

A TREATISE

ON THE
PRINCIPAL

MATHEMATICAL INSTRUMENTS,

EMPLOYED IN

SURVEYING, LEVELLING AND ASTRONOMY, Sc. $\delta \cdot c$.

Digitized by the Internet Archive in 2018 with funding from Wellcome Library

A TREATISE

ON THE

PRINCIPAL

MATHEMATICAL INSTRUMENTS

EMPLOYED IN

SURVEYING, LEVELLING, AND ASTRONOMY:

EXPLAINING THEIR

CONSTRUCTION, ADJUSTMENTS, AND USE.

WITH AN
spuciotx, ant tables.

BY
FREDERICK W. SIMMS,

ASSISTANT AT TIIE ROYAL OBSERVATORY, GREENWICH, AND FORMERLY EMPLOYED ON THE ORDNANCE SURVEY.

$$
\mathrm{LONDON:}
$$

PRINTED BY T. BENSLEY, CRANE COURT, AND SOLD, FOR THE AUTHOR, BY MESSRS. TROUGHTON AND SIMMS, 136, FLEET STREET.

PREFACE.

Tine want of a work containing a concise and popular description of the principal Instruments used in Practical Astronomy and Surveying has long been felt, as the requisite information with respect to such instruments can only be obtained by consulting various expensive publications, which are not within the reach of many to whom such information is highly interesting and important.

It was the original object of the writer of this little tract, to place at the disposal of the young surveyor a description of the instruments which are required in his profession, and such an account of the method of examining and rectifying their adjustments, as would enable him to obtain from them the most accurate results ; but he found that, without greatly increasing the size of the book, he might materially add to its utility, by including in his plan the most approved Astronomical Instruments, that amateur astronomers as well as scientific travellers might have at hand a manual of instructions, which would enable them to use their instruments with the utmost advantage.

Usefulness being the author's chief object, he has not scrupled to extract from the works of others whatever he found adapted to his own purpose; and to some kind literary and scientific friends he is under obligations, for which, if he had obtained their permission, he would be glad to thank them by name in this place.

Of Surveying Instruments, those only have been described which are applied in modern practice, no reference
being made to those which, having been superseded by better ones, may be said to be out of use.

To the article on Levelling has been added a description of Mr. Troughton's Improved Mountain Barometer, with an easy and accurate method of computing differences of level from barometrical observations. Table II. employed for this purpose, has been carefully recomputed from Mr. Bally's Formulæ. The other tables will, for their several purposes, be found convenient and useful. Tables I. and VIII. are new.

Much attention has been paid to the accuracy of the formulæ given for performing the various computations, and each has been thrown into the form of a practical rule, that persons unacquainted with algebraic notation may be enabled notwithstanding to make the requisite calculations.

With respect to such astronomical problems as appertain chiefly to Navigation, and require extensive and special tables for their convenient solution, it has been thought better to omit all reference to them in this work, as in Mr. Rimdle's Treatise on Navigation, Captain Thompson's Lunar and Horary Tables, and other similar works, all necessary information on the subject may be readily obtained.

The Appendix relates chiefly to the protraction of the work after a survey has been completed, and seems a suitable supplement to the account of Surveying Instruments given in the preceding part of this treatise.

CONTENTS.

SURVEYING INSTRUMENTS.

The Land Chain Page 1
The Surveying Cross and Optieal Square 2
The Prismatic Compass 3
The Vernicr 4
The Theoriolite 7
Adjustments of the Thcodolite 10
Method of observing with the Theodolite 14
The Plane Table. 16
Method of using the Plane Table 19
LEVELLING INSTRUMENTS.
The Y Spirit Level 21
Adjustments of the Y Level 22
Troughton's Improved Level 25
Adjustments of Troughton's Improved Level 25
The Method of determining Distances by a Micrometer Scale 26
Levelling Staves 26
Troughton's Levelling Staves 27
O_{11} Levelling 23
," With the Spirit Level 29
,, With the Theodolite 50
Deseription of the Mountain Barometer 31
Levelling with the Mountain Barometer 32
ASTRONOMICAL INSTRUMENTS.
The Sextant 33
The Principle of its Construetion 34
Description of the most approved Sextant 35
Adjustments of the Sextant 36
Method of Observing with the Sextant 39
Troughton's Reflecting (Circle 41
Directions for observing with the Reflecting Circle 4.1
The Box Scertant 44
Adjustments of the Box Sextant 46
The Artificial Horizon 46
Roof Horizon. 47
Plane Glass Horizon. 47
The Dip Sector 18
Method of observing with the Dip Sector 5 0
The Portable Transit Instrument Page 51
The Adjustments of the Transit Instrument 50
Methods of determining the Meridional Deviation of Transit 55
by a Circumpolar Star. 55
by two Circumpolar Stars 56
by High and Low Star 58
Method of observing and registering Observations 59
Finding the Error of a Tiinc-Keeper 62
Correcting observed Transits for the Error of Collimation 64
,,, for Error of Level 65
,,, for Meridional Deviation 66
Method of Determining the Longitude by Observed Transits of the Moon and Moon Culminating Stars 67
Professor Bessel's Method of finding the Latitude with a Transit Instrument 70
The Altitude and Azimuth Instrument 71
The Adjustments of the Altitude and Azimuth Instrument 74
Description and Adjustments of the Reading Microscope 76
Use of the Altitude and Azimuth Instrument 78
To conıpute the Reduction to the Meridian 79
To determine the Latitude of a Place 80
Method of Observing equal Altitudes and Azimuths 81
Determination of Time by equal Altitudes 82
the True Meridian by equal Azimuths 83
," ,, by a Circumpolar Star. 85
," ,, by the Azimuth of a Celestial Object 86
Method of finding Differences of Latitude and Longitude by Trigonometrical Measurement 87
Method of finding the Longitude by the Eclipses of Jupiter's Satcllites 88
APPENDIX.
On the Protraction of Angles 89
Method of performing and plotting a Road Survey 91
Description of the best Circular Protractor 95
Plotting Scale 97
Station Pointer, \&c. 98

TABLES.

1. To Reduce the Apparent to the True Level.

If. For determining Altitudes with the Barometer.
111. For Converting Intervals of Sidereal into corresponding Intervals of Mean Solar Time.
IV. For Converting Intervals of Mean Solar into corresponding Intervals of Sidereal Time.
V. \& VI. For Computing the Longitude from the Observed Transits of the Moon and Moon Culminating Stars.
VII. For Computing the Reduction to the Meridian.
VIII. The Lengtl of a Second of Longitude and Latitude in Feet, for different Lititudes.

A DESCRIPTION

OF THE
PRINCIPAL INSTRUMENTS EMPLOYED

SURVEYING, LEVELLING, \& ASTRONOMY,

WITH THEIR ADJUSTMENTS AND USE.

SURVEYING INSTRUMENTS.

THE LAND CHAIN.

Gunter's Chain is the one now commonly used in taking the dimensions of land; it is sixty-six feet, or four poles, in length, and is divided into 100 links, each of which is joined to the next by three rings; the length of each link, including the connecting rings, is 7,92 inches, and at the end of every tenth link is attached a piece of brass (each of a different shape,) for more readily counting the odd links.
" The English acre contains 4840 square yards, and Gunter's chain is 22 yards in length, and the square chain, or 22 multiplied by 22 , gives 484 , exactly the tenth part of an acre; and ten square chains are equal to one acre; consequently, as the chain is divided into 100 links, every superficial chain contains 100 multiplied by 100 , that is 10,000 square links; and 10 superficial chains, or one acre, contains 100,000 square links.
"If therefore the content of a field, cast up in square links, be divided by 100,000 , or, (which is the same thing) if from the content we cut off the last five figures, the remaining figures towards the left hand give the content in acres, and consequently the number of acres at first sight ; the remaining decimal fraction, multiplied by 4 , gives the roods, and the decimal part of this last product, multiplied by 40 , gives the poles or perches."

Short distances, or off-sets from the chain line, are usually measured with a rod, called an off-set staff, the most convenient length for which is 6 feet 7,2 inches, being equal to 10 links of the chain, and it should be divided accordingly.

With the chain must be provided ten arrows, which may be made of strong iron wire, about 12 or 15 inches long, pointed at one end for piercing the ground, and turned up at the other, in the form of a ring, to serve as a handle: their use is to fix in the ground at each extremity of the chain whilst measuring, and to point out the number of chains measured.

THE SURVEYING CROSS AND OPTICAL SQUARE.

The instrument formerly employed for laying out perpendicular lines, was the cross-staff, of which there were various constructions; but that in most general use consisted of four sights, fixed at right angles upon a brass cross, and adapted to the top of a staff; which being thrust into the ground, with two of the sights placed in any given direction, the other two pointed out the perpendicular required. But this instrument has been almost superseded by the optical square, which is much superior to it both for convenience and expedition; and it has also the advantage of greater portability, not being larger than a shallow circular snuffbox, which it resembles in shape. It is made of brass, and contains the two principal glasses of the sextant, viz. the index and horizon glasses, fixed at an angle of 45°; hence, while viewing an object by direct vision, any other, forming a right angle with it, at the place of the observer, will be referred by reflection, so as to coincide with the object viewed. Thus a line may be laid out perpendicular to a station-line, and from any point on it, by simply standing with the instrument over the given point, and looking through it along the line, having a person to go with a mark or station-staff in the direction the perpendicular is required, and signing to him by hand to move to the right or the left, until his staff is seen by reflection to coincide with some object on the line along which the observer is looking ; and the place of the staff will be in a perpendicular to the station-line at the place of the observer.

If it be required to find on a line the place of a perpendicular from a fixed object, as a house, \&c. the observer himself must move along the line until the image of the object appears, as before, in the direction of the line, and the place where he then stands, will be the spot where such perpendicular would fall.

THE PRISMATIC COMPASS.

The use of this little instrument is to measure horizontal angles only, and from its portability it is particularly adapted for military surveying, or where but little more than a sketch map of the country is required. It is also very useful in filling in the detail of a map, where all the principal points have been correctly fixed by means of the theodolite ; and for this purpose it has been extensively employed by the gentlemen engaged on the Ordnance survey. It may likewise be used for determining approximately the direction of the true meridian, the variation being determined by comparing the observed azimuth of a celestial object, with its true azimuth deduced from an observation made for the purpose.

In the annexed figure, A represents the compass-box, and B the card, which being attached to the magnetic needle, moves as it moves, round the agate centre, a, on which it is suspended. The circumference of the card is usually divided to 15^{\prime} of a degree, but it is
doubtful whether an angle can be measured by it even to that degrec of accuracy : c is a prism, which the observer looks through in observing with the instrument. The perpendicular thread of the sight-vane, E, and the divisions on the card appear together on looking through the prism, and the division with which the thread coincides, when the needle is at rest, is the magnetic azimuth of whatever object the thread may bisect. The prism is mounted with a hinge joint, D , by which it can be turned over to the side of the compass-box, that being its position when put into the case. The sight-vane has a fine thread stretched along its opening, in the direction of its length, which is brought to bisect any object, by turning the box round horizontally; the vane also turns upon a hinge joint, and can be laid flat upon the box, for the convenience of carriage. F is a mirror, made to slide on or off the sight-vane, \mathbf{E}; and it may be reversed at pleasure, that is, turned face downwards; it can also be inclined at any angle, by means of its joint, d; and it will remain stationary on any part of the vane, by the friction of its slides. Its use is to reflect the image of an object to the eye of the observer when the object is much above or below the horizontal plane. When the instrument is employed in observing the azimuth of the sun, a dark glass must be interposed; and the coloured glasses represented at \mathbf{G}, are intended for that purpose; the joint upon which they act, allowing them to be turned down over the sloping side of the prism-box.

At e, is shewn a spring, which being pressed by the finger at the time of observation, and then released, checks the vibrations of the card, and brings it more speedily to rest. A stop is likewise fixed at the other side of the box, by which the needle may be thrown off its centre; which should always be done when the instrument is not in use, as the constant playing of the needle would wear the point upon which it is balanced, and upon the fineness of the point much of the accuracy of the instrument depends. A cover is adapted to the box, and the whole is packed in a leather case, which may be carried in the pocket without inconvenience.

The method of using this instrument is very simple. First raise the prism in its socket, b, until you obtain distinct vision of the divisions on the card, and standing at the place where the angles are to be taken, hold the instrument to the eye, and looking through the slit, c, turn round till the thread in the sight-vane, bisects one of the objects whose azimuth, or angular distance from any other object, is required; then, by touching the spring, e, bring the needle to rest, and the division on the card which coincides with the thread on the vane, will be the azimuth or bearing of the object from the north or south points of the magnetic meridian. Then turn to any other object, and repeat the operation; the difference between the bearing of this object and that of the former, will be the angular distance of the objects in question. Suppose the former bearing to be $40^{\circ} 30^{\prime}$ and the latter $10^{\circ} 15^{\prime}$, both east, or both west, from the north or south, the angle will be $30^{\circ} 15^{\prime}$. The divisions are generally numbered $5^{\circ}, 10^{\circ}, 15^{\circ}$, \&c. round the circle to 360°. A stand can be had with the instrument, if required, on which to place it when observing, instead of holding it in the hand.

THE VERNIER.

This is a contrivance for measuring parts of the space between the equidistant divisions of a graduated scale. It is a scale whose length is equal to a certain number of parts of that to be subdivided, depending on the degree of minuteness to which the subdivision is intended to be carried; but it is divided into parts which in number are one more or one less than those of the primary scale taken for the length of the vernier : in modern practice, the parts on the vernier are generally one more than are contained in the same space on the primary scale.

If it is required to measure to hundredths of an inch, the parts of a scale which is graduated to 10 ths, it may be done by means of a scale whose length is nine tenths of an inch, and divided into 10 equal parts; or by one whose length is eleven tenths of an inch, and divided into 10 equal parts ; for in either case the difference between the divisions of the scale so made and those on the primary scale is the hundredth of an inch. Such a scale made to move along the edge of that to be subdivided is called a vernier; and we shall explain how by its application, either to straight lines or arcs of circles, the subdivisions of graduated instruments are read off. For this purpose, let us take as a general example the method of reading the sextant, as a person acquainted with the graduations upon this instrument will find no difficulty in becoming familiar with those on any other.

It will be observed,* that some of the divisional lines on the limb of the instrument are longer than others, and that they are numbered at every fifth, thus, $0.5 .10 .15, \& c$. the 0 being the start-

[^0]ing point, or zero. The spaces between these lines represent degrees; and they are again subdivided by shorter lines, each smaller space representing a certain number of minutes. For instance, if the spaces are subdivided into four parts, then there will be three short lines, each of which will indicate the termination of a space of 15 minutes; if there are six parts, there will be five short lines, and each will be at the end of a space of 10 minutes, reckoned from the commencement of the divisions. Likewise it will be observed, that some of the divisions on the vernier are longer than others: these indicate in the same manner single minutes, and they are numbered from right to left : the extreme right one is the zero, or commencement of the index divisions, and it is marked 0 or \diamond; the shorter divisions shew fractions of minutes. If the spaces between each minute (or long division) contain three lines, each space will be 15 seconds, and if five, 10 seconds; the number of subdivisions between the minutes of the vernier is usually, but not necessarily, the same as between the degrees on the limb, so that if the limb is divided into 20^{\prime} the vernier is divided into $20^{\prime \prime}$; if the former is divided to 10^{\prime} the latter is divided to $10^{\prime \prime}$, \&c.

The limb of the instrument now before us is divided to 10^{\prime}, and the vernier reads to $10^{\prime \prime}$, and by shewing the manner of reading it off, we shall explain sufficiently the method of reading verniers in general. If the zero division of the vernier coincide (or form a straight line) with any line on the limb, then that line indicates the required angle; thus, if it coincide with the line marked 60 , then sixty degrees is the angle; if with the next long division, then 61 degrees will be the angle; but if it coincide with one of the shorter lines between 60 and 61 , then the angle will be 60 degrees and a certain number of minutes, according to which of the short lines it coincides with. If it be the first, (of the instrument before us) the angle will be $60^{\circ} 10^{\prime}$, but if it coincide with the second, it will be $60^{\circ} 20^{\prime}$, if with the third, $60^{\circ} 30^{\prime}$, \&c. But when it happens that the zero division of the index does not coincide with any division upon the limb, but stands between two of them, we must observe how many degrees and minutes are denoted by the division it has last passed, and look for a line on the vernier that does coincide with one on the limb; and the number of minutes and seconds from that line to the zero of the index, added to the number read off upon the limb, gives the angle required. Thus, supposing the index to stand between 10^{\prime} and 20^{\prime} beyond 60°, and the line on the vernier denoting $6^{\prime} 10^{\prime \prime}$ (which is the line next beyond the one marked 6) coincides with any one on the limb, then this quantity, added to $60^{\circ} 10^{\prime}$, gives $60^{\circ} 16^{\prime} 10^{\prime \prime}$, the angle required.

When the arc of excess on the limb of a sextant (the nature of which will be explained hereafter) is required to be read off, observe what quantity is passed to the right of zero by the zero division of the vernier, and find the remaining minutes and seconds to be added to it, by reading the vernier backwards; that is, consider the last numbered division to the left hand as the zero: thus, suppose that (on our instrument) the index stood beyond the third short division on the arc of exeess, this would be 30^{\prime}, and if the third long
division from the last numbered one on the left hand (marked 10), coincided with a line on the limb, this would denote 3^{\prime} to be added to the former, making 33^{\prime} for the reading on the arc of excess.

On the limbs of small theodolites, the spaces between the degrees are generally divided into two parts, consequently the short division represents 30^{\prime}, and the divisions on the vernier are single minutes; a smaller subdivision must be estimated by the eye, which by a person accustomed to the instrument can be done to $15^{\prime \prime}$.

The subdivision of a straight line, as the scale of a mountain barometer, is likewise effected by a vernier, and is read off in the following manner. The scale is divided into inches, which are subdivided into 10 parts; these tenths are again divided into two, by a shorter division, which will be 5 hundredths of an inch. The long divisions upon the vernier shew each of them one hundredth of an inch, and they are numbered at every fifth; these are again subdivided by shorter lines, representing thousandths. Now to read it off, observe where the zero division of the vernier stands on the scale; suppose a little above 30 inches and 4 tenths, and as it does not reach the short line denoting 5 hundredths, observe what line on the vernier coincides with one on the scale: if it is a long division, then it is so many hundredths to be added, and if a short division, it will be so many hundredths and thousandths to be added, to make up the measurement, and the readings are written decimally thus, 30.435 inches.

In the subjoined figures, which are given for the purpose of illustration, A B represents a portion of the graduated limb of an instrument, and C D a portion of the vernier scale, the zero point being at \mathbf{C}.

Fig. 1.

