215-218
Lakes, specimen field notes of intersection of. ..... 201, 202, 208-210
Land Office, General, act establishing ..... 7
Land Office, General, act reorganizing ..... 8
Land offices to receive plats of surveys ..... 10
Lands fronting on waters, President may direct mode of survey ..... 12
Lands included, or not, in fragmentary surveys ..... 80
Lands, quality of, to be shown in deputy's returus ..... 62
Latitude and longitude of stations of magnetic observations, table of ..... 96, 97
Latitude, length of a degree of, in chains, table of ..... 131, 132
Latitude observations required to be fully noted. ..... 20
Latitude observations, specimeu field notes of ..... 156, 171, 175, 176, etc.
Latitudes, departures, etc., of exteriors, specimen field notes of ..... 177
Laws and ordinances ou surveying, eitations from:
\begin{tabular}{|c|c|c|c|}
\hline & Page. & & Page \({ }_{\text {i }}\) \\
\hline May 7, 1784 & & Apr. 24, 1820 & \\
\hline Apr. 26, 1785 & 5 & May 24, 1824 & \\
\hline May 3, 1785 & . 5 & May 29, 1830 & 8 \\
\hline May 20, 1785 & 5 & Apr. 5,1832 & 8 \\
\hline May 18, 1796 & 6 & July 4, 1836. & 8 \\
\hline May 10, 1800 & 6 & May 3, 1849 & 8 \\
\hline Feb. 11, 1805 & & May 30, 1862 & 8 \\
\hline pr. 25,18 & & & \\
\hline
\end{tabular}
Letter of Commissioner authorizing Manual of 1894 ..... 3
Leveling chain and plumbing pins ..... 21
Limits for closing, and for length of lines ..... 59, 60, 66
Limits of error, in former township exteriors ..... 66, 72
Line trees, how marked ..... 21
Lines, four classes of ..... 50
Lines unchangeable after having been run, marked, and accepted ..... 7, 12
Links of falling and minutes of are, table of ..... 128
Live-oak and cedar lands reserved for navy ..... 13
Local mean time, importance of accurate, for hour-angle work ..... 116
Longitude and latitude of stations of magnetic observations ..... 96, 97
Longitude, chains of length in one second of, table ..... 135
Longitude, length of a degree of, in chains, table ..... 133, 134
Lots, fractional, computation of areas of ..... 68-70
Lots, fractional, method of numbering ..... 67

