3 inst of 殍rices

of

MATHEMATICAL，PHILOSOPHICAL，OPTICAL， AND CHEMICAL

INSTRUMENTS AND APPARATUS，

manufactured by

EDWARD M．CLARKE， philosophical instrument maker，

 BY APPOINTMENT， TO THE ROYAL UNIVERSITY OF CIRISTIANA，NORWAY；AND ZOOLOGICAL SOCIETY OF LONDON ；No．428，STRAND，LONDON，
（opposite coutts＇sibink．）

LONDON
PUBLISHED BY TAYLOR AND WALTON， 28，UPPER GOWER STREET；
E，M．CLARKE，428，STRAND； And to be had of all Booksellers．

This is a reproduction of a library book that was digitized by Google as part of an ongoing effort to preserve the information in books and make it universally accessible.

ADVERTISEMENT.
E. M. Clarke submits the following List of Philosophical Instruments, with their prices, to public inspection ; and begs leave to state, that, in addition to a theoretic knowledge of the principles of their formation and application, he possesses the mechanical capability of constructing them with his own hands, and really makes what he sells. His Workshops are at all times open to the inspection of scientific persons who may have any invention in progress of practical development ; and he will be happy to afford any experimental assistance (Chemical or Mechanical) that may be required, for which his Laboratory and Workshops offer the most desirable facilities. It has been E. M. Clarke's endeavour to make each instrument answer as many experimental purposes as possible ; being well aware that one of the greatest impediments to the pursuit of Science is the expense attending its investigations : and he invariably ascertains that every article will perfectly perform the duties for which it is intended, before he delivers it to the purchasers.

ERRATA.
Page 53, No. 56-for "Chronometer," read "Electrometer."

CATALOGUE

OF

PHILOSOPHICAL APPARATUS,

MADE
BY E. M. CLARKE, OPTICIAN,
428, Strand, London.

MECHANICS.

1 E. M. Clarke's Arrangement of the Apparatus for illustrating the Equilibrium of Forces. This apparatus consists of a metallic ring (b) fig. 1 , to which are attached the friction wheels $(d, d, d) ; c$ is a circular slate for the purpose of drawing the lines and figures required to aid the experiments. The whole is supported on the brass pillar and foot (a). By means of this apparatus may be illustrated the parallelogram, triangle, and polygon of forces without the troublesome method of removing the figure boards, and it possesses the advantage of allowing the illustrator to vary the experiments according to his own wishes; including 3 friction wheels.
2 Additional Friction Wheels for the above; they are also made to fit on the various apparatus hereafter described, each . s of Weights, in brass or lead, from $\frac{1}{4} \mathrm{oz}$. to 50 oz ., with top and bottom hooks
No.
4 Pair of Jointed Parallelograms to illustrate the Parallelogram of Forces. One having four equal sides of 12 or 18 inches, the other two sides of 10 or 15 inches, and the other two sides 15 or 20 inches . $14 s$. to
5 Sliding Jointed Parallelogram, made to alter the dimensions of its sides at pleasure 1l. to $\begin{array}{lll}\boldsymbol{f} & \boldsymbol{s} . & d . \\ 1 & 1 & 0 \\ 2 & 2 & 0\end{array}$6 Apparatus for illustrating the Laws of Parallel Forces. This apparatusconsists of a shallow metal trough for containing water, supported onlegs, and having a stop-cock for emptying it when required. Asquare board, divided into inch squares, and having a small hole atthe corner of each square, is placed to float on the surface of thewater. Strings are now attached by pins fixed into the holes in theboard, these press over friction wheels attached to the trough carry-ing weights. By this arrangement we easily get rid of the weight ofthe body, and are able to illustrate the equilibrium of a body actedon by parallel forces in a very marked manner; the centre ofparallel pressures, stable, unstable, and neutral equilibrium areshown with equal exactness
414 6
7 Apparatus for illustrating the Composition of Forces in several Planes, consisting of two skeleton parallelopipeds, one rectangular, the other oblique, a polygon having its sides in different planes. Six movable friction wheels on adjusting metallic stands, and one stand with mahogany table for holding the parallelopipeds and polygon 6l. 6s. to $1010 \quad 0$
8 Apparatus for illustrating the Equilibrium of a Body moving round an Axis, and acted on by Forces soliciting it in various dircetions. Con- sisting of a vertical circular plane, marked with concentric circles 1 inch apart ; round these circles holes are made at equal distances for receiving projecting pins : the whole is supported on a pillar and foot. This apparatus is used with the friction pulleys and stands described at No. 7. In mahogany 2l. 28., more correct in metal $317 \quad 6$
9 Apparatus for illustrating the Method of Finding the Centre of Gravity of various Figures. Consisting of a spring steel forceps, having two axle pins; also a mahogany triangle, parallelogram, trapezium, polygon, semicircle, ellipse, and parabola, having their centres of gravity and the geometrical lines for their determination marked on them. Small size 1l. 16s. large 3136
10 Skeletons of Triangular Pyramids and other Geometrical Solids, showing the method of determining their centres of gravity
11 Apparatus, consisting of several parallelopipeds, fitting to each other, forming an inclined tower for illustrating the stability and instability of a body, as determined by its base and the line of direction of the centre of gravity, on a horizontal or inclined base 0126
12 Another Apparatus for the same purpose. This consists of a single parallelopiped, having a movable piece near the centre of gravity. When the piece is in its place, the line of direction is within its base; but remove the piece, and the centre of gravity is thrown forward : the line of direction passing beyond the base, the body falls. If the top be now made the base, the line of direction just falls without the base, and consequently the body falls; by now re- moving the piece stability is restored, in consequence of the centre of gravity being thrown back 1100
13 Apparatus to illustrate the Descent of the Centre of Gravity, while a body is apparently ascending an inclined plane . 7s. $6 \mathrm{~d} ., \mathrm{ll} .1 \mathrm{~s}$. 220
14 Apparatus to illustrate the Three Kinds of Equilibrium, consisting of a cylinder, with means of altering the centre of gravity . 12s. 6 d . to 110
15 Set of Levers of the first, second, and third order, mounted on stands, with friction rollers and graduated scales. Mahogany 220
16 Ditto, ditto, in brass
17 Two Levers on Stands, rectangular and bent, mounted in brass
No. \mathcal{E} s. do
18 Stand, showing a set of Compound Levers in wood
19 Ditto, ditto, in brass
20 Model of a Steel Yard
21 Ditto of the Bent Lever Balance
22 Ditto of the Danish Balance
23 Ditto of Bradley's Balance
24 Ditto of a Balance, with means to show all the Adjustments$310 \quad 0$
25 Apparatus to illustrate the Wheel and Axle 16. 18. to 660
26 Model of a Capstan and Windlass 2l. 28. to 550
27 A Series of three-toothed Wheels and Pinions, for experimenting on the relation of power to weight, on cross standard 2l. 2s. to 550
28 Set of Three Pulleys in Frame, first, second, and third kinds
29 Set of Three Pulleys in Frame, showing Smeeton's and White's arrange- ment of the second system, and Spanish burton
30 Set of Three Pulleys in Frame, showing another kind of Spanish burton, and two combinations of second and third, and second and firstsystems .31 Separate Pulleys for making different Combinations, each 3s. 6d. to0106
32 Inclined Plane of Mahogany, with roller and arrangement for increasing or decreasing the angle, without any projection . . $10 s .6 d$. to 3136
33 Double Inclined Plane, with Rollers: the weights of the rollers may be altered at pleasure 880
34 Apparatus to show the Construction of a Screw 050
35 Model of a Screw and Nut 8s. 6d. to 1 100
36 Ditto, showing the Action of the Endless Screw 1l. 10s. to 550
37 Acting Model of Hunter's Compound Screw 2100
38 Model to illustrate the Manner of Screw-cutting, with and without an original Screw, with equilateral and square threads 6166
39 Model for showing the Construction and Properties of the Arch 3s. to 220
40 Machine showing all the Mechanical Powers combined, on brass pillar and foot 880
41 Large Mahogany Apparatus to illustrate the Composition of Machines ; consisting of a frame, with spur, crown, bevel wheels, pinion, lantern or trundle, universal joint, with falling shaft, endless screw, and worm wheel, wipers, stampers, crank, rack, sector, pulley, and winch. By the winch, motion is communicated to the whole or parts of the machinery, as occasion may require $18 \quad 18 \quad 0$
42 Mahogany Model to illustrate experimentally the Properties of the spur, crown, and bevel gear 6l. 6s. to $8 \quad 80$
43 Mahogany Standard, with fly-wheel and numerous pieces of machineryto illustrate experimentally eight various mechanical arrangementsfor producing direct and alternate motions of variable and uniformvelocities. Standard 4 feet 6 high

$$
9 \quad 9 \quad 0
$$

2150
45 Mahogany Apparatus to exhibit the Mechanical Method of describing the proper Curves for the Teeth of Wheels and the Leaves of Pinions
46 Wooden Models of the Rack and Pinion, and Wheel and Pinion, for showing the most approved form of the teeth of wheels and leaves of pinions $6 l .6 s$. to
${ }_{47}^{\text {No. }}$ Model of a Carriage with Two Sets of Wheels of different sizes, to illus-trate the friction, resistance, \&c., of Wheel Carriages .
f.s.77048 The Mechanical Powers, consisting of the different kinds of Levers, theWheel and Axle ; Stand, containing the different systems of pulleys,inclined plane, rolling cylinder, wedge, screw, and nut, and model ofthe screw. Packed in a lock-up case2400
49 Ditto, ditto, of a smaller size, most parts made in mahogany and hard wood, except the systems of pulleys; these are brass, without case 7100
50 Turning Lathe, with 3 -inch iron heads, on wood beds 2 feet long, woodstandards, iron fly-wheel, and one-throw crank, iron treadle, cast-steel collar and mandril, screw puppet head, three chucks, and onepair of screw tools. Plain or japanned7l. 7 s .tto, ditto, with 3 -inch iron heads on iron beds, 2 -feet-long standards,fly-wheel, one-throw crank, and treadle in iron, cast-steel collar andmandril, with screw or cylinder puppet head, three chucks, and onepair of screw tools. Plain or japanned . . . 10l. 10s. to1500
52 Ditto, ditto, $4 \frac{1}{2}$-inch iron heads, on wood beds 2 feet 6 inches long, wood standards, iron fly-wheel, one-throw crank, iron treadle, cast-steel collar and mandril, screw puppet head, three chucks, and a pair of screw tools

9l. 9s. to
53 Ditto, ditto, $4 \frac{1}{2}$-inch iron heads, on iron beds 2 feet 6 inches long, with standards, fly-wheel, plane or conical, one-throw crank, and treadle in iron, cast-steel collar and mandril, cast iron pulley, cylinder or screw puppet head, iron rest and two T.s, four metal chucks, and one pair of screw tools 12l. 12 s . to
54 Turning Lathe, with $5 \frac{1}{2}$-inch heads on wood beds 3 feet long, wood standards, iron fly-wheel, one-throw crank, iron treadle, cast-steel collar and mandril, screw puppet head, five metal chucks, and a pair of screw tools 11l. 11s. to
55 Turning Lathe, with $5 \frac{1}{2}$-inch heads, iron beds 3 feet long, iron standards, plane or conical iron fly-wheel, one-throw crank, iron treadle, caststeel collar and mandril, cast-iron pulley with or without dividing plate, cylinder or screw puppet head, cast-iron rest and two T.', five metal chucks, and a pair of screw tools. Plain or japanned 20l. to 3110 0
56 Compound Slide Rest to suit ditto 10l. 10s. to 1500
57 Turning Lathe, with $6 \frac{1}{2}$-inch heads on wood beds 3 feet 6 inches long, wood standards, iron fly-wheel, one-throw crank, iron treadle, cast- steel collar, iron and steel mandril, screw or cylinder puppet head, six metal chucks, and a pair of screw tools 15l. to 2100
58 Ditto, ditto, ditto, on cast-iron beds 3 feet 6 inches long, iron standards, conical or plane iron fly-wheel, one-throw crank, iron treadle, caststeel collar, iron and steel mandril, iron pulley, with or without dividing plate, cylinder or screw puppet head, iron rest and two T.', six metal chucks, and one pair of screw tools. Plain or japanned
3500
59 Compound Slide Rest to suit ditto 14l. to 2000
60 Grinding Stones, set in wood or cast-iron troughs, with crank and treadle foot movement $2 l .2 \mathrm{~s}$. to
4146
61 Surface, universal, die, and other chucks
62 Turning Tools in every variety per dozen 12s. to $110 \quad 0$
63 Wheel and Pinion, slow motions fitted to lathes
61 Taps, Dies, Screw-plates, and every variety of Screwing Tackle

DYNAMICS.

1 Atwood's Machine to illustrate the Doctrine of Accelerated Motion,mounted on a stand, escapement, and pendulum for beating seconds,weights, \&c.
£ s. d. 2200
2 Brass-grooved Wheel, on brass base and uprights, very perfectly balanced, and delicately suspended at the pivots. This apparatus answers all the purposes of Atwood's Machine at a small cost
3 Harris's Apparatus, consisting of a pendulum and levers to beat seconds for ditto

440

220
4 Apparatus, with divided Arc and Ivory Balls, suspended to illustrate the laws of collision 2l.10s. to
5 Clay Balls for ditto each 6d.
6 Apparatus for illustrating the Composition of Motion, consisting of a square pannelled mahogany board, with sides, and a contrivance for impelling an ivory ball in the direction of either of two sides of the square, and also for giving an impulse in both directions at the same time, so as to cause the ball to describe the diagonal of the square. Mahogany board, 2 feet square . . $2 l .10 s ., 3$ feet square
7 Apparatus, consisting of a Fixed Semicircle and Movable Chord, and contrivance for allowing the simultaneous descent of two ivory balls down the chord and diameter, showing that the descents are made in equal times, whatever be the length of the chord . . 2l. 10s. to
8 Apparatus to illustrate the Curve of Quickest Descent, consisting of a
straight line or chord, hyperbola, circular arc, and cycloidal are
8 Apparatus to illustrate the Curve of Quickest Descent, consisting of a
straight line or chord, hyperbola, circular arc, and cycloidal are 3l. 3s. to

7176 3l. 3s. to
9 Brass Model of Captain Kater's Pendulum, consisting of a brass rectangular graduated rod, 50 inches long, two movable knife-edges for suspension; and movable bob and clamp, with a steel plate, and clamp for suspending
$8 \quad 8 \quad 0$

10 Apparatus to illustrate the Properties of the Cycloidal Pendulum 2l. 12s. 6d. to
11 Apparatus for illustrating the Centre of Percussion. This apparatus consists of a steel rod, having at one extremity a small indentation made at either side for receiving the pointed ends of two screws, one at each side, supported by two uprights: by this means the bar is made to move on an axis, but so that a small pressure will force it out. The bar also rests on a steel support, that moves back and forward on the bottom board. To find the centre of percussion, place the support at any distance from the axis, raise the bar, and let it fall on the support: if it does not drop from the screws at the axis, the support is at the centre of percussion; but should the bar fall from the screw points downwards, then the support is too far from the axis, and vice vers \hat{a}
12 Apparatus for showing the Parabolic Path of a Solid Projectile
13 Ditto for the Parabolic Curve of a Projected Liquid.
14 Whirling Table for demonstrating the Laws of Central Forces, with arrangement for marking time by sound and space, shown by an index00

15 Apparatus to illustrate that a Body, rotating rapidly about its axis, if free, will always select the shorter
16 E. M. Clarke's Combined Apparatus for exhibiting most of the Experiments of No. 14, and all of No. 15. It consists of a strong mahogany bottom board, D, fig. 2 ; G, a horizontal multiplying wheel for driving the vertical mandril H, the screw of which passes through the top of the table at N. At the centre of the bottom board is

Fig. 2.

No.
fixed a strong upright pillar, with a multiplying wheel moving in a notch at E, for driving the revolving pin at \mathbf{F}. This apparatus is furnished with a number of figures, to illustrate that a body rotating rapidly about its axis, if free, will always select the shorter, as the double cone suspended from F in outline shows the position of suspension at rest ; but on communicating motion to the revolving pin F, by turning E, the string that carries the double cone will gradually deviate from the perpendicular, and the cones revolve, as shown by the dotted figure. Six illustrations of this law are furnished by the apparatus ; viz. cone, double cone joined at base, double cone joined at the apex, cylinder, disc, ring, and chain. Also an apparatus for illustrating the cause of the oblate figure of the earth, which screws on the vertical mandril N. For a further detail of the uses this apparatus is applied to, and its other accessories, see Magnetic Electricity, Combined Apparatus

880
17 Apparatus for using with Nos. 14 or 16, consisting of two balls of different weights connected together, for the purpose of placing their centre of gravity over the axis of motion, for showing the equality of their tendencies from the centres of motion . . $2 l$. 2 s . to
18 Conical Pendulum for illustrating the principle of the Governor to be applied to Nos. 14 or 16

1l. 10s. to
$3 \quad 30$

HYDROSTATICS AND HYDRAULICS.

No. £ s. d.
Apparatus to illustrate the Equal Transmission of Liquid Pressure in all directions $515 \quad 6$
2 Apparatus for demonstrating that the Pressures of Liquids are propor- tional to their Vertical Heights and Areas of Surface pressed upon. Consisting of three glass vessels of different shapes, but having bases of equal areas and same heights, on metal stand, with ground brass rings on the vessels, and ground valve attached to a lever $2 l .2 s$. , 4l. 4 s., and $6 \quad 6$
3 Hydrostatic Bellows or Apparatus to illustrate that Fluids press equally in all Directions and in Proportion to their Perpendicular Depths; consisting of two circular boards connected by a band of caoutchouc cloth : to the bottom board is attached a long vertical tube of glass, having a funnel at top, and a graduated scale; if weights be placed on the upper board, on pouring water down the glass tube, the upper board will be elevated, carrying the weights $414 \quad 6$
4 Bramah's Hydrostatic Press, small size, but with sufficient power to break a bar of cast iron, $\frac{3}{4}$ by $\frac{1}{2}$ inch 15150
5 Apparatus for showing that Fluids attain the same Level when in com- munication 2l. 12 s .6 d . to 660
6 Model of a Canal Lock, showing a section of the apparatus, with flood- gates and sluices for allowing the water to enter or escape from apartments. The front is of glass, so that the operation of lowering and raising a small boat may be distinctly seen $1010 \quad 0$
7 Glass Syphons, with or without exhausting tubes 1s. to
8 Working Model of an Intermitting Spring, consisting of two vessels of different sizes, connected by a small pipe ; the larger is filled with water, which slowly enters the small onc. A syphon is fitted into this last, reaching to the bottom, and the bend being at the same height of the smaller vessel ; hence, when this becomes full, the syphon begins to act, and continues until the vessel is empty, when it ceases until it is again filled from the larger vessel ; the syphon then draws off the water as before 2126
9 Tantalus Cup, consisting of a glass vessel, with a syphon concealed under an image ; when water is poured into the vessel, before it reaches the lips of the image it is drawn off by the syphon 010
10 Hydrostatic Balances, with electro-gilt steel beam and sets of weights, and all the apparatus necessary for determining the specific gravity of liquid and solid bodies 2l. 12s. $6 d ., 4 l .4 s$. to $717 \quad 6$
11 Apparatus for showing that when a body is immersed in a liquid, it loses as much weight as is equal to the weight of its bulk in water 7 s .6 d . to 0150
12 Hydrometers and Saccharometers, in metal and glass, of various con- structions 7s. 6d. to $5 \quad 5 \quad 0$
13 Hydrometrical Beads, in sets $4 s .6 d$. to 110
14 Nicholson's Gravimeter, for determining the specific gravity of solids and liquids 1100
15 Apparatus for Illustrating the Laws of Spouting Fluids . 2l. 10s. to $6 \quad 6 \quad 0$
16 Set of Glass Tubes of Small Bore, for showing capillary attraction $0 \quad 5 \quad 0$
17 Apparatus, consisting of two plates of flat glass placed at a very small angle to show the form of the curve produced by capillary attraction 10 s . to 110
18 Acting Model of Vera's Rope Pump, for raising water by capillary attraction $7 \quad 7 \quad 0$
19 Acting Model of Archimedes' Screw 1l. 15s. to $414 \quad 6$
20 Ditto, with the screw or snail of glass $5 \quad 50$

No.		£		
21 Acting Models of Over-shot, Under-shot, and Breast Wheels 2l. 2s.,$\text { 4l. 4s., or } 66$				
22	Working Model of Baker's Centrifugal Mill . . . 2l. 10s. to	6		0
23	Acting Model of the Chain Pump .	8		0
24	Apparatus, consisting of a Floating Body shaped like a section of a ship at right angles to its length, with stem and movable weight for illustrating the properties of the metacentre and centre of buoyancy			
25	Glass Jar, with air-tight Caoutchouc Cover, containing a hollow glass balloon or figures of men, \&cc. floating at top; when pressure is applied to the cover, the air confined in the balloon or figures is condensed, and they fall to the bottom of the vessel, on removing the pressure, they again ascend \qquad			
	Glass Balloons and Figures for ditto, without the glass jar . $1 s .6 d$, to			

PNEUMATICS.

1 Largest size double-barrel Air-Pump, with Smeaton's single cylinder, on high mahogany stand, barometer gauge, gun-metal receiver-plate, forked key, and lever 6000
2 Large size double-barrel Air-Pump, on high mahogany stand, barometer gauge, gun-metal receiver-plate, forked key, and lever $36 \quad 0 \quad 0$
3 Second size double-barrel Air-Pump, on high mahogany stand, barometer gauge, gun-metal receiver-plate, forked key, and lever $1616 \quad 0$
4 Large size double-barrel table Air-Pump, mercurial gauge, gun-metal receiver-plate, wrought-iron clamp, and key 1400
5 Second size ditto, ditto 1000
6 Third size ditto, ditto 800
7 Fourth size ditto, ditto 600
8 Single-barrel Air-Pumps, with horizontal, vertical, or inclined barrel 1l. 1s. to 330
9 Exhausting Syringe 7s. 6d. to
10 Condensing ditto 10s. 6d. to
11 Syringe for exhausting and condensing 15s. to
12 Open and close Glass-Receivers, with welted edges, accurately ground, of all sizes 3s. to
13 The Torricellian Experiment, to illustrate the construction of the Baro- meter ; consisting of a glass tube 34 inches long, closed at one end, a cup for mercury, and a tall glass receiver for covering both $016 \quad 0$
14 Magdeburg Hemispheres, to illustrate that the pressure of the atmo- spheric air is nearly equal to 15 lbs . on the square inch ; consisting of two half-spheres ground air-tight, and a stop-cock for securing the vacuum, with stand and stirrup handles $7 s .6 d$. to 1100
1101100
220
110
15 Four Barometer Tubes for showing the upward, downward, oblique, and lateral pressures of the atmosphere $010 \quad 0$
16 Apparatus for shewing the Weight of Air ; consisting of a strong hollow metallic vessel, with stop-cock and screw-piece to connect it with the air-pump and condensing syringe . . . 18s., 1l. 10s., to 220
17 Guinea and Feather Experiment, demonstrating the resistance of air;consisting of an apparatus to allow the fall of a heavy and a lightbody at the same time. One, two, or three falls $8 s .6 d ., 18 s ., 1 l .5 s$.
18 Two Scts of Windmills for the same purpose : the vanes of one havetheir vanes at right angles to their axis, the vanes of the other1100
are parallel. When both are set in motion in a vacuum, they revolve in equal time; but in air the latter comes to rest before the former .