In the first figure, the limb is divided to 15^{\prime}, and these divisions are subdivided by the vernier to $15^{\prime \prime}$. In the second figure, the limb is divided to 10^{\prime}, and subdivided by the vernier to $10^{\prime \prime}$. In the third, the limb is divided to 20^{\prime}, and subdivided by the vernier to $30^{\prime \prime}$; and in the fourth, the limb is divided to 20^{\prime}, and subdivided by the vernier to $20^{\prime \prime}$. E, on each figure, is placed where a division on the vernier coincides with one on the limb. In the first, the reading is $45^{\circ} 46^{\prime} 30^{\prime \prime}$; in the second, $60^{\circ} 21^{\prime} 20^{\prime \prime}$; in the third, $21^{\circ} 23^{\prime} 30^{\prime \prime}$; and in the fourth, it is $17^{\circ} 2^{\prime}$, and between $0^{\prime \prime}$ and $20^{\prime \prime}$, and as the 2^{\prime} line is about as much in advance of the one on the limb near to it, as the $20^{\prime \prime}$ line is behind the one near to it, the reading may be taken as $17^{\circ} 2^{\prime} 10^{\prime \prime}$. The fifth figure represents the scale of a barometer, reading 30.435 inches, and is drawn much larger than the reality, to render it more intelligible.

THE THEODOLITE.

As an angular instrument, the theodolite has from time to time received such improvements that it may now be considered as the most valuable instrument employed in surveying. Instruments of this kind, of the best construction, may to a certain extent be used as altitude and azimuth instruments; and several astronomical operations, such as those required for determining the time, the latitude of place, \&c. may be performed by them, and to a degree of accuracy sufficient for most of the purposes that occur in the ordinary practice of a surveyor.

There are various modes of constructing theodolites to suit the convenience or the views of purchasers; but we shall confine ourselves to a description of one of the most perfect, as a person acquainted with the details of its adjustments and use, will find no difficulty in comprehending those of others.

Description of the Theodolite.

This instrument (as represented in the next page) consists of two circular plates, A and B , called the horizontal limb, the upper, or vernier plate, A, turning freely upon the lower, and both have a horizontal motion by means of the vertical axis, C : this axis consists of two parts, external and internal, the former secured to the graduated limb, B, and the latter to the vernier plate, A . Their form is conical, nicely fitted and ground into each other, having an easy and a very steady motion; the external centre also fits into a ball at D , and the parts are held together by a screw at the lower end of the internal axis.

The diameter of the lower plate is greater than that of the upper one, and its edge is chamfered off and covered with silver, to receive the graduations: on opposite parts of the edge of the upper plate, or 180° apart, a short space, a, is also chamfered, forming with the edge of the lower plate a continued inclined plane: these spaces are likewise covered with silver, and form the verniers. The lower limb is usually graduated to thirty minutes of a degree, and it is subdivided by the vernier to single minutes, which being read off by the microscope, \mathbf{E}, half, or even quarter, minutes can easily be estimated.

The paraliel plates, F and G, are held together by a ball and socket at D, and are set firm and parallel to each other, by four milled-headed screws, three of which, $b b b$, are shown in the figure : these turn in sockets fixed to the lower plate, while their heads press against the under side of the upper plate, and being set in pairs, opposite cach other, they act in contrary directions ; the instrument by this means is set up level for observation.

Beneath the parallel plates is a female screw adapted to the staff head, which is connected by brass joints to three mahogany legs, so constructed that when shut up they form one round staff, secured in that form for carriage by rings put on them; and when opened out they make a very firm stand, be the ground ever so uneven.

The lower horizontal limb can be fixed in any position, by tightening the clamping screw, H, which causes the collar c to embrace the axis, C, and prevents its moving; but it being requisite that it should be fixed in some precise position more exactly than can be done by the hand alone, the whole instrument, when thus clamped, can be moved any small quantity by means of the slow-motion screw, I, which is attached to the upper parallel plate. In like manner the upper or vernier plate can be fixed to the lower, in any position, by a clamp, (in the plate this clamp is concealed from view) which is also furnished with a slow motion, the screw of which is generally called the tangent-screw. The motion of this limb, and of the vertical arc, hereafter to be described, is sometimes effected by a rack and pinion; but this is greatly inferior, where delicacy is required, to the slow motion produced by the elamp and tangent-screw.

Upon the plane of the vernier plate, two spirit-levels, $d d$, are placed at right angles to each other, with their proper adjusting screws: their use is to determine when the horizontal limb is set level: a compass also is placed at \mathbf{J}.

The frames K and L support the pivots of the horizontal axis of the vertical arc (or semicircle) M , on which the telescope is placed. The arm which bears the microscope, N, for reading the altitudes or depressions, measured by the semicircle, and denoted by the vernier, e, has a motion of several degrees between the bars of the frame, K, and can be moved before the face of the vernier for reading it off. Another arm clamps the opposite end of the horizontal axis by turning the screw O, and has a tangent-screw of slow motion at P, by which the vertical arc and telescope are moved very small quantities up or down, to perfect the contact when an observation is made.

One side of the vertical are is inlaid with silver, and divided to single minutes by the help of its vernier; and the other side shows the difference between the hypotenuse and base of a right-angled triangle, or, the number of links to be deducted from each chain's length, in measuring up or down an inclined plane, to reduce it to the horizontal measure. The level, which is shown under and parallel to the telescope, is attached to it at one end by a joint, and at the other by a capstan-headed screw, f, which being raised or lowered, will set the level parallel to the optical axis of the telescope, or line of collimation ; the screw, g, at the opposite end, is to adjust it laterally, for true parallelism in this respect. 'The telescope has two collars, or rings, of bell metal, ground truly cylindrical, on which it rests in its supports, $h h$, called Y's, from their resemblance to that letter; and it is confined in its place by the clips, $i i$, which may be opened by removing the pins, $j j$, for the
purpose of reversing the telescope, or allowing it a circular motion round its axis, during the adjustment.

In the focus of the eye-glass are placed three lines, formed of spider's web, one horizontal, and two crossing it, so as to include a small angle between them; a method of fixing the wires which is better than having one perpendicular wire, because an object at a distance can be made to bisect the said small angle with more certainty than it can be bisected by a vertical wire. The screws adjusting the cross wires are shown at m : there are four of these screws, two of which are placed opposite each other, and at right angles to the other two, so that by easing one and tightening the opposite one of each pair, the intersection of the cross wires may be placed in adjustment.

The object-glass is thrust outwards by turning the milled head, Q, on the side of the telescope, that being the means of adjusting it to show an object distinctly.

A brass plummet and line are packed in the box with the theodolite, to suspend from a hook under its centre, by which it can be placed exactly over the station from whence the observations are to be taken: likewise, if required, two extra eye-pieces for the telescope, to be used for astronomical observations: the one inverts the object, and has a greater magnifying power, but having fewer glasses possesses more light; the other is a diagonal eyepiece, which will be found extremely convenient when observing an object that has a considerable altitude; the observer avoiding the unpleasant and painful position he must assume in order to look through the telescope when either of the other eye-pieces is applied. A small cap containing a dark coloured glass is made to apply to the eye-end of the telescope, to screen the eye of the observer from the intensity of the sun's rays, when that is the object under observation. A magnifying glass mounted in a horn frame, a screwdriver, and a pin to turn the capstan-screws for the adjustments, are also furnished with the instrument.

The Adjustments.

The first adjustment, is that of the line of collimation; that is, to make the interscction of the cross wires coincide with the axis of the cylindrical rings on which the telescope turns: it is known to be correct, when an eye looking through the telescope observes their intersection continue on the same point of a distant object during an entire revolution of the telescope. The usual method of making this adjustment is as follows:

First, make the centre of the horizontal wire coincide with some well-defined part of a distant object; then turn the telescope half round in its Y's till the level lies above it, and observe if the same point is again cut by the centre of the wire; if not, move the wire one half the quantity of deviation, by turning two of the screws at m, (releasing one, before tightening the other,) and correct the other half by elevating or depressing the telescope; now if the coinci-
dence of the wire and object remains perfect in both positions of the telescope, the line of collimation in altitude or depression is correct, but if not, the opcration must be repeated carefully, until the adjustment is satisfactory. A similar proceeding will also put the vertical linc correct, or rather, the point of intersection, when there are two oblique lines instead of a vertical one.

The second adjustment is that which puts the level attached to the telescope parallel to the rectified line of collimation. The clips, $i i$, being open, and the vertical arc clamped, bring the air-bubble of the level to the centre of its glass tube, by turning the tangentscrew, P; which done, reverse the telescope in its Y 's, that is, turn it end for end, which must be done carefully, that it may not disturb the vertical arc, and if the bubble resume its former situation in the middle of the tube, all is right; but if it retires to one end, bring it back one half, by the screw f, which elevates or depresses that end of the level, and the other half by the tangentscrew, P ; this process must be repeated until the adjustment is perfect; but to make it completely so, the level should be adjusted laterally, that it may remain in the middle of the tube when inclined a littlc on either side from its usual position immediately under the telescope, which is effected by giving the level such an inclination, and if necessary turning the two lateral screws at g; if making the latter adjustment derange the former, the whole operation must be carefully repeated.

The third adjustment is that which makes the azimuthal axis, or axis of the horizontal limb, truly vertical.

Set the instrument as nearly level as can be done by the eye, fasten the centre of the lower horizontal limb by the staff-head clamp, H, leaving the upper limb at liberty, but move it till the telescope is over two of the parallel plate-screws; then bring the bubble of the level under the telescope, to the middle of the tube, by the screw P ; now turn the upper limb half round, that is 180°, from its former position; then, if the bubble returns to the middle, the limb is horizontal in that direction; but if otherwise, half the difference must bc corrected by the parallel plate-screws over which the telescope lies, and half, by elevating or depressing the telescope, by turning the tangent-screw of the vertical arc; having done which, it only remains to turn the upper limb forward or backward 90°, that the telescope may lie over the other two parallel platescrews, and by their motion set it horizontal. Having now levelled the limb-plates by means of the telescope level, which is the most sensible upon the instrument, the other air-bubbles fixed upon the vernicr plate, may be brought to the middle of their tubes, by merely giving motion to the screws which fasten them in their places.

The vernier of the vertical arc may now be attended to ; it is cor rect, if it points to zero when all the foregoing adjustments are perfect; and any deviation in it is easily rectified, by releasing the screws by which it is held, and tightening them again after having made the adjustment: or, what is perhaps better, note the quantity of deviation as an index error, and apply it, plus or minus, to each vertical angle observed. This deviation is best determined by repeating the
observation of an altitude or depression in the reversed positions, both of the telescope and the vernicr plate: the two rcadings will have equal and opposite crrors, one half of their diffcrence being the index error. Such a method of observing angles is decidedly the best, since the mcan of any equal number of observations taken with the telescope rcversed in its Y's, must be free from the effects of any error that may exist in the adjustment of the vernier, or zero of altitude.

The theodolite, as constructed in the manner we have described, is not inconveniently heavy, as the diameter of the horizontal limb seldom exceeds five inches; but when the diameter is increased, the other parts must be made proportionably large and strong, and the instrument becomes too weighty and cumbersome to be easily carried from station to station. The object of increasing the dimensions, is to enable the instrument to furnish more accurate results, by applying a telescope of greater power, and by a morc minute subdivision of the graduated arcs. With the increase of size, a small variation takes place in the construction, principally consisting in the addition of a second telescope, and in the manner of attaching the supports, K and L, (page 8) to the horizontal limb, to afford the means of adjusting the horizontal axis, and of course, making the telescope and vertical arc move in a vertical plane. In the smaller instruments this is done by construction, but in the larger ones, the supports, K and L , are attached to a stout frame, which also carries the compass-box, instead of being fixed, as represented in our figure, to the upper horizontal plate. The frame is attached to the limb by three capstan-headed screws forming an equilateral triangle, two of them lying parallel to the horizontal axis, and the third in the direction of the telescope; the adjustment is made by means of these screws. To prove its accuracy, set up the theodolite in such a situation that some conspicuous point of an elevated building may be seen through the telescope, both directly and by reflcction, from a basin of water, or, what is better, of oil or quicksilver. Let the instrument be very correctly levelled, and if, when a vertical motion is given to the telescope, the cross-wires do not cut the object seen, both directly and by reflection, it is a proof that the axis is not horizontal; and its correction is effected by giving motion to the screws above spoken of, which are at right angles to the telescope, or in the direction of the horizontal axis. The third screw, or that which is under the telescopc, serves for adjusting the zero of altitudc, or vernier of the vertical arc.

A second telescope is sometimes attached to the instrument beneath the horizontal limb; it admits of being moved, both in a vertical and horizontal plane, and has a tangent-screw attached for slow motion: its usc is to detect any accidental derangement that may occur to the instrument whilst observing, which may be done by it in the following manner. After lcvelling the instrument, bisect some very remote object with the cross-wires of this second telescope, and clamp it firm ; if the instrument is steady, the bisection will remain permanent whilst any number of angles are measured, and by examining the bisection from time to time, during the opȩra-
tion at the place where the instrument is sct up, any error arising from this cause may be detccted and rectified.

At the suggestion of Captain Everest, surveyor-general of India, several small theodolites, differing considerably in construction from that which we have been describing, have lately been made by Messrs. Troughton and Simms, for the great Indian survey. In principle they are similar to the theodolites of much larger dimensions, and consequently the whole of their essential adjustments are made in the same manner. We shall here give a short description of this instrument, with the particulars of its adjustments, which must be understood as equally applicable to the larger theodolites which are usually employed in extensive trigonometrical operations.

The horizontal circle (or limb) of this instrument consists of one plate only, which, as usual, is graduated at its circumference. The index is formed with four radiating bars, having verniers at the extremities of three of them, for reading the horizontal angles, and the fourth carries a clamp to fasten the index to the edge of the horizontal limb, and a•tangent-screw for slow motion. These are connected with the upper works which carry the telescope, and turning upon the same centre, show any angle through which the telescope has been moved. The instrument has also the power of repeating the measurement of an angle; for the horizontal limb being firmly fixed to a centre, moveable within the tripod support, and governed by a clamp and tangent-screw, can be moved with the same delicacy, and secured with as much firmness, as the index above it. Large theodolites, when required, have the power of repeating given them, by means of a particular kind of stand, called a repeating table.

The tripod support, which forms the stand of the instrument, has a foot-screw at each extremity of the arms which form the tripod; the heads of the foot-screws are turned downwards, and have a flange (or shoulder) upon them, so that when they rest upon a triangular plate fixed upon the staff-head, another plate locks over the flange, and being acted upon by a spring, retains the whole instrument firmly upon the top of the staff, which is similar to that of the theodolite represented at page 8 . The great advantage of the tripod stand is, that it can easily be disengaged from the top of the staff, and placed upon a parapet or other support, in situations where the staff cannot be used.

The telescope is mounted in the manner of a transit instrument, that is, the horizontal axis and the telescope form one piece, the axis crossing the telescope about its middle, and terminating at each extremity in a cylindrical pivot. The pivots rest upon low supports, carried out from the centre, on each side, by a flat horizontal bar, to which a spirit-level is attached for adjusting the axis to the horizontal plane. The vertical angles are read off on two arcs of circles which have the horizontal axis as their centre, and being attached to the tclescope, move with it in a vertical plane. An index, upon the same centre, carries two verniers, and it has a spirit-level attached to it, by which the index can be set in a
horizontal position, so that whatever position the telescope, and consequently the graduated arcs, may have when an observation is made, the mean of the two readings will denote the elevation or depression of the object observed, from the horizontal plane.

The following are the adjustments of this instrument : first, to set the instrument level; to accomplish this, bring the spirit-bubble attached to the horizontal bar in a direction parallel to two of the foot-screws, and by their motion cause the air-bubble to assume a central position in the glass tube; then turn the telescope, level, \&c. half round, and if the bubble is not central, correct half the deviation by raising or lowering one end of the level itself, and the other half by the foot-screws, which in this instrument perform an office similar to that of the parallel plate-screws of the theodolite already described. Having perfected this part, turn the telescope a quarter round, and the level will be over the third foot-screw, which must be moved to set the level correct, and this part of the adjustment will be complete.

The line of collimation must be next attended to : direct the telescope to some well-defined object, and make the vertical wire bisect it; then turn the axis end for end, an operation which of course inverts the telescope, and if the object be not now bisected by the vertical wire, correct half the deviation by the collimating screws at the eye-end of the telescope, and the other half by giving motion in azimuth to the instrument, and this must be repeated till the adjustment is satisfactorily accomplished.

Finally, for the zero of altitude. Take the altitude or depression of an object with the vertical sector in reversed positions; half the sum will be its true altitude, or depression, and to this, let the verniers be set. Again carefully direct the telescope to the object, making the bisection by the screws which retain the index in an horizontal position, and finally correct the level by the adjusting screws at one of its ends.

The Method of Observing with the Theodolite.

In describing the use of the theodolite, it is not our intention to enter upon an account of the different ways in which it is applied to the purposes of land-surveying, since we do not profess to write a treatise upon that subject. Confining ourselves therefore to the manner of measuring angles by its assistance, we observe, that, the instrument being placed exactly over the station from whence the angles are to be taken, by means of the plumb-line suspended from its centre, it must be set level by the parallel plate-screws, $b b, \& c$. bringing the telescope over each pair alternately; one must be unscrewed while its opposite one is screwed up, until the two spiritlevels on the vernier plate steadily keep their position in the middle of their tubes while the instrument is turned quite round upon its staff-head, when it will be ready for commencing operations. (We are now supposing that the adjustments before described have been carefully examined and rectified, otherwise the observations will be good for nothing.) First, clamp the lower
horizontal limb firm in any position, and direct the telescope to one of the objects to be observed, moving it till the cross-wires and object coincide, then clamp the upper limb, and by its tangentscrew make the intersection of the wires nicely bisect the object; now read off the two verniers, the degrees, minutes, and seconds of (either) one, which call \mathbf{A},* ${ }^{*}$ and the minutes and seconds only of the other; which call B, and take the mean of the reading thus :-

$$
\begin{aligned}
& \mathrm{A}=\begin{array}{lll}
142 & 3 & 36 \\
30
\end{array} \\
& \mathrm{~B}=, \quad 37 \quad 0 \\
& \text { Mean }=1423645
\end{aligned}
$$

Next, release the upper plate, and move it round until the telescope is directed to the second object (whose angular distance from the first is required,) and clamping it, make the cross-wires bisect this object, as was done by the first; again read off the two verniers, and the difference between their mean, and the mean of the first reading, will be the angle required.

Some persons prefer making their first reading $=$ zero, by clamping the upper to the lower plate at 360°, and bisecting the first object by the clamp and slow motion of the lower limb; then their second reading will be the absolute angle subtended by the two objects: but as both verniers seldom read exactly alike, \uparrow the mean of them should still be taken, unless one vernier alone is used, which should never be the case; therefore it matters not at what part of the lower, the upper limb is clamped, provided the angle is read off, every time an object is bisected, for the difference between any two readings will be the angles subtended by the objects observed.

It would appear from the above statement, that it is not necessary for the lower horizontal plate to have any motion at all, which is certainly the case when angles are simply to be measured; but its use is important, as it gives us the means of repeating the measure of any angle we may wish to determine with great accuracy, it being evident that a mean of a number of observations will give a more correct result than a single one. To repeat an angle, therefore, after taking the second reading as above directed, leave the upper plate clamped to the lower, and release the clamp of the latter; now move the whole instrument (bodily) round towards the first object, till the cross-wires are in contact with it; then clamp the lower plate firm, and make the bisection with the lower tangentscrew. Leaving it thus, release the upper plate, and turn the

[^1]telescope towards the second object, and again bisect it by the clamp and slow motion of the upper plate. This will complete one repetition, and if read off, the difference between this and the first reading will be double the real angle. It is, however, best to repeat an angle four or five times; then the difference between the first and last readings (which are all that it is nccessary to note) divided by the number of repetitions will be the angle required.