\section*{M.}
Page.
Magnetic declination, ammal change for each State ..... 98
Magnetic declination, correction table for daily mean ..... 100
Magnetie declination, daily change of ..... 95-100
Magnetie declination, discussion and statisties of. ..... 84-105
Magnetic declination, influence of sun spots on ..... 99
Magnetic declination to be noted in returns ..... 59
Magnetic declination, specimen field notes of observations of ..... 150, 161, 186
Magnetic meridians, explanation of charts of ..... 84-86
Magnetic pole, supposed location of ..... 85
Magnetic storms and elistmbances ..... 99, 100
Maguetic variation, anmal, table showing ..... 96, 97
Mannal of 1894, anthorization of ..... 3, 12
Mannal and special instructions to be part of survering contract ..... 8, 9, 12
Mannal of surveying instructions first issned in \(1855^{\circ}\) ..... 8
Marking corners, tools for ..... 22
Marking of bearing trees at comers ..... 21, 49, 50
Marking of lines of survey ..... 21
Marshail, U. S., to protect surveyors in their work ..... 8, 13
Materials for comer monuments to be durable ..... 22, 50
Meanderable waters ..... 56,57
Meander corner, special, specimen field notes of ..... 201, 202
Meander corner, special, when required ..... 44,57
Meanter corners, anxiliary ..... 44,58, 212
Meander corners defined ..... 57
Meander corners, descriptions of ..... 42-44
Meander corners on standard parallel, specimen field notes of ..... 152, 153
Meander corners on unsafe ground to be witnessed ..... 44
Meander corners, specimen field notes of ..... 152, 153, 187, 201, 202, 208-210, 212
Meandering, method of. ..... 56-58
Meander line, proper position of ..... 57, 28
Meander lines, specimen field notes of ..... 212-218
Meanders and connections of islands ..... 57,58
Meanders, connection of, with section lines ..... 56,57
Meanders, limits of closing error in ..... 60
Meanders, what should be noted in ..... 58,59
Meridian, guide, specimen field notes of ..... 161-168
Meridian lines, how rma ..... 51, 52
Meridian, sectional quide ..... 38, 76
Meridian, true, methots of ascertaining. (See Olservations, etc.)
Meridians, computing distances along ..... 129
Meridians, convergency of, in township bonndaries, table of ..... 135
Meridians, method of computing convergency of ..... 135, 136
Meridians, principal, and base lines of surveys in States ..... 81-84
Method of procedure in public surveys ..... 17-19
Mineral claims, comeetions of, with public surveys ..... 74
Mineral lands to be included in public surveys ..... 12
Mineral monuments, U. S., to be noted in field notes ..... 59
Monmments. (See Corners.)
Moand of earth with deposit, and stake in pit, deseription No. 6 ..... 23-50
Mounds and pits, form of ..... 23
Mounds, how located and deseribecl ..... 48, 49
Monnds of stone, minimum size of (note) ..... 24
Mountainous land, noted for higher rate per mile ..... 61
N .
Notahle oljects in meandering ..... 58
North Star. (See Polaris.)
Notable oljects along lines of survey ..... 58,59
Notes of surveys. (See Field notes.)
Numbering of tractional lots ..... \({ }_{6} 6\)
Numbering of sections ..... 6, 19
Numbering of sections in earliest surveys ..... 6
O.
Oath, final, of deputy, and assistants, form of ..... 63
Oath, tinal, required of deputy survey or ..... 11, 14, 63
Oath of allegiance required of deputy surveyors ..... 14
Page.
Oath, preliminary, of assistants, form of ..... 62, 63
Oath, preliminary, of deputy surveyor, form of ..... 14
Oaths, officers anthorized to administer ..... 64
Objections to survey of privato elain, to be noted ..... 222
Objeets to be noted in field notes ..... 58,59
Obliteration of old corners on resurvey, specimen field notes of ..... 179, 180
Observations at elongation of Polaris, method of ..... 105-107
Observations of Polaris at enlmination, method shown ..... 105, 107-109
Observations of Polaris at elongation, specimen field notes of ..... \(112,147,150\)
Observations of Polaris by honr angle method ..... 109-119
Observations of Polaris, corrections of, for eaeh month, table ..... 104
Observations of l'olaris, hour angle, specimen tield notes of ..... 146, 158
Observations of Polaris for meridian ..... 102-117
Observations of Polaris required of deputies ..... 19
Observatious, solar and stellir, elements to be reeorded ..... 20
Olservations, solar, for latitude, specimen field notes of
Oliservations, solar, for meridiau, specimen field notes of Observations, solar, specimen field notes of
Observations, solar, verilied at end of survey ..... 217
Obstacles, impassable, to be passed by offset. ..... 22
Obstructing survey, penalty for ..... 13
Offset in inches, per chain on eurve of parallel, in Table III ..... 121,123
Oftset line, specimen field notes of ..... 198, 203
Offiset lines, how to be run ..... 22, 136
Offsets, in chains, from tangent to parallel, table of ..... 127
Offsets in feet, and azimuths of secant, table of ..... 121
Offects, in feet, from tangent to parallel, table of ..... 126
Offsets, surveying base and standard lines by ..... 120-128
Old corners to be obliterated, in resurveys ..... 73
Old surveys, retracement and resnrvey of ..... 71-74
Open-sight needle compass not allowable ..... 19
Orientation of monuments ..... 50
Original field notes defined ..... 60
Origin of system of rectangnlar surveys ..... 5
Overlaps and hiatuses in publie surveys ..... 78-80
P.
Parallel, correction of standard, speeimen ficld notes of ..... 147,148
Parallel run by seeant method, specimen field notes of ..... \(142-149\)
Parallel rm by solar method, specimen field notes of ..... \(154-158\)
Parallel run by tangent method, specimen field notes of ..... 150-154
rarallels, computation of distances upou ..... 130
Parallels, standard, how to be surveyed ..... 52, 120-128
Partial surveys within townships ..... 80, 81
Pins, tally, and their use ..... 20,21
Pits and mouncls, form of ..... 23
Pits at interfering and closing corners, when to be omitted ..... 27
l'lat of township, requirements of ..... 66-68
Plats of surveys to be transmitted to land offices ..... 10
Polaris, ascertaining true meridian by culmination of ..... 107-109
Polaris, ascertaining true meridian by elongation of ..... 105-107
Polaris, ascertaining true meridian by hour angle of ..... 109-119
Polaris, azimnths of, at elongation, tables of ..... 103,104
Polaris, azimuths of, for any hour, table of ..... 118, 119
Polaris observations at clongation, specimen field notes of ..... \(142,147,150\)
Polairs observations by hour angle method, specimen field notes of ..... 146,158
Polaris observations by star Zeta or Delta, at colmination ..... \(105,107-109\)
Polaris observations, corrections of for each month, table ..... 104
Polaris observations required ..... 19
Polaris, times of enlmination and elongation, table of ..... 102
Polaris, times of npper culmination of, table of ..... 113
Pole, magnetic, supposed location of ..... 85
Position of elosing corners ..... 27
Post eorners, descriptions of, Nos. 4 and 5 ..... 23-50
Posts, mounds, and pits, minimum size of ..... \(45,46,50\)
President may direct non-reetangnlar surveys on water fronts ..... 8, 12
President may transfer land officers' duties to surveyor general ..... 11
Prices payable for surveys, how established ..... 12