1100
19 Bladder Glass, for illustrating the pressure of the Atmosphere: a piece of bladder is tied tightly over the larger end of the glass, and allowed to dry; when this is placed on the air-pump plate, and the air withdrawn from beneath, the bladder is burst by the external pressure of the atmosphere with a loud report

2s. to
20 Hand Glass : a similar experiment to the above; placing the hand on a receiver of a less diameter, it becomes fixed by the pressure of the atmosphere
$1 s .6 d$. to
36
21 Apparatus to illustrate the Porosity of Woods by forcing air and mercury through a cylindrical piece of wood by atmospheric pressure

066
22 Lungs Glass, to illustrate the elasticity of air, consisting of a closed glass
vessel having a bladder within it, which is open to the air : on partially vessel having a bladder within it, which is open to the air : on partially withdrawing the air from the bladder, the air in the glass vessel expands, contracting the bladder; on admitting the air within the bladder, it then expands, thus imitating the action of the lungs .

6
23 Apparatus to prove the Elasticity of Air, consisting of a stand of three pillars, within which are two hollow wooden boxes, containing a partiallyblown bladder. Heavy lead weights are placed on the top of the upper box: when the air is exhausted from the receiver under which the apparatus is placed, the air within the bladder expands, and raises the box and weights; on admitting the air, the bladder shrinks, and the weights descend 6s. $6 d ., 10 s .6 d$. , to
24 Wire Cage and six thin square Glass Bottles, for showing the Pressure and Elasticity of Air. One bottle, with brass cap and valve.

0150
0160
25 Apparatus, consisting of three Glass Vessels for illustrating the Mechanical Properties of Air. A coloured liquid is forced from the first vessel to the second by the elastic force of air, and from the second to the third by its pressure

110

1176
din
27 Ditto, ditto, with two glass receivers, ground on the edges
2126
28 Apparatus to show a Fountain in Vacuo, consisting of a ground brass plate, with jet and stop-cock. A tall glass receiver is placed on the plate and the air withdrawn, the stop-cock is immersed in water and opened, the pressure of the atmosphere on the water forces it through the jet up the receiver

- 10s. 6 d . to

29 Apparatus to produce a Fountain by the Expansion and Exhaustion of Air, consisting of a glass vessel partly filled with water, having a brass cap and jet, and a tube reaching nearly to the bottom : this being placed under a receiver, as soon as the air is exhausted in the receiver, the air in the vessel expands, and forces up the water in a jet 5 s . to
30 Ditto, ditto, with glass receiver to save the water falling on the pump plate

12s. 6d. to
31 Fountain by Condensed Air, consisting of a strong hollow copper vessel, pipe, stop-cock, set of jets, and condensing syringe

2l. 15s. to
Acting Model of the Lifting Pump, with glass barrel, showing the action of the valves and piston. Plain, with ring on the end of piston rod, 1l. Best, with pump-handle

0106
0180
$414 \quad 6$

1100
33 Acting Model of the Forcing Pump, with glass barrel, showing the valves and piston and glass air vessel on stand
$\begin{aligned} & 34 \text { Acting Models of the Lifting and Forcing Pumps on the same stand, } \\ & \text { with water cistern . }\end{aligned}$
35 Aeting Model of De la Hire's Double-acting Pump 40

37 Chromatic Fire-Cloud Fountain, consisting of a very strong copper vessel, with a lever handle, stop-cock, and tube reaching nearly to the bottom. A solution of muriate of copper and strontian in spirits of wine is put into the copper vessel, a condensing syringe is screwed on to the stop-cock, and air is condensed above the solution; the syringe is removed, and a long brass jet is put in its place. The copper vessel is immersed in a tin pan, filled with boiling water. The operator now straps on a breastplate, removes the apparatus out of the hot-water pan, and places it in the breastplate, as seen at fig. 3 ; the cock is now turned for a moment, a portion of the liquid is projected on the ceiling, to which a light is applied. The room should be made dark, and while the flame still continues to burn, more of the liquid should be projected on it at intervals, which produces a brilliant and beautiful effect, like liquid waves of fire rolling in all directions, exhibiting a never-ending succession of prismatic-coloured flames. The copper apparatus, including the breastplate, brass condensing syringe, and tin pan for boiling water
38 Bell Apparatus, to prove that air is the medium of sound. This apparatus may be suspended in the receiver, and set in action by elevating and depressing alternately the wire that passes through a collar of leathers, proving that sound cannot be transmitted in a vacuum

0160
39 Gunpowder Apparatus, to prove the same fact
40 Brass Stick for holding a piece of Wax Taper, to prove that air is necessary to support flame.
41 Acting Model of the Diving Bell, consisting of a glass vessel for holding water, a glass bell, with apparatus to supply pure and withdraw the impure air. A living animal, such as a mouse, monkey, or squirrel, may be sent down in the bell; or merely a lamp, the flame of which will afford a full illustration of the principle . . . 1l. 10s. to
42 Small Balloons for inflating with hydrogen gas, to illustrate the principles of Aërostation

1s. 6d. to
43 Balloons, with netting and cage cars, for sending up monkeys, cats, \& c . 4l. 14s. 6 d. to
44 Delbruck's Patent Lead Apparatus, to generate hydrogen gas for ditto 1l. 10 s . to
45 Leslie's Apparatus for producing congelation in a vacuum, consisting of a shallow bell glass receiver, a glass dish with open centre for sulphuric acid, and glass pan for the water to be frozen. This arrangement never fails
$88 \quad 0$
440

110

[^0]${ }^{\text {No. }}$ Wollaston's Cryophorus, consisting of one bulb and a cylindrical chamber, with ground brass plate and stuffing box to place on an open receiver - 1l.12s.6d.to
49 Glass Flask, mounted with light brass cap and small stop-cock, for illustrating the influence of diminished pressure in facilitating ebullition.
50 Water Hammer for illustrating Elasticity of Air. In consequence of
the absence of air, the water in the tube falls with a loud sound from
one end to the other, as though it were a solid body $\quad 2 s .6 d$. to
51 Syringe, with weight attached, to illustrate atmospheric pressure. In the air the piston is with difficulty raised from the bottom to the top of the barrel, and when let free immediately descends by the atmospheric pressure; but when suspended in a vacuum the piston descends.
076
076
round Brass Plate, with metal rod sliding through a collar of leathers in a stuffing box, for suspending or giving motion to different pieces of apparatus when placed under glass receivers, such as Nos. 38, 49, \&c. 7s.6d. to
53 Balance on stand, with a cork or glass globe at one end, and a lead
counterpoise at the other, to show that two bodies that are balanced
in an atmosphere of common density, are not so when in a vacuum .
53 Balance on stand, with a cork or glass globe at one end, and a lead
counterpoise at the other, to show that two bodies that are balanced
in an atmosphere of common density, are not so when in a vacuum .
53 Balance on stand, with a cork or glass globe at one end, and a lead
counterpoise at the other, to show that two bodies that are balanced
in an atmosphere of common density, are not so when in a vacuum .
0180
54 Brass Syringe, for igniting amadou by compressed air . . 2 s. 6d. 080
55 Ditto, with glass barrel 2100
56 Apparatus for experimenting with foul air 0150
57 Painted Wooden Sectional Model of the Air-Pump in its present most
improved form, showing the action of the Torricellian vacuum gauge,
the opening and closing of the valves, and the working of the pistons.
3it feet square
58 Painted Wooden Sectional Model of the Fire-Engine, showing the arrangement of the air-box, the working of the pistons and valves, \&c. $3 \frac{1}{2}$ feet high, 3 feet wide
4146

STEAM ENGINE.

APPARATUS AND MODELS TO ILLUSTRATE THE STEAM ENGINE.

1 Dr. Wollaston's Apparatus, consisting of a glass cylinder, with bulb,
piston, and hollow rod, illustrating the production of motion by the
generation and condensation of steam
2 Marcet's Apparatus, with barometer, thermometer, stop-cock, and jet attached, for showing the temperature and elastic force of highpressure steam, the economy of heating water by steam, and the most important facts connected with latent caloric. In consequence of many accidents having occurred with this instrument when made of brass, 'owing to the unavoidable amalgamation with the mercury, E. M. C. has always made this apparatus of cast-iron
$313 \quad 6$
3 Ure's Apparatus for demonstrating the same phenomena at temperatures above and below the boiling point of water

3150
4 Working Model of Hero's Rotary Engine. Motion is produced by the
reaction of the steam rushing into the atmosphere from two opposite
escape pipes
5 Working Model of De Caus' Engine. Water is forced out of this boiler in a small jet by the force or pressure of the generated steam $2 l .10 s$. to
6 Working Model of Branca's Engine. A jet of steam, blowing against vanes fixed on the periphery of a wheel, communicates a rotary motion to it 3l. 13 s . 6 d . to
No.
7 Working Model of Savory's Engine. This engine was the first that was
brought into use, having been applied to drain mines, \&c. 5l. 5s. to
£ s. d.
$717 \quad 6$
8 Working Model of Papin's Engine. This was the first engine in which a piston was employed, and the first application of the safety valve to the boiler
$15 \quad 150$
9 Working Model of Newcomen's Atmospheric Engine. In this engine a great improvement was effected by the introduction of an oscillation beam, the extremity of one of its arms being attached to the piston by a rod, while from the other is suspended a rod for working a pump for raising water; motion is given by steam underneath the piston, assisted by counterpoise weights on the pump-rod raising it to the top of the cylinder, when the steam being condensed, the weight of the atmosphere forces it down again : this was the first engine in which the working cylinder was detached from the water to be raised
14l. 14s. to
2200
10 Working Model of Watt's Single-acting Engine. The improvements in this engine consist in the substituting steam for atmospheric pressure above the piston, forcing it to the bottom of the cylinder; the steam being then admitted below the piston, placing it in equilibrium, when it is raised by a slight counterpoise to the top; the steam from the bottom of the cylinder is afterwards admitted to the condenser, which was in this engine first made separate from the cylinder. This was the first engine in which steam was practically employed as a direct motive power, having been heretofore only employed as a means of producing a vacuum to allow the atmosphere to act in a similar manner
45
00

Abstract

11 Working Model of Watt's Double-acting Engine. The improvements of this engine over the last are the application of the power of steam alternately to both sides of the piston, forcing it up as well as down, the opposite ends of the cylinder being open to the condenser ; the parallel motion, the crank and fly-wheel for converting the reciprocating motion of the beam into a rotary one, and the governor for regulating the action of the engine

12 Working Model of Cartwright's Engine. This engine was intended to
be worked by the vapour of alcohol, and was the first in which a
metallic piston was employed .
13 Working Model of Wolf and Edwards' High-pressure and Expansive Engine. In this engine the steam from the first cylinder enters a larger one, where its expansive power is employed, from which it passes into the condenser

35l. to
14 Working Model of Trevethick and Vivian's High-pressure Engine. The cylinder in this arrangement is fixed vertically in the boiler : this was the first non-condensing engine that was brought into general use .

880
15 Working Model of an Oscillating High-pressure Steam Engine. By
this arrangement the rotary motion is communicated to the cranked
axle and fly-wheel direct from the piston rod
16 Working Models of various High-pressure Steam Engines, such as Murray's, Maudesley's, Brunel's, Perkins's, Nathan Gough's, \&c.
17 Working Models of Rotary Engines of various constructions, as Cartwright's, Hornblower's, Masterman's, Galloway's, Beal's, \&c.
18 Working Model of Trevethick and Vivian's Locomotive Steam Engine 14140
19 Working Model of a Locomotive Steam Engine. This model is a perfect copy of the four-wheeled engines now in use, and is capable of drawing a model train on a circular or straight railroad

2500
20 Working Model of a Six-wheeled Locomotive Steam Engine, similar to $\begin{gathered}\text { those now employed on many railroads } \\ \text { t. }\end{gathered}$
NO. 21 Working Model of a Six-wheeled Locomotive Steam Engine, warrantedto work at a pressure of 200 lbs . per square inch of the boiler, andto draw 150 lbs. weight on a model railroad, as constructed by Lieu-tenant Rodney9500
22 Model Railroads, with cast-iron chairs and rails for the above carriages23 Models of Railway Trains, consisting of tender, mail, first, second, andthird class carriages, luggage, and cattle waggons and trucks 17 s . 6 d . to220
24 Working Models of Steam Carriages for common or turnpike roads 36125 Working Model of E. M. Clarke's Electro-Magnetic Locomotive Engineand Battery for Railroads. This model will remove the doubts ofthe most sceptical as to the possibility of applying Electro-Magnetismas a prime mover for this and other purposes$30 \quad 0 \quad 0$
26 Working Model of a Marine Beam Engine, with paddle-wheels, \&c., similar to those employed in most sea-going steamers, viz., Great Western, \&c. 560 0
27 Working Model of a Steeple Engine. Few engines of this description are employed, as their connecting rods \&c. occupy a considerable portion of the deck, though between decks they require less space than the ordinary ones 35 00
28 Working Model of Maudesley's Vibrating Engine. This description ofengine is simpler, and more compact than any other; the beams,cross-heads, connecting rods, and parallel motion being dispensedwith. They are extensively employed in the steam-boats on theThames201. to$36 \quad 10 \quad 0$
29 Working Models of Spillar's, Seward's, Field's, Humphrey's, \&c., Marine Engines, made to order
30 Working Models of Perkins' Steam-Gun for projecting Bullets, mounted on a strong copper boiler, generating steam at a pressure of 200 lbs . per square inch $1010 \quad 0$
31 Models of Sawing, Sugar, and Rolling Mills, Coining Presses, and Tilt Hammers, adapted to be worked by model steam-cngines, made to order
3: Painted Wooden Sectional Model of Bolton and Watt's Single-acting Engine, Boiler, and Furnace; showing the action of the piston, valves, cocks, tappets, pumps, \&c.; motion being given to the beam by hand or otherwise. Engine, $3 \frac{1}{2}$ feet long by 3 feet high ; boiler, 3 feet long 12120
33 Painted Wooden Model of Bolton and Watt's Double-acting Engine Boiler and Furnace; showing the exterior of the engine, the working parts, such as the cylinder, condenser, air-pump, valves, \&c. sepa- rating, thus showing their action in section : motion being communi- cated by the fly-wheel. Engine, $4 \frac{1}{2}$ feet long, 4 feet high; boiler, $5 \frac{1}{2}$ feet long
34 Painted Wooden Sectional Model of Bolton and Watt's Double-acting Engine, Waggon, Boiler, and Furnace ; showing all the working parts in motion. Engine, $3 \frac{1}{2}$ feet long, 3 feet wide ; boiler, 3 feet long 14140
35 Painted Wooden Sectional Model of Maudesley's Vibrating Condensing Engine. 2 feet wide, 3 feet high 66036 Painted Wooden Sectional Model of a High-Pres ure Engine and Cor-nish Boiler. Engine, 2 feet wide, 3 feet high; boiler, $2 \frac{1}{2}$ feet long . 10100
37 Painted Wooden Sectional Model of a Locomotive Engine and Tender, showing the arrangement of the boiler, tubes, fire-box, smoke-box,safety-valves, whistle, cocks, cylinder, slide, crank, eccentric andpumps; motion being given by the driving wheel. Engine, 4 feetlong; tender, $3 \frac{1}{2}$ feet long
38 Painted Wooden Model of Bolton and Watt's Marine Engine. $3 \frac{1}{2}$ feet long, 3 feet high
39 Ditto, ditto, with boiler, furnace, flues, \&c. Builer, $3 \frac{1}{2}$ feet long 15150
${ }^{\text {no. }}$ Painted Wooden Sectional Model of a Cylinder, Slide-valve, and Con_ £ $\boldsymbol{s} . \quad$ d. denser, illustrating the action of the piston and slide-valve, and the distribution of the steam in the cylinder 3136
41 Painted Wooden Sectional Model of Wolf and Edwards' Double Cylin- ders, Nozzles, Valves, and Condenser for their high-pressure and expansive Engines 660
42 Painted Wooden Model of a Cornish Steam Boiler, dissecting, to show the arrangement of all the flues, pipes, and general section of the boiler 880
43 Wooden Model of the puppet or T valve 1100
44 Wooden Model of the short slide-valve, separating, showing the interior arrangement 1126
45 Wooden Model of the \mathbf{D} valve, separating.as above 250
46 Wooden Model of the Four-way cock on plain surfaces 0150
47 Painted Wooden Model of Maudesley'sFour-way Cock, taking to pieces to explain its construction 2100
48 Wooden Models of the different kinds of Pistons for steam-engine cylin- ders, 9 inches diameter 2100
49 Wooden Models of Brine-pumps, Feed-heads, \&c. \&c.
MATHEMATICAL INSTRUMENTS.
1 Plain Brass Drawing Instruments, with steel points and joints in paper and skin pull-off cases 2126
2 Pair of Sector-jointed Dividers Brass 6s. Electrum 070
3 Pair of Sector-jointed Compasses, with double joints and pull-off leg. Brass 11s. 6d. Electrum
4 Pen and Pencil Points, to fit ditto Brass 4s. each. Electrum 050
5 Lengthening Bar for ditto - Brass 5s. 6d. Electrum 076
6 Sector-jointed Hair Dividers Brass 9s. Electrum 0106
7 Bow Pen or Pen Minutes . Brass plain 2s. 6d. Best 6s. Electrum 070
8 Bow Pencil or Pencil Minutes. Brass plain 2s. 6d. Best 6s. Electrum 70
10 Bow Pencil, double-jointed Brass 12s. 6d. Electrum 0136
11 Spring Dividers, with brass, ivory, or electrum handle; the adjusting screw moves on a rivet to keep the milled head-nut parallel with the limb 0106
12 Ditto, ditto, with pen or pencil, each 0106
13 Plain Drawing Pen, with brass handle and protracting pin 026
14 Drawing Pen, with ivory handle 046
15 Ditto, with lift, brass joint to the blades and ivory handle 056
16 Ditto, ditto, electrum ditto 066
17 E. M. Clarke's Palladium Drawing Pen, with ivory handle. This pen is not liable to corrode, and delivers the ink better than steel 0150
18 Road or Parallel Lines Pen 0150
19 Dotting Pen, with rollers 0106
20 Pricking or Tracing Point, with ivory handle 036
21 Triangular Compasses 0100
22 Ditto, with shifting leg 0150
23 Pocket Dividers, with sheath 080
No. Turn-in Compasses, with lengthening bar, bow-handles to pen and pencil, £ s. d.minutes, case, and scale . . . Brass 2l. 7s. 6d. Electrum376
25 Ditto, ditto, without lengthening bar, scale or case. Brass 1l. 16s.
Electrum 2100
26 Ditto plain, without bow-handles Brass 1l. 10s. Electrum 220
27 Tube Compasses 220
28 Napier's Pocket Compasses Brass 2l. 10s. Electrum 330
29 Wholes and Halves Sector, jointed 100
30 Proportional Compasses, 6 inches, half divided 1116
31 Ditto, ditto, full divided Brass 1l. 18s. Electrum 2100
32 Ditto, ditto, with clamp and tangent screw Brass 2l. 10s. Electrum 3100
33 Elliptical Compasses $2 l .10 \mathrm{~s}$. to 440
34 Plain Beam Compasses, with steel points and mahogany bar 110
35 Ditto, ditto, with pen and pencil, steel points and rest, 3 feet long 250
36 Best Beam Compasses, with micrometer adjustment, ebony bar, and ivory graduated scale Brass 3l. 10s. Electrum 440
37 Ebony and Ivory Parallel Rules, with single or double bars 2s. to 1180
38 Ebony or Ivory Parallel Rules, plain 7s. 6d. to 1100
39 Ditto, ditto, with graduated edges and rollers 12s. 6d. to 2100
40 Marquois' Scales, in case complete 0150
41 Plotting Scales, in box-wood or ivory 4s. 6d. to 0150
42 Oblong Protracting Scales, in box-wood or ivory, with or without rollers 3s. 6d. to 150
43 Plane Scales, in box-wood or ivory 1s. to
44 Offset Scales, in ivory and box-wood 1s. $6 d$. to 036
45 Gunter's Scale 12 inches 2s. 6d. 2 feet 0
46 Box-wood and Ivory Sectors, with plain or French joint 3s. 6d. to 110
47 Ivory or box-wood folding Pocket Rules, with brass electrum or silver mountings, and plain or sector joints 2126
48 Ebony and box-wood acute, obtuse, and right Angles 2s. to 056
49 Ebony and box-wood Scrolls 1s. 9d. to 050
50 Brass Drawing Pins, with steel points, per dozen 026
51 Small Cases of Drawing Instruments for the pocket, as arranged by Stephenson, Brunel, Barry, \&c. 250
52 Magazine and Cabinet Cases of Drawing Instruments, fitted up in brass electrum or silver, in mahogany, rosewood, leather, or fish-skin cases, for civil, military and naval engineers, architects, steel, copper and wood-block engravers, \&c. $4710 \quad 0$
53 Pocket Levels, plain and mounted in brass, with and without cross sights or graduated are 2100
54 Portable Levelling Instrument, with telescope and compass 880
55 Improved 14-inch Level 11110
56 Tripod Staff for ditto 110
57 Improved 20 -inch Level 13130
58 Tripod Staff for ditto $\begin{array}{lll}1 & 1 & 0\end{array}$
59 Y Levels, with 9 -inch telescope 10100
60 Twenty-inch ditto 1616 0
61 Ditto, with compass 1717 0
62 Dumpy Level, without legs or compass 12120
63 Ditto, with silver ring, compass, and jointed legs 15150
64 Ditto, ditto, with tripod staff 16160
65 Fourteen-inch Dumpy Level, with round legs and card compass 15150
66 Ditto, with silver ring, compass, and tripod staff 17170
67 Common Theodolite 6l. 6s. to 990
68 Four-inch Theodolite, with telescope 12120
69 Ditto, divided on silver 13130
70 Five-inch Theodolite 18180
71 Ditto, with tangent screw motions, divided on silver 2400
72 Six-inch ditto, divided on silver to $20^{\prime \prime}$ 3000
73 Ditto, with two telescopes $40-0$
74 Seven-inch ditto 4500
75 Twelve-inch ditto for horizontal angles only 4200
76 Plane Tables 3l. 16s.6d. to 1000
77 Circumferenters 2l. 2s. to $5 \quad 5 \quad 0$
78 Miner's Compass, in wood or brass mountings 1l. 10s. to 880
79 Prismatic Compass 2l. 10s. to 3136
80 Best Ebony Quadrant, with tangent screw 3136
81 Ditto, with telescope 4l. 4s. to 5156
82 Optical Square 110
83 Box Sextant, plain 3136
84 Ditto, with telescope 4146
85 Ditto, ditto, with supplementary arc, \&c. 550
86 Bell-metal Sextant, divided on silver to $\mathbf{2 0}^{\prime \prime}$ 14140
87 Ditto, ditto, 7 -inch radius, divided to $10^{\prime \prime}$ 16160
88 Eight-inch ditto, with double limbs, divided on silver to $10^{\prime \prime}$ 18180
89 Dip Sector 12120
90 Glass Plane, artificial horizons 1l. 1s. to 330
91 Best Mercurial ditto 4l. 4s. to 550
92 Twenty-four-inch Transit Instrument, with iron stand 2100
93 Ditto, with portable brass stand 2650
94 Thirty-inch Transit Instrument, on iron stand 43100
95 Forty-two-inch Transit Instrument, for fixing on stone piers 8400
96 Variation Transit 6300
97 Dipping Needle ditto 3000
98 Annular Micrometer, with eye-piece 150
99 Parallel Wire ditto 4l. 8s. to 15150
100 Station Pointers 5l. 5s. to 16160
101 Protractors 2s. $6 d$. to 1000
102 Brass Pentagraphs, from 18 to 42 inches 5l. $5 s$. to 990
103 Wallace's Eidograph. This instrument possesses many advantages over the Pentagraph, which it is now superseding 990
104 Perambulators, plain, brass mounted, with wood or metal wheels7l. 7s. to 14140
105 Trochiameters, for counting the revolutions of a carriage-wheel 220
106 Twelve-foot Levelling Staff, common, portable, with or without level 1l. 10s. to 2126
107 Ditto, for reading without an assistant 440
108 Land Chains 10s. to 1110
109 Tape Measures, in brass or leather cases 5s. to $3 \quad 3 \quad 0$
110 Pair of 36 -inch Globes, on mahogany stands111 Ditto 21 -inch ditto91. 9s. to $1919 \quad 0$ f.s.d.
No.
No.
112 Pair of 18 -inch ditto 8l. 8s. to 17170
113 Ditto 15 -inch ditto 6l. 6s. to 1212 o
114 Ditto 12-inch ditto 4l. 4s. to 7176
115 Ditto 9-inch ditto 2l. 12s. 6d. to 3136
116 Ditto of 6 -inch Globes, on mahogany stand 2l. 2s. to 2126
117 Ditto 3-inch ditto 220
118 Improved 3-inch Globe, in case, with meridian and horizon circles 016 "
119 Three-inch Globe, in case 090
120 Larkin's Geometrical Solids 7s. 6d. to 140
121 Models of Arches of Bridges 5s. to 200
122 Dissected Cones 7s. to 090
123 Juvenile Collections of Geometrical Planes and Solids, with sections of the cone and sphere, the set of 31 in a box 10 s . to 0150
124 The set of eighteen 2-inch Models in wood, to illustrate Reiner's Lessons on Form 1100
125 Glass Models, to facilitate the study of Crystallography and Geometry ; the set of fifteen secondary forms, each enclosing its primitive Nu- cleus, in a box 2l. 8s. to 330
126 Dissected Cube, in box, with Octahedron for its Nucleus 050
127 Ditto, with Tetrahedron 060
128 Ditto, with Rhombic Dodecahedron 066
129 Ditto, with Pentagonal Dodecahedron 066
130 A Cone, with sections 026
131 Ditto, in box-wood and pinned 050
132 Set of Models in mahogany box, for teaching fractions 12s. 6d. to 100
133 Co-ordinate Planes, intended to illustrate the first principles of Geometry,of three dimensions, and to construct the figures connected with it .
134 Apparatus, with jointed planes for explaining the principles of De-scriptive Geometry
135 Drawing-board, with apparatus for expediting the processes of De- scriptive Geometry and Perspective 5s. to 220
136 Mounted Sphere of any dimensions, for drawing the figures of Spherical Geometry and Trigonometry
137 Apparatus for exhibiting the Hyperboloide à une nappe, and other surfaces which admit of description by a straight line
138 Hollow Glass Figures, partly filled up with coloured fluid, for thepurpose of exhibiting their plane sections
139 Larkin's Set of Geometrical Solids, consisting of thirty-two figures, cube $\frac{5}{8}$ to $1 \frac{1}{4}$ inch 7s. 6d. to
140
140 Larkin's Set of Geometrical Solids, consisting of thirty-two figures,cube $\frac{5}{8}$ to $1 \frac{1}{4}$ inch, in neat boxes, with sliding tops - . 9s. to1100
141 Two Cubes, relatively constructed so as to exhihit the apparent paradox of the larger passing through the smaller, the outer part made of brass 0180

METEOROLOGICAL INSTRUMENTS.