The magnetic bearing of an object is taken, by simply reading the angle pointed out by the compass-ncedle, when the object is bisected; but it may be obtained a little more accurately by moving the upper plate (the lower one being clamped) till the needle reads zero, at the same time reading off the horizontal limb; then turning the upper plate about, bisect the object and read again; the difference between this reading and the former will be the bearing required.

In taking angles of elevation or depression, it is scarcely necessary to add, that the object must be bisected by the horizontal wire, or rather by the intersection of the wires, and that after observing the angle with the telescope in its natural position, it should be repeated with the telescope turned half round in its Y's, that is, with the level uppermost: the mean of the two measures will neutralise the effect of any error that may exist in the line of collimation.

The proof of the accuracy of a number of horizontal angles, if they quite surround the station from whence they are taken, is to add them all together, and their sum, if correct, will be 360°. If they are taken at several stations, consider them as the internal angles of a geometrical figure, and the lines connecting the stations as the sides of such figure; then, if the figure has three sides, their sum will $=180^{\circ}$, if four sides, $=360^{\circ}$, if more than four, multiply 90° by double the number of sides, and subtract 360° from the product; the remainder will be the sum of the internal angles.

The altitude and azimuth of a celestial object may likewise be observed with the theodolite, the former being merely the elevation of the object taken upon the vertical arc, and the latter, its horizontal angular distance from the meridian.

THE PLANE-TABLE.

Before the theodolite came into general use, the Plane-table was extensively employed in the practice of surveying; it is still sometimes, though seldom, used in surveying small plots of ground, or (where great accuracy is not required) in forming a sketch map, or laying down the details of a country where the relative situations of the principal conspicuous objects have been previously fixed by triangulation. The expedition with which such work may be performed, by a person who is expert in the use of this instrument, is its chief recommendation.

The construction and size of the plane-table has been varied at different times, to suit both the convenience and intentions of the
surveyor; but the annexed figure is a representation of that which is now in most general use. It is a board, as A, about sixteen inches square, having its upper edge rabbetted, to receive a box-wood frame, B, which being accurately fitted, can be placed on the board in any position, with either face upwards. This frame is intended both to stretch and retain the drawing paper upon the board, which it does by being simply pressed down into its plaee upon the paper, which for this purpose must be cut a little larger than the board,

One face of the frame is divided to 360 degrees, from a centre, C, fixed in the middle of the board, and these are subdivided as minutely as the size of the table will admit. The divisions are frequently numbered each way, to show at sight both an angle and its complement to 360°. There is sometimes a second centre piece, D, fixed on the table, at about a quarter of its width from one of the sides, and at exactly half its length in the other direction. From this centre, and on the other side of the frame, there is graduated 180°; each of these degrees is subdivided to 30 minutes, and numbered $10,20,30, \& e$ both ways, to 180 . The object of these graduations is, to make the plane-table supply the place of the theodolite, and an instrument formerly in use called a semicircle. The reverse face of the frame is usually divided into equal parts, as inches and tenths, for the purpose of ruling parallel lines or squares, and for shifting the paper, when the work requires more than one sheet. G is a compass-box, let into one side of the table, with a dove-tail joint, and fastened with a milled-headed screw, that it may be applied or removed at pleasure. The compass, beside rendering the plane-table capable of answering the purpose of a eircumferentor, is principally useful in setting the instrument up at a new station parallel to any position that it may have had at a former station, as well as a check upon the progress of the work.

The ruler or index, E, is made of brass, as long as the diagonal of the table, and about two inches broad; it has a sloping edge, like that of a Gunter's scale, which is called the fiducial edge. A perpendicular sight-vane, $F \mathrm{~F}$, is fixed to each extremity of the index, and the eye looking through one of them, the vertical thread
in the other is made to bisect any required distant object. Upon the flat surface of the index, there are frequently engraved scales of various kinds, such as lines of equal parts, with diagonal scales, a line of chords, \&c.

To the under side of the table, a centre is attached with a ball and socket, or parallel plate-screws like those of the theodolite, by which it can be placed upon a staff-head; and the table may be set horizontal, by means of a circular spirit-level placed upon it for that purpose.

In preparing the plane-table for use, the first thing to be done is to cover it with drawing paper; the usual method of doing which is the same as that of covering a common drawing board, by damping the under side of the paper, and laying it on the board in an expanded state; press the frame into its place, so that the paper may be squeezed in between the frame and the edge of the table; and the paper shrinking as it dries, assumes a flat surface for the work to be performed upon. There is one great objection however to this mode of putting on the paper, as when it has once been damped and strained, it is easily acted upon by any change in the hygrometrical state of the atmosphere. We therefore prefer putting the paper on dry, taking care to keep it straight and smooth whilst pressing the frame into its place; but it must be acknowledged that this cannot be done so nicely as when it is damped. We have been informed, that if the under side of the paper be covered with the white of an egg well beat up, it may be laid on the board with the greatest nicety, and that when so prepared it is not easily affected by atmospheric changes.

When the survey has been carried to the edge of the paper on the table, and there is occasion to extend the operation further, another sheet must be substituted; but before removing the old one, a line should be drawn on it, through some particular stations or points of the survey that can be made common to both sheets of paper; then by drawing a similar line upon the new sheet, and transferring to this line the points or stations that are upon the line in the former sheet, as well as the direction of the last station lines, the survey may be renewed and continued in the same manner, from sheet to sheet, till the whole is completed. In drawing the corresponding line upon the second sheet, it is necessary to pay due regard to the general direction of the future survey, that the line may be so drawn as to admit the greatest possible quantity of work into each sheet of paper.

Such is the description of the plane-table as formerly, and as now generally constructed; but for our own use we could dispense with the graduations on the box-wood frame altogether, except perhaps those of equal parts, which are sometimes useful when shifting the paper. Indeed, in our method of using the instrument, a plain board made of well-seasoned but soft wood (as pine or cedar) to admit readily of a fine pin or needle being fixed in it, would, with the compass-box, answer every purpose; an we should prefer pasting or glueing, a thick sheet of drawing paper or fine pasteboard over the surface of the table, as the errors caused by changes in the moisture of the air would then be greatly diminished. A fair copy
of the plan can be afterwards made out at leisure, and if one board is not sufficient to contain the whole of the survey, others similarly prepared, and adapted to the same staff-head, may be provided, to continue the work.

Having explained the general construction of the instrument, we shall show the mamer of using it by means of an example.

In the above diagram, let the points marked A B C, \&c., be a few of an extensive series of stations, either fixed or temporary, the relative situations of which are required to be laid down upon the plan. Select two stations, as I and K, (considerably distant from each other,) as the extremities of a base line, from which the greatest number of objects are visible; then, if the scale to which the plan is to be drawn is fixed, the distance, I K, must be accurately measured, and laid off upon the board to the required scale; otherwise a line may be assumed to represent that distance; and at some subsequent part of the work the value of the scale thus assumed must be determined, by measuring a line for that purpose, and comparing the measurement with its length, as represented on the plan.

Set up the instrument at one extremity of the base, suppose at I, and fix a needle in the table at the point on the paper representing that station, and press the fiducial edge of the index gently against the needle. Turn the table about until the meridian line of the compass-card coincides with the direction of the magnetic needle, and in that position clamp the table firm. Then, always
keeping the fiducial edge of the index against the needle, direct the sights to the other station, K, and by the side of the index draw a line upon the paper, to represent the base, I K; when, if the scale is fixed, the exact length must be laid off, otherwise the point, K, may be assumed at pleasure on the line so drawn.

But it is sometimes necessary to draw the base-line first, when required, on some particular part of the board, so as to admit of the insertion of a greater portion of the survey. When this is the case, the index must be laid along the line thus drawn, and the table moved till the further end of the base line is seen through both the sights; then fix the table in that position, and observe what reading on the compass-card (or bearing) the needle points to, for the purpose of checking the future operations, and also for setting the table parallel to its first position, wherever it may afterwards be set up. It should be observed, that in placing it over any station, that spot on the table representing such station, and not the centre of the table, should be over the station on the ground: it may be so placed by dropping a plumb-line from the corresponding point on the under side of the table.

Having fixed the instrument and drawn the base line, move the index round the point I, as a centre, direct the sights to the station A, and keeping it there, draw the line I A along the fiducial edge of the index. Then direct in the same manner to B, and draw the line I B ; and so proceed with whatever objects are visible from the station, drawing lines successively in the direction of C D E, \&c., taking care that the table remains steady during the operation.

This done, remove the instrument to the station K , and placing the edge of the index along the line I K, turn the table about till the sights are directed to the station I, which if correctly done, the compass-needle will point to the same bearing as it did at the former station (in our example it was set to the meridian.) Now remove the needle from I, and fix it in the point. K; lay the edge of the index against the needle, and direct the sights in succession to the points A B C, \&c. drawing lines from the point K , in their several directions, and the intersection of these lines, with those drawn from the point I, will be their respective situations on the plan.

To check the accuracy of the work, as well as for extending the survey beyond the limits of vision at I and K, the table may be set up at any one or more of the stations thus determined, as at \mathbf{E} : the needle being now fixed in the point E on the board, and the edge of the index placed over E and I (or K,) the table may be moved round till the station I is seen through both the sights, and then clamped firm : the compass will now again, (if all be correct) point out its former bearing, and any lines drawn from E, in the direction of A B C, \&c. in succession, will pass through the intersection of the former lines denoting the relative places of those objects on the board; but should this not be the case with all, or any of the lines, it is evident that some error must exist, which can be detected only by setting the instrument up and performing similar operations at other stations.

Having a number of objects laid down upon the plan, the situation of any particular spot, as the bend of a road, \&c. may at once be determined, by setting the instrument up at the place, and turning the table about till the compass has the same bearing as at any one of the stations. Clamp the table firm, and it will now be parallel to its former position, if no local attraction prevents the magnetic needle from assuming its natural position at the different stations. Fix a needle in the point representing one of the stations, and resting the edge of the index against it, move the index till the station itself is seen through both the sights, and then draw a line on that part of the paper where the point is likely to fall. Remove the needle to another point or station on the board, and resting the index against it, direct the sights to the corresponding station on the ground, and draw a line along the edge of the index: the point where this line intersects the last, will be the situation on the paper of the place of the observer. But, as a check upon the accuracy of the work, a third or even a fourth line should be drawn in a similar manner in the direction of other fixed points, and they ought also to intersect in the same point.

In this manner the plane-table may be employed for filling in the details of a map: setting it up at the most remarkable spots, and sketching by the eye what is not necessary should be more particularly determined, the paper will gradually become a representation of the country to be surveyed.

LEVELLING INSTRUMENTS.

THE Y SPIRIT-LEVEL.

The above figure represents this instrument; it has an achromatic telescope, mounted in Y's like those of the theodolite, and is furnished with a similar system of cross wires for determining the
axis of the tube, or line of collimation. By turning the milledheaded screw, A, on the side of the telescope, the internal tube, a, will be thrust outwards, which carrying the object-glass, it is by this means adjusted to its focal distance, so as to show a distant object distinctly.

The tube, c c, carrying the spirit-bubble, is fixed to the under side of the telescope by a joint at one end and a capstan-headed screw at the other, which sets it parallel to the optical axis of the telescope; at the opposite end is another screw, e, to make it parallel in the direction sidewise. One of the Y's is supported in a socket, and can be raised or lowered by the screw B, to make the telescope perpendicular to the vertical axis. Between the two supports is a compass-box, C, (having a contrivance to throw the magnetic needle off its centre when not in use): it is convenient for taking bearings, and is not necessarily connected with the operations of levelling, but extends the use of the instrument, making it a circumferentor. The whole is mounted on parallel plates and three legs, the same as the theodolite.

It is evident, from the nature of this instrument, that three adjustments are necessary. First, to place the intersection of the wires in the telescope, so that it shall coincide with the axis of the cylindrical rings on which the telescope turns; secondly, to render the level parallel to this axis; and lastly, to set the telescope perpendicular to the vertical axis, that the level may preserve its position while the instrument is turned quite round upon the staves.

To Adjust the Line of Collimation.

The eye-piece being drawn out to see the wires distinctly, direct the telescope to any distant object, and by the screw, A, adjust to distinct vision; * bring the intersection of the cross wires to coincide with some well-defined part of the object, then turn the telescope round on its axis as it lies in the Y's, and observe whether the coincidence remains perfect during its revolution: if it does, the adjustment is correct, if not, the wires must be moved one-half the quantity of error, by turning the little screws near the eye-end of the telescope, one of which must be loosened before the opposite one is tightened, which, if correctly done, will perfect this adjustment.

T'o set the Level parallel to the Line of Collimation.

Move the telescope till it lies in the direction of two of the parallel plate-screws, (the clips which confine the telescope in the Y's being laid open) and by giving motion to the screws, bring the air-

[^2]bubble to the middle of the tube, shown by the two scratches on the glass. Now reverse the telescope carefully in its Y's, that is, turn it end for end; and should the bubble not return to the centre of the level as before, it shows that it is not parallel to the optical axis, and requires correcting. The end to which the bubble retires must be noticed, and the bubble made to return one-half the distance by the parallel plate-screws, and the other half by the capstan-headed screw at the end of the level, when, if the halves have been correctly estimated, the air-bubble will settle in the middle in both positions of the telescope. This and the adjustment for the collimation generally require repeated trials before they are completed, on account of the difficulty in estimating exactly half the quantity of deviation.

To set the Telescope perpendicular to the vertical Axis.

Place the telescope over two of the parallel plate-screws, and move them (unscrewing one while screwing up the other) until the air-bubble of the level settles in the middle of its tube; then turn the instrument half round upon the vertical axis, so that the contrary ends of the telescope may be over the same two screws, and if the bubble again settles in the middle all is right in that position; if not, half the error must be corrected by turning the screw, B, and the other half by the two parallel plate-screws over which the telescope is placed. Next turn the telescope a quarter round, that it may lie over the other two screws, and make it level by moving them, and the adjustment will be complete.

Before making observations with this instrument, the adjustments should be carefully examined and rectified, after which the screw B should never be touched; the parallel plate-screws alone must be used for setting the instrument level at each station, and this is done by placing the telescope over each pair alternately, and moving them until the air-bubble settles in the middle. This must be repeated till the telescope can be moved quite round upon the staff-head, without any material change taking place in the bubble.

A short tube, adapted to the object-end of the telescope, will occasionally be found useful in protecting the glass from the intensity of the sun's rays, and from damp in wet weather.

TROUGHTON's IMPROVED LEVEL.

This modification of the instrument has a very decided advantage over the Y level, inasmuch, as in its construction it is more compact, and the adjustments when once made are less liable to be deranged; although, to a person unused to the instrument, they will at first appear more tedious to accomplish.

The telescope, A B, (see mext page) rests upon the horizontal bar, $a b$, which turns upon the staff-head (similar to the one employed in the Y level and the theodolite.) On the top of the telescope, and partly imbedded within its tube, is the spirit-level, c d, over which is supported the compass-box, C, by four small pillars; thus ad-
mitting the telescope to be placed so rlose to the horizontal bar, $a b$, that it is much more firm than in the former instrument. The bubble of the level is sufficiently long for its ends to appear on both sides of the compass-box; and it is shown to be in the middle by its coinciding with scratches made on the glass tube as usual.

The wire plate (or diaphragm) is generally furnished with three threads, two of them vertical, between which the station-staff may be seen; and the third, by which the observation is made, is placed horizontally. Sometimes a pearl micrometer-scale is fixed perpendicularly on the diaphragm instead of wires. This consists of a fine slip of pearl, with straight edges, one of which is divided into a number of parts, generally hundredths or two-hundredths of an inch; and it is so fixed, that the divided edge intersects the line of collimation, the central division indicating the point upon the staff where the observed level falls. The scale itself may be employed in approximately determining distances, as will be shown hereafter. It is also very useful in roughly estimating equal distances from the instrument in any direction. Thus, if a man in attendance holds up a staff at any distance, and the observer, looking at it through the telescope, notices how many divisions of the micrometer-scale the staff appears to subtend, then, if the man moves in any other direction, retiring until the same staff appears to cover an equal number of divisions, he will be at the same distance from the instrument as before.

The telescope is generally constructed to show objects inverted; and as such a telescope requires fewer glasses than one which shows objects erect, it has the advantage in point of brilliancy; and when an observer is accustomed to it, the apparent inversion will make no difference to him. A diagonal eye-piece, however, generally accompanies the instrument, and by it objects can be seen in their natural position. A cap is adapted to the object-end of the telescope, to screen the glass from the rays of the sun, or from the rain: when the cap is used, it should be drawn forwards as much as possible.

The requisite adjustments for this instrument are the same as those of the Y level; viz. that the line of collimation and the level be parallel to each other, and that the telescope be exactly perpendicular to the vertical axis; or in other words, that the spirit-bubble preserve- its position while it is turned round horizontally on the staff-head. The adjustment of the level is effected by correcting half the observed error by the capstan-screws, e, f, which attach the telescope to the horizontal bar, and the other half by the parallel plate-screws: the capstan-screws, e, f, have brass covers to defend them from injury or accidental disturbance, but admit their adjustment when necessary.

The spirit-level itself has no adjustment, being firmly fixed in its cell by the maker, and therefore the line of collimation must be adjusted to it, by means of two screws, near the eye-end of the telescope; the manner of doing this is as follows:-Set up the instrument on some tolerably level spot of ground, and, after levelling the telescope by the parallel plate-screws, direct it to a staff held by an assistant at some distance (from ten to twenty chains); direct him by signals to raise or depress the vane, until its wire coincides with the horizontal wire of the telescope (or central division of the micrometer scale) : now measure the height of the centre of the telescope above the ground, and also note the height of the vane on the staff; let, for example, the former be four feet and the latter six, their difference shows that the ground over which the instrument stood is two feet higher than where the staff is placed. Next make the instrument and staff change places, and observe in the same manner as before, and if it gives the same difference of level, the instrument is correct; if otherwise, take half the difference between the results, and elevate or depress the vane that quantity, according as the last observation gives a greater or less difference than the first. Again, direct the telescope to the staff, and make the coincidence of the horizontal wire and that on the vane perfect, by turning the collimation-screws.

Suppose the instrument to be set up at A, and the staff at B, C D will be the line of sight, A C the height of the instrument $=4$ feet, BD the height of the vane $=6$ feet; their difference $=2$ feet. On removing the instrument to B , and the staff to $\mathrm{A}, c d$ will be the line of sight, giving for the difference of height between $\mathrm{B} c$ and $\mathrm{A} d=2$ feet, as before, if the adjustment is correct; but if it is incorrect, the direction of the line of sight will be either above or below $c d$, as is shown by the dotted lines. If above it, the dif-
fcrence will be greater than two feet, and the vane must be lowercd half that quantity, and the collimation-screws moved to correct the other half; if below the line $c d$, the difference will be less than two feet, and the vane must be raiscd half that quantity, \&c.

It would be advisable, when the instrument is in perfect adjustment, to fix a level mark on some permanent spot, as a wall, \&c. to which the level may be from time to time referred, by simply setting it up at a certain height from the ground, and looking through the telescope at the mark; any error in collimation will be immediately detected, and may be corrected by the collimationscrews only.