Page.
Principal meridians and base lines of all public surveys ..... 81-84
Principal meridians, how to be rim ..... 51
Private and local surveyors, advice to ..... 224
Private land claims confirmed, to be surveyed ..... 10, 13
Private land elaims, rules for survey of ..... 221, 222
Private land claim, specimen field notes of intersection of ..... 190, 205
Prosecntion of deputy for erroneons or frandulent survey ..... 11, 14
Protection of surveyors, act providing for ..... 8, 13
Public land laws, coditication of ..... 9
Q.
Quarter-quarter sections, act providing for ..... 8
Quarter-section corners, at what point to be established ..... 55
Quarter-section corners, deseriptions of ..... 40-42
Quarter sections, first law providing for survey of ..... 7
Qnarter sections, when held to be surveyed ..... 80 ..... 80
R.
Railroad track, speeimen notes of intersection of ..... 204, 209
Railroads to repay cost of surver of their lands ..... 12
Rancho boundary, specimen field notes of intersection of ..... 190,191
Random and corrected section lines ..... \(54,55,128,129\)
Random and corrected township lines ..... 52, 53
Random lines, not to be marked like true ..... 22
Random lines, rule for correction of course of ..... 128, 129
Random lines, table for correction of ..... 128
Random section lines, at what course to be run ..... 54
Rates of compensation for surveys, how established ..... 12
Record inclosed in vial, as deposit at corner ..... 46
Records of survey, accessible under State custody ..... 9, 10
Rectangular surveying, law preseribing method of ..... 11
Rectangular surveying, outlines of system of ..... 17-19
Rectangular surveying, previons legislation adopting ..... 5-9
Reetangular system, departure from, on water-front lands ..... 8, 12
Regulations for surveys, Commissioner authorized to make ..... 9, 10
Removal of depnty for misconduct ..... 10, 14
Reservation of live-oak and cedar timber lands ..... 13
Reservations, deseriptions of corners on ..... 45-47
Residence of surveyor general to be in his distriet ..... 9
Restoration of corners, specimen field notes of ..... 179-182
Restoration of lost and obliterated corners, circular pamphlet on ..... 224
Resurvey of exterior lines, specimen field notes of ..... 179-182
Resurvey of former lines ..... 71-74
Retracement of former lines ..... 71-74
Retracement of former lines, when required withont compensation ..... 224
Retracement, unnecessary, prohibited ..... 224
Rivers and streams, meanderable ..... 56
Road, point for corner falling in ..... 48, 198, 209
Rock in place marked for corner, speeimen field notes of ..... 146, 164
Roek in place or boulder to be marked for corner ..... 48
Rules for correction of course of random lines ..... 128, 129
Rules for survey of private land elaims ..... 221
S.
Secant and tangent methods applied to exteriors ..... 127, 128
Secant, azimuths of, and offsets in feet ..... 121
Sceant methor of ruminer parallels, specimen field notes of ..... 142-149
Secant incthorl of surveying parallels ..... 120-124
Section and township, first nse of the terms in statute ..... 5
Secretary of Interior to control General Land Oftice ..... 8
Sectional correction line defined ..... 76
Sectional gnide meridian detined ..... 76
Sectional gnide meridian, marking of corners on (note) ..... 38
Section comers, elosing, descriptions of ..... 34, 35
Section corners common to fonr sections, descriptions of ..... 35-37
Section corners common to two sections, descriptions of ..... -37-39
Page
Section corners referring to one section only, descriptions of ..... 39, 40
Section corners, standard, descriptions of ..... \(32-34\)
Section lines, correction for convergency of, table ..... 54
section lines, how run ..... 53-56
Section lines, specimen field notes of ..... 183-211
Sections, subdivision of, first law providing rules for
8, 12
Sections, subdivision of, into sixteenths, act providing for
12, 224
Sections, subdivision of whole and fractional ..... 
88-95 ..... 
88-95
Secular magnetic variation, tables showing
Secular magnetic variation, tables showing
87, 88
87, 88
Secular variation of magnetic ncedlo
Secular variation of magnetic ncedlo
13
13
Settlers may deposit money for survey of lands
Settlers may deposit money for survey of lands
222
222
Settlcrs to be noted in private claim surveys..... ..... 5
Solar compass or transit required in public surveys ..... 19
Solar compass tested by Polaris, specimen field notes of ..... \(154,158,172\), etc.
154-158
154-158
Solar method of surveying parallels, specimen field notes of
Solar method of surveying parallels, specimen field notes of ..... 
\(154,172,175,176\), etc. ..... 
\(154,172,175,176\), etc.
special examiners of surveys, compensation of. ..... 10, 11
special examiners of surveys may be appointed ..... 10, 11
Special instructions and Manual, to be part of contract ..... 8, 9, 12
Special instructions to deputies ..... 61, 65
special meander corner, when required ..... 44,57
Special meander corner, specimen field notes of ..... 201, 202
specimen field uotes, forms to be followed ..... 66
Specimen field notes of:
Anxiliary meander corner ..... 212
Boulder marked for corner ..... 157
Correction of standard parallel ..... 147, 148
Closing coruers on grant lines ..... 190, 191
Desert land claim intersection ..... 205, 206
Discharge of assistant ..... 149, 200
Double chaining ..... 142-158, 164-107
Guide meridian ..... 161-168
Index diagrams ..... \(140,162,170,184\)
Intersection of city or village ..... 209, 210
Intersection of impassable obstacles ..... 198, 203
Intersection of rancho boundary ..... 190
Intersection of railroad track ..... 204, 208, 209
Intersection of road, deposit at point for corner at ..... 198, 209, 210
Islands, and connections to section lines ..... 211, 212, 217, 218
Latitude observations ..... \(156,174,175,176\), etc.
Magnetic declination ..... 142, 150, 154, 164, 172, 186
Meander corners. ..... \(152,153,187,201,202,208-210,212\)
Meander lines ..... 212-218
Obliteration of old corners ..... 179, 180
Offset lines ..... 198, 203
Private land claims, intersections of ..... 190, 205
Random line to corner in sight ..... 203, 206
Restoration of old corners ..... 179-182
Resurvey of incorrect lines ..... 179-181
Retracement of old lines ..... 179-182
Rock or boulder marked for corner ..... 146, 157, 164
Secant method of curves ..... 142-149
Solar observations ..... 154, 172, 175, 176
Solar method of ruming parallels ..... 154-158
Special meander corners ..... 201, 202
Stake in pit with mound and deposit. ..... 207
Standard parallel ..... 139-160
Subdivision or section lines ..... 183-211
Tangent method of running parallels ..... 150-154
Table of latitudes and departures of exteriors ..... 177
Township exterior boundaries ..... 169-182
Triangulations ..... 144, 188, 192, 211, 212
Village or city objects on line ..... 209, 210
Witness corners ..... 198, 203, 209, 210
Stake in pit ..... 42
Standard chain to be kept by deputy surveyor ..... 20
Standard lines to be surveyed by offsets ..... 120-127
Standard parallels and guide meridians, how located ..... 18
Page.
Standard parallels, how run ..... 52
Standard parallel, specimen field uotes of correction of. ..... 147, 148