No.1 Standard Barometers, with glass tubes, more than $\frac{1}{\frac{1}{2}}$ an inch interiordiameter and large mercury cisterns. The frame supported by brassarms and gymbols, with means furnished for regulating the scales soas to compensate for any alteration that may occur in the frame bymoisture or change of temperature10l. 10s. to2100
2 Barometers for Naval Purposes, with brass arms and gymbols, by which contrivance the barometer is not sensibly affected by the motion of the vessel 7l. 7s. to3 Barometers for measuring the Pressure of the Atmosphere, with por-table screws, so that they may be conveyed from one place to anotherwith safety 2l. 8s. to4 Ditto, with Thermometer and rackwork movement for the vernier31. 13s. 6d. to
5 E. M. Clarke's Improved Wheel Barometer. In this arrangement the mercurial column and the apparatus for working the hands is fixed in front of the dial plate, rendering the instrument less liable to be put out of order. With or without plain, or Six's self-registering Thermometer 3l. 16s. to

$810 \quad 0$
6 Bontein's Mountain Barometer, with Thermometer. This is the best instrument yet constructed for obtaining barometric measurements; and as made by E. M. C. not liable to get out of order. In leather sling case $7 \quad 70$
7 Adie's Sympiesometer. The barometrical inches are three times the length of the common inch, hence the graduations are finer than in other barometers without the aid of a vernier. This instrument, when properly made, is not liable to get out of order $5 \quad 50$
8 Standard Thermometers, with graduated scales to $\frac{1}{8}$ th220
9 Thermometers, with metal, box-wood, or ivory scales, graduated ac- cording to Fahrenheit, De Lisle, Reaumur, and the Centigrade $5 s .6 d$. to 2100

21010 Thermometers, in japanned tin cases, with scales graduated respectively
for the purposes of Brewing, Baths, Botanical, and Stable purposes
10s. $6 d$. to11 Thermometers with very fine bores, extremely sensible of slight changesof temperature, furnished with hollow cylindrical ivory graduatedscales, intended for the use of the medical practitioner, with tubeseither curved or straight
110

110
0150

$$
0
$$

12 Thermometers for the Pocket, with ivory, metal, or box-wood graduated scales, with cases, in great variety $6 s .6 d$. to $11 \cdot 0$
13 Small Pocket Thermometer, in morocco or ivory toothpick case, with or without magnetic compasses, in great variety . . . 12s. to 2126
14 Window Thermometer, with semi-transparent ivory scale inclosed in a cylindrical glass tube, fixed in a mahogany frame, with a copper roof to protect it from rain

176
15 Horizontal Day and Night Thermometers, mounted separate or together. This kind of thermometer cannot be relied on, and is easily put out of order 10 s. 6d. to16 Six's Self-registering vertical Day and Night Thermometer. This is thebest thermometer, yet constructed for keeping a daily register, beingmore sensitive than the horizontal, and less liable to be put out oforder. Scale, 9 inches long, 1l. 10s. 12 inches long150
17 Ditto, ditto, in copper cases 1l. 15s. 20018 Thermometers with the scales graduated on the glass tube110110
330
5156

No.
19 Spirit Thermometers, with scales 150° below 0
20 Leslie's Differential Thermometer, with $2 \frac{1}{2}$ inch bulbs, graduated scale 15 inches long

0180
21 Howard's Differential Thermometer 14s. to 1100
22 Daniell's Hygrometer, packed in pocket case
23 Mason's Hygrometer consists of an upright standard, carrying a plate, to which is attached two Thermometers; the bulb of one is left exposed, the other is covered with a piece of white silk, the ends of which are immersed in water, contained in a glass bird-fountain placed between the Thermoineters. Including the printed tables

USES TO WHICH MASON'S HYGROMETER IS APPLICABLE.

The use of this Instrument in the sick chamber will be at once evident, as a fire kept up in a closed room naturally dries the air which the patient has to breathe, and it so0n becomes either more detrimental or beneficial in many diseases of the Lungs, Skin, or Intestinal Canal. It is the duty of the Medical attendant to point out those conditions of the body which will be either benefited or injured by atmospheric influences, and suggest the means by which this can be obviated as far as art will allow; for in many cases life depends upon the temperature, state of dryness, or humidity of the climate or room in which an individual resides, which condition of the air it is the office of the Instrument to constantly register, and show, by mere inspection.

If the apartment is too $d r y$, which is frequently the case in frosty weather, it will be necessary to maintain sufficient evaporation from a tea-urn, or other convenient apparatus, while the Hygrometer points out when the proper degree of humidity has been attained; the urn is then removed, and may be brought into the room again when required. On the contrary, if the air be required remarkably dry, it may be rendered so, either by raising the temperature of the room, or resorting to those substances which absorb vapour most rapidly.

Thus with the aid of this Instrument, (as it indicates both the temperature, dryness, and humidity of the air,) an artificial Locality may be produced by very simple and easy means; and those, whose circumstances, avocations, or family ties prevent them from seeking a climate suited to their peculiar constitution, can, to a very great extent, obviate the necessity by the assistance of the Instrument now submitted to the public, the desideratum of which has been long felt, and its prospective uses fully appreciated by the reflecting portion of the Profession.

If the air be very dry, the difference between the two Thermometers will be great; if moist, less in proportion; and when FULLy saturatisd, both will be alike. For general purposes, it is only necessary to place the Instrument in a retired part of the room away from the fire, and not exposed to the open doors or passages; but for nice experiments, the observation should be always made in the open air and in the shade, taking especial care that the Instrument be not influenced by the radiation of any heated bodies, nor any currents of air; the Dew-point is then found by the Rule given on the other side, and corresponds exactly with the Dev-point Hygro-
meter, an Instrument deecribed in "Jameson's Journal," July 1835, and modified by Dr. Masos. Should the wind be strong upon the Instrument, the "Degrees of Dryness observed " multiplied by 2 gives the "A beolute Dryness," (the "Excess of Dryness" being omitted in the calculation,) because a strong current of air makes the Instrument indicate the Excess of Dryness ; which is necessary to be added in a calm atmosphere.

If the Absolute Dryness of an apartment be required, the Instrument must be placed in the shade, and the Dew-point found, which subtracted from the Temperature of the apartment, will give its Abeolute Dryness. The reason is obvious, and arises from this law, namely, That air has its dryness doubled for every increase of temperature corresponding to 81° of Fahrenheit's Thermometer, and in proportion for all intermediate temperatures.

It will detect the dampness of an apartment or bed.

The facility of registering Meteorological Observations by this Instrument will probably induce many to avail themselves of its use, and tend to enlarge that branch of science.

In regulating the Hygrometrical state of the air in hot-houses, green-houses, \&c. as well as in manufactories, warehouses, malting-houses, and in the laboratory of the chemist, its use will be duly appreciated.

The advantages it offers at sea cannot be too forcibly pointed out. The objections made by naval men to the Barometer, leaving them in doubt whether to expect Wind or Rain by the fall of the mercury, would in a great measure be obviated by the joint ebservation of the Hygrometer, because if it indicate a relative Degree of Dryness, Wind alone may be expected; if the contrary, then Rain or Rain with Wind follows.
N.B.-The silk which covers the wet bulb and thread which conveys the water to it requires renewal about every month, and the fountain to be filled when requisite with distilled water, or water that has been boiled and allowed to cool, by immersing it in a basin of the water till the aperture only is just upon the surface, and the water will flow in. If the Hygrometer is placed out of doors in frosty weather, the fountain had better be removed, or the freezing of water within it may break it ; in this case a thin coating of ioe may soon be formed on the wet bulb, which will last a considerable time, and may be renewed when requisite.

NO.

24 Cumming's Hygrometer. This instrument is founded on the principle pursued by Dalton to find the force of the aqueous atmosphere 1l. 5s. to
s. d.

25 Saussure's Hygrometer. The degree of humidity of the atmosphere is
ascertained by the expansion and contraction of a piece of hair
25 Saussure's Hygrometer. The degree of humidity of the atmosphere is
ascertained by the expansion and contraction of a piece of hair divested of its oil
26 Pocket Hygrometer. The property possessed by the beard of the wild oat, to coil up in dry weather and unfold in wet, is here employed to determine the hygrometrical state of the atmosphere

27 Anderson's Atmometer, for ascertaining the rate of evaporation from water or moist surfaces, thereby determining the solvent power of the atmosphere in relation to aqueous vapour; a thermometer is attached to the stem of the instrument
28 Pluviometer, or Rain-Gauge, of tinned iron japanned, or copper, with a glass graduated tube at the side, or float with slender divided rod 1l. 48. to
29 Howard's Portable Rain-Gauge, with evaporating basin and graduated glass measure. The gauge consists of a funnel with a brass mouth turned to a sharp edge, and a glass bottle, into which the rain descends from the funnel. The evaporating basin has also a brass mouth turned to a sharp edge, the area of the opening corresponding exactly with the gauge. When the rain deposited in the bottle is decanted into the glass measure, its quantity is easily estimated by the graduations, and the difference between this quantity and that obtained from the basin is the loss due to evaporation

220

150
30 Crosley's Self-registering Rain-Gauge. This instrument measures and self-registers the quantity of rain that has fallen on a given surface, without management or interference for several months, and it is equally applicable for daily observations .
31 Saunders' Pluviometer consists of a japanned copper or tin box, with a square-mouthed funnel, so constructed as to present exactly a square superficial foot of surface to the rain, effectually preventing any loss by splashing; and as the collected rain is quite enclosed, little can be lost by evaporation. The instrument is so very simple in its construction, its accuracy and facility of using so great, as to cause more complicated instruments to be disused
32 Lind's Anemometer, or Wind-Gauge, for ascertaining the course and measuring the force of the wind, consists of a bent glass tube with parallel branches : upon the top of one is fitted a slight metal tube, having its open end to receive the wind blowing horizontally into it. The instrument is attached by sockets to a vertical spindle, on which it turns. Water being placed in the tube, the columns would be equal but for the blowing in of the wind ; and the difference of the heights of the columns determines the force
33 Whewell's Anemometer, consisting of a small set of vanes, presented to the wind by a common vane. The current as it passes sets the small vanes into rapid motion, which is communicated and reduced by a train of wheels and pinions to a tracing pencil pressing against an upright painted cylinder, and $\mathbf{1 0 , 0 0 0}$ revolutions of the fly only cause the pencil to descend $\frac{1}{6}$ th of an inch. The character of the line traced gives the mean direction of the wind, its velocity, and the length of time during which it blows in each direction

OPTICAL INSTRUMENTS.

SPECTACLES.

TELESCOPES.

12 Three-feet ditto, ditto, to 11 inches 550
13 Ditto, ditto, to 7 inches 6160
14 Two-feet Telescope, with claw stand and pillar, one eye-piece for ter-
restrial, and one for celestial objects, in mahogany case
770

15 Two-and-half-feet Improved Achromatic Telescope, brass body and claw
stand, with an eye-piece for land, and one ditto for astronomical
$\begin{array}{lllllllll}\text { purposes }\end{array}$

16 Ditto, as above, with vertical rack motion, best quality 12120

18 Three-and-half-feet Telescope, all brass, with one extra power for day,
and two for astronomical purposes
2100
19 Three-and-half-feet ditto, as above, with vertical rack, achromatic finder,
\&c., best quality. The day tube graduated to show what degree of
power is being used, by means of a movable eye-piece; aperture of
object-glass $2 \frac{3}{4}$ inches
2700
20 Three-and-half-feet as above, with vertical and horizontal rack-work
motions, with one day power, and three ditto for astronomical pur-
poses ; aperture of object-glass $3 \frac{1}{4}$ inch
21 Plain Clips and Stands, made portable to any of the pull-out Telescopes
1l. 1s. to
220

MICROSCOPES.

Abstract

1 Chevalier's Achromatic Compound Microscope, with two sets of achromatic lenses, of three powers each, and two eye-pieces to suit each set : metallic reflector fitted to the eye-pieces, by which the object is strongly depicted on a sheet of paper, whereby drawings may be taken of the most minute animalculæ, \&c., considerably magnified; six objects prepared in Canadian Balsam, horizontal and vertical, stand in lock-up cabinet case. (This instrument is as good as those sold by London makers at 30l.)

2 E. M. Clarke's Improved Lucernal Microscope. This is the best ar
rangement for examining opaque objects; the field being sufficiently
large to take in entire moths, beetles, \&c. The peculiarity of this
instrument is, that shadow is avoided, and the objects, whether
opaque or transparent, can be viewed on a sereen
3 Solar Microscopes 101. 10s. to
4 Reflecting Microscopes 25l. to $56 \quad 0 \quad 0$
5 Single and Compound Pocket Microscope, with rack-work stage, four magnifying powers, insect box, twelve plain objects, and one object prepared in Canadian Balsam; insect forceps with black and white stage ; brush, forceps and point ; concave and flat fluid glass fitted to the stage ; black and white ivory dise, and glass slip for crystallising salts on ; in a lock-up mahogany or rosewood case 25 A
6 Ditto, ditto, with two Canadian Balsam objects and condensing lens for illuminating opaque objects
7 Ditto, ditto, ditto, with three objects prepared in Canadian Balsam ; and a jointed pillar so that the microscope may be set at any angle 300
8 Ditto, ditto, ditto, ditto, with four objects prepared in Canadian Balsam, folding tripod stand 400
9 Single Pocket Microscope, with sliding stage, three magnifying powers, forceps and point. In maliogany box 0126
10 Ditto, black and white opaque dise, concave fluid glass 0156
No. £ s. d.11 Single Pocket Microscope, Reflecting Mirror, twelve plain objects, insectbox, glass slip for crystallising salts, spring forceps with black andwhite stage, brush and point 150
12 Folding Pocket Microscope, in paper case 0
13 Ditto, with spring forceps 6
14 Coddington's Lens, mounted in Silver, for viewing opaque and transpa- rent objects 0180
15 Ditto, mounted in Tortoiseshell case 0126
16 Stanhope's Lens, mounted in Tortoiseshell folding case $\begin{array}{ll}0 & 8\end{array}$
17 Ditto in Electrum, Silver or Gold 4s. $6 d ., 10 \mathrm{~s} .6 \mathrm{~d}$. 110
18 Single, Double, and Triple magnifying Lenses, in folding Tortoiseshell cases from 2 s .9 d . to 0126
19 Condensers, with candle-holder on brass sliding stand 160
20 Ditto, for viewing opaque objects 1100
21 Achromatic Object Glasses fitted to Microscopes . . . 1l. 4s. to 660
22 Wollaston's Doublet ditto, ditto 00
23 An extensive Assortment of Objects for achromatic and plain Micro- scopes, by French and English artists 1s. to 0 5 0
24 Fossil Infusoria, unprepared, in small box 006
25 Micrometers on Glass, from $\frac{1}{50}$ th to $\frac{1}{100}$ th of an inch 1s. 6d. to 150

GAS MICROSCOPES.

1 E. M. Clarke's improved Hydro Oxygen Gas Microscopes, (fig. 4.) This form of the instrument has removed many and serious imperfections arising out of the previous constructions-viz., unwieldy bulk and weight, deficiency of light and definition in the high magnifying powers; want of uniformity of light on the disc, insecurity in the blowpipe, inconvenient, fixed, and dangerous position of the gas-bags, rendering them liable to communicate and explode. E. M. C. has removed these latter from their position, and separated them beyond the possibility of co-mixture ; they may even be placed under lock and key in a separate room, or outside the house during the exhibition of the instrument. He has farther adapted Daniell's Blowpipe with Maugham's Jet, as the means of mixing the gases during combustion under circumstances which render explosion impossible. The apparatus consists of the mahogany lantern a, with sheet-iron cover, sliding back and forward on the base b; this has a circular horizontal motion on the triangle top c of the stand, to which is attached the double legs $d d^{\prime}, e e^{\prime}, f f^{\prime}$; the tube containing the condensing lenses and slide-holder, with rack and pinion motion r, and adapted for carrying the magnifying powers p, are attached to the lantern at o. In front of c is a shelf for holding the objects, \&c., and folds up in front when not in use. The Microscope is furnished with one low power for showing full-sized objects, such as entire butterflies; a second, magnifying more, for showing living aquatic insects, such as the skeleton larva, globe insect ; and a third high power for smaller objects, such as the dust of moths' wings, \&c.
2 The above instrument on a larger scale (the condensing lenses being $4 \frac{3}{8}$ inches diameter, that of the former being $2 \frac{7}{8}$ inches), better adapted for Professors of Universities, Scientitic Institutions, and Public Lecturers
A detailed description of the method of using these instruments is given in the first part of "Directions for Using Philosophical Apparatus in Private Research or Public Exhibitions," by E. M. Clarke. Price 6s. 6d.

Fig. 4.

No.
3 Pair of strong India rubber or Caoutchouc cloth Gas bags, one to hold hydrogen n, the other oxygen gas m, with lever haudle stop-cocks, and union joints, to suit No. 1. 5110
4 Ditto, ditto, larger to suit, No. 2 600
5 Pair of strong pressure boards i, k, with stout hinges and folding flap, holding the pressure weights that force the gas from the bags to suit No. 3 .
$210 \quad 0$
6 Ditto, ditto, larger to suit No. 4 30
7 Two lengths of flexible India rubber tube, 10 feet long, each with brass union joints, connected with the lime light and gas bags

1150
8 Delbruck's patent Hydrogen Generator and Glass Purifier. This is a most convenient apparatus for the production of hydrogen, with union couplers to connect to the gas bag.

250
9 Iron Retort, with winged brass coupler, gun-barrel, brass and flexible tin tube, to connect with gas bag for making oxygen gas

0180
10 Dozen small objects prepared with Canada Balsam, between glass slips in mahogany frames, for the high powers

140
11 Dozen large objects prepared with Canada Balsam, and mounted in mahogany, for the low power

No.
12 Large-sized solid Glass Water.Trough, with ground and polished parallel sides, for exhibiting living animalcule with the low power; also, for showing the decomposition of water by chemical and voltaic action .
13 Frame, containing a long cooling glass Water-trough, and four small animalculæ glass troughs for showing, by the high powers, the smaller class of animalcule

0120
14 The Gas Microscope, No. 1, with the appurtenances. Nos. 3, 5, 7, 8, 9, 10, 11, 12, 13, furnished together
15 The Gas Microscope, No. 2, with Nos. 4, 6, 7, 8, 9, 10, 11, 12, 13 . . 4500
16 Clock-work for keeping the Lime Cylinder revolving during comlustion (see p. 39 of Directions for Using, \&c.,) with a mechanical mcans of placing the lime cylinder in its proper position during the winding-up the main spring. Furnished with a new microscope 5
17 Ditto, ditto, when added to a Microscope that has been made without one 660
18 Dozen Lime Cylinders, in sealed bottle . . . Soft 3s. 6d. Hard 0
Fig. 5.

19 E. M. Clarke's Apparatus, for showing the formation of Magnetic Curves by the arrangement of minute particles of iron-filings on the poles of a horse-shoe magnet (fig. 5). See p. 52 of 'Directions,' \&c.
20 Impressions in Glass, in imitation of Cameos; illustrative of Heathen Mythology, Ancient and Modern History, Antique Gems, forming on the Microscope disc figures in basso relievo
21 Extensive Assortment of Objects prepared in Canadian Balsam for the
Gas-Microscope These objects consist of insects, parts of insects, such as wings and wing-cases, stings, tongues, eyes, dissections of the trachea and bronchial tubes, antenno, legs, scales of butterflies and moths, zonphytes, ferns, fuci, mosses, madrepore, sections of recent and fossil woods, leaves, petals and farina of plants, feathers, and the exuvire of spiders and aquatic insects.

POLARIZED LIGHT.

GAS POLARISCOPES.

Fig. 6.

1 Most improved Hydro-oxygen Polariscope (fig. 6), attached to mahogany lantern, with sliding base and horizontal movement on double tripod folding stand, same as already described at p. 23, No. 1, the Polariscope being attached in front of the lantern in place of the microscopic arrangement $p q r$ (fig. 4). The Polariscope (fig. 7)

Fig. 7.