The Method of approximately determining Distances by the Micrometer Scale.

First ascertain the value of the divisions on the scale, and arrange them in a tabular form; to do which measure off one chain's length from the object-end of the telescope, and having set up a staff there, observe how many divisions and tenths of a division on the scale are occupied by the whole length of the staff, or any part of it. Do the same when it is placed at 2, 3, 4, \&c. chains, as far 10 , and place the results in a table.

Now to determine any distance, set up the same staff, or one of equal length, at the distant spot; observe how many divisions and tenths on the scale its whole length subtends, and take from your table the nearest number of divisions and parts, which make the first term of an inverse proportion, the second term is the number of chains corresponding thereto, the third the observed divisions and parts, and the fourth will be your answer, viz. the distance required.

In making the observations, great care is required in estimating the number of divisions, \&c. subtended on the scale by the distant staff, as an error of half a divsion would occasion a considerable error in the final result.

OF THE LEVELLING-STAVES.

Two mahogany station-staves generally accompany the spirit-level; they consist of two parts, capable of being drawn out when considerable length is required. They arc divided into feet and hundredths, or feet, inches, and tenths, and have a sliding-vane, with a wire placed across a square hole in the centre, as shown in the annexed figure: this vane being raised or lowered by the assistant, until the cross wire corresponds with the horizontal wire of the telescope, the height of the wire in the vane, noted on the staff, is the height of the apparent level above the ground at that place.

When both the staves are used, they should be set up at equal distances on each side of the spirit-level: the difference of the heights of their vanes will be the absolute difference of level between the two stations. But when one staff only is employed, the difference between the height of the vane and the height of the centre of the telescope of the instrument, will be the apparent difference of level, which, if the distance between the staff and instrument is great, requires to be corrected for the curvature of the carth. The method of computing this correction will be presently shown.

TROUGHTON's LEVELLING-STAVES.

These consist of three sliding rods of mahogany, each about four feet long, and they are divided into feet, \&c. as those which have just been described. The sliding vane is circular, having at the lower edge a square aperture, one side of which is bevelled; and a line on the bevelled side denotes the reading of the staff. The face of the vane is made of white holley, with an inlaid lozenge of ebony, forming at once a conspicuous object, and one easy of bisection. A circular spirit-level is attached to the top of the hindermost rod, to guide the assistant in holding it pendicular.

In levelling, the vane must be moved up or down, until the horizontal wire of the telescope bisects the acute angles of the lozenge, or in other words, passes through its horizontal extremities, as
 shewn in the figure.

The line on the bevelled edge at a (as before stated) denotes the reading of the staff; therefore a piece equal in length to the distance, $a b$, is cut off from the bottom of the staff, or rather the divisions commence at that number of inches above 0 .

When the observation requires that the vane be raised to a greater height than four feet, the object is effected by leaving it at the summit of the rod in front, and then sliding this rod up upon the one which is immediately behind it, this will carry the vane up to eight feet; and from that to twelve may be obtained by similarly sliding the second upon the third rod. In the latter steps, the reading is at the side of the staff, the index division remaining stationary, and at four feet from the ground, a circumstance which affords greater facility in reading off.

ON LEVELLING.

" Levelling is the art of finding a line parallel to the horizon at one or more stations, to determine the height or depth of one
place with respect to another. Two or more places are on a true level, when they are equally distant from the centre of the earth. Also, one place is higher than another, or above the level of it, when it is further from the centre of the earth; and a line equally distant from that centre in all its parts, is called a line of truc level. Hence, because the earth is round, that line must be a curve, and make a part of the earth's circumference, or at least be parallel to it; as the line I B C F G, which has all its points equally distant from A, the centre of the earth; considering it as a perfect sphere.
"But the line of sight, B D E, \&c. given by the operation of levels, called the apparent line of level, is a tangent, or a right line perpen-
 dicular to the semidiameter of the earth at the point of contact B, rising always higher above the truc line of level, the further the distance is. Thus, C D is the height of the apparent level above the true level, at the distance B C or B D; also FE is the excess of height at F; G H, that at G, \&c. The difference, it is evident, is always equal to the excess of the secant of the arc of distance above the radius of the earth.
" Now the difference C D, between the true and apparent level at any distance BC or BD , may be found thus: by a well known property of the circle, 2 A C + C D : B D : : B D : C D. But, because the diameter of the earth is so great with respect to the line $C D$, at all distances to which an operation of levclling commonly extends, 2 AC may be taken for $2 \mathrm{AC}+\mathrm{CD}$ in this proportion without sensible error. The proportion then will be $2 \mathrm{AC}: \mathrm{BD}:: \mathrm{BD}: \mathrm{CD}$, whence DC is $=\frac{\mathrm{BD} \mathrm{D}^{2}}{2 \mathrm{AC}}$ or $\frac{\mathrm{BC} 2}{2 \mathrm{AC}}$ nearly; that is, the difference between the true and apparcnt lcvel, is equal to the square of the distance between the places, divided by the diamcter of the carth; and consequently it is always proportional to the square of the distance."

Now the diameter of the earth being nearly $41,796,480$ feet, or 7916 miles; if we first take $\mathbf{B C}$ equal one milc, then the excess $\frac{\mathrm{BC} 2}{2 \mathrm{AC}}$ is $\frac{1}{7916}$ of a mile, which is 8,004 inches, for the height of the apparent above the true level at the distancc of one milc. Otherwise, if to the arithmetical complement of the logarithm of the diameter, or 2,3758603 , we add double the logarithm of the distance in feet, we shall obtain the logarithm of the difference of the true and apparent level in decimals of the same, to be subtracted from the height given by the instrument to reduce it to the true level. In this manner, the corrections have been computed contained in Table I., which shows the difference in decimals of a foot between the true and apparent level, corresponding to any distance from 20 to 5000 feet.

The usual mcthod of obtaining the difference of level between any two places, is by a tangent whose point of contact is exactly in the middle of the level line: this method may be practised without
regarding the difference between the apparent and true level; for it is clear, that if from the same station, two points of sight be observed, equally distant from the cye of the observer, they will be also equidistant from the centre of the earth. Thus, let the instrument be placed at B, (see the last figure), equally distant from the station staves at \mathbf{C} and I, the two points of sight, D and \mathfrak{J}, marked upon them by the tangent, J D (or J H), will be level points, and the difference in height between C D and I J, will show how much the one place is higher than the other.

Suppose it were required to determine the difference of level between the two places A and B. First set up your instrument at any

convenient distance from A in a line towards B, then having a staff set up perpendicular at A, measure the distance, and erect another staff beyond you, in the same line, and at the same distance, as the first, that the instrument may be equally distant from each staff; then direct the telescope towards the first staff, and sign to a person holding it, to move the vane higher or lower, until the wire placed across it coincides with the intersection of the cross wires in the telescope; he is then to note the height marked by the wire on the staff, which suppose to be 2 fect 3.5 inches. Now turn the telescope about, and point it towards the second staff, and direct that its vane be raised or lowered, as the former was, until the cross-wire is intersected by the wires of the telescope; it must then be likewise read off; and suppose the reading to be $6 \mathrm{ft} .4,3$ inches.

Having completed the first level, let the first staff take the place of the second, and the second to be set up further on in the required direction, as at B. Then, midway between them, set up your level, and direct it to the first staff, and then to the second, making the necessary observations, as before, when the staves being read off the operation is completed. Let us suppose the first to read 3 fect 6,4 inches, and the second, 5 feet 2, 6 inches; the work will then stand thus:-

Reading of the first staff (or back station)	Reading of the second staff (or forward station)
ft. in.	ft. in.
First reading . . 23 , 5	First reading . . 64,3
Second „, . 36,4	Second , . . . 5 2,6
Sum . 59,9	Sum . 11 6,9

The difference of these sums shows that the ground at B, is 5 feet 9 inches lower than at A.

By continuing the above process, the operation of levelling may be carried on for many miles, the relative height of every station being determined. Also, if the height from the ground of the centre of the levelling telescope be taken at each place at which it is set up, the relative height of that spot will also be determined.

The following is the form of a levelling field-book, calling the
the first staff the back station, and the second staff the forward station; when, the first forward station will become the second back station, the second forward, the third back, \&c.

No. of Station	Back Station.	Height of Instrument.	Distance from Station to Station.	Forward Station.	REMARKS.
1 2	$\begin{array}{\|cc} \text { Feet. Inches. } \\ 2 & 3,5 \\ 3 & 6,4 \end{array}$	$\left\lvert\, \begin{array}{cc} \text { Feet. } & \text { Incties. } \\ 4 & 5,0 \\ 4 & 5,0 \end{array}\right.$	$\begin{aligned} & \text { Feet. } \\ & 530 \\ & 640 \end{aligned}$	Ft. In. $\begin{array}{ll} 6 & 4,3 \\ 5 & 2,6 \end{array}$	

The following is an example when the instrument was placed at unequal distances from the station staves, and the correction applied for the curvature of the earth.

No. of back Station	Back Station.	Dist. of Instrument from Station.	$\begin{aligned} & \text { Correct. } \\ & \text { for } \\ & \text { Curvat. } \end{aligned}$	Height of Instrument.	Forward Station,	Dist. of Instrument from Station.	Correct. for Curvat	Remarks
	Ft. In. Dec.	Feet.	[n. Dec.	Ft. In.	Ft. In. D.	Feet.	In. Dec	
1	31,7	1200	0, 413	44	11 2, 6	800	0, 184	
2	6 1, 6	480	0, 066	46	81,7	960	0, 264	
3	1 \%,3	1479	0, 629	43	6 2, 4	1220	0, 49\%	
4	2 4, 8	984	0, 276	47	108,3	2160	1,339	
5	4 8,3	764	0, 166	40	93,8	1190	0,406	
6	0 10, 2	280	0, 022	41	11 \%,3	340	0, 033	
$\%$	7 8, \%	1640	0,772	45	8 2, 1	3100	2, \%59	
8	25,4	660	0, 125	44	43,4	$1 \% 00$	0, 829	
Sum	1290,0	7487	2, 469		69 \%, 6	$114 \% 0$	6, 241	
Cor.	2, 47				6, 24			
	28 9,53				69 1,3			
	Sum of f curvatu	orward are . . .	statio	s,	rrected		$\begin{aligned} & \text { Ft. } \\ & 69 \end{aligned}$	36
	Sum of bac	ck statio	ns				$=28$	53
	Difference	of level,	betwee	n extr	me station	ns,	40	83
	Sum of dis	tances fr	rom th	instr	ument to		Fee	
	back st	tations					$\% 48$	
	Sum of dis	stance to	forwa	rd sta	tions		114	
		Wh	ole dist	ance 1	evelled.		= 1595	

LEVELLING WITH THE THEODOLITE.

The use of the theodolite as a levelling instrument consists in taking a series of angles of elevation and depression along the line,
the section of which is required. This must be done at every point where the inclination of the line changes, and the distance measured between the instrument and the station-staff. This distance, it will be evident, is the hypotenuse of a right-angled triangle; the perpendicular of which is the difference of level. To insure accuracy, the angles should be observed both forwards and backwards, by making the instrument and staff change places; and a mean of the two measures should be taken as the correct angle. The instrument should be set up (as nearly possible) at a constant height from the ground, and the staff used for the observations should have a fixed vane, or conspicuous mark on it, at exactly the same leight from the ground as the centre of the telescope, which mark must be bisected by the cross-wires in observing. Great care should be taken that the adjustments of the instrument are correct, more particularly that of the line of collimation, and the level attached to the telescope.

With the measured distance, and the observed angle, the difference of level may be computed, by adding to the logarithm of the measured distance, the log sine of the vertical angle, and their sum, rejecting 10 from the index, will be the log. of the difference of level, (in feet or links, as the distance was measured.*) Having a series of elevations and depressions, the final difference of level between the extreme, or any two stations, may be found by simply taking the difference of the sums of the intervening elevations and depressions.

Levelling with the mountain barometer.

The employment of the barometer for the determination of heights, has caused it to become an interesting instrument to the philosopher and the traveller; and many attempts have been made to improve it, and render it portable, that it may be conveyed from place to place, without much inconvenience or risk. The adjoining figure represents the portable barometer as constructed by Mr. Troughton. In the brass box, A, which covers the cistern of mercury near the bottom of the tube, are two slits made horizontally, precisely similar and oppositc each other, the plane of the upper edges of which represents the beginning of the scalc of inches, or zero of the barometer. The screw B, at the bottom, performs a double office; first, it is the means of adjusting the surface of the mercury in the glass cistern to zero, by just shutting out the light from passing between it and the upper edges of the above-named slits; and secondly, by screwing it up, it forces the quicksilver upwards,

[^3]and by filling every part of the tube, renders the instrument portable.

The divided scale on the upper part, is subdivided, by the help of a vernier, to the two-thousandth of an inch. The screw C, at the top, moves a sliding piece, on which the vernier scale is divided, the zerố of which is at the lower end of the piece. In taking the height of the mercury, this sliding piece is brought down and set nearly by the hand, and the contact of the zero of the vernier with the top of the mercurial column is then perfected by the screw C, which moves the vernier the small quantity that may be required, just to exclude the light from passing between the lower edges of the sliding-piece, and the spherical surface of the mercury.

The barometer is attached to the stand by a ring, in which it turns round with a smooth and steady motion, for the purpose of placing it in the best light for reading off, \&c.; and the tripod stand, when closed, forms a safe and convenient packing case for the instrument.

A thermometer is always attached to the lower part of the barometer, to indicate its temperature; while another, detached from the instrument, is employed at the same time, to show the temperature of the surrounding air.

The barometrical method of determining differences of level, is founded upon the principle that the strata of air decrease in density, in a geometrical proportion, when the elevations above the surface of the earth increase in an arithmetical one. Therefore, from the known relation between the densities and the elevations, we can discover the elevations by observations made on the densities by means of the barometer.

Observe at the same time the height of the mercurial columns at both the stations, whose difference of elevation is required, and also the temperature of the instrument by the thermometer attached thereto; and that of the surrounding air by another, called the detached thermometer.*

The computations for deducing the difference of height from these observations, is rendered very easy by means of Table II. which is computed by the formula given by Mr. Baily, in his volume of Astronomical Tables and Formula, and is similar to Table XXXVI. in the same volume, but more extended.

The following is the method of using the Table.
Find in the column headed S the sum of the degrees read on the detached thermometers at the two stations, and take out the corresponding number from the adjoining column, headed A ; next, in the column D , find the difference of the degrees read on the attached thermometers, and take out the opposite number in the column B; lastly, from the column C, take out the number opposite the latitude of the place of observation, found in the column L .

Now, to the number called B, add the log. of the height of the barometer at the upper station, and subtract their sum from the

[^4]log. of the height of the barometer at the lower station, and call the remainder R; then take out the log. of R, and add it to the numbers A and C, and the sum, rejecting tens from the index, will be the log. of the difference of the altitudes of the two stations in feet.

FXAMPLE

The following observations were made in the transit-room of the Royal Observatory, and at the base of the statue of George II. in Greenwich Hospital, latitude $51^{\circ} 28^{\prime}$ to determine the difference of altitude.

Upper Station. Lower Station.

Detached thermometer. $\ldots \ldots$	$\ldots 1^{\circ}$	5	\ldots	\ldots	71°	5
Attached ditto	$\ldots . .$.	70	0	\ldots	70	0
Barometer, mean of 5 obs.	29	$8 \% 0$ inches	30	014 in.		

$$
\mathrm{A}=4.81719
$$

$$
\mathrm{C}=9.99976
$$

\log. of bar. upper station, 1.47524
1.47524
log. of bar. lower station, $1.47 \% 32$

$$
7.31806 \log \ldots \ldots \ldots . \cdot R=0.00208
$$

Sum 2. 13501 log . of 136.46 feet, the diff. of altitude.
The difference of altitude, as obtained by levelling with the spiritlevel, (Phil. Trans. 1831, Part I.) $=135.5 \%$ feet, differing only 0.89 feet from that obtained above. Hence we see to what a degree of accuracy differences of level may be determined by the barometer. The observations should be made simultaneously at both stations, but to do this, two observers and two barometers are required. When there is only one observer, he should, after making his first observations, lose no time in hastening to his second station, to make his observations there; which, if done quickly, and the atmosphere is undergoing no change at the time, will answer nearly as well as if simultaneous observations were made by a barometer at each station.

ASTRONOMICAL INSTRUMENTS.

THE SEXTANT.

It was our intention, before describing the Sextant, to devote some space to an account of Hadley's Quadrant; but as the construction of both instruments is essentially the same, we shall confine ourselves to a description of the sextant and its uses only, as comprehending the other instrument, and performing with
greater correctness all the operation to which the quadrant can be applied. The principle of its construction may be understood from what follows:

Let $A B C$ represent a sextant, having an index, A G, (to which is attached a mirror at A) moveable about A as a centre, and denoting the angle it has moved through, on the arc, $\mathbf{B} \mathbf{C}$; also let the half-silvered (or horizon) glass, $a b$, be fixed parallel to A C; now a ray of light, S A, from a celestial object, S, impinging against the mirror, A , is reflected off at an equal angle, and striking the half-silvered glass at D, is again re-flected to E, where the eye likewise receives through the trans-
 parent part of that glass a direct ray from the horizon. Then the altitude, S A H, is equal to double the angle, C A G, measured upon the limb, B C, of the instrument.

For the reflected angle, B A G (or D A F) = the incident angle, S A I, and the reflected angle, $b \mathrm{DE}=$ the incident $a \mathrm{DA}=\mathrm{DAE}$ $=\mathrm{DEA}$, because $a b$ is parallel to A C. Now, HAI=D FA= ($\mathrm{F} \mathrm{A} \mathrm{E}+\mathrm{FEA}$), and DA E being equal to DEA , it follows that $H A I=(D A E+F A E)$. From HAI and (DAE + FAE) take the equal angles, S A I and D A F, and there remains S A H $=2 \mathrm{FAE}$, or 2 GAC ; or, in other words, the angle of elevation, S A H, is equal to double the angle of inclination of the two mirrors, D G A, being equal to G A C.

Hence the arc on the limb, B C, although only the sixth part of a circle, is divided as if it were 120°, on account of its double being required as the measure of CAB , and it is generally extended to 140°.

The annexed figure represents a sextant of Troughton's construction, having a double frame, A A, connected by pillars, a a, \&c. thus uniting strength with lightness. The arc, B C , is generally graduated to 10^{\prime} of a degree, commencing near the end, C , and it is numbered towards B. The divisions are also continued on the other side of zero, towards C, forming what is called the arc of excess, which is useful in determining the index error of the instrument, as will be explained hereafter. The limb is subdivided by the vernier, E , into $10^{\prime \prime}$, the half of which (or $5^{\prime \prime}$) can be easily estimated: this small quantity is easily distinguishable by the aid of microscope, H, and its reflector, b, which are connected by an arm with the index, I E, at the point, c, round which it turns as a centre, affording the means of examining the whole vernier, the connecting arm being long enough to allow the microscope to pass over the whole length of it.

To the index is attached a clamp to fasten it to the limb, and a tangent-serew, J, (in the plate, the clamp is concealed from view) by which the index may be moved any small quantity, after it is clamped, to render the contact of the objects observed more perfect than can be done by moving it with the hand alone.