Standard parallel, specimen field notes of ..... 139-160
Standard quarter-section corners, descriptions of ..... 42
Standard section corners, descriptions of ..... 32-34
Standard township corners, descriptions of ..... 23-25
Star observations for meridian. (See Polaris.)
State custody of surveying records. ..... 9
Statutes of United States, citations from. ..... 5-14
Stone corners, descriptions of, Nos. 1, 2 , and 3 ..... 23-50
Stone corncrs, reguired size of ..... 49
Stone mounds, minimum size of (note) ..... 24
Streams, meanderable ..... 56
Subdividing, method of ..... 53-56
Subdivision lines, specimen field notes of ..... 183-211
Subdivision of sections by local surveyors ..... 224
Subdivision of sections into sixteenths, ete ..... 8, 12
Suldivision of sections, tirst act providing rules for ..... 7
Subdivision of sections, numbering of fractional lots in ..... 67
Suit on bond of deputy surveyor, how brought ..... 11, 14
Sun spots, influence of, on magnetic needle. ..... 91, 101
Sureties on boud and contract, affidavits of ..... 16
Survey, erroneous or fraudalent, prosecution for ..... 11, 14
Survey, new, method of extending from old ..... 75-78
Survey of public lands, on deposit of money by settlers ..... 13
Survey, penalty for obstruction of ..... 8, 13
Surveying accounts, rules for preparing ..... 223
Survering contract and bond, form of. ..... 15, 16
Surveying contract, to inelude general and special instructions ..... 9
Surveying, details of rectangular system of ..... 17-19
Surveying districts enumerated ..... 9
Surveying, histors of legislation for ..... 5-9
Surveying instructions, first manual of ..... 8
Surveying, instruments to be used in ..... 19, 20
Surveying, law prescribing rectangular system of ..... 11
Surveying records to be accessible in state custody ..... ?, 10
Surveyor, bond of deputy ..... 11, 16
Surveyors, deputy, appointment and removal of ..... 10, 14
Surveyors, private and local, advice to ..... \(\geq 24\)
Surveyors, protection of, by U. S. marshal ..... 8, 13
Surveyor general, duties of ..... 10
Surveyor general, first law creating office of ..... 9
Surveyor general, official bond of ..... 10
Surveyor general or agent to inspect field work ..... 10
Sirveyor general's office, when to be discontinned ..... 10
Surveyors general, how appointed ..... 9
Surveyors general, term of oftice of ..... 10
Swamp, impassable, specimen field notes of iuterseetion of ..... 198, 203
System of rectangular surveying, acts prescribing ..... 5-11
T.
Tables for the use of surveyors:
Annual change of magnetic declination for each State, Table F ..... 98
Annual variation of magnetic needle, Table \(\mathbf{E}\) ..... 96, 97
Azimuths of Polaris for any hour, Table II ..... 118, 119
in different latitudes, 1890 to 1910. Table J ..... 103, 104
the tangent to the parallel, Table IV ..... 125
secant to the parallel, Table III. ..... 121
Convergency of meridians and other data, Table X ..... 135
Correction for convergeney of section lines, Table A ..... 54
finding mean magnetie declination for the day, Table G ..... 100
Polaris observations for each month, Table K ..... 104
randoms-links and minutes of are, Table VII ..... 128
Latitude and longitude of places of magnetic observation and annal variation of needle, 'Table E. ..... 96, 97
Lengths of a degree of latitude, Tablo VIII ..... 131, 132
longitude, Table IX ..... 133, 134
Offsets in chains from tangent to parallel, Table VI ..... 127
feet from tangent to parallel, Table \(V\) ..... 126
'Tables for the use of surveyors-Continued. Page.
Secular variation of needle-castern group of stations, Table B ..... 88-91
middle group of stations, Table C ..... 92-94 ..... 92-94
western group of stations, Table D ..... 95
Times of cnlmination and elongation of Polaris, Table H ..... 102
Times of upper culmination of Polaris, Table I ..... 113, 114
Tablets used in the field by deputies ..... 60
Tabular statement of exteriors required ..... 61
Tabular statement of exteriors, specimen field notes of ..... 177
Tally pins described ..... 20
Tangent and secant methorls applied to exteriors ..... 127, 128
Tangent method of ruming curves, specimen field notes of ..... 150-154
Tangent method of surveying parallels ..... 124-127
Tangent to the parallel, azimuths of, table ..... 125
Term of office of surveyor seneral ..... 10
Test of solar compass by Polaris, specimen fiela notes of ..... \(151,158,172\), etc.
Tidewater shores, place for meander line along ..... 58
Timbered land, to be noted, for higher rate per mile ..... 61
Time, astronomical ..... 109, 110
Topography, rough diagram of, to be returned ..... 61
Township and scetion, first use of terms in statates ..... 5
Township boundaries, specimen field notes of . ..... 169-182
Township boundaries, traverse of, specimen field notes of ..... 177
Township closing corners, descriptions of ..... 25-27
Township corners common to four townships, descriptions of ..... 28, 29
Township corners common to two townships, descriptions of ..... 29-31
Township corners referring to only one township, descriptions of ..... 31, 32
Township diagram of topography required with field notes ..... 61
Township exteriors, how to be ruil ..... 52, 53
Township exteriors, limits of closing error in ..... 59, 66, 72
'Township exteriors, requirements of diagram of ..... 66
Township exteriors, survey by secant and tangent methods ..... 127-129
Township exteriors, tabular statement or traverse of ..... 61, 129
Township exteriors, traverse or table of, specimen field notes of ..... 177
Township plats, requirements of. ..... 66-68
Township standard rorners, descriptions of ..... 23-25
Transcripts and tield notes, abbreviations allowed in ..... 23, 65
Transcripts of field notes, how prepared ..... 64, 65
Transit or solar comprass required in surveys ..... 19
Traverse or tabular statement of exteriors ..... 61, 129, 177
Treasury Department, act establishing General Land Ofice under ..... 7
Treasury Department, act removing General Land Office from ..... 8
Tree comers, descriptions of, Nos. 7 and 8 ..... 23-50
Trees, blazing of, along line. ..... 21
Trees, bearing, location and marking of ..... 24, 49, 50
Trial or random lines. See Random lines.
Triangles, required proportions of sides of ..... 136
Triangulation, diagran of, required in original fied notes ..... 152
Triangulations, examples of computation of ..... 136
Triangulations, how performer ..... 61, 136
Triangulations to be fully recorled in notes ..... 57, 61
Triangulations, or traverse, to pass obstacles. ..... 22
Triangulations, specimen field notes of ..... \(144,165,188,192,211,212\)
True meridian, observation of Polaris for ..... 105-119
Trne meridian, principal and guide meridians and range lines to follow ..... 51,52
U.
Undergrowth, dense, defined ..... 224
Undergrowth, dense, to be noted for higher rate per mile ..... 61
Ursa Major, diagram of constellation ..... 108
V.
Variation, amome of annnal magnetic, table showing ..... 96, 97
Variatioc, magnetic, when to be noted ..... 59
Variation, secular, of magnetic needle ..... 87, 88
Variation, secular, tables showing ..... 88-98
Verifying results of solar work. ..... 117, 217
Village or city, specimen field notes of intersections ..... 209, 210
w.