Digitized by GOOgle
No. f.s. \boldsymbol{d}.has a movable cap at a, which gives great facility both for adjustingand cleaning the thin polarizing glass plates. The analyzing platesof glass at b are also easily removed, and have perfect freedom ofmotion, both horizontally and vertically2200
2 Ditto, ditto, same size as No. 2, p. 23 3200
3 Parties already furnished with a Gas Microscope, or ordering one, may have the Polariscope (fig. 7) added to a No. 1 sized Microscope 7100
4 Ditto, ditto, No. 2 size 9100
OBJECTS FOR THE GAS POLARISCOPE,
5 Thin selenite plate of equal thickness, developing uniform colour 040
6 Thin selenite plate of unequal thickness, developing various colours 040
7 Single selenite wedge, (thick at one edge,) to show the colours due to its different thicknesses in bands parallel to its edges 0100
8 Double selenite wedge, (thin at both edges, thick in the middle, for ditto 0100
9 E. M. Clarke's arrangement, to show that when two selenite wedges (double or single) are made to cross each other, and one to rotate, the coloured bands form diagonal bands to the square so formed 1150
10 Circular plate of selenite ground concave or convex, to develop the colours in rings due to its varying thickness 0100
11 Cube, formed of three pieces of selenite of different thickness 056
12 Selenite star, composed of six lozenge-shaped pieces 080
13 Ditto rosette, five pieces 0100
14 Ditto, ditto, six pieces 0106
15 Ditto, 16-ray superposing star 0146
16 Ditto, Maltese cross 0106
17 E. M. Clarke's design, in selenite, of the shamrock, with motto on a coloured ribbon, "Erin-go.Bragh "-the films of selenite composing the leaves of the shamrock, are so arranged as to develop sham- rock-green with its complementary colour, orange ; being an harmo- nious combination of colours suitable to an exhibition before a mixed assembly 0150
18 E. M. Clarke's design, in seleuite, of the Pansy (Pensee), with motto on coloured ribbon, "Heart's ease," this is the only flower in which the change of colours harmonizes with nature 110
19 Thistle in selenite, with motto on coloured ribbon, "Dinna Forget" 015 0
20 Branch of the Vine with leaves, bunch of grapes, and tendril 1160
21 Tulip in selenite 0150
22 Myosotis Palustris in selenite, with motto on ribbon, "Forget-me-Not" 0150
23 E. M. Clarke's design, in selenite, of a Cabbage rose, with motto on ribbon, "Pretty and Good" 110
24 Cameleon in selenite 176
25 Dolphin ditto 0150
26 Parrot ditto 176
27 Butterfly ditto, plain $15 s$., marked 110
28 Madame Selenite, as Columbine, and Mrs. Jim Crow 330
No.
29 Selenite figure of Harlequin $\begin{array}{lll}3 & 3 & 0\end{array}$
30 Ditto of Caspar 2150
31 Ditto of Robin Hood 2150
32 Ditto of Jim Crow, (black and white) $3 \quad 3 \quad 0$
33 Ditto of Sweep turned Baker 1160
34 Ditto Gothic window 1160
35 Apparatus to show the Polarizing Structure communicated to glass by mechanical pressure 076
36 Various figures of unannealed glass, for exhibiting the peculiar and per- manent Polarizing Structure by uniformly heating and suddenly cooling, each 046
37 E. M. Clarke's dissected unannealed glass figures, to illustrate that the forms of the coloured bands are dependent on the external form of the glass, each 0100
38 E. M. Clarke's A pparatus to show Brewster's experiment, (see p. 236, fig. 120, Treatise on Optics, Lardner's Cj clopædia;) by this arrange- ment one glass bar rotates, which adds much to the interest of the experiment 110
39 E. M. Clarke's arrangement of six of the above bars crossing each other, in two separate sliders of three bars each, the effect of which, either separate or combined, is very pleasing 0100
40 Glass Cameos and Intaglios, showing the black and white cross, also colour, each 0100
41 E. M. Clarke's Slider, to show the polarizing structure of bladder 050
42 Pen Slider.-The varied colours of polarized light are beautifully deve- loped by this interesting object $0 \quad 5 \quad 0$
43 Cornea of the Human Eye 076
44 Unguis-Toe.nail 050
45 Sliders, with fish fins, laminæ of human cuticle, ditto of teeth, ditto of bones, preserved in Canadian Billsam, to exhibit their polarizing structure from Es. to 0150
46 Plate of amethyst, cut perpendicular to the axis, exhibiting on an exten- sive scale the phenomenon described at p. 219, fig. 111, Treatise on Optics, Lardner's Cyclopædia . 12s. to 1100
47 Plate of agate, with quartz 0176
48 E. M. Clarke's arrangement of selenite discs of uniform thickness, $1 \frac{3}{16}$ th inch diameter, mounted in brass rings with band and pulley motion. The effect of these discs when placed in a polariscope, with groups of the various salts, aquatic insects, sections of bones and teeth, fish fins and scales, bladder, human cuticle and selenite designs, is greatly to increase the variations of the colours, each 110
49 Analyzing Tourmaline plate, mounted in a brass cap, to fit on front of the power p, fig. 4, p. 24. (See Directions for using, \& c.) 7s. 6d. to 1100
50 Double image prism of calc spar and glass, mounted as ditto, with con- tracting plate, for exhibiting that two complementary colours blending form white light 0150
51 Ditto, to fit on the above, for showing Huygens' experiment, and illus- trating the polarization of light by double refraction; by means of which a single beam of light is refracted into four distinct dises on the screen, showing their separation, and all the variations of intensity 0150

52 Plates of quartz, arragonite, topaz, calc spar, borax, nitre, beryl, Rochelle salts, sugar, bi-chromate of potass, sulphate of iron, cut at right angles to their axis, and mounted in brass caps as above, for exhibiting the coloured rings, each
53 Plates of quartz, arragonite, and calc spar, cut at different angles for exhibiting various compound figures of rings, bars, and cross bars, screws, and crosses .
each 10s. to
E. M. Clarke begs to state, that all the objects mentioned from No. 5 to No. 53, are fitted up expressly for the Polariscope in proper mahogany frames, or brass caps, and fully protected from injury by being placed between glasses with Canada Balsam, which increases their transparency; the diameter of the glasses is 1 sth inch, and the objects placed between them vary from 1 inch to $1 \frac{1}{2}$.
54 Biot's black Mirror Polariscope. This apparatus, with an Argand lamp placed opposite the polarizing bundle of glass a

Fig. 8.
 (fig. 8), exhibits in the analyzing black glass mirror b any polarizing object placed at c. The analyzing plate is movable in a horizontal plane, and so simple is the arrangement of both mirrors as to render graduated quadrants to adjust the angles quite unnecessary

220
55 Mirror Polariscope, with dispersing plate
100
56 Ditto, ditto, portable, with spring fastening, best
flat glass. 1100
57 Tourmaline Polariscope, mounted in king wood, with the crystallized plates in a revolving wheel, so as to come within the tourmalines, which also revolve

2126
58 Tourmaline Apparatus for showing the effect of
crystalline films on the coloured rings surround-
ing the optic axis
59 Tourmaline Tongs Polariscope 015 n

$60 \begin{array}{l}\text { Polarizing Eye-pieces of thin plates of Glass, in } \\ \text { brass or Morocco leather cases }\end{array}$

61 Tourmaline Eye-pieces and Plates of ditto, from $\begin{array}{llll}4 s, \text { to } & 5 & 0\end{array}$
62 Mica Analyzing Plates . . . ll. 1s. to 1100
63 Nicols's Single Image Prisms . . 6s. to 100
64 Polarizing Plates of Papier Mâché 5s. to 1100
65 Ditto, ditto, of black glass, per square inch 0 l 6
66 Ditto, ditto, of thin flatted crown glass, in black frames and velvet backs $\begin{array}{llll}6 s, \text { to } & 2 & 2 & 0\end{array}$

68 Plate of Nitre, with four axes 050
69 Ditto, ditto, with two axes $0 \quad 5 \quad 0$
70 Ditto, quartz of different thickness, right or left-handed . $\quad 3 s$. to $0 \quad 7 \quad 6$
71 Ditto, calc spar 28. to 0
72 Ditto, topaz 060
73 Rhombs of Iceland spar $2 s$. to 3500
no. fes. d.
8s. to 74 Double refracting prisms of ditto015075 Prisms of calc spar and glass, ín brass case 0150
76 Double-image prisms of calc spar, showing two sets of coloured rings with black and white cross 0176
77 Pieces of Iceland spar, for illustrating the two white rings observed in certain specimens 0126
78 Rhombs of Iceland spar, to show the multiplication of images afforded by peculiar structure of the crystal . 5s. to 1100
79 Pieces of unannealed glass of various figures and dimensions, to exhibit the permanent polarizing structure of glass that has been uniformly heated and suddenly cooled

Fig. 9.

80 E. M. Clarke's Models for illustrating the Polarization of Light by Refraction and Reflection, from bundles of glass plates, with card models, showing the planes of vibration. The Model (fig. 9) has the polarizing bundle b and the analyzing bundles $d g$ in parallel planes; hence the reflected light is again reflected, and the refracted light is again refracted. The Model (fig. 10) has the polarizing bundle at right angles to the analyzing bundles; hence the reflected light is refracted, and the refracted light reflected
. The pair

Fig. 10.

Fig. 11.

NO.
\mathscr{E} s.d.
81 Model for illustrating the Mechanical Arrangement of the Gas Polariscope, showing the depolarizing action of double refracting Crystals, the action of the analyzing part of the apparatus in the production of colours by interference (fig. 11)

Fig. 12.

82 Professor Powell's Apparatus to exhibit Plain, Circular, and Elliptical
Vibrations. The cranks in this arrangement are dispensed with (fig. 12) £3 13
Fig. 13.

83 Woodward's Model for illustrating the Undulatory Theory of Light, showing different waves constituting the three primitive colours; also the effects of interference of undulations and production of complementary colours (fig. 13)

Fig. 14.

85 Pereira's Model of a Tourmaline, showing the direction of slitting for forming Polarizing Plates 6s. 6d. to 010
86 Model, explaining the Action of two Tourmaline Plates in Polarizing Light (fig. 15)

Fig. 15,

غ 7 Woodward's Card Model of a ray of ordinary light, showing two Planes
of Vibration (fig. 16)
Fig. 16.

DISSOLVING VIEWS.

Fig. 17.

NO.
1 E. M. Clarke's Biscenascope or Apparatus for exhibiting Dissolving Views by the Lime light, consists of two lanterns on a sliding base, each having optical arrangements of lenses and slide-holders, two Lime-light Instruments, with Union Couplers for connecting with gas bags or gasometers, two clock-work movements for keeping the lime cylinders revolving. The mechanical arrangement is so constructed that both lanterns may be used together or separate without dissolving. Largest size

6500
2 Ditto, ditto, middle size 4800
3 Ditto, ditto, small size, without clock movements 2500
E. M. Clarke begs to state that he was the first person who constructed an Apparatus for exhibiting the Dissolving Views and Orrery by the Lime-light, which were first shown to the public by him at the late Royal Gallery of Practical Science, Dec. 5th, 1840 ; since which time he has made many improvements, such as producing panoramic views, introducing moving figures in landscapes and the interiors of buildings, also for illustrating lectures on Astronomy, Natural History, Geology, Botany, \&c.

To give some idea of the effect to those who have not seen the dissolving views, suppose that"the scene (fig. 17), "The Shrine of Santa Rosalia," is fully depicted; it begins gradually to fade from view; but as it gets indistinct, a second view seemingly becomes mixed with it, as at fig. 18 ; this gradually assumes a more perfect appearance : at last fig. 17 disappears, and the scene fig. 19, "The Water Girls of India," becomes perfect.

Fig. 18.

No. E. M. Clarke's Parlour Dissolving View Apparatus. In this arrange- 4 F. M. Clarke's Parlour Dissolving View Apparatus. In this arrange-Views are exhibited with perfect clearness and brilliancy on anopaque or transparent screen. It is well adaptedjor schools andfamilies101005 Transparent Scenes for the Dissolving Views. These paintings differmaterially from the common magic-lantern sliders, requiring first-rate artistic talent to render them effective; as owing to theintensity of the light, the slightest defect is developed. They there-fore require the most scrupulous care with regard to even the mi-nutest detail : subjects may be painted to suit the taste or view ofthe purchaser, and consist of landscape scenes, interior and exterior,of public buildings, \&c., varying in price according to the subjectand size of the painting- from 1 l . 1 s . to15150
6 Dioramic Scenes for the Dissolving Views. The effect of these is ex- ceedingly pleasing, such as exhibiting the interior of a cathedral by moonlight : morning gradually dawns, showing the aisles filled with a congregation, and the priest officiating at the altar. Also, a serene summer landscape changing to a thunder-storm, with rain and lightning; this clears away, developing a rainbow, and terminates by the summer being succeeded 'by winter, with its usual accompani- ments of frost, and the falling of snow, \&c. 2l. 2s. to $1818 \quad 0$
7 Panoramic Scenes for the Dissolving Views. Scenes of this description are used for illustrating a continuation of scenery, such as Views up the Rhine. Also, fixed scenes with moving figures, as a view of the Dublin and Kingstown Railroad, with the Bay of Dublin and Howth in the distance. The up and down trains are seen passing on the railroad; carriages, carts and waggons, horse and foot passengers, are seen moving on the common road, while numerous steam vessels and sailing ships are in motion at sea . . . 3l. 13s.6d. to 2100
8 Correct Portraits of Eminent Persons deceased, from the most authentic sources, and from Daguerreotype likenesses of the living. Classical and allegorical figures for dissolving 3l. 10s. to 18180
9 Transparent Scenes for illustrating Astronomy, with mechanical con- trivances for producing motion, in sets of from nine to thirty each, of different diaueters Per set 5l. 10s. 3000
10 Movable Humorous Figures and Devices for the Biscenascope 10s. to 4100
11 Transparent Scenes, to illustrate Geology, Natural History, Botany, \&c. 15s. to 440
12 Opaque Screens of Oil-cloth, prepared for gas microscopes, polariscopes, and dissolving views, free from gloss on the surface, from 3 to 9 yards square per square yard 056
13 Transparent Mediums for the same purposes, of Irish Linen, 3 yards wide. This linen may be so joined as not to show any seam per square yard 026

PHOTOGRAPHY.

1 Claudet's Patent Camera Obscura, for photographic purposes, with sliding front to take different optical arrangements, including a mercury bath, bromine pot and cover, iodine box, polishing clamp tablet, spirit lamp, box for holding plates, dark plate box, six polished plates, bottle of bromine, ditto iodine, ditto hyposulphate of soda, ditto mercury, ditto fixing liquid, rouge, tripoli, cotton with Gaudin's achromatic object glass
No.
2 Voigtlaender's large-sized double achromatic Object Glase, filling a field of $6 \frac{1}{2}$ inches, in brass mounting, with rack and pinion adjustment 220
3 Ditto, small size double achromatic Object Glass, filling a field of $3 \frac{1}{2}$ inches, ditto 990
4 Lerebour's large-size treble achromatic Object Glass, filling a field of 7 inches, in brass mounting, with sliding adjustment 14140
5 Ditto, middle size double achromatic Object Glass, filling a field of 4 inches, in brass mounting, with rack and pinion adjustment 990
6 Ditto, small size ditto ditto, filling a field of $3 \frac{1}{2}$ inches, ditto 550
7 Chevalier's double achromatic Object Glass, filling a field of 8 inches, in brass mounting 14140
8 Gaudin's Camera Obscura for photographic purposes. This arrange- ment is very portable, but limited in the size of its images, filling a space of 3 inches. The apparatus consists of the mercury bath, bromine pot and cover, iodine box, polishing clamp, spirit lamp, box for holding plates and six polished plates, brass stand for fixing, bag of pounce in card box, lucifers in metal box, polishing cotton, achro- matic object glass, with revolving diaphragm plate, and the following chemicals in glass bottles, with ground-glass stoppers, bromide of iodine, solution of bromine, iodine, hyposulpate of soda, chloride of gold, alcohol, mercury, tripoli, rouge and emery 880
9 Claudet's improved Mercury Vapour Baths for different-sized plates, with neutralizing view glass 1l. 1s. to 220
10 Whatman's Paper for Talbot's process per Quire 016
11 Claudet's improved Apparatus, for keeping the plates in motion during the time they are exposed to the vapours of iodine, bromine, and mercury 7100
12 Claudet's Dark Boxes, for protecting the plates from light during the operation of fixing them in the Camera 7 s .6 d . to 0180
13 Plate Boxes, for holding any number of Plates of all sizes . 7s. ${ }^{\text {. } 6 d}$. to 1100
14 Mahogany Frames and Glass, with padded back-board and pressing rods for taking images on prepared paper 0106
15 Apparatus to beat seconds and half-seconds
16 Red and Yellow Glass to accelerate the process
17 Blue Glass to protect the face of the sitter from the sun
18 Wire Ring Stands for holding plate during the process of fixing050
19 Best Plated Copper plates, from 2 by $2 \frac{1}{2}, 3 \frac{1}{8}$ by $2 \frac{5}{8}, 3$ by 4,4 by 5,6 by $8 \frac{1}{9}$ inches 600
20 Apparatus for protecting the Plates by Electro-Gilding, including voltaic battery for plates, 3 by 4 inches 1150
21 Ditto, ditto, larger sizes 2l. 2s. to 440
22 Superfine cotton for polishing per lb. 36
23 Ackermann's Photogenic Drawing Apparatus; consists of a pressure frame and glass, prepared and plain paper, nitrate of silver in glass stoppered bottle, hydriodate of potass in bottle, muriate of soda, saucer, brush and ivory spatula 110

24 A full Assortment of all the Chemicals used in the various branches of Photogrhphy always ready.

OPTICAL APPARATUS.

no. \mathcal{L}1 Camera Obscura; the image is depicted on a piece of ground glass12. 10s. to200
2 Folding Camera Obscuras, with Parallel Mirror. The object is formed on a sheet of paper without being inverted. Two extra Lenses for difierent distances, and a Print Head for viewing pictures, may be added 4l. to
3 Dr. Brewster's Kaleidoscope, with two reflecting planes at certain angles, which produce a circular field of view 8s. to 2100
4 Ditto, to exhibit by the hydro-oxygen light on a transparent screen or opaque disc
5 Wollaston's Camera Lucida, for drawing objects in true perspective, in a small case for the pocket 3136
6 Improved Stands for ditto
6 Improved Stands for ditto 1100 1100
7 Amici's Camera Lucida 2126
8 Glass Equilateral Prisms 2s. to 110
9 Ditto, mounted on Brass Stand, with E. M. Clarke's arrangement of the Ball and Socket Joint 2100
10 Sets of Glass Prisms, for demonstrating the principles of the achromatic object-glasses of Telescopes, Microscopes, \&c. 0180
11 Hollow Glass Prisms, with ground stopper and movable parallel glass sides for experiments with liquids of different refractive and dispersive powers 0180
12 Claude Lorraine Glasses, for showing the effect of colour on pictures or real landscapes 1s. 6d. to

015013 Optical Diagonal Machines for viewing prints 15s. to14 Concave and Convex Glass Mirrors, mounted on stands with swing13. 18. to220220
15 Concave and Convex Glass' Mirrors, in frames . 5 s . 6d. to
16 Glass Mirrors, ground cylindrically, for showing the deformation of objects reflected by this species of curved surface . . 15s. to 1100
17 Silver-mounted small Concave Mirror, for examining the interior of the mouth 0176
18 Wheatstone's Stereoscope, with six pair of diagrams, in deal 0150
19 Ditto, in mahogany 110
20 Apparatus to illustrate that the intensity of light is inversely as the square of the distance
21 Leslie's Photometer 30
22 Ritchie's ditto 14s. to
23 Apparatus to illustrate the Eye or Organ of Vision, with the differentlenses formed in glass, the curvature of which is so contrived thatrays of light proceeding from an object placed before the model arecollected into a focus upon the retina, represented by a curvedroughened glass. T'wo extra glasses are furnished, to demonstratethe optical action of different curved crystalline lenses; and alsoconvex and concave glasses, to show how those defects are remedied.Packed in mahogany box110
4100
24 Set of Three Models, with the rays of light represented by coloured silk strings, to illustrate the effects of vision; also the formation of the eye in its natural, long-sighted, and short-sighted states 5126
25 Set of Two Models, with the rays of light represented by coloured silk strings, to illustrate the principles of refracting and reflecting T'elescopes 330
no. $\boldsymbol{\mathcal { E }}$ s. d.
26 Set of Three Models, with the rays of light represented by coloured silk
26 Set of Three Models, with the rays of light represented by coloured silk strings, to show the principles of the solar, compound, and simple Microscopes 3100
27 Model to show the Decomposition of White Light by the Prism 1100
28 Painted Circular Prismatic Spectrum, for showing the composition of White Light 150
29 Apparatus for illustrating Newton's Theory of the fits of easy reflection and transmission 7s. $6 d$. to 110
30 Improved Phantasmagoria Lantern, with spring to hold the sliders, and brass-adjusting tube, patent lamp, \&c., in box. This apparatus has the power of producing more imposing effects than the magic-lantern4l. 14s. 6 d . to12. 10 s . to
880330
32 Glass Sliders, with a variety of subjects for exhibiting with magic-lan- terns and phantasmagorias, per dozen 10s. 6d. to3136
33 Movable Humorous Sliders, upwards of 150 different subjects, each 3s. $6 d$. to 0100
34 Shifting Glass Sliders, with a diversity of subjects, by which the magni- fied images on the screen appear to the spectators to have life and motion 2s. to
2100
35 A series of Glass Sliders, with astronomical diagrams, and telescopic views of the moon, planets, \&c., for illustrating by the phantasmagoria, on an enlarged scale, various phenomena of astronomy . 3s.6d. to 150
36 A series of Glass Sliders, with astronomical diagrams, having rack and pinion movements, by which the magnified images produced may be made to revolve 8s. to 1100
CHEMICAL APPARATUS, \&c.
1 Dr. Black's Movable Universal Furnace 6l. to 700
2 Improved Portable Round Furnace 33. to 550
3 Enamelling Furnace 47. 4s. to 10100
4 Plumbago Portable Blast Furnace 18s. to $3 \quad 3 \quad 0$
5 Earthenware Table Furnaces 076
6 Ingot and Cupel Moulds 016
7 Iron Tongs, Shovels, and Ladles, for Furnaces
8 Platinum, Silver, and Iron Crucibles
9 Skittle and calcining Pot Crucibles
10 Muffles for Assaying 1s. to 026
11 Trays for Assaying 4d. to 010
12 Bone-ash Tests and Cupels 1s. 6d. to 026
13 Glass Retorts, plain and tubulated, of all sizes 2160
15 Ditto Sheet Copper ditto, same size 4146
16 Tinned ironed japanned Gasometer, Bell, 10 inches wide, 22 inches high 440
17 Strong sheet Copper ditto, same size 880
18 Pepys' improved Gas Holder, tinned iron japanned, 9 inches wide, 13 inches high 290
No.

 E s. d.
 I9 Pepys' improved Gas Holder, strong Sheet Copper, same size . . . 4100
20 Pepys' improved Gas Holder, Tinned Iron Japanned, 12 by 18 inches . 2170
21 Ditto strong Sheet Copper, 13 by 20 inches. 4146
22 Pepys' Mercurial Gasometer 660
23 Pneumatic Troughs of Copper, or Tinned Iron Japanned, of every de-
scription and size 3s. 6d. to
330
24 Barker's improved Pneumatic Trough, Tin or Copper . 1l. 1s. to $3 \quad 30$
25 Cast Iron Mercurial Pneumatic Trough; with Pepys' Gasometer . . 10100
26 E. M. Clarke's Improved Cast Iron Mercurial Trough, with filling blocks
and trays
1150
27 Mercurial Troughs of Cast Iron or Mahogany, on most approved prin-
ciples
$110 \quad \theta$
28 Wrought Iron Retorts, with gun-barrel tube ground in the neck, andflexible conducting tube$018 \quad 0$
29 Cast Iron ditto ditto 0120
30 Wedgwood-ware Retorts 10d. to 0100
31 Leaden Retorts for Fluoric Acid 8s. to 0100
32 Leaden Bottles for Fluoric Acid 48. to 6
33 Knox's Fluor Spar Apparatus for Experiments when Fluoric Acid is required, described in the Transactions of the Royal Irish Academy
34 Best large Brass Retort Stand with five Discharging Rings, and Knox's Triangle Runners 220
35 Second size ditto ditto, with three Discharging Rings 1150
36 Retort, Stands with five Sliding Brass Rings, with'Knox's Triangle Runners 1100
37 Ditto ditto, three Rings, and Knox's Triangle Runners 110
38 Retort Stands, with three sliding brass rings, brass rod, a japanned iron foot 7s. $6 d$. to 110
39 Knox's Test Tube and Retort Holder, with socket and ball motion for ditto 110
40 Chemical Thermometer, with boxwood scale to fold back at bottom, scale from freezing to boiling point of Mercury . . . 14s. to 0180
41 Ditto, graduated on the glass tube 110
42 Ditto, with Spirits of Wine for low temperatures 0150
43 Air Thermometers 0160
44 Leslie's Differential Thermometer 1116
45 Thermometers 1116
46 Standard Thermometers 2126
47 Six's Registering Thermometer 1156
48 Horizontal Registering Thermometer 140
49 Day or Night ditto, singly 0100
50 Lithographed graduated Paper Scalea, on mahogany veneer, for air, differ- ential, and other comparative Thermometers; used on lecture tables, from 2s. to $010 \quad 0$
51 Leslie's Photometer 250
52 Leelie's Hygrometer 220
53 Daniell's ditto 2100
54 Mason's ditto 2126
55 Daniell's Oxy-hydrogen Blowpipe, with Maugham's Jets and Cary's Lime- holder 150

ко.
36. Daniells Oxy-hydrogen Blowpipe, \&c., including Two Stop-cocks and Union Coupler for the Hydrogen (fig. 20)

Fig. 20.