The upper end, I, terminates in a circle, across which is fixed the silvered-index glass, F, over the centre of motion, and perpendicular to the plane of the instrument. To the frame at G is attached a second glass, called the horizon-glass, the lower half of which only is silvered: this must likewise be perpendicular to the plane of the instrument, and in such a position that its plane shall be parallel to the plane of the index-glass, F, when the vernier is set to 0° (or zero) on the limb, B C. A deviation from this position constitutes the index error before spoken of.

The telescope is carried by a ring, L, attached to a stem, e, called the up-and-down piece, which can be raised or lowered by turning the milled screw, M : its use is to place the telescope so that the field of view may be bisected by the line on the horizonglass that separates the silvered from the unsilvered part. This is important, as it renders the object seen by reflection, and that by direct vision equally bright; * two telescopes and a plain tube, all adapted to the ring, L, are packed with the sextant, one showing the objects erect, and the other inverting them; the last has a greater magnifying power, showing the contact of the images much better. The adjustment for distinct vision is obtained by sliding the tube at the eye-end of the telescope in the inside of the other; this also is the means of adapting the focus to suit different eyes. In the inverting telescope are placed two wires, parallel to

[^5]each other, and in the middle of the space between them the observations are to be made, the wires being first brought parallel to the plane of the sextant, which may be judged of with sufficient exactness by the eye. When observing with this telescope, it must be borne in mind, that the instrument must be moved in a contrary direction to that which the object appears to take, in order to keep it in the field of view.

Four dark glasses, of different depths of shade and colour, are placed at K, between the index and horizon glasses; also three more at N, any one or more of which can be turned down to moderate the intensity of the light, before reaching the eye, when a very luminous object (as the sun) is observed. The same purpose is effected by fixing a dark glass to the eye-end of the telescope: one or more dark glasses for this purpose generally accompany the instrument. They however are chiefly used when the sun's altitude is observed with an artificial horizon, or for ascertaining the index error, as employing the shades attached to the instrument for such purposes, would involve in the result, any error which they might possess. The handle, which is shown at O , is fixed at the back of the instrument. The hole in the middle is for fixing it to a stand, which is useful when an observer is desirous of great steadiness.

Of the Mdjustments.

The requisite adjustments are the following: the index and ho-rizon-glasses must be perpendicular to the plane of the instrument, and their planes parallel to each other when the index division of the vernier is at 0° on the arc, and the optical axis of the telescope must be parallel to the plane of the instrument. We shall speak separately of eaeh of these adjustments.

To examine the Adjustment of the Index-glass.

Move the index forward to about the middle of the limb, then, holding the instrument horizontally with the divided limb from the observer, and the index-glass to the eye, look obliquely down the glass, so as to see the circular arc, by direct view and by reflection, in the glass at the same time; and if they appear as one continued arc of a circle, the index-glass is in adjustment. If it requires correcting, the arc will appear broken where the reflected and direct parts of the limb meet. This in a well-made instrument is seldom the case, unless the sextant has been exposed to rough treatment. As the glass is in the first instance set right by the maker, and firmly fixed in its place, its position is not liable to alter, therefore no direct means are supplied for its adjustment.

> To examine the Horizon-glass, and set it perpendicular to the Plane of the Sextamt.

The position of this glass is known to be right, when by a sweep with the index, the reflected image of any object passes exactly
over or covers its image, as seen directly; and any error is easily rectified by turning the small screw, i, at the lower end of the frame of the glass.

To examine the Parallelisin of the Planes of the two Glasses, when the Index is set to Zero.

This is easily ascertained; for, after setting the zero on the index to zero on the limb, if you direct your view to some object, the sun for instance, you will see that the two images (one seen by direct vision through the unsilvered part of the horizon-glass, and the other reflected from the silvered part) coincide or appear as one, if the glasses are correctly parallel to each other; but if the two images do not coincide, the quantity of their deviation constitutes what is called the index error. The effect of this error on an angle measured by the instrument is exactly equal to the error itself; therefore, in modern instruments, there are seldom any means applied for its correction, it being considered preferable to determine its amount previous to observing or immediately after, and apply it with its proper sign to each observation. The amount of the index error may be found in the following manner: clamp the index at about 30 minutes to the left of zero, and looking towards the sun, the two images will appear either nearly in contact or overlapping each other; then perfect the contact, by moving the tangent-screw, and call the minutes and seconds denoted by the vernier, the reading on the arc. Next place the index about the same quantity to the right of zero, or on the arc of excess, and make the contact of the two images perfect as before, and call the minutes and seconds on the arc of excess* the reading off the arc; and half the difference of these numbers is the index error; additive when the reading on the arc of excess is greater than that on the limb, and subtractive when the contrary is the case.

example.	
Reading on the arc ", off the arc	3156
	3122
Difference	034
Index error	017

In this case the reading on the arc being greater than that on the arc of excess, the index error, $=1 \%$ seconds, must be subtracted from all observations taken with the instrument, until it be found, by a similar process, that the index error has altered. One observation on each side of zero is seldom considered enough to give the index error with sufficient exactness for particular purposes: it is

[^6]usual to take several measures each way; " and half the difference of their means will give a result more to be depended on than one deduced from a single observation only on each side of zero." A proof of the correctness of observations for index error is obtained by adding the above numbers together, and taking one-fourth of their sum, which should be equal to the sun's semidiameter, as given in the Nautical Almanac. When the sun's altitude is low, not exceeding 20° or 30°, his horizontal instead of his perpendicular diameter should be measured, (if the observer intends to compare with the Nautical Almanac, otherwise there is no necessity); because the refraction at such an altitude affects the lower border (or limb) more than the upper, so as to make his perpendicular diameter appear less than his horizontal one, which is that given in the Nautical Almanac: in this case the sextant must be held horizontally.

To make the Line of Collimation of the Telescope parallel to the Plane of the Sextant.

This is known to be correct, when the Sun and Moon, having a distance of 90° or more, are brought into contact just at the wire of the telescope which is nearest the plane of the sextant, fixing the index, and altering the position of the instrument to make the objects appear on the other wire ; if the contact still remains perfect, the axis of the telescope is in proper adjustment; if not, it must be altered by moving the two screws which fasten, to the up-and-down piece, the collar into which the telescope screws. This adjustment is not very liable to be deranged.

Having now gone through the principle and construction of the sextant, it remains to give some instructions as to the manner of using it.

It is evident that the plane of the instrument must be held in, the plane of the two objects, the angular distance of which is required: in a vertical plane, therefore, when altitudes are measured; in a horizontal or oblique plane, when horizontal or oblique angles are to be taken. As this adjustment of the plane of the instrument is rather difficult and troublesome to the beginner, he need not be surprised nor discouraged, although his first attempts may not answer his expectations. The sextant must be held in the right hand, and as slack as is consistent with its safety, for in grasping it too hard the hand is apt to be rendered unsteady.

When the altitude of an object, the sun for instance, is to be observed, the observer, having the sea horizon before him, must turn down one or more of the dark glasses, or shades, according to the brilliancy of the object; and directing his sight to that part of the horizon immediately beneath the sun, and holding the instrument vertically, he must with the left hand lightly slide the index forward, until the image of the sun, reflected from the index-glass, appears in contact with the horizon, seen through the unsilvered part of the horizon-glass. Then clamp it firm, and
gently turn the tangent-screw, to make the contact of the upper or lower limb of the sun and the horizon perfect, when it will appear a tangent to his circular disc.* If an artificial horizon is employed, the two images of the sun must be brought into contact with each other; but this will be explained when speaking of that instrument. To the angle read off apply the index error, and then add or subtract the sum's semidiameter, as given in the Nautical Almanar, according as the lower or upper limb is observed, to obtain the apparent altitude of the sun's centre. Before we can use this observation for determining the time, the latitude, \&c., it must be further corrected for refraction and parallax, to obtain the true altitude, subtracting the former and adding the latter; and when the sea horizon is employed, a quantity must also be subtracted for the dip, which is unnecessary when the altitude is taken by means of an artificial horizon.

Tables for obtaining the above corrections may be found in Mr. Baily's Astronomical Tables, \&c. in the Requisite Tables, or in any modern work on navigation.

EXAMPLE。

Obs. alt. of the sun's lower limb	61135
Index error	17
Apparent altitude	611248,0
\dagger Sun's semidiameter	+ 1546,9
\{ , parallax	+ 0 4,0
Refraction	034,4
Dip of the horizon, for an elevation of 18 feet, $=$	43,0
True altitude of the sun's centre	605218,7

If the observer is ignorant of the precise moment of the object's being on the meridian, he should, by a slow and gradual motion of the tangent-screw, keep the observed limb in contact with the horizon as long as it continues to rise; and immediately on the altitude's appearing to diminish, cease from observing, and the angle then read on the instrument will be the meridian altitude.

After what has been advanced, little need be said about observing lunar distances, whether of the moon and the sun, or the moon and a fixed star or planet, except that the instrument must be held in

[^7]the plane of the two objects; and it is generally preferable to direct the telescope to the fainter object, particularly if a star, as it can be more easily kept in view when seen directly than it can when seen by reflection. If the brighter object is to the left, the sextant must be held with the face downwards.

The enlightened limb of the moon is always to be brought into contact with the sun or star, even though the moon's image is made to pass beyond the sun or star before the desired contact can be obtained.

Perhaps the best method of taking a lunar distance is, not to attempt to make the contact perfect by the tangent-screw, but when the nearest limbs are observed, make the objects overlap each other a little when they are receding, or leave a small space between them when they are approaching, and wait till the contact is perfect, and the reverse when the furthest limbs are observed.

The altitudes of the two objects should be observed at the same instant as the distance, and the time noted by a chronometer, or watch: this would require several observers; but one person may take them all, by having recourse to the following method: "First, observe the altitude of the sun or star; secondly, the altitude of the moon; then any number of distances; next the altitude of the moon; and lastly, the altitude of the sun or star, noting the times of each by a watch. Now add together the distances and times when they were observed, and take the mean of each; and in order to reduce the altitudes to the mean time, make the following proportion: As the difference of times between the observations is to the difference of their altitudes, so is the difference between the time that the first altitude was taken and the mean of the times at which the distances were observed, to a fourth number; which, added to or subtracted from the first altitude, according as it is increasing or decreasing, will give the altitude reduced to the mean time."

The angular distances of terrestrial objects are measured by the sextant in the same manner as those of celestial ones; but if the obects are not in the same horizontal plane, a reflecting instrument will not give their horizontal angular distance. But this may be obtained nearly by measuring their angular distances from an object in or near the horizon, which subtends a great angle with both, and the sum, or the difference of the angles so measured, will be nearly the required horizontal angle.

Of the sextant, it has been said, that it is in itself a portable observatory; and it is doubtless one of the most generally useful instruments that has ever been contrived, being capable of furnishing data to a considerable degree of accuracy for the solution of a numerous class of the most useful astronomical problems; affording the means of determining the time, the latitude and longitude of a place, \&c., for which and many other purposes it is invaluable to the land-surveyor as well as the navigator.

TROUGHTON's REFLECTING CIRCLE.

The above figure represents this instrument, which in principle and use is the same as the sextant. It has three vernicr readings, ABC, moving round the same centre as the index-glass, E , which is upon the opposite face of the instrument. One of the verniers, B, carries the clamp and tangent-screw. D, represents the microscope for reading the verniers; it is similar to the one used in reading the sextant, and is adapted to each index-bar, by slipping it on a pin placed for that purpose, as shown in the figure. The horizon-glass is shown at F . The barrel, G , contains the screws for giving the up-and-down motion to the telescope; it is put in action by turning the milled head under the barrel. H is the telescope, adapted to the instrument in a manner similar to that of the sextant. I and J are two handles fixed parallel to the plane of the circle, and a third handle, K , is screwed on at right angles to that plane, and can be transferred to the opposite face of the instrument by screwing it into the handle, I; the use of this extra handle is for convenience in reading and in holding the instrument, when observing angles that are nearly horizontal; it can be shifted, according as the face of the instrument is held upwards or downwards. The requisite dark glasses are attached to the frame-work of the circle, to be used in the same manner and for the same purposes as those of the sextant. With respect to the adjustments and application of this instrument, we cannot do better than use the words of the inventor, Mr. Troughton, contained in a paper which he calls
" Directions for observing with Troughton's Reflecting Circle.
"Prepare the instrument for obscrvation by screwing the teleseope into its place, adjusting the drawer to focus, and the wires
parallel to the plane, exactly as you do with a sextant: also set the index forwards to the rough distance of the sun and moon, or moon and star; and holding the circle by the short handle, direct the telescope to the fainter objeet, and make the eontaet in the usual way. Now read off the degree, minute, and seeond, by that braneh of the index to whieh the tangent-serew is attached; also, the minute and seeond shown by the other two branehes; these give the distance taken on three different sextants; but as yet, it is only to be eonsidered as half an observation: what remains to be done, is to eomplete the whole cirele, by measuring that angle on the other three sextants. Therefore set the index backwards nearly to the same distanee, and reverse the plane of the instrument, by holding it by the opposite handle, and make the contaet as above, and read off as before what is shown on the three several branches of the index. The mean of all six, is the true apparent distanee, eorresponding to the mean of the two times at which the observations were made.
"When the objects are seen very distinetly, so that no doubt whatever remains about the eontaet in both sights being perfect, the above may safely be relied on as a complete set; but jf, from the haziness of the air, too mueh motion, or any other eause, the observations have been rendered doubtful, it will be advisable to make more: and if, at such times, so many readings should be deemed troublesome, six observations, and six readings may be eonducted in the manner following: Take three sueeessive sights forwards, exaetly as is done with a sextant; only take eare to read them off on different branehes of the index: also make three observations backwards, using the same eaution; a mean of these will be the distance required. When the number of sights taken forwards and backwards are unequal, a mean between the means of these taken baekwards, and those taken forwards will be the true angle.
"It need hardly be mentioned, that the shades, or dark-glasses, apply like those of a sextant, for making the objeets nearly, of the same brightness; but it must be insisted on, that the teleseope should, on every oceasion, be raised or lowered, by its proper screw, for making them perfeetly so.
"The foregoing instructions for taking distanees, apply equally for taking altitudes by the sea or artificial horizon, they being no more than distances taken in a vertical plane. Meridian altitudes cannot, however, be taken both backwards and forwards the same day, because there is not time: all therefore that ean be done, is, to observe the altitude one way, and use the index-error; but even here, you have a mean of that altitude, and this error, taken on three different sextants. Both at sea and land, where the observer is stationary, the meridian altitude should be observed forwards one day, and backwards the next, and so on alternately from day to day; the mean of latitudes, deduced severally from such observations, will be the true latitude; but in these there should be no application of index-error, for that being eonstant, the result would in some measure be vitiated thereby.
"When both the reffected and direct images require to be dark-
ened, as is the case when the sun's diameter is measured and when his altitude is taken with an artificial horizon, the attached darkglasses ought not to be used: instead of them, those which apply to the eye-end of the telescope will answer much better : the former having their errors magnified by the power of the telescope, will, in proportion to this power, and those errors, be less distinct than the latter.
"In taking distances, when the position does not vary from the vertical above thirty or forty degrees, the handles which are attached to the circle are generally most conveniently used ; but in those which incline more to the horizontal, that handle which screws into a cock on one side, and into the crooked handle on the other, will be found more applicable.
" When the crooked handle happens to be in the way of reading one of the branches of the index, it must be removed, for the time, by taking out the finger-screw, which fastens it to the body of the circle.
" If it should happen that two of the readings agree with each other very well, and the third differs from them, the discordant one must not on any account be omitted, but a fair mean must always be taken.
"It should be stated, that when the angle is about thirty degrees, neither the distance of the sun and moon, nor an altitude of the sun, with the sea horizon, can be taken backwards; because the dark-glasses at that angle prevent the reflected rays of light from falling on the index-glass; whence it becomes necessary, when the angle to be taken is quite unknown, to observe forwards first, where the whole range is without interruption; whereas, in that backwards, you will lose sight of the reflected image about that angle. But in such distances, where the sun is out of the question; and when his altitude is taken with an artificial horizon, (the shade being applied to the end of the telescope) that angle may be measured nearly as well as any other; for the rays incident on the index-glass will pass through the transparent half of the horizonglass, without much diminution of their brightness.
" The advantages of this instrument, when compared with the sextant, are chiefly these: the observations for finding the indexerror are rendered useless, all knowledge of that being put out of the question, by observing both forwards and backwards. By the same means the errors of the dark-glasses are also corrected; for, if they increase the angle one way, they must diminish it the other way by the same quantity. This also perfectly corrects the errors of the horizon-glass, and those of the index-glass very nearly. But what is still of more consequence, the error of the centre is perfectly corrected, by reading the three branches of the index; while this property combined with that of observing both ways, probably reduces the errors of dividing to one-sixth part of their simple value. Moreover, angles may be measured as far as one hundred and fifty degrees, consequently the sun's double altitude may be observed when his distance from the zenith is not less than fifteen degrees; at which altitude, the head of the observer begins to inter-
cept the rays of light incident on the artificial horizon; and, of course, if a greater angle could be measured, it would be of no use in this respect.
"This instrument, in common with the sextant, requires three adjustments. First, the index-glass perpendicular to the plane of the circle. This being done by the maker, and not liable to alter, has no direct means applied to the purpose: it is known to be right, when, by looking into the index-glass, you see that part of the limb which is next you, reflected in contact with the opposite side of the limb, as one continued arc of a circle: on the contrary, when the arc appears broken, where the reflected and direct parts of the limb meet, it is a proof that it wants to be rectified. The second is, to make the horizon-glass perpendicular. This is performed by a capstan-screw, at the lower end of the frame of that glass; and is known to be right, when, by a sweep of the index, the reflected image of any object will pass exactly over, or cover the image of that object seen directly. The third adjustment is, for making the line of collimation parallel to the plane of the circle. This is performed by two small screws, which also fasten the collar into which the telescope screws to the upright stem on which it is mounted: this is known to be right, when the sun and moon, having a distance of one hundred and thirty degrees, or more, their limbs are brought in contact, just at the outside of that wire which is next to the circle; and then, examining if it be the same, just at the outside of the other wire: its being so is the proof of adjustment.
"Should these hints about the adjustments set any over-handy gentleman on tormenting his instrument, it will not be what was intended by them; they were added, that in case of accident, those who are so unfortunate, might be enabled thereby to put their own instrument in order."

THE BOX-SEXTANT.

This useful little instrument, which is represented in the above figure, might, perhaps with more propricty, have been classed as a
surveying instrument, it being chiefly used in that business. The principle of its construction and adjustments is precisely the same as the sextant before described; a minute description, therefore, would be little more than a recapitulation of what has already been advanced. A is the index, which, instead of being moved along the divided limb, e f, by the hand, has a motion given to it by a rack and pinion, concealed within the box, and turned by the milled head B, which acts as the tangent-screw does to the index of the large sextant. The glasses (shown at C and D) are within the box, by which they are protected from injury, and their adjustments, when once perfected, kept secure; so much so, that it would require considerable violence to derange them. The horizon-glass, D, alone has a contrivance for adjustment at a and d, both to set it perpendicular to the plane of the instrument, and to correct or reduce the index error, which, in this instrument, had better be kept correct, as it is not so likely to get out of order as in the large sextant, which, as we have before observed, seldom admits of its index error being rectified. The key, c, is formed to fit both squares at a and d, to make the adjustments, and it is generally tapt into some spare place in the instrument, as at c, that it may be always safe and at hand.