\begin{abstract}
Page.
Watch time, accuracy required for honr-angle observations ...................... 116
Water-front lands surveyable by non-rectangular method......................... 8, 12
Waters, meanderable.......................................................................... 56,57
Witness corners, rules for establishing .......................................... 44, 47, 48, 56
Witness corners, specimen field notes of ................................. 198, 203, 209, 210
Witness points, specinten tield notes of
198, 203
Wituess points, when to be established
22,48
\end{abstract}

\section*{Z.}

Zeta Urse Majoris, method of obtaining true meridian by ...................... 107
- .

Note:


PLATTE II.


\section*{TOWNSHIP EXTERIORS.}
arate: 1 minit to \(166^{\circ}\) hiwns

FOIRTH STAVARD RULULEEL NOHTY/.


Township Nots Northe Ifange No 20 Liast of the Irincipal Meridiuth Mont.


\(\mathbb{P L} A \mathbb{T} \mathbb{E}_{J} \mathbb{V}\)


Fiơ. 3 N. .

\(\mathbb{P L A T T E ~ V I I I I .}\)


\(\mathbb{P L A} T \mathbb{E} \mathbb{X}\).


\section*{UNITED STATES COAST AND GEODETIC SURVE}

ISOGONIC CHART OF THE UNITED STATES FOR THE EPOCH 1890

nt regions
OCH 1890
\(\frac{1}{500000}\)



University of California SOUTHERN REGIONAL LIBRAs, CA 90024-1388 405 Hilgard Avenue, Los and to the library Return this mate was borrowed.
from which it was borrowed.
NON-RENEWABLE
ILL/ HB
MAR

DUE 2 WKK FAGMMATE RECEIVED

\[
3
\]
\[
=0
\]

\section*{UNIVERSITY OF CALIFORNIA LIBRARY}

\section*{Los Angeles}

This book is DUE on the last date stamped below.