57 Ditto, as improved by E. M. C. whereby he has removed the inconvenience occasioned by the use of so many separate parts, including Stop cocks and four Union Joints, in mahogany lock-up case (fig. 21) 3 3 $\begin{aligned} & \text { I }\end{aligned}$

Fig. 21.

58 Mouth Blowpipes in Glass, Brass, Plain, Portable, \&c. . . 1s. to 0100

59	
Gurney's, Hemming's, Otley's, and Compression Blow-pipe for the Mixed	
Gases . . .	

60 Cuthbert's Improved Hydraulic Blowpipe 2l. 2s. to 212 6
61 Blowpipe Lamps for Oil or Tallow 2s. 6d. to 0126
62 Bladder with Stop-cock and Jet 076
63 Strong Steel Forceps, with hardened points 060
64 Plain Glass Balloon Receivers 1s. 6d. to 0100
65 Tubulated ditto 2s. 6d. to 014 o

	Quilled Glase Balloon Receivers 2s. 6d. to	$\begin{array}{ll} 2 & s . \\ 0 & 12 \end{array}$	
67	Quilled and Tubulated ditto 3s.	016	
68	Glass Mattresses	06	0
69	Glass Alembics 48.6d	110	6
70	Silver Alembics, with Glass Capital . . . 1l. 11	44	0
	Glass Flasks, with Bent Glass Tubes, ground in . . 38. 6 d	06	6
72	Digesting Flasks 18.6	05	0
	Florence Flasks	00	6
	Glass Flasks, mounted with brass cap, stop-cock, and connecting p	08	
75	Lamp Furnace with copper chimney	10	
76	Ditto, with double wick, and fountain reservoir of oil	116	
	Glass and Brass Spirit Lamps with ground caps . . 3s. 6d. to	05	6
78	Rumford's Spirit Lamp, three Wicks, copper	09	0
79	Rumford's Spirit Lamp, improved by E. M. Clarke. The spirit in this lamp is prevented going to waste when not in use	11	0
80	Chemical Stop-cocks that will stand the test of a high condensation, with brass bodies, and gun-metal plugs, and vice versâ .	010	6
	Plain T and Elbow connecting Pieces 1s. 6d. to	05	0
	Brass Tobaceo Pipe that screws in Stop-cocks	03	0
83	Revolving Jet that screws in Stop-cocks	07	6
	Caps with Stop-cock Screw, to cement on retorts, receivers, \&c. 1s. to		
	Gas Jars, pint, Plain		
	1 pint	01	
	pints		
	pints		
	pints		
	int, stopped	0	
	pint, stopped		
	pints, ditto		
	pints, ditto		
	pints, ditto .	08	6
95	Capped and stoppered Air Jars of different sizes . . 1 s .6 d .	0	
	Plain Air Jars, in nests of 3, 4, and 5, with ground edges	08	6
	Air Jars, divided into cubical inches and decimal parts	014	
98	Deflagrating Ladles, per doz.	08	
99	Ground Brass Plates, with collar of leathers to cover air jars 2s. 6	05	
100	Cubic-inch bottles, plain and graduated. .	06	
10	Graduated Glass Measures	012	
	Ditto Drop Measures		
10	Precipitating Glasses	,	
104	Ditto Rods, Bars, and Plates of different Metals	04	
	Glass, Earthenware, and Iron Tubes		
	Hydrostatic, Separating, and Wedgwood Funnels . . 3d.	04	0
107	Glass Funnels	02	
108	Glass Syphons 1s. to	03	6
109	Woulf's Apparatus, consisting of three 3-necked Bottles, with conducting and safety tubes in tray		
	Ditto in Pint Bottles	10	
	tto	18	
	0 and three-necked Bottles, separate . . . 3s. 6d	08	

		10
114	Dropping Bottles and Tubes 1s.6d.	026
	Evaporating Basins in Glass, Wedgwood-ware, Silver, Platinum Copper, with and without lips, in sets or single	0
	Glass Test Tubes, per dozen set, 3 each	060
117	Ditto Racks and Holders	016
118	Fergusson's Pyrometer 3l. 3	550
119	Wollaston's Cryophorus 3 s 6 d .	12
120	Freezing Apparatus 158	22
	Double Steel Forceps, with platinum tips at one end, and hardened points at the other	
	Deflagrating Forceps	08
123	Blowpipe Spoons of silver or platinum 4s.	096
124	Ditto Jets of brass or platinum 1s. to	050
125	Mortars, with Pestles of Wedgwood-ware, Parisian porcelain, glass, agate, flint, steel, and iron 1s. 6d. to	22

127 Hydrostatic Balances, with steel beams, packed in mahogany case128 Balances with pearl and metal pans, weights, \&c. . . 10s. 6d.to 1110129 Boxes of Decimal Weights, in brass, silver, and platinum . 15s. to 2100
130 Hydrometers 7s. 6d. to 40
131 Nicholson's Gravimeter 1100
132 Improved Glass Hydrometers and Saccharometers 2s. 6d. to 110
133 Ditto, ditto, Saccharometer for brewing 330
124 Welter's Tube of Safety 026
135 Caoutchouc Gas Bags, with brass connexions 16s. to 4146
136 Sheets of prepared Caoutchouc, for making connexions 016
137 Caoutchouc Tubes, per foot 016
138 Flexible Metallic Tube, per foot 6d. to139 Wollaston's Scale of chemical equivalents030
140 Scale of chemical equivalents by Cuff 056
141 Warrington's Chemical Tables 030
142 Reid's Chemical Abacus for facilitating the study of the Atomic Theory of Dalton and Berzelian Symbols 016
143 Priestley's Eudiometer 5s. to 0120
144 Berthollet's Eudiometer 050
145 Hope's ditto 080
146 Davy's ditto 070
147^{\prime} Pepys' ditto 0100
148 Ure's Detonating Eudiometer 0120
149 Cooper's ditto ditto 0180
150 Volta's ditto ditto 0120
151 Ditto, with steel spring for mercurial trough, to ensure safety to the operator 0180
152 Cavendish's Eudiometer for the explosion of inflammable gases by the electric spark 330
153 Sand Baths of Copper fitting into the rings of the retort stand $2 s$. to 36
154 Marcet's Watch-glass holder 6

155 Strong hollow Iron Spheres. This apparatus shows the expansive force exerted in the Congelation of Water

046
156 Brass Gauge, with cylindrical metal rod, to illustrate the expansion of a metal when its temperature is increased
48. to

070
157 Double Bar or Slip, composed of brass and iron, for illustrating the unequal expansion in two metals when heated - . 2s. 6d. to
158 Apparatus to exhibit the force of comtraction in a metallic bar when it is suddenly reduced from a red heat to a comparatively low temperature. This contrivance shows the fact by the contracting bar snapping another bar connected with it .

070
] 10
159 Apparatus for exhibiting the relative degrees of expansion produced in different liquids by like elevations of temperature
$216 \quad 0$
160 Glass Apparatus for showing the condensation in volume and heat given out with mixtures of water with sulphuric acid
161 Parabolic Mirrors on stands for experiments with radiant heat. Mirrors 12 inches diameter, including iron ball and 3 adjusting stands .
162 Marcet's Steam Apparatus, with barometer and thermometer attached. This instrument E. M. C. makes of cast iron, thereby doing away with the accidents by explosion which have occurred owing to the action of the mercury on the brass rendering it incapable of confining high-pressure steam.

500

$$
3136
$$

163 Leslie's Radiator. This apparatus consists of a square tin vessel, with its sides coated with different substances. When hot water is placed in the vessel, the power of radiation of each side can be examined by turning them towards the reflector
. 10s. 6d. to

$$
0150
$$

164 Metallic Vessels; with polished and blackened surfaces, for showing the effects of the absorption and radiation of different surfaces

046
165 Apparatus to illustrate the different radiating powers of two different surfaces. Shows that when the heated body is placed equidistant between the surfaces, a piece of phosphorus fixed behind the blackened surface is inflamed, while a similar piece behind the polished surface remains unchanged
0150.

166 Particulars of a Set of Apparatus adapted principally for Gaseous Chemistry, for \mathbf{E}^{5}. 5s. for young beyinners.

Iron Retort Stand • • • 0.10	ught forward £2 15
Pneumatic Trough 0.10 .	1 Iron Retort, \&c. 08
2 Gas Jars, 1 pint each .. . 030	1 Graduated Measure . . . 02
2 ditto 1 quart . . : . 0.50	1 Retort Funnel 01
1 ditto capped . . . 050	1 Funnel 0
2 Stop-cocks 070	1 Spirit Lamp 04
1 Mounted Bladder . . . 026	8 Saucers for Transferring . . 0
3 Plain Retorts 0 - 30	2 Three-neck Woulf's bottles . 06
1 Receiver 01	Tubes for ditto
2 Tubulated Retorts 036	1 Dozen Test Tubes 02
ubulated Receiver . . . 0 l 6	Test Tube Rack . . . 02
Deflagrating Ladle and Plate . 0 2. 6	1 Mortar and Pestle . . . 03
1 Common Ladle 0.10	Chemicals, \&o. for the production
3 Evaporating Dishes 0 2. 6	. of various gases, \&c. . 014
Carried forward $\mathcal{L}^{\prime} 156$	£5 5
167 A more extensive Set for $£ 1010 \mathrm{~s}$.	
The above 500	rought forward 917
Mercurial Trough, and Mercury 2126	Earthen Tubes 03
Portable Furnaces . . . 1 5.0	Iron Tubes 01
4 Gas Jars for mercurial trough 0 5-0	Stirring Rods 0
Platina Spoon, Forceps, Wire, \&c. 0 . 60	3 Precipitating Glasses . . . 04
Glass Tubes, various. . . . 040	Blowpipe 03
Carried forward $\mathcal{E 9} 176$	£1010

NO.
168 Chemical Cabinet Stand of 48 glass stoppered 2 oz . bottles, containing as follows:-

FIRST SHELF.

1 Tartaric acid
2 Acetate lead
3 Pure oxalic acid
4 Sulphate copper
5 Phosphate soda
6 Sulphate magnesia

13 Chloride barium
14 Phosphoric acid
15 Chloride platinum
16 Sulphate iron
17 Sulphuric acid
18 Iodine

7 Alcohol
8 Muriate lime
9 Carbonate ammonia
10 Iodide potassium
11 Tartarate antimony
12 Muriate ammonia.
SECOND SHELF.
19 Chloride gold
20 Oxalate ammonia
21 Carbonate potash
22 Solation pure potash
23 Bichromate potash
24 Ferrocyanate potash
THIRD SHELF.
31 Chromate potash
32 Sulphate nickel
33 Chloride.cadmium
34 Sulphate zinc
35 Nitrate bismuth
36 Bicarbonate potash

FOURTH SHELF.

37 Sulphate alumina
38 Pure nitric acid
39 Sulphuretted hydrogen
40 Fluosilicic acid
41 Chloride tin
42 Muriatic acid

43 Nitrate mercury
44 Sulphate potash
45 Nitrate silver
46 Pure soda
47 Succinate ammonia
48 Tincture galls

Four drawers containing test tubes, glass blow-pipe, dropping tube, stirring rod, watch glasses, glass tubes, turmeric and litmus paper, filtering paper, Marcet's watch-glass holder and test-tube holder, complete

CHEMICALS.

CRUCIBLES.

Fine Stourbridge Loam.-Fire Lumps, Bricks, and Tiles.

FRICTIONAL ELECTRICITY.

No.
1 Plate Electrical Machines on the French plan, having one pair of rubbers

Fig. 22.
 (fig. 22). This arrangement answers well for small machines. Plate 6 inches diameter 220
2 Ditto. Plate 9 inches diameter . . 330
3 Ditto. Plate 12 inches diameter . . 4100
E. M. Clarke's arrangement of the Plate Electrical Machine :-The advantages of this form of machine over all others : is as follows; the frame-work being of cast-iron, renders two pillars for supporting the glass plate unnecessary ; hence the entire surface of the glass is exposed to the collecting forks of the positive conductor, thus rendering it impossible that the electricity should be dissipated to the axle. The positive conductor is pear-shaped, (as recommended by Priestley), and detached from the machine, standing on a separate frame, supported on a long glass pillar, thus securing perfect insulation-a matter attended with much difficulty when the conductor is attached to the frame of the

Fig. 23.

machine by a short piece of cane glass. The shape secures a greater extent of conducting surface than the usual bent tube conductors at present in use, giving to the plate machine the only advantage the now fully superseded cylinder machines possessed over them. The negative conductors are supported on glass pillars attached to the
iron frame, and carry the two pair of rubbers. This arrangement of machine E. M.C. can with confidence recommend as being superior in power and more convenient than any other yet offered the public.

Fig. 23 represents the machine, a the mahogany bottom board to which is fixed a cast-iron japanned framing, on which is bolted the strong upright iron pillar b; and at the top runs at right angles a hollow iron stem c. The glass plate has the usual brass axle attached to its centre, fits into c with a stout screw projecting from it, to which is attached the handle d. The negative conductors, $e e$, are supported on the glass pillars, $k k$, and carry the rubbers and silk flaps, and are connected by the brass arch, f, which is moveable. The positive conductor, g, is also supported on a glass pillar, k, and cast-iron foot, l. From g project two brass arms with the collecting forks; and on the upper part of the conductor is a conical hole, g, for holding a movable branch arm, h, which is very convenient for many experiments ; and at i is a smaller aperture, for holding any apparatus, such as a quadrant, electrometer, \&c.

The above sizes are those E. M. C. generally manufactures, but is anxious that it may be understood he is not limited to size, and begs to state as a proof of the superiority of his machines, that the manufacture of the largest plate electrifying machine in the world was committed to his charge, the diameter of the plate being 84 inches, and is now to be seen at the Polytechnic Institution, worked by steam power.
20 3-inch Cylinder Electrical Machine 126
21 , ditto ditto 376
225 ditto ditto 500
236 ditto ditto 610 o
247 ditto ditto 8150
259 " ditto ditto 11160
2610 , ditto ditto 13130
27 Electrophorus, with glass handle to the upper plate 0106
28 Ditto, larger size, on mahogany bottom-board 110
$29 \begin{aligned} & \text { Ditto, in cabinet case, with joint and lifter to upper plate, so that } \\ & \text { a Leyden jar may be readily charged at a ball conductor on top } \\ & \text { of the cabinet. A useful instrument in a chemical laboratory . . }\end{aligned}$ 1 1500
30 Ditto, with cannon on pedestal for firing inflammable air . . . 276
31 Glass Hydrogen Generators, with stop-cock for the above . . 8s. to $015 \quad 0$
32 Glass Rod, in clip handle and circular rubber for exhibiting electrical excitation

150
33 Plain Glass Rods̀ for the above 3s. to 076
34 Rods of Resin to fit into handle of No. 32, or used plain as No. 33, per oz. $0 \quad 0 \quad 6$ E 2
No. es.d.
35 Electrical Insulating Stools, with solid glass legs and mahogany tops to suit. No. 4, 10 s .6 d. ; No. 6, $15 \mathrm{~s} . ;$ No. $8,16 . ;$ No. $10,1 \mathrm{l} .6 \mathrm{~s}$. ; No. 12, 1l. 12s. 6d. ; No. 14, 1l. 18s. 6d.; No. 16, 2l. $10 \mathrm{~s} . ;$ No. 18 300
36 Plain Leyden Jars, with mahogany covers, brass balls, and stems, 2s.6d. to 0106
37 Open-mouthed Leyden Jars. In this arrangement the ball and stem is fixed to the bottom, so as to dispense with the cover; the stem is enclosed in glass, thus the jar takes a much higher charge, is less liable to spontaneous discharges, and is easier cleaned and aired, 7s. 6d. to $210 \quad 0$
38 Leyden Batteries, consisting of $4,6,9$, or 12 of the above jars mounted in an open frame stand, so as to allow the jars to be more readily aired before a fire 4l. 4s. to 2400
39 Two Leyden Jars, one insulated to illustrate the Franklinean theory, small size 10 s . 6d., large 018 . 0
40 Jar with movable metallic coatings for demonstrating the principle of the Leyden jar 110
41 Medical Leyden Jars, with sliding wire to regulate the intensity of the charge 0126
42 Leyden Jars, with Lane's Electrometer attached 1100
43 Electrical Discharger, for discharging Leyden jars, \&c. s. $6 d$. to 076
44 Medical Electrical Discharger . $6 s .6 d$. to 0150
45 Electrical Tongues, or jointed Discharger, with glass insulating handle, so as to remove any possibility of getting the shock while discharging a jar or battery $8 s .6 d$. to $110 \quad 0$
46 Forceps, to screw on the arms of ditto, for holding wet silk; thread, wire, chain, \&c. 076
47 Brass stems, with balls and points for fitting into conductors, or holding in the hand 2s. to 110
48 Balls of brass, ivory, bone, boxwood, and ebony, . . . 6d. to49 E. M. Clarke's Electrical Amalgam, free from tin and tallow, per oz.046
0150 Apparatus for electrifying the eye F
51 Ditto ditto tooth 056
52 Ditto, ditto ear 056
53 Electrical Condenser; consisting of two vertical copper discs, one fixed and insulated, the other sliding in a groove on the bottom board, so that the discs, when separated, may still be parallel. With binding screws. Discs, 6 inches diameter, $18 s$. ; discs, 12 inches diameter 1180
54 Cavallo's Pith-ball Electroscope, for atmospheric electricity 0180
55 Ditto, Pocket Electroscope 076
56 Singer's Gold-leaf Electroscope. This instrument has superseded Bennet's Electroscope 0150
57 Singer's Condensing Electroscope, with parallel plates 1150
58 Singer's Condensing Electroscope, improved by E. M. Clarke. fig. 24. In this arrangenment, the gold-leaf strips are suspended in a spherical glass vessel c; and instead of the usual metallic cap at d, one of ivory or baked wood is employed, thereby obtaining a treble insulation. This is the most delicate instrument yet constructed for denoting the presence of free electricity 2126
59 Singer's Electroscope, as above, without the condensing plates 1100
60 Haüy's Needle Electroscope, for testing the electrical state of minerals 076
61 Hare's Single-leaf Electroscope 11062 Zamboni's Pile Electroscope : between the terminal wires of the pile aslip of gold leaf is suspended, and neutralised; on the application ofan electrified body the gold leaf is deflected, showing not only thepresence, but also the quality or condition2100

Fig. 24.

No.

E s.d.
63 Faraday's Glass-thread Electroscope, for exhibiting electrical action derived from feeble sources in a decided manner to a class

110
$\begin{array}{llllllllllll}\text { Harris's Double-quadrant Electroscope. Without a joint, 1l. 1s. ; with } \\ \text { a joint } & \cdot & 10\end{array}$
65 Coulomb's Torsion Electrometer, an accurate instrument for measuring small quantities of electricity

280

> 66 Cuthbertson's Grain-weight Discharging Chronometer. This instrument is indispensable when a Leyden battery is employed, regulating with accuracy the amount of the charge, thereby insuring success to the experiment

67 Harris's Discharging Electrometer, for discharging batteries or large jars
68 Lane's Discharging Electrometer : is much used in medical electricity for regulating the strength of the spark from the prime conductor, as also the shock from the Leyden jar

176
$\begin{array}{lll}0 & 7 & 6\end{array}$
69 Harris's Unit Jar Electrometer, for measuring the quantity of electricity passed into a larger jar or battery

100
0140
70 Henley's Quadrant Electrometer 6s. 6d. to
71 Barker's Atmospheric Electrometer. This is the most correct instrument for experimenting on atmospheric electricity

$$
\begin{array}{lll}
3 & 13 & 6
\end{array}
$$

72 Harris's Electro-thermometer, consists of a glass tube and bulb, having a graduated scale attached; a fine piece of wire is fixed in a chamber that communicates with the liquid in the tube; on passing a current of electricity through the wire, its temperature is increased; this expands the air in the chamber, and causes the liquid in the tube to rise. The only objection to this instrument is now removed-namely, the insecure manner of attaching the connexions to the glass bulb
E. M. Clarke's Micrometer Electrometer. This instrument is for measuring the smallest appreciable distance at which an electrical spark can be developed. a, fig. 25, the mahogany base; b, c, two brass balls fixed on glass pillars, with brass caps and binding-screw connexions; d, is a dovetail slide with anivory scale, divided intoinches and l0ths, by which the pillar c can be moved; e, a metal slide, carrying the pillar b, having an index and scale to 10 ths of an inch; and f, a scale attached to the base of the instrument graduated to 50 ths of an inch. The metallic slide e, is moved by a micrometer screw g, the circumference of which is divided into 100 equal parts ; one revolu.

Fig. 25.

ко.
tion of the screw g, acts on the slide e, and consequently on pillar b, to the extent of $\frac{1}{30}$ th of an inch ; and as the circumference of g is divided into $\frac{1}{100}$ equal parts, each division will indicate an action on the pillar b, to $\frac{5000}{}$ ths part of an inch. h, i, two clamp levers, to allow b to be more quickly moved than the screw g would admit of ; k, l, two small brass balls, having a platina or silver point and dise fixed to them, to be used in lieu of b, c, when more delicate contact is
required
$\begin{array}{lll}8 & 8 & 0\end{array}$
74 Harris's Balance-beam Electrometer, for estimating in grain weights the attractive power exerted between two oppositely electrified surfaces
75 Two Balls of different diameters with metallic coatings, for illustrating the conditions of electricity called quantity and intensity

660
110
76 Henley's Universal Discharger and Press for deflagrating metallic wires and directing the discharge of Leyden jars or batteries through various bodies. To suit No. 4, $1 \mathrm{ll} .7 \mathrm{~s} .6 \mathrm{~d} ;$ No. $6,1 \mathrm{ll}$. 10 s .; No. 8, $1 l .12 s .6 d . ;$ No. 10 , with glass insulating handles and pair of flat screw forceps, 2l. 2s. ; Nos. 12 and 14, 2l. 12s. 6d.; Nos. 16 and 18
77 Mahogany Stand for passing a shock through eggs, making them luminous, and exhibiting the yolk
78 Faraday's Apparatus for ditto, consisting of a glass tube with foot and cover ; eggs, oranges, and onions are placed within, and on passing the shock through, all are made luminous

12 s .6 d . to
79 E. M. Clarke's Apparatus for directing the shock across a lump of sugar, chalk, or burned oyster-shell. This experiment generally fails, owing to the universal dischargerbeing employed for the purpose. To suit Nos. 4, 6, 1 l. 1s.; Nos. 8, 10, 12, 1 l. 10 s.; Nos. 14, 16, 18,

$$
\begin{equation*}
2 \quad 2 \quad 0 \tag{1150}
\end{equation*}
$$

81 Insulated Brass Conductors with pith balls attached, for illustrating
electrical indication
each $3 s .6 d$. to

82 Insulated Brass or Wood Stands for suspending light bodies, to exhibit the effects of electrical attraction and repulsion. Wood, $5 s .6 d$. to $15 s$; Brass
$10 s .6 d$. to

0106

150
No.
83 Electrical See Saw, to illustrate attraction and repulsion, consists of two figures, as Clown and Columbine, on a plank vibrating on its axis.
\notin s. d.