It is supplied with a telescope, E , which screws into a shoulderpiece, F, and can be attached to the box by the screw G : this can be applied or not, at the pleasure of the observer, as there is a contrivance at H to enable him to observe without the telescope, if he prefers plain sights. Two dark glasses are placed within the box, and there is also one adapted to the eye-end of the telescope.

The angle is read off by the help of the glass I, which being mounted with a joint, can be moved over the vernier on any part of the limb. The instrument is divided to 30 minutes of a degree, and by the vernier is subdivided to single minutes, one half of which, or 30 seconds, can be obtained by estimation.

The divided limb is numbered both to the right and left, commencing at 0° to 120°, and backwards from 120° to 180°, and beyond to 230°; the latter row of figures are furthest from the divisions, and belong to the supplementary angles; their zero division of the vernier is at the end contrary to that of the angles, reading from 0° to 120°.

Beneath the index-glass is fixed a similar one, in such a manner as always to reflect the image of an object to the eye when applied to a hole in the side of the box near the division 120°, at the constant angle of 90°; whence the observer must direct his sight towards the right hand, and at right angles, to the real place of the object. When the index is set to 180°, its glass will also reflect an opposite image to the eye at right angles to the left hand (the two glasses then being exactly across each other) consequently an eye looking through the hole near the division 120° will (if the adjustments be perfect) perceive objects 180° apart to coincide, at right angles to a line connecting them. Thus a point can be found in line between two stations: the observer, with the instrument set as above, having
placed himself as nearly in the line as he can guess, must apply his eye to the hole near 120°, and looking at right angles to his station line, step backwards or forwards until he perceives the two distant objects to coincide, when the spot he stands on will be a point in the line joining the objects; to verify this, he should then turn himself half round, and looking in the opposite direction, see if the two objects still coincide, which they will do, if the adjustments of the instruments are correct. If they do not appear in junction, move as before, until you find the spot where they do; then, half way between the two spots so found, will be the true point on the line required.
" The adjustment of this part, as weil the method of observing supplemental angles with it, is performed thus:-choose two objects in the horizon, the further apart the better, but not nearer than 140°; turn your face at right angles to the right-hand object, so as to get sight of its image in the fixed glass; then, by moving the index, bring the image of the other object, seen in the index glass, exactly to coincide with it on the line of separation of the two glasses; read off the angle, turn yourself half round, and take in like manner the angle which the same objects make the other way. It is evident that the sum of the two angles should be 360°, and also, that if they exceed that quantity, half the excess must be subtracted, and if they fall short of it, half the defect must be added, to obtain the true angle. It is, perhaps, better to allow for the erors than to adjust them; but the latter may be done by applying the key, c, to a square underneath the box.'

The lid of the box is contrived to screw on the bottom, (as is shown in the plate) where it makes a convenient handle for holding the instrument.

Since writing the above, we have been shown, by a professional gentleman, an excellent contrivance for taking altitudes or depressions with the box-sextant, which consists of two small spirit-levels fixed at the back of the horizon-glass, at right angles to each other, so that standing before the object, you look perpendicularly down through the plane-sight, and moving the index bring the image of the object to appear with the levels, which must have their air bubbles in the centre of their tubes. The reading of the instrument will then show the supplement of the zenith distance, and its complement to 90° will be the angle required; elevated if more than 90°, and depressed if less than 90°.

THE ARTIFICIAL HORIZON.

When the altitude of a celestial object is to be taken at sea, the observer has the natural (or sea) horizon, as a line of departure; but on shore, he is obliged to have recourse to an artificial one to which his observations may be referred: this consists of a reflecting plane parallel to the natural horizon, on which the rays of the sun or other object falling, are reflected back to an
eye placed in a proper position to receive them; the angle between the real object, and its reflected image bcing then measured with the scxtant, is double the altitude of the object above the horizontal plane.

Various natural as well as artificial reflecting surfaces lave been made by mechanical arrangements, to afford the means of obtaining doublc angles; such as pouring water, oil, treacle, or other fluid substances into a shallow vessel; and to prevent the wind giving a tremulous motion to its surface, a piece of thin gauze, talc, or plate-glass, whose surfaces are perfectly plane and parallel, may be placed over it, when used for observation. But the most accurate kind of artificial horizon is that in which fluid quicksilver forms the reflecting surface, the containing vessel being placed on a solid basis, and protected from the influence of the wind. The adjoining figure represents an instrument of this kind. The mercury is contained in an oblong wooden trough, placed under the roof A , in which are fixed two plates of glass whose surfaces are plane and parallel to each other. This roof effec-
 tually screens the surface of the metal from being agitated by the wind, and when it has its position reversed at a second observation, any error occasioned by undue refraction at either plate of glass will be corrected.

Another and more portable contrivance for an artificial horizon, is represented in the annexed figure, which consists of a circular plate of black glass about two inches diameter, mounted on a brass stand, half an iuch deep, with three foot-screws, $a b c$, to set the plane horizontal; the horizontality being determined thus by the aid of a short
 spirit-level, d, having under the tube a face ground plane on which it lies in contact with the reflecting surface; place the level on the glass in a direction parallel to the line joining two of the three foot-screws, as a and b, then move one of these screws till the bubble remains in the middle of the tube in both the reversed positions of the level, and the plate will be horizontal in that direction; then place the level at right angles to its former position, and turn the third foot-screw back or forwards till the bubble again settles in the middle of its tube, the former levelling remaining undisturbed, and the plane will then be horizontal. This instrument, from its portability, is extremely convenient for travellers, as when packed in its case, it car be carried in the pocket without being any incumbrance.

When an artificial horizon is used, the observer must place himsclf at such a distance that he may see the reflected object as well as the real one; then having the sextant properly adjusted, the upper or lower limb of the sun's image (supposing that the object) reflected from the index-glass, must be brought into contact with the opposite limb of the image refiected from the artificial horizon, observing that when the inverting telescope is used, the upper limb
will appear as the lower, and vice versa;* the angle shown on the instrument, when corrected for the index error, will be double the altitude of the sun's limb above the horizontal plane; to the half of which, if the semidiameter, refraction, and parallax be applied, the result will be the true altitude of the centre.

EXAMPLE.

THE DIP-SECTOR.

When the late Professor Vince was engaged in making observations upon extraordinary refraction at Ramsgate, Mr. Troughton contrived and constructed for his use an instrument which he called a Refraction-Sector. About five years afterwards, when preparations were making for the first of the late North Polar Expeditions, Mr. Troughton was applied to by the late Dr. Woollaston to make him an instrument on the principle of the back observation with the quadrant, to send with the expedition, to measure the dip of the horizon; but upon Mr. Troughton's producing his Refrac-tion-Sector, which was as well adapted to Dr. Woollaston's purpose as that for which it was devised, the Doctor immediately ordered one to be made for him, and named it a Dip-Sector; proposing at the same time an improvement in the construction of the handle, which on his suggestion, was made to turn on a centre, to be placed in any position, for convenience in use, or packing in its case; that made for Dr. Vince having two fixed handles, at right angles to the face of the instrument.

The adjoining figure represents this instrument: A is the sector, B the index, with its clamp and tangent-screw, exactly similar to that of the sextant: the index-glass, C , and the horizon-glass, D , are fixed at right angles to the plane of the instrument. The tele-

[^8]scope, E F, is fitted into a collar, having an up-and-down motion given to it by turning the screw H ; the two images of the horizon can thus be made to appear of the shades most favourable for observation. G represents the eye-piece fixed at right angles to the telescope, and a diagonal mirror is placed in the telescope at F, to change the direction of the rays of light, from E F, to F G, in which the observer looks.

The handle, I, turns upon a centre, and is held firmly in any position by tightening the clamp-screw, J. In use it is fixed perpendicular to the length of the instrument, and when wanted it can be turned half round, and fixed in a similar position on the other side, a position in which it is required to be when the instrument is reversed for the second observation; it is turned under and parallel to the instrument when packed in its case.

The dip of the horizon, which varies with the height of the observer above the surface of the earth, may always be computed when the height is known; but as a correction of altitudes observed from the horizon of the sea, it is combined with the effects of refraction upon the apparent place of the horizon, which appears elevated above its true place; and as the effects of refraction are extremely variable, the dip obtained by computation is necessarily very uncertain. Tables containing the dip for various altitudes, allowing for the mean effect of refraction, are to be found in all collections of nautical tables. But these tabular dips are at times found to differ so considerably from the truth, especially in tropical climates, that some experienced navigators have lately been induced to measure the actual dip by means of the sector, when any important determination has depended on the observation of altitudes.

In the following diagram, A a represents a portion of the earth's
surface, and O the place of an observer; HOH will be his true horizon, O A and $\mathrm{O} a$ his visible horizon; these rays being tangents to the earth's surface at A and a; the angle, HOA , or $\mathrm{HO} a$, is the dip of the horizon, which it is the business of the dip-sector to measure. But the arcs to be measured by this instrument, for the purpose of obtaining the dip, are, A Z a and $\mathrm{A} N a$, the former of which is $180^{\circ}+$ double the dip, and the latter 180° - double the dip, therefore the fourth part of the difference is the measure of the dip. But as the instrument is constructed, only double the dip affected by index error is read from it, and the index error is made so great that the readings are both on the same side of zero, therefore the fourth part of the difference of the readings is the dip angle.

In observing, the face of the instrument must be held in a vertical plane, and lengthwise, in a line with the opposite parts of the horizon whose dip is required; the eye-tube, G F, (page 49) will then be horizontal, and the observer will be looking at right angles to those points of the horizon which he wishes to observe. Suppose the instrument to be held as represented in our engraving, with the index uppermost, the observer will be looking in the direction, G F, when by giving motion to the index B, its glass C will receive a ray from the visible horizon on the left hand, and reflect it to the silvered part of the horizon-glass D , and from thence to the telescope; at the same time the whole instrument being moved vertically round the hand as a centre, a ray from the opposite part of the horizon to the right hand will pass through the plain or upper part of the horizon-glass, and both rays moving together will pass down the telescope E to F , where by the diagonal mirror they will be reflected, at right angles, to the eye of the observer at G. The index must now be clamped, and by giving motion to the tan-gent-screw, the two images of the horizon must be made exactly to coincidc with each other, and appear as onc. To determine when the coincidence is perfect, a slight motion of the instrument will cause the two images to cross each other, by which a judgment may be formed of the accuracy of the observation. This being sa-
tisfactorily done, the angle may now be read off, which is the measure of $\mathrm{HOA}+\mathrm{HO} a$, or double the dip of the horizon, subject to the index error of the instrument. This must be considered but half an observation, and to obtain the correct result, a second observation must be taken with the instrument held in an inverted position, the index being now undermost. This is done by releasing the clamp-screw, J, and turning the handle half round, observe in the same manner as before; but when the brightness of the two opposite parts of the horizon differs considerably, the observer, to avoid the necessity of altering the shades of the two images, (regulated by the up-and-down motion of the telescope, should reverse his own position as well as that of his instrument, that is, turn himself exactly half round, for then the telescope will be directed to the same part of the horizon as before, and he will make the second observation under precisely the same circumstances as he did the first, which, as well as the due adjustment of the shades, is essential to good observing. The reading of the second observation will also give double the dip, affected by the same index error as before; and as both readings are on the same side of zero, one fourth of their difference will give the true result. Several observations should be taken in each position of the instrument, and the mean taken as the final result.
" In using this instrument at sea for the first time, considerable difficulty arises from the constant change in the plane of the instrument, from the perpendicular position in which it is absolutely neccssary that it should be held, in order to obtain a correct observation. What at first appears to be a defect, however, is a real advantage, namely, that whenever it is held in the least degree out of the vertical plane, the two horizons (that seen direct and the reflected one) cross each other, and it is only when the plane is vertical that the horizons can appear parallel."

THE PORTABLE TRANSIT-INSTRUMENT.

The Transit is a meridional instrument, employed, in conjunction with a clock or chronometer, for observing the passage of celestial objects across the meridian, either for obtaining correct time, or determining their difference of right ascension; the latter of which, in the case of the moon and ccrtain stars near her path, that differ but little from her in right ascension, affords the best means of determining the difference of longitude between any two places where corresponding observations may have been made, Such being more especially the use of the portable transit instrument, it forms a valuable accession to the apparatus of the scientific traveller, who, remaining a short time at any station, is enabled thereby to adjust his time-keepers, both with case and accuracy, and to obtain the best data for finding his longitude. It also may be cmployed very successfully in determining the latitude.

The following figure represents this instrument as constructed by Mr.'Troughton, when the telescope does not exceed twenty inches,
or two feet focal length. The telescope-tube, A A, is in two parts, and connected together by a sphere, B, which also receives the larger ends of two cones, C C, placed at right angles to the direction of the telescope, and forming the horizontal axis. This axis terminates in two cylindrical pivots, which rest in Y's fixed at the upper end of the vertical standards, D D. One of the Y's possesses a small motion in azimuth, communicated by turning the screw, a; in these Y's the telescope turns upon its pivots. But, that it may move in a vertical circle, the pivots must be precisely on a level with each other, otherwise the telescope will revolve in a plane oblique (instead of perpendicular) to the horizon. The levelling of the axis, as it is called, is therefore one of the most important adjustments of the instrument, and is effected by the aid of a spirit-level, E, which is made for this purpose to stride across the telescope, and rest on the two pivots.

The standards, D D, are fixed by screws upon a brass circle, F, which rests on three screws, $b c d$, forming the feet of the instrument, by the motion of which the operation of levelling is performed. The two oblique braces, G G, are for the purpose of steadying the supports, it being essential for the telescope to have not only a free but a steady motion. On the extremity of one of the pivots, which extends beyond its Y , is fixed a circle, H , which turns with the axis while the double vernier, $e e$, remains stationary in an horizontal position, and shows the altitude to which the telescope is elevated. The verniers are set horizontal by means of a spirit-level, f, which is attached to them, and they are fixed in their position by an arm of brass, g, clamped to the supports by a screw at h : the whole of this apparatus is moveable with the telescope, and when the axis is reversed, can be attached in the same manner to the opposite standard.

Near the eye-end, and in the principal focus of the telescope, is placed the diaphragm, or wire-plate, which in the theodolite or levelling telescope need only carry two cross wires, but in this instrument it has five vertical and two horizontal wires. The centre vertical wire ought to be fixed in the optical axis of the telescope, and perpendicular with respect to the pivots of the axis. It will be evident, upon consideration, that these wires are rendered visible in the daytime by the rays of light passing down the telescope to the eye; but at night, except when a very luminous object, as the moon, is observed, they cannot be seen. Their illumination is therefore effected by piercing one of the pivots, and admitting the light of a lamp fixed on the top of one of the standards, as shown at I; which light is directed to the wires by a reffector placed diagonally in the sphere B; the reflector having a large hole in its centre, does not interfere with the rays passing down the telescope from the object, and thus the observer sees distinctly both the wires and the object at the same time: when however the object is very faint, (as a small star,) the light from the lamp would overpower its feeble rays: to remedy this inconvenience, the lamp is so constructed, that by turning a screw at its back, or inclining the opening of the lantern, more or less light may be admitted to the telescope, to suit the circumstances of the case.

The telescope is furnished with a diagonal eye-piece, by which stars near the zenith may be observed without inconvenience.

Of the Adjustments.

Upon setting the instrument up, it should be so placed that the telescope, when turned down to the horizon, should point north and south as near as can possibly be ascertained. This of course can be but approximate, as the correct determination of the meridian can only be obtained by observation, after the other adjustments are completed.

The first adjustment is that of the line of collimation. Direct the telescope to some small distant well-defined object, (the more
distant the better,) and bisect it with the middle of the central vertical wire; then lift the telescope very carefully out of its angular bearings, or Y's, and replace it with the axis reversed; point the telescope again to the same object, and if it be still bisected, the collimation adjustment is correct; if not, move the wires one half the error, by turning the small screws which hold the diaphragm near the eye-end of the telescope, and the adjustment will be accomplished; but, as half the deviation may not be correctly estimated in moving the wires, it becomes necessary to verify the adjustment by moving the telescope the other half, which is done by turning the screw a : this gives the small azimuthal motion to the Y before spoken of, and consequently to the pivot of the axis which it carries. Having thus again bisected the object, reverse the axis as before, and if half the error was correctly estimated, the object will be bisected upon the telescope being directed to it; if not quite correct, the operation of reversing and correcting half the error, in the same manner, must be gone through again, until, by successive approximations, the object is found to be bisected in both positions of the axis ; the adjustment will then be pertect. The collimation adjustment may likewise be examined from time to time, by observing the transit of Polaris, or any other close circumpolar star, over the first three wires, which gives the intervals in time from the first to the second, and from the first to the third wire ; and then reversing the axis, observe the same intervals in a reverse order, as the wires which were the three first, in the former position, will now be the three last: if the intervals in the first observations are exactly the same as the intervals in the second, the collimation adjustment is correct; but should the corresponding intervals differ, such difference points out the existence of an error, which must be removed, as before described, one half by the collimating screws, and the other half by the azimuthal motion of the instrument.

It is desirable that the contral, or middle wire (as it is usually termed) should be truly vertical; as we should then have the power of observing the transit of a star on any part of it, as well as the centre. It may be ascertained whether it is so, by elevating and depressing the telescope: when directed to a distant object, if it is bisected by every part of the wire, the wire is vertical ; if otherwise, it should be adjusted, by turning the inner tube carrying the wireplate, until the above test of its verticality be obtained, or else care must be taken that the observations are made near the centre only; the other vertical wires are placed by the maker equidistant from each othcr and parallel to the middle one, therefore, when the middle one is adjusted, the others are so too; he also places the two transverse wires at right angles to the vertical middle wire. These adjustments are always performed by the maker, and but little liable to derangement. When, however, they happen to get out of order, and the observer wishes to correct them, it is done by loosening the screws which hold the eye-end of the telescope in its place, and turning the end round a small quantity by the hand until the error is removed. But this operation requires very deli-
cate handling, as it is liable to remove the wires from the focus of the object-glass.

The axis on which the telescope turns must next be set horizontal: to do this, apply the level to the pivots, bring the airbubble to the centre of the glass-tube, by turning the foot-screw, b, which raises or lowers that end of the axis, and consequently the level resting upon it; then reverse the level by turning it end for end, and if the air-bubble still remains central, the axis will be horizontal, but if not, half the deviation must be corrected by the foot-screw, b, and the other half by turning the small screw, i, at one end of the level, which raises or lowers the glass-tube (containing the air-bubble) with respect to its supports, which rest upon the pivots. This, like most other adjustments, frequently require several repetitions before it is accomplished, on account of the difficulty of estimating exactly half the error.

Having set the axis on which the telescope turns, parallel to the horizon, and proved the correct position of the central wire or line of collimation, making it describe a great circle perpendicular to that axis, it remains finally to make it move in that vertical circle which is the meridian.