Dovir JUL 71966
ful 26
- WeCt URL-LD

AUG \(8 \quad 1966\)

```


[^0]: Sere -7. There shand he apmented hy the lrexident, hy and with the advice and

 tricl, namely: Lonisiana, lolurilia, Mimesotia, Kansas, Calitornia, where appmode

 GEr. 83. Exery smrevorgumal, white in the diwharge of the dutios of his office. shall resille in the district for which he is alp- erall pointerl. (R. S., 2\%14.)

[^1]: *See amending acts, 20 Stat., 352 , and 22 Stat., 327 , and General Land Office Circular of June 24, 1885.

[^2]: Oath preseribrd by act of Congress approved May 13, 1884, to be taken by any person elected or appointed to any office of honor or profit either in the ciril, military, or naval service of the Unitch States (except the President of the United States):

 I - - , do solemnly ——— that I will support and defend the Constitution of the Uniterl States against all enemies, foreign and domestic; that I will bear true faith and allegiance to the same; that I take this obligation freely, without any mental reservation or purpose of evasion; and that I will well and faithfully discharge the duties of the office on which I am ahout to euter. So help me Gol.

[^3]: * Attach an athesive seal after each signature and covering I. S.
 + Mere state whether eity property, improved or unimproved, or improved farms, or unimpersed lands. aud where situated.
 \ddagger Here describe the nature of the property, whether bonds, stocks, merchandise, ote.

[^4]: * Here state whether city property, improved or unimproved, or improved larms, or unimproved lands, and where situated.
 \dagger Here descrilie the nature of the property, whether bonds, stocks, merchandise, ete.

[^5]: * The adjustments should be verified daily when the instrument is in use.
 † See R. S. 2395, sec. 99, par. 6 (page 11).

[^6]: * The dirction of the monnd, from the corner, will be stated whenever a mound is built. See "Miscellaneons," par. 2, page 48.
 \dagger Monnd of stone will consist of not less than fom stones, and will be at least $1 \frac{1}{2} \mathrm{ft}$. high, with 2 ft . base.
 \ddagger All hearing trees, exeept thoso referring to quarter section corners, will be marked with tho township, range, and section in which they stand.

[^7]: * When writing these descriptions in the field notes, the angular brackets and the enclosed letters and figures will be omitted.

[^8]: * When writing these descriptions in the field notes, the angular brackets and the enclosed letters and fignres will be omitted.

[^9]: * The corner established on the range line and described in paragraph 1 , will have notches to indicate the distances to the N. E. and S. E. corners of the township. See plate V, fig. 18: and Plate IX, Tp. 3 N., R. 7 W.
 \dagger When writing descriptions of corners similar to those described in paragraphs 1 and 2, the angular brackets and the inclosed letter's and figures, will be omitted.

[^10]: * The corner established on a sectional guide meridian and deseribed in paragraph 2, will have notches like the corresponding conner on a range line. See Plate IX, Tp. 3 N., R. 7 W.
 \dagger When writing deseriptions of corners similar to those deseribed in paragraphs 1 and 2 , the angular brackets and the inclosed letters and figures, will be omitted.
 \ddagger See Plate IX, N. bdy., sec. $32,{ }^{2} \mathrm{Tp} .3 \mathrm{~N},{ }^{\prime}$ R. 7 W .

 ** On range liue; see Plate IX ; Tp. 3 N.; R. 6 W.

[^11]: * On sectional guide merilian: see Plate IX, Tp. 3 N., R. 7 W.
 \dagger When writing descriptions of corners similar to those described in paragraphs 1 and 2, the angular brackets and the included letters and figures will be omitted. See Plate IX.
 \ddagger See Plate IX; Tp. 3 N., R. Ј W.

[^12]: * See Plate IX; Tp. 2 N., R. 5 W.
 \dagger Tp. 3 N., R. 5 W.
 \ddagger When writing descriptions of $\frac{1}{4}$ section corners, the angular brackets and the letters and figures they inclose, will be omitted. See paragraphs 9,10 , and 11 , pages 41, 42.

[^13]: * When writing descriptions of $\frac{1}{4}$ section coruers, the angular brackets and the letters and figures they inclose will be omitted. See paragraphs 9, 10, and 11, pages 41, 42.

[^14]: * See page 56 , and paragraphs 9 and 10 , pages 43,44 .
 t See l'late IV, and pages 192, 209 and 210 .

[^15]: * See Plate IV and page 188.
 \dagger See Plate IV, and page 201. See paragraphs 11 and 12 , page 44 , and footnote, page 57.

[^16]: * Stones for corners on Indian Reservation or other boundaries will not be less than 20 ins. long, or less than 6 ins. thick, and will measure at least one cubic foot in volume; consequently, a stone $20 \times\left[4 \frac{1}{2} \times 6\right.$ ins., will he about minimum size; and $32 \times 9 \times 6$ ins., represents satisfactory proportions. "N. l". for "Nez Perces" (Indian Reservation), on the east, and "P. L." for "I'ublic Land" (unsurvejed), on the west, applies to paragraph 1 only.
 \dagger The above are minimum dimensions for monnds of stone on reservation boundaries.
 \ddagger The bearing trees, "S. - F." and "S. - W." from the corner, are supposed to stand on surveyed land, near the line between sections 8 and 9.

 5 The stated dimensions of posts are minimum; if posts are longer than 3 feet, tho extra length will be placed in the gromm; the posts will in no case project more than 12 ins. above the natural surface of the earth.

[^17]: *'The stated dimensions of posts are minimum; if posts are longer than 3 feet, the extra length will be placed in the ground; the posts will in no case project more than 12 ins. above the natural surface of the earth.
 \dagger The bearing trees, "S. - K." and "s. - W W." from the rorner, are supposed to stand on sureyed land, near the line between sections 8 and 9.
 \ddagger The "record" will cousist of a bricf description of the corner, with the date of its construction.

[^18]: * The markings will be ent into large stones, inserted in the middle of the lowest course on each side of the monument.
 \dagger The proper ummber of miles and chains, from the initial point, will be stated.
 \ddagger The year in which the monmment is established will be placed in the blank.
 \S See page 56.

[^19]: * The reposit will not be practicable in the case of railroads; but the witness corners will be established on the lines limiting the right of way. See pages 198,209 , aud Plate IV.
 t See pages 146, 147, 157, and 164.

[^20]: * The base and height of a "jnonnd of stone, covered with earth," will be the same as prescribed for momnd of earth. The dimensions of "mound of stone" on reservation bonndaries will conform to those prescribed in paragraph 2, page 45, The direction of the mound from the corner will be stated.

[^21]: * See page 105.
 t For details see pages 120 to 127.

[^22]: * The meridional section lines will be made parallel to the range line or east bonndary of the township, by applying to the bearing of the latter a small correction, dependent on the latitude, taken from the following table, which gives, to the nearest whole minute, the conrergency of two meridians 6 miles long and from 1 to 5 miles apart; and supplies directly the deviation of meridional section lines uest of north, when the range line is a true meridian. Add the correction to the bearing

[^23]: * See Table VII and mules, page 128 .
 t See Plate IV, between sections 7 and 18 , and 17 and 90 . \ddagger See llate IV, between sections 8 and 17 .

[^24]: * Section eorners will be established by correct alinement and measurement of meridional sectional lines whenever praeticable.
 t See "Witness Cormers," page 47.

[^25]: * These corners are the regular meander corners, and designated "meander corners;" they are distinguished from special and auxiliary meander corners; see paragraphs 11 and 12 , page 44 , and pages 42 and 43 .
 \dagger A "Special Meander Corner" is one established on a line of legal subdivision, not a standard, township, or sectiou line. See pages 201 and 202.

[^26]: * An "auxiliary meander corner" is one not on a line belonging to the system of rectangular surveying. See page 212.
 † See "Meundering," thind clause of paragraph ", page 57.

[^27]: *See "Explanations," p. 71 to 78.

 + See exception on p. 76.

[^28]: * See page 59, and retracement article, page 72.
 \dagger Sce page 50, and par. 13 (a) page 61.

[^29]: * These measures are taken to the nearest hundreth only.

[^30]: * Regarding permission to resurvey, see page 224.

[^31]: * Commonly known as the variation of the compass; in scientific treatises on terrestrial magnetism the term magnetic declination is always employed, in order to avoid any confusion which would arise when treating of such motions of the needle as the diurnal, annual, and secular variations.

[^32]: * Reckoned from Green wich westward to 180°.

[^33]: "See Plate No. 25, Appendix No. 7, Coast and Geodetic Survey Report for 1888.