84 Modification of Dr. Franklin's self-moving Wheel, consisting of a stellar wheel formed of light glass tubes and balls; the balls are covered with gold leaf. By placing the apparatus near the prime conductor, and holding a brass ball at the opposite side, rotary motion will be produced

1180
85 Set of Three Electrical Bells attached to a brass rod, for suspending from the prime conductor

6s. 6d. to
86 Set of Five Electrical Bells on stand. To suit No. 4, 6s. 6d. ; No. 6, 10s. ; No. 8, 1l. ; Nos. 10, 12, 1l. 15s.; Nos. 14, 16, 2l. 10s.; No. 18 .
87 Set of Eight Bells or Gamut ; the bells are struck by a clapper attached to a revolving flyer. To suit Nos. 4, 6, 1l. 10s. ; Nos. 8, 10, 2l. 10s. ; Nos. 12, 14, 3 l. 3s. ; Nos. 16, 18,
88 Grotesque Carved Head, with hair, to illustrate that bodies, similarly electrified repel each other

6s. 6d. to
89 Ditto, very superior
2s. 6d. to
91 Dancing Image, plates for showing electrical attraction and repulsion.
Plain, without stand, 4s.; with stand, $8 s$. ; copper-plates .
92 Ditto, with glass pillar to suspend the upper plate . . . 12s.6d. to
93 Painted Pith Figures for the above. Plain, 1s.; jointed
94 Pith Balls; plain or painted, per dozen, $1 s$ s : large
01036
$310 \quad 0$

440
$\begin{array}{lll}0 & 7 & 6\end{array}$
0106
056

0106
110
020

95 Stand for Pith Balls, to exhibit them in motion
96 Electrical Spider, to suspend on the prime conductor 016
97 Ditto, attached to a Leyden jar 7s. 6d. to 0106
98 Electrical Fly and pointed stem, consisting of a brass cap, having two
or more cross wires with the points bent at right angles ; when
placed on the prime conductor a rapid revolution is produced by the
dispersion of the electricity in the atmosphere. Two wires, 2s.;
three wires, $2 s .6 d$; four wires, $3 s$, ; five wires
99 Brass Stand with three branch arms for showing the rotation of three electrical flyers; with two points each, 7s.; three points, 8s. 6d.; four points

0126
100 Ditto, Stand with four flyers of three points each, 18s.; Four points,
$1 l .5 s$; five points 150
101 Ditto, Stand with five flyers of four points each, $1 l .10 s$. ; five points, . 220
192 Ditto, Stand with eight flyers, points various 3100
103 Apparatus to show a Flyer ascending an inclined plane . 17s.6d. to 220
104 Electrical Planetarium, representing the motions of the Sun, Earth, and Moon ; to suit No. 4, 6 s .6 d. ; No.6, 10s. 6 d. ; No. 8

0180
105 Ditto, on Stand to suit No. 10, 1l. 5s.; Nos. 12, 14, 1l. 10s.; Nos. 16, 18220
106 Three Working Models of a Corn Mill. A three-barrelled pump, worked by cranks; and an Orrery made of card-paper, cork, and wire

0150
107 Apparatus for showing that the direction of an electrical current is from the positive to the negative conductor. It consists of a bottom board having two insulated pointed wires, between which is placed a light fan-wheel, also insulated ; on connecting one of the points with the positive, and the other with the negative conductors, the wheel will rotate from the former to the latter. Nos. 4, 6, $15 s$.; Nos. 8, 10 , 1l. 1s.; Nos. 12, 14, 1l. $10 \mathrm{~s} . ;$ Nos. 16, 18,

220
108 Apparatus for showing the above by the ignition of a piece of phosphorus. Nos. 4, 6, 12s. 6 d.; Nos. 8, 10, 12, $1 l .1 s . ;$ Nos. 14, 16, 18,

1100
NO.
109 Electrical Bucket. This apparatus has a small insulated orifice in thebottom that allows water to pass in drops, but when suspended on theprime conductor and the water electrified, it passes in a stream, andin a dark room appears luminous . . 3s. $6 \mathrm{~d} ., 10 \mathrm{~s} .6 \mathrm{~d}$. to
110 Leyden Jars with diamond and spangled coatings, in a great variety of patterns . . $6 \mathrm{~s} ., 12 \mathrm{~s} .6 \mathrm{~d} ., 1 \mathrm{l} .1 \mathrm{~s} ., 1 \mathrm{l} .10 \mathrm{~s}$. to
111 De Loude's Lightning Plate, consisting of a large plate of glass, placed vertically on a stand, both sides being coated with tinfoil, on whichsmall interstices are cut, diagonally crossing. During the charging ofthe plate, the electricity is seen flitting in all directions; and when thecharge is complete, it then discharges itself, producing a most splendiddisplay of electrical light. No. 4, 1l. 10s. ; No. 6, 2l.; No. 8, 2l. 10s.;No. 10, 3l.; No. 12, 3l. 10 s .; No. 14, 4l.; No. 16, 4l. 10 s . ; No. 18
110200
500
112 Strips of Gilt and Silvered Leather to illuminate by the electric spark or shock per yard 2s. to $\begin{array}{lll}0 & 4 & 6\end{array}$
113 Spangled Glass Tubes in a variety of patterns. Holding the brass ball at one extremity in the hand, and presenting the other ball to the prime conductor, the spaces between the tinfoil spangles are rendered luminous. No. 4, 4s. 6d. ; Nos. 6 and 8, 7s. 6d. ; Nos. 10 and 12 0180
114 Ditto on Stand, to connect with the negative conductor. No. 14,1l. 7s. 6d. ; Nos. 16 and 18
115 Five of the-above Tubes, mounted on a mahogany stand, with an insu- lated mobile brass wire, having balls at each extremity, placed in the centre; as the wire revolves the electricity passes down the spangled tubes, producing lines of light of various patterns. No. 4, 15s. ; No. 6, 1l. ; No. 8, 1l. 10s. ; No. 10, 2l. ; Nos. 12 and 14, 2l. 10 s .; No. 16, 3 l.; No. 18 3100
116 Spangled Glass Plates of various patterns, with handle and snapping ball. No. 4, 7s. 6d.; No. 6 0106
117 Ditto on Mahogany Foot and Pillar. No. 8, 18s. ; No. 10, 1l. 6s. ; No. 12, 1l. 13s.; No. 14, 1l. 18s.; No. 16, 2l. 5s; No. 18 $216 \quad 6$
118 Stars, Birds, Scrolls, Names, Words, \&c., formed of tinfoil, on flat pieces of glass from
119 Barker's Rotating Spangled Plates, with or without clockwork, from
040
120 Rusted Iron Chain with long links, the loops at right angles, for illumi- nating a darkened apartment by the electrical shock . per yard
121 Semicircular Glass Tube, with a brass cap and ball at each end, havinga piece of rusty iron chain enclosed, which becomes brilliantly illumi-nated when employed for discharging a Leyden jar or battery8s., 15 s.0100
$0 \quad 0 \quad 4$
1100
122 Electrical Sportsman. This apparatus consists of a figure of a Sports-
man, and a Leyden Jar, having two wires of different lengths pro- jecting from the cover from the longest wire ; some birds made of pith are suspended, when the muzzle of the gun is brought within striking distance of the ball on the shorter wire, the jar is discharged, and the birds fall as if shot 1l. 1s. to $210 \quad 0$
123 Magic Picture representing the Queen, with a metallic Crown. On attempting to remove the Crown a smart shock is felt 0150
124 Magic Picture of a Miser, for the same purpose 076
125 Mahogany Model to illustrate the necessity of lightning conductors, for the protection of buildings 6s. 6d. to 110
126 Mahogany Model of a House for the same purpose. The electricity in its passage ignites gunpowder, that causes the buildings to fall to pieces, 16s. to $110 \quad 0$
127 Model of a Chureh with a lofty spire. The electricity strikes the spire, which falls to pieces, and the roof catches fire $5 \quad 5 \quad 0$
s. d.
$\begin{array}{lll}0 & 0 & 4\end{array}$都
No.
128 Mahogany Model of an Obelisk. The lightning strikes the pyramid, which throws it from the base$\boldsymbol{E}^{\boldsymbol{s} .} \boldsymbol{d}$.
129 Fire House made of japanned sheet tin, to exhibit the heat evolved by an electric discharge, igniting tow saturated with rosin, spirits of wine, or ether066
130 Lullin's Apparatus for exhibiting the perforation of compact bodies by the electrical shock $10 \mathrm{~s} .6 \mathrm{~d} ., \mathrm{Il}$. ls . to 220
131 Metallic Dish for igniting spirits of wine, ether, \&c., by the spark 0] 6
132 Brass Pistol for firing inflammable gas by the spark 5s. to 110
133 Brass Cannon for ditto 7s. 6d. to134 Ditto for firing gunpowder by an electric shock . . 17s. 6d. to110
135 Ivory Bomb to project a ball by passing a shock through a drop of water, oil, ether, or fulminating mercury 0100
136 Glass Globe with sliding rods and stop-cock for experimenting on electric light in vacuum 136
137 Ditto with Forceps to hold Charcoal points, \&c., and binding screw connections 1100
138 Aurora Flask with Brass cap valve and ball . . 5s., 10s. 6d. to 110
139 Barker's Electrical Flask Experiment, with ground brass plate and open glass jar for the air-pump 2l. 10s. to 440
140 Luminous Conductor, consisting of a long glass tube with brass ball, cup,and valve, for showing the luminous passage of electrical light in apartial vacuum. No. 4, 7s. 6d.; No. 6, 12s. 6d.; No. 8 .141. Ditto on Stand. No. 10, 1l. 5s.; Nos. 12, 14, 2l. 5s. ; Nos. 16 and 18330
142 Apparatus for Filling Nos 140 and 141 with Nitrogen Gas, whichadds much to the brilliancy of the effect .
143 Fallen Star Apparatus. This experiment has been considered very difficult to perform, owing to the apparatus being generally improperlyconstructed. It requires at least a No. 8 machine to ensure success.No 8, 1l. 7s. 6d.; No.10, 2l. ; Nos. 12 and 14, 2l. 16s. 6d.; Nos 16 and 18
144 Adam's Combined Apparatus, consisting of an exhausting-flask, twoLeyden jars, luminous conductor, insulating pillar, exhaustingsyringe. By these many pleasing and instructing experiments maybe performed $2 l .12 s .6 d$. to145 Insulated conductor for Collecting Electricity from steam440110220

[^1]No. £ s. d
9 Daniell's Dissected Battery, large platina plates 6120
10 Daniell's Constant or Sulphate of Copper Battery, which consists of three parts-a zinc slip or rod amalgamated with mercury, a porous vessel for holding it, and a copper vessel for placing both in. A dilute solution of sulphuric acid and water is put into the porous cylinder, and a saturated solution of sulphate of copper into the copper vessel. This is a good battery where a long-continued and uniform current is required, and is the parent of all the late improve- ments in the Voltaic battery. Pint 7s. 6d., quart 10s. 6d., three pints 0150
11 Series of Ten of the above fitted in a wooden stand, with an arrangement for quantity or intensity 5100
12 Another arrangement of Daniell's Battery, the zinc being placed outside the copper cylimder. Pint $6 s .6 d$. , three pints $10 s .6 d$. , two quarts 0140
13 Series of Six of the above, with quantity and intensity arrangement in box 220
14 Series of Ten of ditto 3100
15 Series of Ten of ditto, three pint size 5156
16 Four of the above boxes 2200
17 Shillibeer's Sustaining Battery and Pole Director 0150
18 Smee's Silver Battery. This arrangement possesses many advantages, being composed of a double plate of zinc amalgamated with mercury, and a plate of pure silver having platina precipitated on it from the bi-chloride. Only one exciting liquid is required, namely, dilute sul- phuric acid and water, thus dispensing with porous diaphragms. For most purposes this battery is very convenient, being readily excited and continuous in its action. Page 60, fig. 27, (a) a Smee's Battery connected to an electrotyping apparatus; (b) the double plate of zinc ; (c) the silver plate in a glass box $;(e)$ and (f) two copper ribands for connexion. Again, at page 67, fig. 32, (a) exciting a medical Callan's Coil Machine. These batteries are mounted in glass jars, where room is not an object, or in glass boxes when it is desirable to keep them compact 0120
19 Ditto ditto, larger size 0150
20 Six Smee's Batteries in mahogany stand, with two binding screws and two mercury cup connexions. This forms a most convenient and efficient intensity battery, and as only hydrogen is given off, it is well adapted for private experimenting. Batteries, size of No. 17. 3120
21 Ditto ditto, size of No. 18 450
22 Mahogany Stand, with twelve Smee's Batteries, size of No. 17 6180
23 Ditto ditto No. 18 800
24 Four Batteries of No. 22 2500
25 Ditto ditto No. 23 $2810 \quad 0$
26 Grove's Platina Battery : the elements consist of a double plate of amalgamated zinc, and a single plate of platina ; a porous cell of pipe- clay separates the metals; the former being excited by sulphuric acid and water, the latter by concentrated nitric acid. This is the most powerful of all voltaic arrangements, and is the best adapted for brilliant and showy experiments in public institutions, or where a powerful current is required for exciting electro-magnetic engines. In glass boxes or jars same size as No. 17 0160
27 Six Grove's Batteries, in mahogany stand, with two binding screw and two mercury cap connexions. Batteries size of No. 17 4160
28 Ditto ditto, size of No. 18 600
29 Ditto ditto, same size as No. 18 100
30 Malıgany Stand, with 12 Grove's batteries, size of No. 17 950
No. \mathcal{L} s.31 Mahogany Stand, with 12 Grove's Batteries, size of No. 181100

32 Four Batteries of No. 30 $\begin{array}{lll}34 & 5 & 0\end{array}$
33 Ditto No. 31 $3810 \quad 0$
34 Barker's Hood, for collecting the noxious Gases given off from Grove'sBatteries, so as to prevent their escape in the apartment $15 s$. to220
35 E. M. Clarke's arrangement of the Apparatus for Decomposing Water 076
36 Ditto, larger, on Stand, with pillar and clip for supporting the tube 0126
37 Ditto ditto, with graduated tube 0146
38 Ditto ditto, with two glass tubes for collecting the Gases separately, withpillar and clips for supporting the tubes. Glass dish 2 inches diam.0150
39 Ditto ditto. Glass dish 4 inches diameter 1100
40 Ditto ditto, with stopcocks and suction tube for filling the gas-receiverswith acidulated water. Glass dish seven inches diameter220
41 Ditto, ditto, ditto ; Glass dish 12 inches diameter 44042 Faraday's Volta Electrometer improved, the platina electrodes beingbetter secured than when fixed in the glass tube. The tube holds acubic inch divided into 100 equal parts1100
43 Faraday's Volta Gasometer, modified by E. M.C. a (fig.'26), a glass vessel, with a movable bent glass tube (b) ground into it; c, a double platina plate, presenting a surface to each side of the other platina plate (d); here the gases pass from the tube (b), and may be collected under a glass receiver, in a pneumatic trough, in large quantities

Fig. 26.

44 Faraday's Apparatus for showing Electro-chemical Decompositions, con-sisting of a rectangular glass cell or box, with a diaphragm of bibulouspaper. This apparatus is not made of separate pieces of plate glass,cemented and bound together with brass clamps, and fixed on a board,which always leaked ; but is blown in a mould, with the sides groundand polished0126
45 Ditto ditto, divided into two or more pieces, for the more accurately fitting various diaphragms 18s. to 176
46 Universal Discharger, with charcoal crayons, wire and foil forceps, insulated sliding rods, with ball and socket motion, and binding screwconnexions1120
47 Pepys' Apparatus for Decomposing Alkaline Substances 1100
48 Pair of Platinum Plates, on glass pillars, for the decomposition of the alkalies 1l. 10s. to
no.

 \(\boldsymbol{f}^{\text {s. }}\) d.
 49 Voltaic Powder Cup, on bottom board, with binding screws

 0100
 50 Voltaic Gas Pistol 0180

51 Apparatus for showing the simultaneous production of Heat and Cold, by a voltaic current 220
52 Pieces of Platina and Silver Wire soldered together alternately. A powerful voltaic current passing through causes the platina to become red hot without affecting the silver.
53 Books of Leaf Gold, Silver, and Dutch Metal, and reels of fine Wire, for combustion.
54 Lignum Vitæe and Boxwood Charcoal per oz.
55 De Luc's Column or Dry Pile 1l. 10s. to
56 Zamboni's Electric Pile of Zinc, Manganese, and Honey. These aremuch more powerful than the dry pile of De Luc3300126
57 Cabinet containing a number of the above, which keep a metallic disc in a constant reciprocating motion, under a glass shade 3136
58 Ditto, ditto, which keep a butterfly hovering over alternately two vases of flowers, under a glass shade 550
59 Ditto, ditto, much larger size, representing four Cupids chasing each other, and playing at the game of Jeu de Bague, under a glass shade 12 12120

ELECTROTYPE APPARATUS.

1 Porcelain Jar, with pipeclay tube, zinc rod, and binding screw connection, for taking small impressions from plaster of Paris, wax, or fusible metal moulds $3 s$ s $6 d$. to
2 Glass Jar, with flat pipeclay cell and piece of sheet zinc, with connection, for electrotyping two or more moulds at the same time . $6 \boldsymbol{s}$. to
3 E. M. Clarke's Separating Mahogany Trough for Electrotyping: consists
of a square trough, sawed vertically in two ; between each half a piece
of scaleboard is fitted, and the whole bound together with screw-
bolts. Several plates of zinc, with moulds, may be depositing at
once. This is the most convenient arrangement for electrotyping on
the single system. Two binding screws, clamps, and clamping bar.
Box 6 inches long, 5 inches deep
3 E. M. Clarke's Separating Mahogany Trough for Electrotyping : consists
of a square trougl, sawed vertically in two ; between each half a piece
of scaleboard is fitted, and the whole bound together with screw-
bolts. Several plates of zinc, with moulds, may be depositing at
once. This is the most convenient arrangement for electrotyping on
the single system. Two binding screws, clamps, and clamping bar.
Box 6 inches long, 5 inches deep
3 E. M. Clarke's Separating Mahogany Trough for Electrotyping : consists
of a square trougl, sawed vertically in two ; between each half a piece
of scaleboard is fitted, and the whole bound together with screw-
bolts. Several plates of zinc, with moulds, may be depositing at
once. This is the most convenient arrangement for electrotyping on
the single system. Two binding screws, clamps, and clamping bar.
Box 6 inches long, 5 inches deep
3 E. M. Clarke's Separating Mahogany Trough for Electrotyping : consists
of a square trougl, sawed vertically in two ; between each half a piece
of scaleboard is fitted, and the whole bound together with screw-
bolts. Several plates of zinc, with moulds, may be depositing at
once. This is the most convenient arrangement for electrotyping on
the single system. Two binding screws, clamps, and clamping bar.
Box 6 inches long, 5 inches deep
3 E. M. Clarke's Separating Mahogany Trough for Electrotyping : consists
of a square trougl, sawed vertically in two ; between each half a piece
of scaleboard is fitted, and the whole bound together with screw-
bolts. Several plates of zinc, with moulds, may be depositing at
once. This is the most convenient arrangement for electrotyping on
the single system. Two binding screws, clamps, and clamping bar.
Box 6 inches long, 5 inches deep
3 E. M. Clarke's Separating Mahogany Trough for Electrotyping : consists
of a square trougl, sawed vertically in two ; between each half a piece
of scaleboard is fitted, and the whole bound together with screw-
bolts. Several plates of zinc, with moulds, may be depositing at
once. This is the most convenient arrangement for electrotyping on
the single system. Two binding screws, clamps, and clamping bar.
Box 6 inches long, 5 inches deep
3 E. M. Clarke's Separating Mahogany Trough for Electrotyping: consists
of a square troughl, sawed vertically in two ; between each half a piece
of scaleboard is fitted, and the whole bound together with screw-
bolts. Several plates of zinc, with moulds, may be depositing at
once. This is the most convenient arrangement for electrotyping on
the single system. Two binding screws, clamps, and clamping bar.
Box 6 inches long, 5 inches deep
4 Ditto ditto, 8 inches long, 7 inches deep
110
5 Ditto ditto, 12 inches long, 9 inches deep
220
6 E. M. Clarke's Precipitating Trough, for Electrotyping on the double

Fig. 27.

$\not{ }^{\prime}$
system. d (fig. 27), a strong mahogany box, lined inside with cement, which resists the action of the sulphate of copper solution. A number of holes are made in two sides of the trough, into which the brass connections $(e, f$,) are placed at any required distance. The connections consist of two parallel bars, between which brass sliding clamps (iiii) are fitted with broad shoulders or bearings for holding the moulds, as at $k k$, and the conducting plate l. With Smee's Battery, (a) 2l. $2 s$.; without
7 Large-sized Electrotype Apparatus on the same principle, but the mechanical arrangement of the connections differ ; large iron clamps, with brass sliding bars, being used instead of the parallel bars, having more power for forming perfect metallic contact with large surfaces. 'Trough twenty inches long, thirteen deep
8 Salt-glazed stone ware, troughs various sizes. These do not answer well for electrotyping, as the saline solution soon penetrates them, and they crumble to pieces

6d. to

1100

440
$0 \quad 5 \quad 0$
9 E. M. Clarke's Apparatus for Electro gilding and plating (a), Fig. 28.

Fig. 28.