We have supposed the instrument to be nearly in the meridian, the next step is to determine the amount of its deviation, and then by successive approximations to bring it exactly into that plane: one of the methods of accomplishing this, is to observe the time of both the upper and lower transits of Polaris, or any other close circumpolar star, and as the middle wire of the instrument, when exactly in the meridian, bisects the circle which the star apparently describes, round the polar point, in 24 sidereal hours, the time elapsed, during its traversing either the eastern or western semicircle, will be equal to 12 sidereal hours; but should the interval be greater or less, it is clear that the instrument deviates from the meridian. If the eastern interval is greater than the western, the plane in which the instrument moves from the zenith to the north of the horizon, is westward of the true meridian, and vice versâ, if the western interval is greatest. Having the difference of the interval from 12 hours, the quantity of deviation measured on the horizon may be computed by the following formula, the latitude of the place, and the polar distance of the star, being both supposed to be known, at least approximately.

$$
\text { Deviation }=\log \cdot \frac{\Delta}{2}+\text { log. sec. } \mathrm{L}+\log \cdot \tan \cdot \pi-20
$$

in which expression $\Delta=$ the difference of the intervals from $12^{\text {b }}$ (reduced to seconds)
$\pi=$ the polar distance of the star
$\mathrm{L}=$ the latitude of the place.
This formula, in words, gives the following practical rule: Add together the log. of half the difference of the intervals from 12 hours in seconds, the log. secant of the latitude, and the log. tangent of the polar distance of the star: the sum, rejecting 20 from the index, will
be the log. factor of deviation, which may be converted into arc by multiplying it by 15 .

The correction of this error may be effected by turning the screw, a, if the angular value of one revolution be known, unless the instrument possesses an azimuth circle, by which the telescope may be set exactly that quantity from its present position.

But if the quantity of motion to be given to the adjustingscrew, a, is not a matter of certainty, the observer, after ascertaining the difference of the intervals, must make the adjustment which he considers sufficient, and again proceed to verify it by observation, until, by continued approximation, he succeeds in fixing his instrument correctly in the meridian.

The above method of determining the instrumental deviation, is wholly independent of the tabulated place of the circumpolar star, but it assumes some knowledge of the rate of the time-keeper, and the perfect stability of the instrument for twelve hours, a condition which is rarely to be obtained, except in a regular observatory. The method is still further limited in practice, by the uncertainties of the weather, and the want of stars sufficiently bright to be observed in the daytime, (Polaris being the only star in the northern hemisphere fit for the purpose, and there is no similar star in the southern.) There are, however, two methods almost as good as the preceding, which depend on the tabulated places of the stars only. These will now be explained.

Take two well-known circumpolar stars, the nearer the pole the better, differing about twelve hours in right ascension, and observe one above and the other below the pole. Now it is evident, that any deviation of the instrument from the meridian will produce contrary effects upon the observed times of transit, exactly as in the upper and lower culmination of the same star. Hence, the time which elapses between the two observations, will differ from the time which should elapse according to the catalogue, by the sum of the effects of the deviation upon the two stars. Compute what effect a deviation of $15^{\prime \prime}$ will produce on the interval, then the difference between the observed interval and computed interval, divided by the quantity thus computed, will be the factor of deviation to be used for correcting transits observed the same night; or, if the deviation itself be required for altering the position of the instrument, multiply this factor by 15 , the result will be the deviation to the east or west of the north in seconds of space.

The effect produced on the interval by a deviation of $15^{\prime \prime}$, is to be computed as follows: let π be the polar distance of the upper star, π^{\prime} that of the star's sub-polo, λ the co-latitude of the place: then the effect in time of a deviation of $15^{\prime \prime}$ is, for the upper star $\frac{\sin .(\lambda-\pi)}{\sin . \pi}$ and for the star sub-polo $\frac{\sin .\left(\lambda+\pi^{\prime}\right),}{\sin \cdot \pi^{\prime}}$ acting contrary ways upon the time of transit of each star respectively, and hence affecting the interval by their sum, or by $\frac{\sin \cdot \lambda \sin .\left(\pi+\pi^{\prime}\right)}{\sin \cdot \pi \sin \cdot \pi^{\prime}}$.
Hence the factor for instrumental deviation $=\frac{\sin \cdot \pi \sin \cdot \pi^{\prime}}{\sin \cdot \lambda \cdot \sin \cdot(\pi+\pi)}$
x the difference between the observed and computed intervals. When $\pi=\pi^{\prime}$, or the same star is observed at the upper and lower culmination, this factor becomes $\frac{\tan . \pi}{2 \sin \cdot \lambda} \times$ the difference.

Practical Rule. To the log. of the difference in seconds between the tabulated and observed interval, add the log. sines of the polar distances of the two stars, the log. secant of the latitude, and the log. co-secant of the sum of the two polar distances, reject 40 from the index, and the result will be the log. factor of the deviation, (to be used according to the formula, page 66, in correcting the transits of all stars observed the same night.) And, as before observed, when it is intended to correct the position of the instrument, this quantity, multiplied by 15 , will give the deviation from the meridian in space to the east or west of the north.

In determining the direction of the deviation, it must be recollected, that when the deviation is to the east, the star above pole passes too early, and that below pole, too late, and therefore, if the upper star precedes, the interval is increased, but if the lower precedes, then vice versâ. When the deviation is to the west, the star above pole passes too late; while the star below pole passes too early. Hence, if the former precedes, the interval is diminished, and vice versâ.

This method may now be practised very conveniently, as the apparent places of δ Ursæ Minoris and Cephei, 51 Hev. are given in the Nautical Almanac. In like manner, Polaris my be combined, though less advantageously, with the stars of the Great Bear.

Again, Polaris, or any close circumpolar star, the place of which is accurately known, may be combined with any star distant from the pole. The simplest mode of considering this is, that the star which is distant from the pole, gives the time or error of the timekeeper; and again, if Polaris gives the same error, that the instrument must be in the meridian,* the formula for computation is the same as in the next following method, commonly called that of high and low stars, but is much more accurate.

The last method we shall speak of for correcting the position of the instrument, is by observing the transit of any two stars differing from each other considerably in declination, (at least 40°,) and but little in right ascension. The nearer the right ascensions of the stars are to each other the better, as this prevents the possibility of

[^9]any error arising from a change in the rate of the time-keeper affecting the observations. And as the apparent places of one hundred principal stars are now given in the Nautical Almanac for every tenth day, it will be better to select a pair from thence, which will save the trouble of computing their apparent right ascensions; and, as many suitable pairs are contained therein, it will seldom happen, but that the passages of some of them will occur at a convenient time for observation.

The times of the transits of the two stars being observed (without regard to the error of the time-keeper,) the deviation of the instrument from the plane of the meridian may be thus determined: Take the difference between the observed passages of the two stars, and also the difference of their computed right ascensions (calling the differences + when the lower star precedes the higher, and vice versâ;) and if these differences be exactly equal, the instrument will be correctly in the plane of the meridian; if they are not equal, their difference, that is to say, the difference of the observed times of transit, minus the difference of the computed right ascensions, will point out a deviation from that plane, to the eastward of the south when it is + ; and west when it is -. As an example, let us take the following :

	Observed Time.	Apparent A.R.
H		$\begin{aligned} & \text { н. M. s. } \\ & 5 \end{aligned}$
Lower "	6 7%	$\begin{array}{llll}6 & 37 & 33,66\end{array}$
Difference	-0 5033,75	- 5040,16

Subtract diff. of A.R. $=-05040,16$
$+6,41=$ the difference of time minus the difference of right ascension, which being + shows that the instrument deviates to the eastward of the south point of the horizon. It is evident that a high star will be less affected by deviation, than one in any other situation, and that a star between the pole and zenith will be differently affected from a star south of the zenith, it being observed sooner than it ought when the latter is observed later, and vice versâ.

The deviation in azimuth may now be computed from the following formula:

Deviation in azimuth $=$ D. $\sin . \pi \sin . \pi^{\prime}$ co. sec. $\left(\pi \mp \pi^{\prime}\right)$ sec. L.
In which D represents the difference of times minus the difference of right ascensions; π and π^{\prime} the polar distances of the higher and lower stars, and L as before the latitude of the place of observation.

This formula, in words, gives the following rule: To the log. of the difference of times minus the difference of right ascensions, add the log. sin. of the polar distance of the higher star, the log. sin. of the polar distance of the lower star, the log. co-secant of the difference or sum of the polar distances of both the stars, (the difference when they are both above the pole, and the sum when one is above
and the other below the pole,) and the log. secant of the latitude: the sum will be the log. of the azimuthal deviation, which multiplied by 15 will be the deviation in arc.
" The time employed in making these observations is supposed to be sidereal time, therefore, if a clock or watch be used which marks mean solar time, the interval between the observations must be corrected accordingly." This correction is madc by adding to the diffcrence of the observed times, the acceleration of the fixed stars for that interval, (Table IV,) which will convert that portion of mean into an equivalent portion of sidereal time; so that by means of this correction it will be indifferent whether the clock shows sidereal or mcan time.
" If, before or after the passage of the stars, the telescope be pointed to the horizon and compared with some object there, a meridian mark may be set up, which may be corrected from time to time by subsequent observations on various stars similarly situated, and when once correctly fixed, it will serve to verify both the meridional position of the instrument, and the adjustment of the collimation."

Having, by means of the previous adjustments, made the line of collimation describe a great circle passing through the zenith of the place, and the north and south points of the horizon, the instrument will be in a fit state for making observations. We have said that the telescope contains five vertical and two horizontal wires, placed a short distance from each other; these last are intended to guide the observer in bringing the object to pass across the middle of the field, by moving the telescope until it appears between them: the contre vertical is the meridional wire, and the instant of a star's passing it will be the time of such star's being on the mcridian ; but as, in noting the time, it will not often happen that an cxact second will be shown by the clock, when the star is bisected by the wire, but it will pass the wire in the interval between two successive seconds, the observer must, therefore, whilst watching the star, listen to the beats of his clock, and count the seconds as they elapse; he will then be able to notice the space passed over by the star in every second, and consequently its distance from the wire at the second beforc it arrives at, and the next second after it has passed it, and with a little practice he will be able to estimate the fraction of a second at which the star was on the wire, to be added to the previous second: thus, suppose the observer counted $4,5,6,7,8$ seconds, whilst watching the passage of a star, which passed the wire between the 7 th and 8 th, at which times it appeared equally distant on each side of it, the time of the transit would then be $\boldsymbol{\gamma}^{\mathrm{s}}, 5$; but if it appeared more distant on one side than the other, it would be $7^{\mathrm{s}}, 3$ or $7^{\mathrm{s}}, 7, \& \mathrm{c}$. according to its apparent relative distance from the wire.

This kind of observation must be made at each of the five wires, and a mean of the whole taken, which will represent the time of the star's passage over the mean or meridional wire. The utility of having five wircs instead of the central one only, will be readily understood, from the consideration that a mean result of several
observations is deserving of more confidence than a single one； since the chances are，that an error which may have been made at one wire，will be compensated by an opposite error at another；thus destroying each other＇s effect，the mean result will come out very nearly the same as the observation at the middle wire，if they are made with any tolerable degree of

$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{0}{0} \end{aligned}$	
安管皆	：${ }^{+18}$
	$\text { i: : } \begin{aligned} & \infty \\ & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$
$\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \end{gathered}$	
＞	
3	
\square	
－	$\dot{\sim} \overrightarrow{-1}: 0_{0}^{0}$
¢	$\begin{aligned} & \infty \\ & \dot{B} \\ & \hline \end{aligned}$

The annexed table is an example of the Greenwich mode of registering observations made with a transit in－ strument．

The heading at the top of the columns sufficiently explains the na－ ture of their contents．The error of the clock from sidereal time is ob－ tained，by taking the difference be－ tween the mean of the wires，and the apparent right ascension of the object as given in the Nautical Al－ manac；and the daily rate is the difference of such errors，divided by the number of days elapsed between the observations．In observing the sun，the times of passing of both the first and second limb over the wires are observed and set down as distinct observations，the mean of which，gives the time of the pas－ sage of the centre across the meri－ dian，as is shown in the annexed example．The wires of the instru－ ment are generally placed by the maker at such a distance from each other，that the first limb of the sun shall have passed ail of them before the second limb arrives at the first， and the observer can thus take the observations without hurry or con－ fusion．

One limb only of the moon can be observed，except when her tran－ sit happens to be within an hour or two of her opposition；and in observing the larger plancts，the first and second limb may be observed alternately over the five wires；that is to say，the first limb over three wires，viz．，the first，third， and last；and the second limb over the second and fourth；which being
reduced in the same manner as the observation of the sun, will give the ineridional passage of the centre. When an observation at one or more of the wires has been lost, it is impossible to take the mean in the same way as in a perfect observation. If the centre wire is the one that is deficient, the mean of the other four may be taken as the time of the meridional passage, or the mean of any two equally distant on each side of the centre, (supposing the interval of the wires to be equal,) but when any of the side wires are lost, and indeed under any circumstance of deficiency in the observation, the most correct method of proceeding is as follows: By a considerable number of careful observations over all the wires, the equatorial interval between each side wire and the centre one is to be deduced and set down for future use. Then, when part of the wires only are observed, each wire is to be reduced to the mean, by adding or subtracting, as the case may be, to the time of observation, the equatorial interval between that wire and the centre wire, multiplied by the secant of the declination of the star, as in the following rule.

To the log. of the equatorial interval, (from the wire at which the observation was made to the centre) add the log. secant of the star's declination (or co-sec. of its polar distance,) the sum, rejecting ten from the index, will be the log. of the interval from the wire at which the transit was taken, to the centre wire, which being added to observations made at the first or second wire, or subtracted from those made at the fourth or fifth, will give the time of the star's passing the meridional wire.

The equatorial intervals of the wires may readily be computed by the following rulc, from observations madc upon any star whose declination is known. To the log. of the interval occupied by the star in passing from any wirc to the centre wire, add the log. cosine of the star's declination (or sine of its polar distance;) the sum, rejecting ten from the index, will be the log. of the equatorial interval, which being determined for each wire, from observations of a number of stars having differcnt declinations, the mean will be a very correct result. The equatorial intervals of the wires of tlee transit at the Royal Observatory, were found to be

From the first wire to the third $=36^{s}, 64 \%$

,$"$	second	,,
fourth	$=18,305$	
$"$,	fifth	,$"$

The middle wire at Greenwich coincides with the mean of the wires, the intervals being very nearly equal, but when this is not the case, the observer must correct the mean of the wires for the difference from the centre wire, to obtain a correct mean; the correction to be applied to the mean of the wires may be computed as follows: divide the difference betwcen the sum of the first two and sum of the last two equatorial intervals by 5 , and to the log. of the quotient add the log. co-secant of the polar distance of the star ; the sum will be the log. of the corrcction required, plus if the sum of the two first intcrvals is greater than the second, otherwise minus. Such
inequality in the intervals should never be allowed to remain, unless circumstances prevented their rectification.

In regular observatories, the transit-instrument is employed, not only for the determination of time, but in forming catalogues of the right ascensions of the fixed stars, and other important operations in astronomy; purposes for which instruments of a superior class, and fixed in their respective places, are required. But, from the small size and low optical power of the portable transit instrument, it can be applied with good effect only to the determination of time, and of the longitude by observations of the moon and moon culminating stars. The Nautical Almanac contains the true apparent right ascension of the sun, and of one hundred of the principal fixed stars; that is, the sidereal time when each of them, respectively, is on the meridian, or on the centre wire of a properly adjusted transit instrument; and if the instant when a star so passes the central wire, be noted by a clock correctly adjusted to sidereal time, the time shown by the clock will be the right ascension of the star as given in the Almanac. The difference therefore between the time shown by a clock, and such right ascension, will be the error of the clock from sidereal time + (or too fast) when the clock time is greater than the right ascension, and - (or too slow) when it is less. Thus on Feb. 7, 1833, (page 60.)

$$
\begin{aligned}
& \begin{array}{llll}
& & \text { н. м. } & \text { S. } \\
\text { The observed passage of Aldebaran by clock, } & 4 & 2 \% & \text { S, } 42 \\
\text { Right ascension by N. A. } & 4 & 26 & 20,63
\end{array} \\
& \text { Clock error . }+ \text { } 0 \text { 47, } 79
\end{aligned}
$$

In the same manner the error of the clock is deduced from an observed transit of the sun's centre, the time of which, as before shown, is derived from a mean of the observations of the first and second limbs; but when, from intervening clouds or other circumstances, one limb only can be observed, the passage of the centre may be found, by adding or subtracting the sidereal time of the sun's semidiameter passing the meridian, as given in the Nautical Almanac, according as the first or second limb may be observed.

If the clock error be determined in this manner from a number of observations each day, the mean of the whole will probably be a very accurate determination of the error for the mean of the times at which the observations were made. In like manner the mean daily rate may be found by taking the difference between the errors as determined by the same object from day to day; and if more than one day has elapsed between the observations, dividing the change in the error by the number of days elapsed; the rate, when the clock is too fast, will be + (or gaining,) when the second error is greater than the first, and - (or losing, when the second error is the least; and vice versâ, when the clock is too slow.

When a clock or chronometer, showing mean solar time, is employed, its error from such time may be found, by computing the mean time of the passage of the object over the meridian of the
place, and the difference between such mean time, and the observed time of the object's meridian passage, will, as before, be the error of the clock from mean time.

The following is the method of computing the mean solar time of the transit of a star across the meridian.

From the right ascension of the star, subtract the sidereal time at mean noon for the given day, taken from the Nautical Almanac (adding 24 hours to the former when the latter exceeds it,) the remainder is the sidereal interval after noon of that day. From this, subtract the acceleration of sidereal upon mean time, and the result is the required mean solar time of the passage. As an example, suppose it iwere required to find the mean time of the passage of Arcturus on June 20th, 1834.

The acceleration of sidereal on mean time is to be taken from Table III.; thus, in the above example:

Acceleration for	8 hours	18, 636
,	15 minutes	2,457
,	14 seconds	, 038
,	83 hundredths	, 002
For the whole interval $=121,133$		

Table III. will not answer for performing the reverse operation, viz., converting a portion of mean solar time into a corresponding portion of sidereal time ; table IV. must be employed for this purpose, adding to the given portion of mean time the quantity taken from the table corresponding thereto, and the sum will be an equivalent portion of sidereal time. As an example we will take the the above case of Arcturus.

[^10]The method of taking out the correction from Table IV. is exactly similar to that given in the above example, for Table III.

To find the error of a clock or chronometer intended to show mean time from an observed transit of the sun, nothing more is necessary than to apply the equation of time to 24 hours, and the difference between the result, and the time of the sun's transit as shown by the chronometer, is the error of the chronometer for mean time $;+$ when the chronometer time is the greater, and when it is the less.

From the description which has been given of the method of bringing a transit instrument into a state of perfect adjustment, it might be inferred, that it is essential it should be strictly so, to obtain accurate results from the use of it. It is certainly desirable that the adjustments should be examined and rectified as often as possible, as doing so ultimately saves the labour of computing the corrections to be applied to each observation, on account of the errors in the position of the instrument. But in some established observatories, where large instruments are employed, it is not attempted to put them in perfect adjustment, but the amount of the various derangements is ascertained from time to time, and the observations corrected accordingly. The adoption of this method with so small an instrument as the one which we have been describing, where the adjustments are easily examined and corrected, will give indeed more accurate results, but, on account of the greater trouble, is not perhaps to be generally recommended; we shall, nevertheless, introduce in this place, an account of the method of computing these corrections, that persons possessing transit instruments may adopt. which method they think proper.