[^34]: * The results of any new and satisfactory observation sent to the Superintendent of the Coast and Geodetic Survey will be duly credited in a subsequent publieation.

[^35]: *'The reader may consult here Appendix No. 9, Coast and Geodetic Survey Report for 1890 .

[^36]: * Counted from noon, and from 0 to 24 hours.
 \dagger The annual change is diminishing, and after 1900 the annual change, 0.2^{m}, will be closer.

[^37]: *'The mannetic declination may be ohtained from it true meridian, as follows: Take the magnetic bearing of the true meridian; then the angle expressed by said magnetic bearing will be the observed magnetic declination, named like the departure if the bearing is taken from the sonth, but the reverse if taken from the north.

[^38]: *For this year (1894), the "small interval of time" is for Delta (δ) Cassiopeia, 1.4^{m}; for Zata (ζ) Ursie Majoris (Great Bear), 0.5^{m}; during such brief intervals, probibly no change in the position of Polaris wonld be observed by the unaded eye; hut, as these intervals are increasing at the rate of about one-third of a ininute annually, it was ileemed best to provide for the proper application of the time intervals, in the method described.
 t See next page.

[^39]: The Civil Day, according to the cnstoms of society, commences at midnight and comprises twenty-four hours from one midnight to the next following. The hours are counted from 0 to 12 from midnight to noon, after which they are again reckoned from 0 to 12 from noon to midnight. Thus the day is divided into two periods of 12 hours each; the first of which is marked a. m., the last p. m.
 The Astronomical Day commences at noon on the civil day of the same date. It also comprises twenty-four hours; but they are reckoned from 0 to 24 , and from the noon of one day to that of the next following.

 The civil day begins twelve hours before the astronomical day; therefore the first period of the civil day answers to the last part of the preceding astronomical day, and the last part of the civil day corresponds to the first part of the astronomical day. Thus, Jannary 9, 2 o'clock p. m., civil time, is also Jannary 9, $2^{\text {h }}$, astronomical time; and January 9, 2 o'clock a. m., civil time, is January 8, 14^{h}, astronomical tine.

 The rule, then, for the transformation of civil time into astronomical time is this: If the civil time is marked p. m., take away the designation p. m., and the ustronomical time is hadwithout further change; if the civil time is marked a. m., take one from the day and add tuelve to the hours, remove the initials a.m., and the result is the astronomical time wanted.

 The substance of the abore rule may be otherwise stated, as follows: when the surveyor takes an observation during p. m. hours, civil time, he can say: the astronomical time is the hours and minutes passed since the noon of this day, and when observing in the a. m. hours he can say the astronomical time is the hours and minutes elapsed since the noon of yesterday, in either case omitting the designation a. m. or p. m., and

[^40]: * The change can always be made mentally, no written work being required. Talile I might be easily altered to give the times by the civil count marked a. m. and p. m., but such an arrangement would greatly extend and complicate the following rules and examples, and correspondingly increase the chances for making mistakes.
 \dagger A closer valne is 23 honrs, 56 minntes, 4.09 seconds.
 tively, in latitude $40^{\circ} \mathrm{N}$.

[^41]: * The surveyor can extend the table to the year 1910 loy following directions in article on "Magnetic Declination." The valnes for the years following 1896 were thus computed.
 \dagger The correction for longitudeshould not be used for dates subsequent to December 31, 1896.

[^42]: * The second culmination occurs 7 m. 5 before noon of April 11, and consequently. in broad daylight.
 t"Argument", the quantity on which another quantity in a talle depends.

[^43]: 5. Required the Hour Ingle and Azimuth of Polaris, for a station in latitude 41° 12^{\prime} N., longiturle $94^{\circ} \mathrm{W}$. , at $6^{4} 16^{4 \prime}$ a. m., Nov. $19,1898$.

 Astronomical time of observation, 1898, Nov. $18 \ldots \ldots$................................... 1816.0
 Astron. time, U. C. Polaris, Nov. 15 (Table I, Part I) $\quad 9 \quad 40.7$
 Reduction to Nor. 19 (Part II), subtract................... 15.8
 Astron. time, U. C. Polaris, Nov. 19......................... 9 24.9, subtract .. $9 \quad 24.9$
 Hour Anyle of Polaris, at observation, and Time Argument for Table II...... || $8 \quad 51.1$
 Azimuth of Polaris, at observation (Table II) I $^{\circ} 11^{\prime} \mathrm{W}$.

[^44]: * By reference to the above table, the surveyor will observe that the times, hetween Nov. 1 and 15 , are greater than $8^{11} 24^{m}$; consequently, the culmination for one day earlier, Nov. 6 , will be used; see dircetions on page 111 ; also, last clause of examplo 3 , page 112.
 \dagger From l'art II, Tialbe I, opposite 6th day of month, and under "3.9tin."
 \ddagger No subtract, take 1 diy from Nov. 7 , and add its equivalent, 24^{h}, to $8^{\mathrm{h}} 24^{\mathrm{m}}$, making, Nov. $6,32^{\mathrm{h}} 24^{\mathrm{m}}$ (which is the time expressed by Nov. $7,8^{\mathrm{h}} 24^{\mathrm{m}}$) ; then subtract in the usual manner.

 S See last clause of footnote, page 115.
 || In case the Hour Angle comes out greater than $11^{\text {h }} 58^{\text {nn }}$, subtract it from $23^{\mathrm{h}} 56.1^{\text {in }}$: see example 4 , above.

 TThe Ilour Angle being less thin $11^{\mathrm{h}} 58^{\mathrm{m}}$, the Azimuth is west; see precepts, top of Table II.

[^45]: *The vertical diameter $S^{\prime} s^{\prime}$, Plate I, fig. 2, divides the apparcut path of Polaris into two equal parts, and for the star at any point s_{6} on the cast side, there is a corresponding point ss, on the west side of the meridian, for which the azimntin Nw, is equai to the azimuth Ne. The arc $\mathrm{Ss}_{1} \mathrm{~S}^{\prime} \mathrm{s}_{\mathrm{s}}$, taken from the entire circle (or $23^{\mathrm{n}} 56^{\mathrm{nm}}, 1$), leares the arr Ss, and its ermal, ss, expressed in time, may be used to find, from Table II, the azimmth Nw, which is equal to Ne.

 The hour angles entered in lable II include only those of the west half of the circle cnding at S^{\prime}, and when an hour angle greater than $11^{\mathrm{h}} 58^{\mathrm{m}}$ resnlts from observation, it will be subtrarted from $23^{\text {n }}$ 5in. 1 , and the remainder will be used as the "time argument" for the table. The surveyor should not confound these two quantities. Thbe hour angle itself always decides the direction of the azimuth and defines the plade of the star with reference to the pole and meridian, as noted at top of Table II. See examples below Table I, page 114.

[^46]: *Sce table prepared in office of U. S. Coast and Geudetic Survey; article on Mag. netic Declination, page 103.

[^47]: 3
 5
 7
 8
 10
 11
 13
 14
 16
 18
 20
 21
 23
 25
 27
 199

[^48]:

[^49]: *Applications of Table III.-The true beuring of the secant at each mile and half-mile point will be expressed by the tabular azimuth preceded by the initial meridional letter N , when the distance argument is found at the top of the table; but when said argument is found at the bottom of the table,

[^50]: the meridional letter S. will be placed before the azimnth; while the departure letter, E. or W. F will be made to agree with the dircetion of the sarvey, east or west, as the case may require. The bearings will be taken from the table, to the nearest whole minute only, and entered at the beginning of sarh mile recorded in the field notes. The direction of the oflsets or distances from the secant north or south to the base line or standard parallel, as the case may be, are indicated by the initial letters, N. or S. following the offisets.

 Example 1.-Standard parallel rup west. lat. $48^{\circ} \mathrm{N} . ;$ dist. from initial point of secant, 2 miles; the
 1.66 ft . N . In all latitudes the bearing of the secant at 3 miles will be east or west, agreeing with the lirection of the smrvey. (See the sth colmmon of the talble.)
 The offsets may be interpolated for minutes of latitude, ly simple proportion, as follows: Muttiply The difference between the offsets corresponding to the whole degreps of lathtude, immediately preceding mafollowing the given latitud: by the minutes, expressed in decimals of a degree, and add the produet to The offset corresponding to the lesser latitude; the sum will be the offset required.