> A mahogany bottom board, with two uprights ($b b$), between which isplaced aglass box (d) for holding the solution; the parallel connecting bars (cc) fit on (bb). From one, as at e, is suspended the medal, \&c., to be plated; and from the other a fine piece of gold or silver wire, f the battery is connected at $g h \quad .1 l .1 \mathrm{~s}$. to 10 Cabinets, with lift out trays for holding plaster of Paris casts, medallions, $\& \mathrm{c} . \quad . \quad 7 \mathrm{~s} .6 \mathrm{~d}$. to $310 \quad 0$
11 Plaster casts, plain and prepared, for electrotyping 12 Moulds taken from plaster casts and prepared with plumbago . $\quad 1 s$. to $110 \quad 0$
13 Variety of Electrotype medals, busts, figures, \&c., with gilt, plated, bronzed, or bright copper surface
$1010 \quad 0$
14 Medals with the relief gilt and plated, and the base in dark bronze 7s.6d.to $\begin{array}{lllll}5 & 5 & 0\end{array}$
15 Snee's Batteries in Glass, suited for Electrotyping . . 12s., 18s. to 110
16 Daniell's Battery in Glass Jar for Electrotyping . . . 15s., 1l. 160

17 Tin trays, for impregnating plaster casts	
taking wax moulds. With bpirit lamp	\cdot
tailing	water prior to
	.

18 Brushes for covering plaster or wax moulds with plumbago . . 006
19 Hard Brushes for polishing and bronzing Electrotypes . . . 007
20 Camel Hair Brushes for cleaning plaster casts prior to wetting 1s. $6 d$. to $0 \quad 3 \quad 0$
21 Bronzing Liquid, in bottles from 1s. 6d., 2s. 6d. to 030
22 Solution in stoppered bottles for Electro Gilding, $\frac{1}{2}$ pint, $1 l$. $10 s$. ; pint . 2126
23 Solution for Electro Plating, in $\frac{1}{9}$ pint bottles, 7s. ; pint ditto, 12s. 6d. ; quart

110
24 Flour Plumbago, in 4 oz. packets 006
25 Composition for taking impressions from plaster casts \quad. per lb. 046
26 Composition for taking impressions from metallic surfaces . . „ $0 \quad 3$
27 Pure Sulphuric Acid for Smee's Battery " 0006
28 Ditto Sulphate of Copper 0
MAGNETISM.
No.
1 Elba Loadstone, in slices 1s. $6 d$. to
£ s.d. 076
2 Ditto, ditto, in blocks, mounted with iron conductors, and armature in brass box, with suspension swivel ring 5l. 5s. to
3 Common Sheffield-made Bar and Horse-shoe Magnets. These Magnets will not retain their magnetism 0106
4 Best cast-steel Magnets of every variety of form, warranted to retain their magnetism. Pair of Bar Magnets, with centres, to suspend on points when required, in mahogany case, with armatures from six inches to three feet long. Bright or wax varnished . 6s. 8d. to
5 Cylindrical Bar Magnets, with polished centres at the poles. These Magnets are convenient for introducing within wire coils, \&c. $5 s$. to
6 Horse-shoe or Bent Bar Magnets, with parallel poles and soft iron armatures 5s, to $3 \quad 30$
7 Magnetic Batteries, consisting of a number of Horse-shoe Magnets bound together by screws, capable of sustaining from 20 to 300 lbs. weight 5l. to
8 Magazine Magnets for making Magnets $8 l .10 \mathrm{~s}$. to
rizontal and vertical motion for illustrating the influence of Terrestrial Magnetism
10 Dipping Needle, on brass stand, with vertical motion. By moving the needle on a bar magnet, it illustrates the Earth's influence in pro- ducing the dip 0106
11 Horizontal Magnetic Needles of every variety of form, with hard metal or agate centres.
12 Stands for Magnetic Needles, with hard steel points, on brass or ivory 7s. 6d. to
14 Small Magnetic Needle in pocket case and stand, for testing the polarity of mineralogical specimens 076
15 Sieve Boxes, for sifting iron filings on paper or glass, having a magnet placed beneath, to show the magnetic curves 050
16 Y Armature, for demonstrating the law of induced magnetism. 2s. $6 d$. to
17 Disc of soft Iron, to show that when a magnetic pole is in contact with the centre, an opposite polarity is developed at the periphery 28 . to
18 Stellar-shaped Plate of Iron, for showing the same experiment; but the poles at the extreme points will be stronger 050 0126
19 Rolling Armature : consists of a cylindrical bar of iron, having two brass fly-wheels at each extremity; if the iron bar be placed at some dis- tance from the poles on a magnet whose poles are placed inclining downwards, the armature will roll towards the poles, but the magnetic attraction will prevent it falling off, while the acquired momentum will carry it round the end, and roll it some distance up the under- side

10s. to

20 Soft Iron cubes, rings, balls, and spinners, to illustrate induction and
attraction each 3d. to

21 Magnetic Toys, consisting of fishes, ships, mermaids, swans, ducks, \&c.,
to show magnetic attraction and repulsion 6d. to 050
22 Best Pocket Compasses, with stops and agate centres, mounted in gilt metal, electrum, and silver, with morocco cases . . $17 s .6 \mathrm{~d}$. to 3136
No.£ s. d.
23 Best Pocket Compasses, without stops, and having hard metal centres in gilt metal and morocco cases 9s. to 110
38. to
24 Plain Compasses in circular brass cases, with lifts
25 Miners' Compasses in square mahogany boxes, with lifts 2s. 6d. to
26 Miners' Compass, with folding sights, in mahogany case 1l. 10s. to27 Prismatic Compass2l. 10s. to 4146
28 Military Compass 2126
29 Kater's Azimuth Compass 2126
30 Azimuth Compass, with detached gimbles 2l. 10s. to 880
31 Telltale, or Cabin Compass 1l. 10s. to 330

ELECTRO-MAGNETISM.

2 Ersted's Experiment, so arranged by E. M. Clarke that the wire conveying the current is stationary; but the needles may be placed above or below it, or in the same horizontal plane, thus showing the

150
3 E. M. Clarke's Electrepeter. This instrument changes in a moment the
direction of Voltaic currents, or totally stops their passage, without the necessity as heretofore of removing and rearranging the conducting wires by hand. To Lecturers this instrument is of great utility, enabling them to show with rapidity and precision the changes that take place in the directions of electro-magnetic motions, fig. 29.

0150
4 Insulated Copper wire Helix, on iron cylinder, to show the production of magnetism in iron by a Voltaic current

2s. 6 d. to
050
5 Glass Tube, surrounded with a coil of copper wire, for magnetising steel needles by induction 1s. 6d. to

030
6 Ditto, mounted on a stand, with binding-screw connexions . . . 076
7 Vertical Helix on stand, to show Mrs. Somerville's experiment of the suspension of a steel sewing needle within the coil

0150

8 Dense coil of insulated copper wire, for inducing magnetism in two semi
circles of soft iron, so as to sustain a considerable weight . 10s. to

220

9 Soft Iron Voltaic Magnet with armature 036
10 Ditto ditto, with two coils of covered wire 050
11 Ditto ditto, with two coils condensed at the poles 076
12 Ditto ditto, with four coils 0150
13 Ditto ditto, with four coils condensed at the poles 018 o
14 Ditto ditto, with four coils 20 yards each, and binding screw connexions

150
15 Ditto ditto, with six coils 20 yards each, ditto 220

	Professor Henry's Electro-magnet, with oval suspension collar to armature. This is the most powerful arrangement, sustaining from 5 cwt . to 20 ton 5l. 5s. to 1212
	Triangle Stands for Voltaic Magnets
	Professor Henry's Lever Stand for ditto
	Faraday's Apparatus for exhibiting the rotation of a vertical Voltaic wire round the pole of a magnet
	Marsh's apparatus to show the vibatory motion produced in a vertical voltaic wire when placed between the poles of a horse-shoe magnet 05
	Barlow's stellar wheel for converting the vibratory motion of Marsh'into a rotary motion 18s. to 110
	Sturgeon's improvement on Barlow's Apparatus, using a disc instead of the stellar wheel, thereby obtaining increased speed by the contact being always perfect

23 Ampere's Apparatus arranged by E. M. Clarke, to show the attraction and repulsion of magnetic and Voltaic currents ; consisting of a rectan- gular mobile wire frame on a stand with battery connections for sending a voltaic current through it ; also another rectangular frame fixed to a battery, on putting the frames in approximation a powerful attraction or repulsion will take place, a magnet being applied to the mobile frame will produce a like result 1186
24 De La Rive's Floating Battery, in glass tube with cork float. 030
25 Ditto, improved by E. M. C.; being placed in a shallow dish instead of the glass and float, is much lighter 066
26 Ditto, ditto, with horizontal wire coil 066
27 Vibrating Wire Coils. This apparatus consists of a horizontal horse- shoe magnet on a bottom-board ; from a pillar is suspended two dense coils of wire opposite the poles of the magnet, a Voltaic current being passed through the coils causes them to be attracted towards the magnet; then the battery contact is broken and the coils recede, but on gaining the perpendicular the current is again renewed, thus keeping up a reciprocating motion 220
28 Electrodynamic Rotating Coil, consisting of a fixed dense coil of wire on a stand inclosing another dense mobile coil ; the inner coil has an electrepeter attached; on passing the current through both, the outer coil retains the current in the same direction, but the inside coil changes its direction when in the same plane, hence rotation is produced 1100
29 Suspended Electro-Magnetic Helix 0160
30 Suspended Electro-Magnetic Flat Spiral 0160
31 Electro-Magnetic Double Spiral 1100
32 Apparatus to show the Rotation of a pair of mobile Wire Frames roundthe poles of a magnet ; consisting of a vertical horse-shoe magnet onbrass foot and levelling screws, pair of flood cups with adjustingscrews, brass pillar, and connecting fork and pair of light wire frames.Rotation may be produced in the frames by voltaic, magnetic or thermoelectricity

33 Ampere's Apparatus for showing the Rotation of the Voltaic Battery round the poles of a horse-shoe magnet. The zinc and copper of each battery revolve in opposite directions ; consists of a cylindrical horse-shoe magnet on brass foot, and levelling screws, and a pair of Voltaic batteries
34 Sturgeon's experiment of a pair of smooth zine slips rotating within a rough circular zine trough placed on the poles of a magnet, illustrating the production of a voltaic current from the same metal, but in different states of surface; consisting of a Cylindrical Horse-shoe Magnet on brass foot, with levelling screws and a pair of zinc troughs and slips

No.
35 Ritchie's Apparatus for showing the rotation of a Bar Electro Magnet between the poles of a permanent horse-shoe magnet, consisting of a Cylindrical Horse-shoe Magnet on brass foot with levelling screws, mercury cup or electrepeter to dispense with mercury on brass pillar and clip screw, and voltaic bar magnet

36 Ritchie's Apparatus to show the rotation of a rectangular wire frame between the poles of a horse-shoe magnet ; consisting of a vertical magnet on brass stand, with a rectangular wire coil the length of the magnet placed between the poles, with an electrepeter attached for changing the current

37 Ritchie's Apparatus to show the rotation of a rectangular wire cage between the poles of a magnet. This experiment differs from No. 36 , the wire frame being a continuation of the same wire, but the cage is formed of distinct rectangular frames. Including magnet on brass foot, cage, mercury cup and pillar

$$
150
$$

38 Ritchie's Apparatus to show the rotation of a coil of copper wire between the poles of a magnet. This experiment is similar to No. 36, a circular coil being used instead of a rectangular frame. Including magnet on brass foot and coil

176
39 Barlow's Apparatus for showing the rotation of a pair of Hollow Metallic Cylinders round the poles of a horse-shoe magnet, consisting of a cylindrical magnet on brass foot and levelling screws, pair of flood cups with adjusting screws, brass pillar, connecting fork, and hollow metallic cylinders
£ s. d.

Tote.-The apparatus described from Nos. 32 to 39 , are perfect in themselves, each having large cylindrical horse-shoe magnets, 10 inches long from the arch to the poles, and are intended for the lecture table, where the delay of shifting one part to allow another adaptation, could not be admitted ; but the same experiments may be shown more economically by the apparatus included from Nos, 40 to 48.
40 E. M: Clarke's Arrangement of the Vertical Cylindrical Magnet, with

$$
\mathcal{E}^{s} \quad \text { s. } d
$$ flood cups $c c$, levelling screws $b b b$, brass pillar and connecting fork e, on tripod stand, Fig. 30.

1100

41 Mobile Wire Frames, d d, to rotate by Voltaic, magnetic, or thermo-electricity for ditto . . . per pair, 7s. 6d., each
42 E. M. Clarke's Arrangement of Ritchie's Rotating Voltaic Magnet for ditto

040
0100
43 E. M. Clarke's Arrangement of Ritchie's Rotating Wire Cage for ditto

076
44 E. M. Clarke's Arrangement of Ritchie's Wire Coil for ditto

076

| 45 Ditto, ditto, ditto, rectangular Wire Frame | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| for ditto | . | |

46 Pair of Ampere's Voltaic Batteries to rotate on the poles of ditto .

0100
$\begin{array}{lllllllll}47 & \text { Pair of } \begin{array}{c}\text { Sturgeon's Rough }\end{array} & \text { Zinc Circular } & & & \\ \text { Troughs with mobile zinc leaves, to show }\end{array}$
48 Pair of Barlow's Metallic Cylinders to rotate on the poles of ditto . . 0100

50 Ditto to rotate horizontally by terrestrial magnetism . 10s. 6d. to 100
51 Ditto to rotate vertically by ditto 110
52 Ditto Voltaic Magnet and Steel Permanent Magnet, with Lockey's Inter-cepter. By this arrangement battery contact is broken nine timesduring every revolution of the voltaic magnet, without its speedbeing decreased1100
53 Page's Rotatory Multiplier 1100
54 Apparatus to show the rotation of a Vertical Bar Magnet round a con- ducting wire having an ascending or descending current 100
55 Apparatus to show Ampere's experiment of a Vertical Bar Magnet rotating on its axis. The voltaic currents pass from the equator to the poles, or the reverse . 100
56 Apparatus to show E. M. Clarke's experiment of the rotation of one ofthe Light Wire Frames (No. 41) on a Vertical Wire Helical Coil,both having a voltaic current passing
57 Apparatus.to show E. M. Clarke's experiment of the rotation of one of theLight Wire Frames (No. 41) over a horizontal flat spiral coil
58 Apparatus to show Sturgeon's experiment of the rotation of a VerticalBar Electro Magnet on its axis
150
150
1100
59 Apparatus to show Saxton's experiment of a Horizontal Voltaic Magnet having a permanent steel magnet revolving vertically in front of the poles

$3 \quad 30$
60 Ditto, ditto, with Silver Electrepeter, to díspense with the Mercury andCallan's secondary coils to give shocks

$$
\begin{array}{lll}
5 & 5 & 0
\end{array}
$$ revolving within two semi-circular permanent steel magnets; these also revolving, but in the opposite direction

$$
220
$$

220
62 Cummins's Gold Leaf Galvanoscope, consisting of a glass tube fixed vertically between the poles of a Horse-shoe Magnet ; a slip of gold leaf is suspended loosely within the tube, having metallic contact secured at top and bottom. This is an exceedingly delicate indicator of the presence of a feeble current of Voltaic, Magnetic, or Thermo electricity

$$
150
$$

63 Cummins's Galvanometer, consisting of a Magnetic Needle, surrounded with a coil of insulated copper wire; when an electrical current is sent through the coil the needle is deflected, the strength of the current being measured by the amount of deflection . . 7s. 6 d. to
64 Ditto, ditto, with Needle and Coil under a Glass Plate, and Levelling Screws. Needle, 4 inches
65 Ditto, ditto, improved by Collingwood, with Arched Glass
2100
66 Faraday's Galvanometer, with 4 inch astatic needles suspended by a hair, movable coil on brass frame, levelling screws, and tall glass shade
67 Melloni's Galvanometer. This instrument is the most delicate yet invented for measuring feeble electric currents, and consists of a massive circular pure brass base c, (Fig. 31.) through which three levelling screws pass, two of which are seen at $f g$; the coil is wound on a brass frame e, which can be moved horizontally by the tangent screw a, the terminal wires of the coil are soldered to the binding screw connections A B. The astatic needles are suspended by a fibre from the cocoon of the silk-worm, and to allow their being accurately adjusted to the coil, the thread is attached to a piece of tube i, that slides in the spring socket h, the engine divided scale k, slides off the brass frame of the coil by a dovetail. The weight of the base c, protects the instrument from vibration
$5 \quad 50$
68 Faraday's Compound Helical Coil for illustrating the production of VoltaElectric currents, consists of a coil of insulated copper wire on a cylinder, the terminals being connected with a voltaic battery; a sceond helis of wire being coiled on the first, its terminal wires being in connection with a galvanometer. When the battery contact is

Fig. ${ }^{1} 1$.

$\begin{array}{lllllll}\text { no. } & & \\ \text { broken with the first coil, the needle of the galvanometer is deflected } & \text { \& } & \text { s. } & d- \\ \text { by the secondary current induced in the second or outside coil } . & \text {. } & 2 & 2 & 0\end{array}$
Fig. 32.

F 2

Coil b, (Fig. 32) boxed in to protect the fine wire of the secondary coil from injury by the mercury of the revolving voltaic magnet d, which acts as contact breaker; c, a bundle of soft iron wire which gives the requisite impetus to d, by its induced polarity ; $e f$, the brass conductors to grasp in the hands for giving the shock. Small size without a
72 Ditto, ditto, much larger, for giving more powerful shocks
73 Lockey's Electro-Magnetic Machine, consisting of a large Callan's Coil,

Fig. 33.
 with Lockey's arrangement for breaking battery contact. A continuous circle of voltaic light is produced, the colour of which depends on the description of metallic circle and spring that is undergoing combustion. The machine has a lock-up cover and cupboard, which contain five metallic circles and five springs, viz. : copper, brass, tin, lead, and zinc ; a mercury cup, and star, and pair of brass conductors for giving shocks, Fig. 33
74 Collis's Electro-Magnetic Machine for giving shocks, consists of a Callan's coil, as at Fig. 32, but instead of a revolving voltaic miagnet being used to break battery contact, a vibrating iron plate is employed. Pair of conductors 1l. 10 s . to
75 E. M. Clarke's Medical Electro-Magnetic Machine consists of a mahogany lock-up cabinet case and multiplying wheel, as seen at Fig. 51, page 82, with a Callan's coil on the bottom board, having a revolving voltaic bar magnet placed between the poles of a permanent steel horseshoe magnet, and furnished with an electrepeter, so as to dispense with mercury. With this arrangement battery contact is is broken, and is a self-acting machine ; but as this will not answer in every case, there is fixed to the back board a circular contact breaker, with a continuous periphre, so as to make no unpleasant noise, and is worked by a multiplying wheel and band. By these two arrangements a patient may electrify himself by connecting the battery with the revolving Electro-Magnet, or the shocks may be administered by hand, as feeble or powerful as the case may require, by putting the battery to the contact breaker. The apparatus includes a pair of brass conductors, pair of sponge directors, a foot conductor, Smee's battery, and bottle of sulphuric acid
76 E. M. Clarke's Medical Electro-Magnetic Machine, plain, on bottom board with revolving magnet and electrepeter, and pair of conductors

$$
1 l .10 s . \text { to }
$$

77 Barlow's Apparatus to illustrate Terrestial Magnetism ; consisting of a coil of copper wire surrounding a globe, which is supported between two pillars from a bottom board, with a dipping needle placed over the globe. When a voltaic current is passed through the coil, the dipping needle takes different angles of inclination, according to the situation between the equator and the pole. Four magnetic needles are placed in varying positions, to more fully develop the electric current. Globe, nine inches diameter, including four magnetic needles and a dipping needle

220

78 Ditto ditto Globe, twelve inches diameter
79 Henry's Reciprocating Electro-Magnetic Beam. This apparatus answers for breaking battery contact
80 Voltaic Magnet with Horizontal Revolving Armatures ; consisting of an upright voltaic magnet, on the poles of which is fixed a brass plate, carrying two upright pillars to support the axis of a wheel, on the periphre of which is fixed three soft iron bars, parallel to the axis a
circular contact breaker is fixed on the axis, so that when an armature is within three quarters of an inch of the poles of the magnet, it is powerfully attracted towards it, but when directly over the poles the current is broken, and the armature continues to revolve by the momentum acquired, until it brings the next iron bar within the required distance, thus producing continuous rotary motion by Electro Magnetic attraction

- $1 l .10 \mathrm{~s}$, to

81 Electro-Magnetic Bell Engine ; consisting of a voltaic bar magnet revolving between the poles of a fixed magnet, carrying an electrepeter. An endless screw is fixed on the axis of the voltaic magnet. This acts on a toothed wheel, that has a pin attached to it, which draws back the stem of the hammer
82 Lockey's Electro-Magnetic Protector, for carriages, \&c. By this simple contrivance persons are effectually prevented climbing behind carriages, cabs, \&c. Fitted to and including battery, coil, \&c.

300

770
83 Ditto ditto Hall Knocker and Bell Pull Protector. By this contrivance persons are effectually prevented, after a certain hour of night, using either

3l. 3s. to
84 E. M. Clarke's Electro-Magnetic Engine. This model apparatus illustrates the possibility of applying Electro-Magnetism as a motive power, and may be employed for many purposes where a small power is required, such as playing an organ or full-sized musical box, working water pumps, giving motion to sectional and other models of machinery, \&c. The engine is complete in itself, and may be adapted to any purpose within its power, by the purchaser . 10 10 0 to $2610 \quad 0$
85 Ditto ditto, made to any required power.
86 E. M. Clarke's Electro-Magnetic Locomotive Engine and Tender. This $\begin{aligned} & \text { working model will travel round a circular railroad of } 15 \text { feet dia- } \\ & \text { meter in } 20 \text { seconds, and continue the same speed for } 8 \text { hours. The } \\ & \text { engine and tender, including the Grove's battery, weighs } 45 \text { lbs. }\end{aligned}$
87 E. M. Clarke's Working Model of an Electro Magnetic Marine Engine, with paddle wheels, \&c. In principle the same as No. 85
88 Electro-Magnetic Telegraphs, fitted up in private dwellings, club-houses, public institutions, factories, theatres, \&c., by contract.
89 Electro-Magnetic Alarums, planted in game preserves, orchards, and round dwelling-houses to any distance.

THERMO ELECTRICITY.

1Seebeck's Compound Rectangular Frame of Bismuth and Antimony, enclosing an Astatic Magnetic Needle to show the production of an electric current by the disturbance of the equilibrium of temperature of two dissimilar metals deflecting the needle

2 Apparatus to show the production of a thermo electric current in a
compound bar of Bismuth and Antimony by deflecting the needle of
the galvanometer

3 Ditto, with Magnetic Needle attached. By this arrangement the com-
pound bar is fixed on a stand, so that the flame of a spirit-lamp may
be applied without fear of breaking the bar
4 Apparatus consisting of a Bismuth and Copper Rectangular Frame,
with Astatic Needle, to show thermo-electric action when heat is
added or extracted at one juncture of the metals
5 Compound Frame of Copper and Zine, terminating in flat spiral coil on
stand and needle $15 \quad 0$
6 Frame of Copper, with spiral termination on stand and needle . . 0100
No.
7 Thermo-Electric Battery of ten pair of German silver and brass wires, soldered together, to excite by spirit-lamp or the heat of the hand £
s. d.
8 Thermo-Electric pairs of German silver and brass wires - 1s. to 76
9 E. M. Clarke's Thermo-Electrical Battery. This instrument is the most powerful apparatus yet constructed for generating Thermo-Electricity, and consists of a number of plates of Bismuth andAntimony arranged in alternations. A heated metallic plate isapplied to one series of alternate connections, and a pan of ice to theopposite, thus producing an electric current of sufficient power todevelop sparks, shocks, and produce rotation in a voltaic bar magnet;induce magnetism in soft iron so as to sustain a considerable weight,and chemical decompositions880
10 Thermo Motors of Silver and Platina Wires 0106
11 Compound Thermo Motors of Platina and Silver Wires, to produce rotation of the wire frames, No. 41, page 65, by a thermo-electric current 076
12 Thermo-Electric Revolving Arch of Brass and German Silver, with pillar and foot 076
13 Ditto to rotate between the poles of the Horse-shoe Magnet, No. 40, page, 65, with pillar 0106
14 Ditto, ditto, with Magnet 110
15 Thermo Rotating Compound Rectangles, composed of three platina and silver wire frames, having a needle point for suspension where the platina wires cross above, and a silver wire ring below, to admit of their being placed on a stand, a bar maguet being put at one side of the frames, and the flame of a spirit lamp being applied at the opposite side, rotation immediately commences; by changing the pole of the magnet the direction of the rotation is also reversed. This is the most satisfactory way of showing the experiment, and the surest of acting 0106
16 Two of ditto, smaller size, on Vertical Horse-shoe Magnet, with spirit lamp17 Melloni's-Thermo Electric Pile, consisting of a combination of bars ofBismuth and Antimony, $1 \frac{1}{2}$ inch long, $\frac{1}{8}$ inch square, in a frame, onpillar and feet18 Dowe's Thermo-Electric Pile, consisting of 100 pair of platina and ironelements440

MAGNETIC ELECTRICAL APPARATUS.