 Lxample 2.- (See Plate II. Iigs. 1 and 2.) Lat. $45^{\circ} 34^{\prime} .5$; dist., 0 miles or 6 miles; the diff. between milsets in latitudes 45° and 46°, is 0.11 ft : $34^{\prime} .5=0^{\circ} .575 ; 0.11 \times 0.575=0.06 \mathrm{I}^{\prime t}$.; and, $3.33+0.06=3.39 \mathrm{ft}$., he oflset required. All offsets written in figs. 1 and 2 were thms computed. A similar method of nterpolation may be applied to the data in the right-hand colmmn.
 Example 3.-Latitude $45^{\circ} 34^{\prime} .5$; difí. of angles, is $0^{\prime} 11^{\prime \prime} ; 11 \times 0.575=6^{\prime \prime} .3$: and $5^{\prime} 11^{\prime \prime} .8+6^{\prime \prime} .3=5^{\prime} 18^{\prime \prime}$, searly; also, $0.04 \times 0.575=0.02$ ins. ; and, $1.20+0.02=1.22$ ins. (See at D.)

[^51]: * This tangent will have a constant value in any given latitude. A piece of white paper with two fine parallel lines trawn across it, exattly the proper tastinceapant. pasted on athin slip of wood (such as a piece of "igar box, 3 inches long by 1 inch wide), will make in accorate and rery convenient and portable substitute for a rule orscale. Several copies may be prepared in advance to replace the original in case of loss.

[^52]: * All dimensions in miles and decimals of a mile.

[^53]: * Interpolated by simple proportion, for the given latitude, from the second column of Table III, pare 121.
 \dagger The latitude and longitnde will be given by the surveyor general, in his special writton instructions.
 tsee directions for making the observation, page 105.
 \% This angle is interpolated by simple proportion, for the given latitude, from the column headed " 3 miles" in Table IV. But hereafter the exact angle required will be changed to the nearest angle that ean be set off or read on the instrument nsed.
 II The measmements are connted from the beginning of the mile; 40.00 chs. are measured from the last $\frac{1}{4}$ sec. cor.; see "Base Line," par. 6, page 51.

 II At this point, the serant intersects the standard parallel. See Plate II, figs. 1 and 2.

[^54]: *These distances may be found by taking the mean of tho offsets at the preceding see., aud follow. ingy $\frac{1}{s}$ sec. cor.

[^55]: * The secant intersects the standard parallel 1 mile from end of secant, and at the point for the corner of sees. 35 and 36 . See I'late II, figs. 1 and 2.
 \dagger See "Standard 'Township Corners," page 23.
 386-10

[^56]: *Interpolated by simple proportion from right hand column of Table III, page 121. See directions following the talle.
 \dagger Interphaterl by simple proportion from. Table IV, for the given latinde, and for 24 miles (i, e.) fur one hulf of the distance to signal.

[^57]: * At this point, the secant intersects the standard; see Plate II, figs. 1 and 2.

[^58]: * This method for rorrecting a standard parallel may bo omployed when tho deviation does not 1.xreal ons: minute of arc; but, if greater error is discovered, the corners already set will be corrected as far loack on the line as the stated limit of doviation (1^{\prime}), is exceeded.

[^59]: * See page 105.
 \dagger See footnote, page 106.
 \#'The tangent leaves the parallel as soon as started, and will nlwars lie south of the sec. bdy., not on it. Siee Plate III, fig. 3.
 \& The form given abovo will alway be employed for stating the dist. between the tan. and the cor.; the word "offset " will not bo used for such purpose. See page 124.

[^60]: * Table V. In lat. 45° : $: \frac{7}{5}$, offset at 3 miles, is $5.99+\left[(6.20-5.99) \times 0^{\circ} .575\right]=6.11 \mathrm{ft}$. and $\frac{6.11}{4}=1.53$

[^61]: - This tree is supposed to stand on the standard parallel; which is nearly 11 ft . N. of the tangent. Great care will be taken to note topography on the true line.
 1.see Plate II, fig. 4. In actual practice the diagram will bo placed in the ficld notes; for these specimen notes it is nore convenient to place the diagram on a plate.
 \ddagger On the tangent line, as a matter of course.

[^62]: * When the corner at which tho survoy hegins, shall have been established meder a prior eontract, tho words "which I established Augnst 28, 1890 ," will be omitted: and in describing the corner, the deputy will write ($0 . g$.), "which is a sandstone, $5 \times 7 \times 5$ ins, above gronnd, dimuly set, and marked and witnessed as described by the surveyor meneral;" in all cases making the descrintion agree with the facts. The latitude and longitude, to the nearest whole minute, will be supplied by the surveyor general in his special written instructions and will be marked on tho accompanying diagram, at iho point where tho snrvey will begin; and, from the data thus provided, the deputy will determine the geowraphical pesition of other points, by applicatiou of the rules following 'Table X, page 135.
 \dagger These angles are too smill tomeasure with ordinary field instruments; but, when the mark is 5 chs. dist., as in this case, the ungles may be obtaincd, in seconds of arc, by dividing the fallings, 0.2 and 0.3 ins., by 0.019 .

[^63]: N. $89^{\circ} 57^{\prime}$ E... het. secs. 1 and 36.

[^64]: * The convergency will always he entered in the column containing the departure of the north boundary.

 This township is rough and monntainons in the sonthern part, rolling in the interior, and nearly level in the nortl and cast, while praire land is fond in the vieinity ot the sonthwest corner. The township is well watered, and well timbered in the interior; and the soil along the south fork of Spring Creek and its tributaries is very fertile. The township should be subdivided.

 Richari lioons,
I. S. Derputy Surreyor.

 September 13, 1890.

[^65]: Chains. Set a cedar post, 3 ft . long, 4 ins. sq ., with marked stone, 24 ins. in the ground, for elosing cor. of fracl. secs. 11 and 12, marked S. B. on E.,
 C. C. T. 15% N., R. 20 E. on S., and
 S. 11 on W. faces; dig pits, crosswise on each line, $30 \times 24 \times 12$ ins.. N. $19 \frac{1}{2}^{\circ}$ W., 3 ft ., and $24 \times 18 \times 12$ ins., S. of stone, 7 ft . dist.; and raise a monnd of earth, 4 ft . base, 2 ft . high, S . of cor.
 Thence, across the rancho on a blank line.
 40. 00

 Intersect N. bdy. of Rancho San Blas at a point from which the N. W. cor. of the rancho bears $\mathrm{S} .73^{\circ} \mathrm{W} ., 2.58$ chs. dist.
 Set a jnniper post 3 ft . long, 4 ins. sq., with a quart of charcoal, 24 ins. in the ground, for closing cor. of fracl. secs. 11 and 12, marked
 C. C., T. 15 N., R. 20 E. on N.,
 S. B. on S., and
 S. 11 on W. faces; dig pits, crosswise on each line, $30 \times 24 \times 12$ ins., S. 73° W., 3 ft., and $24 \times 18 \times 12 \mathrm{ins.}, \mathrm{N} .\mathrm{of} \mathrm{stone}$,7 ft dist., and raise a momed of earth, 4 ft . base, 2 ft high, N . of cor.
 Leave rancho, enter public land; thence, over rolling gromed.
 59.50

 Branch, 6 lks . wide, course S. E.
 80.00

 Deposit a marked stone, 12 ins. in the ground, for cor. of secs. 1, 2, 11, and 12, dig pits, $18 \times 18 \times 12$ ins., in each sec., 4 ft. dist. and raise a monnd of earth, 4 ft . base, 2 ft . high, orer deposit. In s. E. pit, drive a cedar stake, 2 ft . long, 2 ins. sq., 12 ins. in the ground, marked
 T. 15 N., S. 1 on N. E.,
 R. 20 E., S. 12 ou S. E.,
 S. 11 on S. W., and
 S. 2 on N. W. faces; with 5 noteles on S. and 1 notch on E. edges.

 Land, mountainons and level.
 Soilstony, clay, and loam; 3rd and 4 th rate.
 No timber.
 Across Rancho San Blas, 7.72 chs. of blank line.
 Mountainons land, 11.00 chs.
 S. $89^{\circ} 52^{\prime} \mathrm{E}$., on a random line bet. secs. 1 and 12.
 40.00

 Intersect E. bdy. of Tp.; 7 lks . N. of cor. of secs. 1, 6, 7, and 12 which is a juniper post, 1 ft . high, 4 ins. sq., marked and witnessed as described by the surveyor general.

 ## Thence 1 rm

 N. $89^{\circ} 49^{\prime}$ W., on a true line bet. secs. 1 and 12.

 Over rolling land.
 7.00
 9. 00
 11.50
 13. 60
 16.50
 18.07
 40.02
 43.00
 51.50
 59.50
 79.00
 80.04

 Enter oak timber, hears N. 20° E. and S. $20^{\circ} \mathrm{W}$.
 Begin ascent of ridre, hears N. 27° E. and S. $27^{\circ} \mathrm{W}$.
 Top of ridge, 50 ft . high, bears N. 27 E . and S. 27 W .
 Regin descent, bears N. 30° E. and S. $30^{\circ} \mathrm{WV}$.
 Foot of descent, bears N. 33° E. amd S. $33^{\circ} \mathrm{W}$.
 An oak, 12 ins. diam., on line, I mark with 2 uotches on E. and W. sides.
 Set a cedar post, with charred stake, 24 ins, in the gromud. for $\frac{1}{4}$ sec. cor., marked $\frac{1}{4} \mathrm{~S}$. on N. face; dig pits, $18 \times 18 \times 12 \mathrm{ms}$. , E. anl W. of post, 3 ft . dist. ; and raise a mound of earth, $3 \frac{1}{2} \mathrm{ft}$. base, $1 \frac{1}{2} \mathrm{ft}$. high, X . of cor.
 Ravine, 2.00 chs. wide, 18 ft . deep, course S. $20^{\circ} \mathrm{W}$.
 Ravine, 3.00 chs. wide, 22 ft . deep, course S. $30^{\circ} \mathrm{W}$.
 Ravine, 3.50 chs. wide, 25 ft . deep, course S. $20^{\circ} \mathrm{E}$.
 Leave oak timber, bears N. and s .
 The cor. of sees. 1, 2, 11, and 12 .
 Land, rolling.
 Soil, sandy loam; 3d rate.
 Timber, oak.