1 Farraday's Apparatus to Illustrate the production of Electricity by Magnetism, consists of a thin wood tube, having a helical coil of insulated copper wire wound on it, with binding screw connections attached to the terminal wires. If connection be made with a galvanometer, (such as Nos. 66, or 67, page 66,) and the pole of a cylindrical bar magnet be introduced within the tube, the magnetic needle will be deflected. On withdrawing it the deflection will be in the opposite direction
2 Faraday's Apparatus for Illustrating the Production of Magnetic Electrical Currents, by inducing magnetism in a cylinder of soft iron
3 E. M. Clarke's Apparatus to show Faraday's experiment of the production of Magnetic-Electrical Currents, in a strip of sheet copper, silver, or zinc, when moved between the poles of a magnetic battery. Fig 34 consists of a mahogany clamp stand, to carry a magnetic battery, two uprights are fixed in the bottom board, having grooves in the sides to allow the piece of metal D to slide up and down between the poles of the magnet. F, G, two metallic springs for making con-

No. tact with the sides of the strip D, having binding serew connections for making contact with the galvanometer A, by means of the conducting wires B, C; a third connection, is fixed on the top of D, so as to change the direction of the current. On moving D in the direction of the arrow, the needle of the galvanometer will be temporarily deflected ; on drawing it up a deflection in the opposite direction will be produced

220
4 Vertical Cylindrical Horse-shoe Magnet on brass foot, with two reels of insulated copper wire, for showing the deflections produced by moving the coils on the poles, also the neutralizing the currents by opposing their directions
5 Pair of Helical Coil Reels, to adapt to apparatus No. 40, page 65
6 Arago's Apparatus for showing the retarding effect of a massive metallic

Fig. 35.

ring on the oscillations of a magnet, free to move. on its centres. Fig. 35. A, a mahogany foot with pillar B, to support a circular back-board C , a metallic ring H , is slipped on the back board, and projects so as to be flush with the magnet E, which is delicately suspended at D; a pin projects through the back board at G, which supports it in a horizontal position. On withdrawing the pin the magnet oscillates, the number of which are counted by its passing behind the screen F. If the metallic ring be now removed, the number of oscillations will be increased 3l. 13s. 6d. to 500

7 Sturgeon's 'Apparatus to show the converse experiment to No. 6. A, (Fig. 36), a mahogany foot with two brass uprights B, connected at top, between which is placed upon centres C, a metallic disk D, a small weight E, is attached to the periphery, under which is a temporary support I. On the magnet stand H , is fixed a battery

M; so that dise will oscillate between its poles; when I is withdrawn, the number of oscillations is counted by the passing of the index hand F, through the frame B; including three discs, iron, copper, and zinc
8 E. M. Clarke's Combined Apparatus, Fig. 37, to show various experi-

ments of Faraday, Arago, and Harris, on the capacity of different metals for the development of magnetic electricity by induction. A horizontal metallic disc \mathbf{N} is made to rotate rapidly under a screen of glass K , a magnetic needle being placed on a short point on the screen, the needle rotates in the same direction with the disc. Or by suspending from the branch arm \mathbf{F} the bar magnet M , set the copper disc in motion, and the magnet will rotate in the same direction. Reverse the direction of rotation of N , and M will first come to a state of rest, and then commence revolving in the same direction of N.; To prove that this is due to the magnetism of the steel bar, remove it, and in its place suspend a similar bar of unpolar or soft iron, set N in rapid motion, and the iron bar remains stationary. Also when compound bar magnets are made to rotate under the glass K , and a metallic dise suspended over the screen, it rotates in the same direction with the magnets. Also shows Harris's experiments of the influence of screens of different metals in arresting the passage of magnetic induction. Also Faraday's experiment of rotating a disc"of copper between the poles of a magnetic battery, on connecting conducting wires from a galvanometer; one with the centre, the other with the periphery of the rotating disc, a permanent deflection of the needle is produced. In addition to the accessaries already mentioned, it is also furnished with a thick disc of copper, with a groove at the periphre, and a male screw at the centre to fix in_H; combination of bar magnets with brass flange and male screw at centre, to fix in H ; a bar magnet with arched centre M , and a bar of soft iron to correspond, to suspend from F; circular glass screen and binding-screw connections for Faraday's experiment
9 E. M. Clarke's Magnetic-Electrical Machine. This instrument develops all the phenomenon of magnetic electricity, and for medical purposes possesses numerous advantages over every other description of electrical apparatus, and is the only one that exhibits separately the effects of quantity and intensity with the full power of the magnets, which are quite detached from the rotary armatures, so that all injurious vibrations are completely prevented. The latest improvements of lathe machinery are adapted to the instrument to secure the most perfect steadiness and freedom of motion. It requires no mercury flood, iso that when once adjusted, it goes through its operations with ease and certainty. In addition to its power of producing light, heat, and motion, effecting chemical compositions and decompositions, and acting powerfully on the living nerves and muscles, it deflects the gold leaves of the electroscope, charges the Leyden jar, and ignites gunpowder.

The machine, fig. 38 , is furnished with two armatures, figs. 38 D , 44 ; decomposition of water apparatus, fig. 40 ; apparatus to show the ignition of platina wire, fig. 46 ; pair of brass conductors (R S) fig. 38 ; iron wire to show combustion, fig. 45 ; steel lever for unscrewing the armatures, extra hooks (Q) and springs (0), fig. 38 ; the battery of horse-shoe magnets, A fig. 38 ; weight 14lbs. with mahogany lock-up case, fig. 51
10 E. M. Clarke's Magnetic-Electrical Machine, fitted up for medical purposes only, with an intensity armature, pair of brass conductors, pair of sponge directors ($\mathrm{U} V$) fig. 38. Foot conductors, pair of puncturing directors for applying to persons apparently drowned, extra hooks, springs, \&c.

12 Pair of Puncturing Directors, for applying to persons apparently drowned

No. Decomposition of Water Apparatus, for collecting the gases, separate, fig. 41 0106
15 Pair of Platina Discs, D C, fig. 41, for showing the decomposition of neutral salts $0 \quad 5 \quad 6$
16 Leyden Phials, to charge by magnetic electricity, so as to deflect the gold leaves of the electroscope, fig. 43 0100
17 Micrometer Eye-piece for showing the magnetic-electrical spectrum, single 5s. 6 d., double $\begin{array}{lll}0 & 8 & 6\end{array}$
18 Mercury Cup and Points to show the disadvantage of the mercury flood, fig. 49. It also shows the combustion of mercury and ignition of ether 030
19 Apparatus to show brilliant flashes of magnetic electricity on burnished gold or silver paper 076
20 E. M. Clarke's arrangement of the Vertical Cylindrical Magnet, with flood cups, levelling screws, on tripod stand, pair of mobile wire frames, to show rotation on the poles of ditto, by magnetic electricity, fig. 50] 150
21 Mahogany Stand, with multiplying-wheel, crank, hook, and treadle, to work the magnetic electrical-machine, Nos. 9 and 10, by foot 500
22 E. M. Clarke's Magnetic-Electrical Machine, large size, with the mag- netic battery weighing 40 lbs , on a cast-iron frame, having a multi- plying-wheel, crank, treadle, and hook, to work by the foot $44 \quad 15 \quad 0$
23 Ditto ditto, larger size, weight of the magnetic battery 50 lbs 6970
24 Decomposition of Water Apparatus, on mahogany bottom-board, with pillar, and clip to hold the glass tube 0150
25 Ditto ditto, with two glass tubes for collecting the gases separately, pillar and clips 0180
26 Apparatus for Showing the Decomposition of Neutral Salts, consisting of two vertical platina plates, one fixed, the other having a spiral spring motion on a bottom-board, and binding-serew connexions 1100
27 Apparatus consisting of a pair of adjusting forceps with silver points, for showing the ignition of platina and steel wire, by Nos. 22 or 23, with binding-screw connexions on bottom-board
28 Soft iron Horse-shoe, covered with insulated copper wires suspended from a pillar on a stand, with armature and scale-pan, to show the production of magnetism by magnetic-electrical currents110

For a description of E. M. Clarke's Magnetic-Electrical Machine, see London and Edinburgh Phil. Mag. for October 1836 ; Poggendorff's Annalen der Physick, No. 10, 1836 ; Silliman's American Journal of Science, No. 2, January 1838 ; Pouillet's Traité de Physique, 1837 ; Higgins's Experimental Philosopher, 1838 ; Noad's Lectures on Electricity, 1839 ; Monthly Times, No. 2, 1839 ; El. Instructor, July 1839 ; Elements of Chemistry, by Dr. D. B. Reid, 1840 ; Elements of Materia Medica and Therapeutics, by Dr. Pereira, 1841 ; and the following, as published in Sturgeon's Quarterly Annals of Electricity for January, 1837.

A DESCRIPTION

OF A
 MAGNETIC ELECTRICAL MACHINE,

INVENTED BY E. M. CLARKE, MAGNETICIAN, OF 428, S'TRAND, LONDON.

This apparatus, with the exception of there being rotating armatures and a magnetic battery, differs from any magnetic machine which has hitherto been constructed.

The October number of the London and Edinburgh Philosophical Magazine * for 1836 contains a brief account of this machine; it being the intention of the inventor to reserve a more detailed description for insertion in the "Annals," \dagger in consequence of its being the aim of the editor of the latter named periodical to make this deservedly interesting branch of science one of the leading features of the work. Since that time, a most important improvement has been made, by the rejection of the mercury box. By the inventor's present arrangement, the necessity of using mercury is superseded.

Fig. 38.

[^2]A is the battery of bent bar magnets, placed vertically, and resting against four adjusting screws, which pass through the mahogany back-board B (two of them are shown at M, N. fig. 51, page 82). C C is two stout brass straps passing through openings in the back board, through which passes bolts and nuts, the purpose of which is to draw the magnetic battery to the board B. By these means, the battery can readily be disengaged from the machine, without taking asunder the entire apparatus, and the battery is thus also freed from that vibration which must necessarily be occasioned by the attachment of the rotating apparatus to the battery itself. D is the intensity armature, which screws into a brass mandril seated between the poles of the battery A; motion being communicated to it by the multiplying wheel E. This armature has two coils of fine insulated copper wire, 1500 yards long, coiled on its cylinders, the commencement of each coil being soldered to the armature D, from which projects a brass stem (also soldered into D), which carries the break-pieces, H and H. The break-piece is made fast in what position soever is required, by a small binding screw. I and I a hollow brass cylinder, to which the terminations of the coils F G are soldered, being insulated by a piece of hard wood attached to the brass stem. O is an iron wire spring, pressing against the hollow cylinder I at one end, and held in metallic contact, by a nurled head-screw in the brass strap M, which is fixed to the side of the wooden block L. $\quad \mathbf{P}$ and \mathbf{P} a square brass pillar, fitting into a square opening in the other brass strap N, and secured at any convenient height required. Q and Q, a metal spring that rubs gently on the break-piece \mathbf{H}, and held in perfect metallic contact by the nurled head-screw in \mathbf{P}. T and T a piece of copper wire for connecting the two brass straps, M, N; then D, H, Q, P, N are in connexion with the commencements of each coil, and $I, 0, M$ with the terminations. The advantages of this arrangement must be obvious to any person who has seen the magnetic machine in action in the Royal Gallery of Practical Science, where the old arrangement of the mercury flood is still used, where both dise and blades scatter the mercury about as in fig. 39 ; a the disc, b the double blades, c the mercury flood. The loss of mercury is not the only evil; for as you continue working the machine, you of course lose the adjustment you had at starting, and the effect is constantly diminishing, and will at length cease, owing to the points b not having mercury to dip in. By the new arrangement, the metal spring \mathbf{Q} presses gently on the break \mathbf{H}; consequently, the effects here are unbroken, no matter how long you may

Fig. 39.
 require to keep the machine acting. This is not the only advantage it possesses; for in the mercury the surface is very rapidly oxidated; the oxide adheres to both disc and point, and preventing so perfect a metallic contact as that obtained by the spring and break.

TO ADJUST THE INTENSITY ARMATURE.

See that the faces of the iron cylinders that carry the coils F G, are parallel to, and all but in contact with the magnetic battery, A; if not, unscrew the nut of the multiplying wheel E , and take it off its axis: you then have at your command the four screws against which the battery rests (two of which are to be seen at M N, fig. 51, page 82); by means of them and the nuts of the straps C C, you can adjust the battery to the greatest nicety. The next step is to adjust the break, so that the spring Q will separate from it just at the same time that the iron cylinders of the armature have left the poles of the magnetic battery; and lastly, see that the iron wire spring, 0 , presses gently against the hollow brass cylinder I .

TO GIVE THE SHOCK.
Grasp the two brass conductors, R S , in the hands,* put one of their connecting wires into the holes of either of the brass slips, M or N , the other wire into the hole at the end of the brass stem that carries the break, H. Connect M N by T, turn the multiplying wheel in the direction of the arrow, and a violent shock will be received by the person holding RS. The shock which is obtained from the intensity armature laving 1500 yards of fine insulated wire, is such that a person, even of the strongest nerves, will not readily volunteer to receive a second shock. Indeed the effects are so violent, that the inventor has proposed to many of his military customers that this

[^3]instrument would be a good substitute for the lash, being capable of producing even greater torture than that brutal instrument, without producing any corporeal injury to the delinquent. Place RS in two separate basins of salt and water, immerse a hand in each basin, and the shock will also be felt very powerfully ; this method is to be preferred, as it leaves the person who is electrified the power of quitting when he pleases; not so with the conductors; for the muscles of the arms contract violently, so as to close the hands completely on the conductors, taking away the power of letting them go. If the two connecting wires of $R S$ are put in $M \mathbf{N}$, the shock is not so powerful. The shock can be modified in different ways. By turning the wheel E very slowly, or increasing the distance between the battery A and the armature D, or by making the break H separate from the spring Q when the armature D is horizontal. U V, a pair of directors, holding a piece of sponge, each to be used when the electricity is to be applied medicinally. The connecting wires are to be placed in the same way as the conductors are in the figure; the sponges must be wetted with a little vinegar or salt and water, so as to make them conduct the electricity. By those directors a succession of most powerful shocks can be given, when the case requires it; or they can be so modified as to be barely felt by the most nervous patient.* Remove T from M N, put the two pieces of iron wire with an end of each in its place; put other ends of them into two holes that are in the sides of the battery, A; let the wires be sufficiently long to allow the armature to rotate between them. If one wetted finger is placed on the brass stem that carries the break H , and another wetted finger is placed on the magnetic battery, the shock will be also felt. While the machine is so arranged, if you look between the face of the rotating armature and the magnetic battery, vivid flashes of light will be perceived playing between both. This light may also be frequently seen without the wires being in connexion with the battery. Sometimes it will be observed flashing between the coils, F G.

TO DECOMPOSE water, \&c. \&C.
Mr. E. M. Clarke's arrangement of the decomposition of water apparatus. (See Phil. Mag. for June, 1835.)-A, a glass vessel, having a brass cap with hardwood bottom, through which two pieces of copper wire pass, having pieces of platina wire soldered to them ; place this in M, N; fill the tube B with water, \uparrow thrust it over the platina wires where it will be held by the cork C. Q must rub on the cylindrical part of the break, H. Here the gases are obtained mixed.

Mr. E. M. Clarke's arrangement of the apparatus for obtaining the elements of water in separate vessels, or unmixed.-A, a glass vessel having two glass tubes; here the platina wires are soldered to two pieces of copper wire, as in my other arrangement, but differing inasmuch as that they are also soldered to the two brass cups, B, B, which are intended to hold a little mercury. Connect it by copper wire; a little acid or any salt will increase the effect by forming a better conductor with M, N, as in the figure. Here Q must work on the single break, H., C, D, two platina plates, having two copper wires soldered to them to connect them with m, n; on placing a piece of litmus or turmeric paper between them that has been previously wetted with some neutral salt, its decomposition is shown by the alteration in the colour of the paper. You may even transpose the colours by altering the position of the break H .

[^4]

Fig. 41.

TO IGNITE CHARCOAL.
Fig. 42 represents the arrangement of the apparatus for this purpose. The same directors that are used to hold the sponges, may be used to retain the charcoal points, A, B, in the proper position.

Fig. 42.

to charge the leyden jar and deflect the gold leaves of the electroscope.
Twist a piece of copper wire round the outside coating of the Leyden jar, A (fig. 43), connect it with the block of the magnetic electrical machine. Withdraw the sponge from the director V, and connect its wire with the end of the intensity armature, as in the figure. Rotate the armature at a moderate speed, hold the director by the wood handle, and make it touch the ball for a moment only, as on that depends the success of the experiment, as it is only one spark that shows the fact. Should the director rest on the ball so as that two or more sparks are obtained from the armature, you fail. Bring the ball of the Leyden jar in contact with a delicate gold leaf electroscope, and the leaves will be diverged. Very little practice will make you perfect in developing their effect. The jar is

Fig. 43.
 charged to a very low intensity indeed; but I found that after diverging the gold leaves, if I put my hand on the electroscope so as to discharge it, and the gold leaves collapse, on

[^5]touching the electroscope with the ball of the jar, agaln the leaves diverged with as much energy as before. I again discharged the electroscope, and again produced a divergence : this I repeated thirteen times, with the same effect each time, from the one charge. I had not time to pursue the experiment further, but would be glad to know to what extent it could be carried. The jar I used was eight inches deep, five and a half inches diameter, open at the top; the tinfoil coatings were six and a half inches deep.

DESCRIPTION OF THE QUANTITY ARMATURE.

This armature differs materially from that which is employed for intensity. The latter, as already stated, has two coils of 1500 yards of fine insulated copper wire. The inventor has also tried silver wire, which he found to be superior to copper in the proportion of nearly 3 to l. The quantity of iron in the cylinders also is much smaller than in the quantity armature, whose effects are greatest when the quantity of iron in the cylinders is increased, and the length of the copper wires diminished; the wire at the same time for quantity being much thicker. The quantity armature contains only 40 yards of wire.
to adjust the quantity armature and mxhibit the spark.
A, Fig. 44, the magnetic battery, D, the armature, and F G, two coils of copper wire containing 20 yards each. Care must be taken that the spring separate from the break at the same time that the armuture is vertical, being then in a neutral position as respects the poles of the battery.

TO SCINTILLATE IRON WIRE.
Connect one end of a piece of iron wire with P, Fig. 45, pressing the other end gently on the surface of the rotating armature, and brilliant scintillations will be obtained. This effect cannot be produced by any magnetic machine unless it be constructed similarly to E. M. Clarke's ; the effect depending upon the wires being soldered to the armature; whereas, in other armatures the wire is insulated throughout.

Fig. 45.

TO MAKE PLATINA WIRE RED-HOT.
Fig. 46.

Fig. 46 shows the arrangement for this purpose, A being placed in contact with P and H . Whilst the platina wire is red-hot, ether may be inflamed, gunpowder exploded, and other experiments of a similar nature be performed.

TO RENDER SOPT IRON MAGNETIC.
Fig. 47. ${ }^{*}$ A, a piece of iron bent as in the figure. B, a soft iron keeper, which adheres to the iron on the connexion being made as represented, so long as the machine is in action.

TO OBTAIN SPARKS OF VARIOUS COLOURS BY THE USE OF DIFFERENT METALS.
Remove the break, and substitute the brass piece B, Fig. 48. Into the small hole insert a piece of wire C, of any metal, for instance gold. Let the extremity of the spring Q be also of gold. On rotating the machine, sparks of purple colour will be obtained.

Fig. 48.

TO EXEMPLIFY THE DISADVANTAGES ATTENDING THE MERCURY FLOOD.

Remove the break, and fix the double blades B, Fig. 49, in its place. Adjust the brass cup A so that the point will leave the surface of the mercury when the armature is vertical. The brilliancy of the spark, as thus obtained, ap. pears much greater than it is in reality, the additional brightness being occasioned by reflection from the surface of the mèrcury. It is almost unnecessary to point out the evil that arises from the scattering of the mercury, not only in point of cleauliness, but ex-

Fig. 49.
 pense. A little ether, spirits of wine, or naphtha being poured on the mercury, is readily inflamed. The same experiment may be satisfactorily performed, by pouring any of those liquids into a test tube \mathbf{C}, and holding it over the break. The vapour will speedily be ignited by the magnetic spark.

TO PRODUCE ROTATION BY MAGNETIC ELECTRICITY.

Fig. 50. A, a vertical horse-shoe magnet, on a tripod stand B; C, improved floodcups; D, the wire frames, having two little cups at top to hold a drop of mercury ; E, a connecting fork. Mercury being poured into the flood cups C, and the single break X being used, on placing the connecting wires as in the figure, continuous rotatory motion will be produced by this arrangement, the current being constantly in the same direction. But the experiment may be varied by substituting the double
 break H, (fig. 88, page 75,) the currents now alternating.*

[^6]Fig. 51, shows the compactness of the machine. H, a mahogany case sliding on the bottom board Y, which locks against the back-board B. The multiplying wheel is to be turned in the direction of the arrow G. D, the pulley, and C the mandril that carries the armatures.
E. M. Clarke on the occasion of his last visit to Paris, had the honour to exhibit the effects of the magnetic machine which forms the subject of the present paper, to several of the French savans, all of whom were pleased to express their unqualified approbation. M. le Baron Séguier brought the inventor to the French Institute, accompanied by M. Chevallier. Amongst others present, during the exhibition! of the machine, were MM. Melloni, Dulong, Savary, Becquerel, and others. Professor Arago, who was that day officially engaged, having heard the result of the experiments with the machine, requested the inventor to attend the day following at the Observatory, which he did; and that

Fig. 51.
 learned Professor also expressed his satisfaction. On the day following, in consequence of a note received from M. Pouillet, he attended at the Conservatory of Arts and Sciences, when that learned Professor, who of course, was well acquainted with the previous magnetic machines, as Pixii's, Newman's (the name by which Saxton's machine is known on the Continent,) \&c. gave the decided preference to E. M. Clarke's arrangement; in proof of which, he was pleased to direct that one should be constructed for the Conservatory of Arts, and another to be deposited in the cabinet of his royal pupil, the Duke of Orleans.

CONTENTS.

PAGE
Chemical Apparatus 39
Chemicals 45
Crucibles 48
Dissolving Views 34
Dynamics 5
Electro-Magnetism 63
Electrotype Apparatus 61
Frictional Electricity 50
Gas Microscopes 23
Gas Polariscopes 26
Hydrostatics and Hydraulics 7
Magnetio Electricity 70
Magnetism 62
Mathematical Instruments 14
Mechanics 1
Meteorological Instruments 18
Microscopes 22
Optical Apparatus 38
Photography 36
Pneumatics 8
Polarized Light 29
Spectacles. 21
Steam Engine 11
Telescopes 21
Thermo-Electricity 69
Voltaic Ditto 57
'Description of E, M. Clarke's Magnetic Electrical Machine.

[^0]: 46 Another form of Leslie's Apparatus, with steel rod and polished plate of metal passing through the top of the receiver, to show that when the evaporation is impeded no congelation takes place . . 1l. 10s. to
 47 Wollaston's Cryophorus, consisting of two bulbs connected by a tube

[^1]:

[^2]: * I beg leave also to direct attention to No. 55, p. 360, and No. 63, p. 455, of the same Magazine. \dagger Annals of Electricity, edited by Wm. Sturgeon, Esq., Superintendant of the Victoria Gallery of Practical Science, Manchester.

[^3]: * If the handsare wetted with vinegar, or salt and water, the effect is considerably increased.

[^4]: * To medical gentlemen, the instrument may be strongly recommended from the following advantages. Its portability; its being always in a fit state for action, even in the dampest weather; the nicety with which the power of the shocks may be increased or diminished. Indeed it combines the advantages of the electrical machine and the galvanic apparatus; at the same time that it does not labour under the disadvantage of either; for, as has already been stated, it is not affected, like the former, by a moist condition of the atmosphere, nor like the latter, is it necessary to make use of any acids : nay, since the improvement has been effected which is alluded to in the text, even the use of mercury is superseded.
 \dagger The advantages of this arrangement are obvious to any one who has been teased with bits of platina wires made to pass through small holes drilled in a glass vessel having loops turned on the

[^5]: projecting ends, and contact is obtained by merely placing the connecting wire in the loop: it was not only a bad connexion, but nine cases out of ten the cement that is used to fasten in the platina wircs gave way, just as you were going to use the apparatus, as has frequently happened at lectures.

[^6]: * A singular fact connected with this experiment is the rotation of the two wirc frames in the same direction, owing to the passages of the electricity from one of the wire frames into one pole of the magnet, and then from the other pole of the magnet down the other frame.