The first correction is for the deviation of the line of collimation: the amount of the error may be determined by a micrometer attached to the eye-end of the telescope, by which, when the telescope is directed towards any distant object, the angular distance of that object from the central wire is measured in revolutions and parts of the micrometer-screw. The instrument is then reversed, and the distance of the same object from the central wire again measured, when half the difference of the measures is the error in collimation; and the angular value of a revolution of the screw being known, the corresponding value of the error is likewise known. The correction on account of this error to be applied to the time of each observation may be computed from the following formula.

$$
\text { Correction }=\frac{\mathrm{c}}{15} \operatorname{co-sec} \pi
$$

$c=$ the error of collimation + if the deviation is toward the east.
$\pi=$ (as before) the polar distance of the star.
Hence we have in words this rule: To the log. of the deviation in collimation, add the log. co-secant of the polar distance of the star, and the arithmetical complement of the \log. of 15 : the sum will be the log. of the correction in time required.

The next correction to be considered, is that arising from a want of horizontality in the axis. The spirit-level, which we described as striding across the instrument and resting on the pivots, determines the amount of the inclination of the axis, and also, as we have seen, enables the observer to correct it. Above the glass tube, and parallel to its length, is placed a fine graduated scale, the reading of which points out the number of seconds in arc that the pivots deviate from the true level, shown by the air-bubble receding from the centre towards that pivot which is the highest; but as it is necessary, when correcting for the adjustment, to remove half the error, by giving motion to the little screw on the level itself, so, for the same reason, in finding the measurement of the error, it is necessary to reverse the level on the axis, and read the scale at each extremity of the air-bubble in both its positions; that is, with the same end of the level on both the east and west pivots alternately,and half the difference of the means of the two readings will be correctly the amount of deviation. This may be illustrated by the following example, in which the divisions on the scale represent seconds.*
 deviation in arc, showing that the west end of the axis is higher by that quantity than the east end, since the mean of the western readings is greater than the mean of the eastern. This quantity, divided by 15, will give the proper factor for inclination. It is more convenient that the scale should be divided into units, each of which is $15^{\prime \prime}$.

Having in this manner determined the inclination of the axis by the level, the correction to be applied to the time of observation of any star made during the existence of that error, may be computed from the following formula:

$$
\text { Correction }=b \cos (\pi-i) \operatorname{co-sec} \pi
$$

[^11]$b=$ the factor for inclination of the axis + if the west end be too high.
$\pi=$ the polar distance of the star.
$\lambda=$ the co-latitude of the place.
This formula in words gives the following practical rule: To the log. of the factor for inclination of the axis, add the log. co-secant of the polar distance, and the log. co-sine of the difference between the polar distance and the co-latitude: the sum -20 will be the log. of the correction in time required.

We have already explained the manner of ascertaining the azimuthal deviation of the instrument from the plane of the meridian, page 55 , \&c. The correction to be added algebraically to the observed time of transit of any star whilst the instrument so deviates, may be computed from the following formula.

$$
\text { Correction }=a \sin (\pi-\lambda) \operatorname{co-sec} . \pi
$$

in which $a=$ the factor for azimuthal deviation, + when the instrument deviates to the eastward of the south meridian.
$\pi=$ the polar distance of the star.
$\lambda=$ the co-latitude of the place.

This formula in words gives the following:
Rule.-To the log. of the factor for azimuthal deviation, add the co-secant of the polar distance, and the sine of the difference between the polar distance and co-latitude : the sum will be the log. of the correction required.

As an example, let us take the star ϵ Bootis. (Pearson's Astron. vol. ii. pp. 344.)

The errors are in units, each of which $=15^{\prime \prime}$
Polar distance
Co-latitude $=62,12$

The correction for the collimation.

The correction for the level.

The correction in azimuth.

Deviation $=-4,737$ log. $\ldots \ldots$	$=-0.67550$
Polar distance, $62^{\circ} 12^{\prime}$ co-secant \ldots	$=+0.05326$
Polar dist. minus co-lat. $=23^{\circ} 45^{\prime}$ sine	$=+9.60503$
Correction $=-2 s, 157 . \log$.	$=-0.33379$

Now apply the sum of these corrections to the observed time of the star's transit, and the actual time of transit will be obtained as correctly as if the instrument had been in a state of perfect adjustment when the observation was made.

Observed time of transit Correction for the collimation	4, 86	
		0, 904
level		1,811
in azimuth	-	2,157
Corrected observation	=	1,796
Computed right ascension	=	28, 910
Clock slow on sidereal time		\%, 11

Besides the determination of time, the portable transit instrument may be successfully employed in determining the longitude. The Nautical Almanac contains, for each lunation, a list of the right ascensions and declinations of the moon culminating stars, whose meridional transits being observed, together with that of the moon, at any two places, the differences of right ascension thus obtained between the moon's illuminated limb and each of those stars, form the data required for computation. "If the moon had no motion, the difference of her right ascension from that of a star would be the same at all meridians, but in the interval of her transit over two different meridians, her right ascension varies, and the difference between the two compared differences, exhibits the amount of this variation, which, added to the difference of meridians, shows the angle through which the westerly meridian must revolve before it comes up with the moon; hence, knowing the rate of her increase in right ascension, the difference of longitude is easily obtained."

The necessity of having recourse to actual observation of the same stars at the two places, in order to obtain the longitude, may soon be dispensed with, since their apparent right ascensions are given in' the Nautical Almanac. At present however, and until the places of the moon culminating stars are perfectly well known, corresponding observations are required for the accurate determination of differences of longitude.

The difference of longitude between the stations, is supposed to be approximately known, or may be got near enough for an approximation, by dividing the difference between the observed and
computed right ascension of the moon's bright limb by the hourly motion given in the Nautical Almanac.

The formula for computation, with the necessary explanation, may be found in the Memoirs of the Royal Astronomical Society, vol. II. p. 1, \&c. Availing myself of the kind permission of Mr. Riddle, I am enabled to insert his method of performing the computation, together with Table XXXIII. of his valuable treatise on Navigation.

PRACTICAL RULE.

"With the moon's declination, and the change, if any, of her semidiameter, in the time of her passing from the one meridian to the other, (an interval which, for this purpose, may be taken as equal to their estimated difference of longitude,) take the correction from Table VI, and apply it to the interval between the transits of the star and the moon's bright limb, as observed at, or computed for, the more westerly meridian.

For parts of the correction for tenths of seconds in the change of the moon's semidiameter, remove the decimal point of the correction for the corresponding seconds, one point to the left.

When the moon's semidiameter is increasing, and the eastern limb is observed, add the correction if the moon precede, and subtract it if she follow the star ; and the contrary, if the western limb is observed.

When the semidiameter is decreasing, and the eastern limb is observed, subtract the correction if the moon precede, and add it if she follow the star; and the contrary, if the western limb is observed.

The semidiameter here spoken of, is that taken from the Ephemeris, without augmentation for aliitude.

The interval at the more westerly meridian being thus corrected, call the difference of the intervals A .

From 1834, the moon's right ascension in time and her declination will be given in the Nautical Almanac for every hour of mean Greenwich time.

Take the change of her Right Ascension in time for the middle hour, between the estimated Greenwich times of the transits, and add 0012 to the proportional logarithm of that hourly change, and the sum will be the proportional logarithm of her corresponding change of right ascension in an hour of sidereal time. Call this B, and subtracting it from 60 minutes, call the remainder C.

Then, B:C : : A : diff. long.; and consequently, the longitude of one place being given, that of the other is determined.

If either of the intervals be in mean time, subtract 0012 from its proportional logarithm, and the remainder will be the proportional logarithm of that interval in sidereal time. And if both are in mean time, subtract 0012 from the proportional logarithm of their difference, and the remainder will be the proportionail logarithm of that difference in sidereal time.

If the moon precede the star at the easterly, and follow it at the
westerly meridian, the sum of the intervals, instcad of their difference, will be A.

EXAMLLE:

If the eastern limb of the moon pass the meridian, $4^{\mathrm{mm}} 20 \cdot 5^{\mathrm{s}}$, of mean time before a certain star, and on the same day, at a more westerly place, the limb pass the meridian, $1^{\mathrm{m}} 48^{\mathrm{s}} \cdot 4$ before the same star, her declination being about 15°, the increase of her right ascension, in a mean hour, about the middle time, $2^{\mathrm{mm}} 15^{5} .73$, and her semidiameter having increased $1^{\prime \prime}, 3$, required the difference of longitude?

Still greatcr accuracy in the result will be obtained if the change of the moon's right ascension, corresponding to the sidereal time in the estimated difference of longitude, be taken instead of the change in an hour. Let this change as above be called B, and subtracting it from the estimated diff. long. in time, call the remainder C : then $\mathrm{B}: \mathrm{C}:$: A : true diff. long. But if the diff. long. is not very great, the computations in this problem will be greatly facilitated by the use of Table V. The argument of which is, the moon's change of right ascension in an hour of mean time, at the middle Greenwich hour between the two times of transit, the minutes of argument being at the top of each column.

Add the logarithm of the seconds in A, the difference of the sidereal intervals, to the logarithm from Table V., and the sum will be the logarithm of the diff. of ling. in seconds of time.

Note. The parts for hundredths in the Table, are found in the column of 'parts' opposite the corrcsponding tenths. Thus, for $1^{1 \mathrm{~m}} 42^{8}, 57$, the \log. for $1^{10} 42^{5}, 5$ is 1.534256 , and the part for seven hundredths is 304 - whence the log. is 1.533952 . Striking off the figures on the right, in the column of 'parts,' the remaining figures on the left are parts for thousandths.

As an example of the use of the table, we may take that worked above, in which \mathbf{A}, the differcnce of the sidcreal intervals, is
$2^{\text {m }} 32^{s}, 41$, and the moon's increase of right ascension in an hour of mean time is $\mathfrak{2}^{\mathrm{m}} 15^{\mathrm{s}}, 73$.
"This result differs about 0.5 from that of the previous computation, but the latter is the more exact, as the reduction of the moon's motion in right ascension in a mean hour, to that in a sidereal hour, is given with greater precision in the logarithms of the table, than it can be obtained by means of proportional logarithms, though the reduction made by them is exact, to far within the limits which observations can be depended on."

There is a mode of finding the latitude by the transit instrument, pointed out by Professor Bessel, and used with great success in the Russian survey, which we will now explain in some detail, as the method is not so commonly known or practised in this country as it deserves to be.

Place the transit instrument with its supports north and south, so that the telescope when pointed to the horizon looks due east and west. Observe the passage of a well-known star over the middle wire when the telescope is pointing east, and again, observe the passage of the same star over the middle wire when the telescope is pointing west, noting the time carefully. The star should be near the zenith, (such a star as γ Draconis for instance, in the latitude of London, and for a degree or two to the northwards,) as the observations take less time, and are therefore more independent of the timekeeper employed; the method is also more accurate when the star is near the zenith than when otherwise.

In the accompanying figure, P is the pole, Z the zenith, E Z W the prime vertical passing through the east and west points, the dotted line S s the path of the star; all seen as projected on the horizon from a point above Z. Then in the right-angled spherical triangle, P Z S, P S is the north polar distance of the
 star, P Z the co-latitude, and the angle, Z P S, half the time elapsed from S to s , therefore, $\tan . \mathrm{P} \mathrm{Z}=\tan . \mathrm{P} \mathrm{S} \times \cdot \cos . \mathrm{Z} \mathrm{P} \mathrm{S}$.

Let $\Delta^{\prime \prime}=$ half the interval in time reduced to arc between the two transits of the star over the prime vertical, (a circle which passes through the zenith, and east and west points of the horizon.)
$\pi=$ the N. P. D. of the star (taken from the Nautical Almanac.)
$\lambda=$ the co-latitude of the place.
then $\tan . \lambda=\tan . \pi$ ener. $\Delta^{\prime \prime}$
or in words, to the log. tangent of the star's N. P. D. add the log.
coszope?
of half the time elapsed, and the sum - 10 will be the log. tangent of the co-latitude required.

It is essential to the accuracy of this method, that the instrument should be well adjusted, or the errors known and allowed for. The error caused in the latitude thus determined, by the want of adjustment of level or collimation, will exactly equal the error of the level and collimation. If the observation be repeated on various nights, the telescope should be reversed. With these precautions, and a level of the best kind, the latitude may be obtained within a second or two, if the place of the star is sufficiently well known; and differences of latitude, whether the star be known or not.

THE ALTITUDE AND AZIMUTH INSTRUMENT.

To the centre of the tripod, $\mathbf{A} \mathbf{A}$, is fixed the vertical axis of the instrument, of a length equal to about the radius of the circle; it is concealed from view by the exterior cone, B. On the lower part of the axis, and in close contact with the tripod, is centered the azimuth circle, C , which admits of a horizontal circular motion of about three degrees, for the purpose of bringing its zero exactly in the meridian; this is effected by a slow-moving screw, the milled
head of which is shown at D. This motion should, however, be omitted in instruments destined for exact work, as the bringing the zero into the meridian is not requisite, either in astronomy or surveying; it is in fact purchasing a convenience too dearly, by introducing a source of error not always trivial. Above the azimuth circle, and concentric with it, is placed a strong circular plate, E, which carries the whole of the upper works, and also a pointer, to show the degree and nearest five minutes to be read off on the azimuth circle; the remaining minutes and seconds being obtained by means of the two reading microscopes, F and G ; this plate, by means of the conical part \mathbf{B}, (which is carefully fitted to the axis) rests on the axis, and moves concentrically with it. The conical pillars, H H, support the horizontal or transit axis, I, which being longer than the distance between the centres of the pillars, the projecting pieces, $c c$, fixed to their top are required to carry out the Y's, $a a$, to the proper distance for the reception of the pirots of the axis; the Y's are capable of being raised or lowered in their sockets by means of the milled-headed screws, b l, for a purpose hereafter to be explained. The weight of the axis, with the load it carries, is prevented from pressing too heavily on its bearings, by two friction rollers on which it rests, one of which is shown at e. A spiral spring, fixed in the body of each pillar, presses the rollers upwards, with a force nearly a counterpoise to the superincumbent weight; the rollers on receiving the axis yield to the pressure, and allow the pivots to find their proper bearings in the Y 's, relieving them, however, from a great portion of the weight.

The telescope, K , is comnected with the horizontal axis, in a manner similar to that of the portable transit instrument. Upon the axis, as a centre, is fixed the double circle, $\mathbf{J} \mathbf{J}$, each circle being close against the telescope, and on each side of it. The circles are fastened together by small brass pillars; by this circle the vertical angles are measured, and the graduations are cut on a narrow ring of silver, inlaid on one of the sides, which is usually termed the face of the instrument; a distinction essential in making observations. The clamp for fixing, and the tangent-screw for giving a slow motion to the vertical circle, are placed beneath it, between the pillars, H H , and attached to them, as shown at L. A similar contrivance for the azimuth circle is represented at M. The reading microscopes for the vertical circle, are carried by two arms bent upwards near their extremities, and attached towards the top of one of the pillars. The projecting arms are shown at N , and the microscopes above at O .

A diaphragm, or pierced plate, is fixed in the principal focus of the telescope, on which are stretched five vertical and five horizontal wires : the intersection of the two centre ones, denoting the optical axis of the telescope, is the point with which a terrestrial object is bisected, when observing angles for geodesical purposes. The vertical wires are used for the same purpose as those in the transit telescope, and the horizontal ones for taking altitudes of celestial objects. A micrometer having a moveable wire is sometimes attached to the eye-end of the telescope, but it is not generally applied to instruments of portable dimensions. The illumination of the wires at
night is by a lamp, supported near the top of one of the pillars, as at d, and placed opposite the end of one of the pivots of the axis, which, being perforated, admits the rays of light to the centre of the telescope-tube, where, falling on a diagonal reflector, they are reflected to the eye, and illuminate the field of view : the whole of this contrivance is precisely similar to that described as belonging to the transit instrument.

The rertical circle is usually divided into four quadrants, each numbered, $1^{\circ}, 2^{\circ}, 3^{\circ}, \& \mathrm{c}$. up to 90°, and following one another in the same order of succession; consequently, in one position of the instrument, altitudes are read off, and with the face of the instrument reversed, zenith distances; and an observation is not to be considered complete till the object has been observed in both positions. The sum of the two readings will always be 90°, if there be no error in the adjustments, in the circle itself, or in the observations.

It is necessary that the microscopes, $\mathrm{O} O$, and the centre of the circle, should occupy the line of its horizontal diameter; to effect which, the up-and-down motion (before spoken of) by means of the screws, $b b$, is given to the Y's, to raise or lower them, until this adjustment is accomplished. A spirit-level, P , is suspended from the arms which carry the microscopes: this shows when the vertical axis is set perpendicular to the horizon. A scale, usually showing seconds, is placed along the glass-tube of the level, which exhibits the amount, if any, of the inclination of the vertical axis. This should be noticed repeatedly whilst making a series of observations, to ascertain if any change has taken place in the position of the instrument after its adjustments have been completed. One of the points of suspension of the level is moveable, up or down, by means of the screw, f, for the purpose of adjusting the bubble. A striding level, similar to the one employed for the transit instrument, and used for a like purpose, rests upon the pivots of the axis. It must be carefully passed between the radial bars of the vertical circle to set it up in its place, and must be removed as soon as the operation of levelling the horizontal axis is performed. The whole instrument stands upon three foot-screws, placed at the extremities of the three branches which form the tripod,* and brass cups are placed under the spherical ends of the foot-screws. A stone pedestal, set

[^12]perfectly steady, is the best support for this as well as the portable transit instrument.

Of the Adjustments.

The first adjustment to be attended to, after setting the instrument up in the place where the observations are to be made, is to set the azimuthal or vertical axis truly perpendicular to the horizon : the method of doing this is to turn the instrument about, until the spirit-level, P , is lengthwise in the direction of two of the foot-serews, when by their motion the spirit-bubble must be brought to oceupy the middle of the glass tube, which will be shown by the divisions on the seale attached to the level. Having done this, turn the instrument half round in azimuth, and if the axis is truly perpendicular, the bubble will again settle in the middle of the tube; but if not, the amount of deviation will show double the quantity by which the axis deviates from the vertical in the direction of the level ; this error must be corrected, one half by means of the two foot-screws (in question,) and the other half by raising or lowering the spirit-level itself, which is done by the screw represented at f. The above process of reversion and levelling should be repeated, to ascertain if the adjustmeut has been correctly performed; for, as we before observed, when speaking of the transit instrument, adjustments of every kind can be made perfect only by successive trials and approximations.

Next turn the instrument round in azimuth a quarter of a circle, so that the level, P , shall be at right angles to its former position; it will then be over the third foot-screw, which may be turned until the air-bubble is again central, if not already so, and this adjustment will be completed; if delicately performed, the air-bubble will steadily remain in the middle of the level during an entire revolution of the instrument in azimuth. These adjustments should be first performed approximately, for if the third foot-serew is much out of the level, it will be impossible to get the other two right. The vertical axis is now adjusted.

The next adjustment is to set the vertical circle at such a height that its two reading microscopes shall be directed to two opposite points in its horizontal diameter, which is done by raising or lowering the Y's which carry the horizontal axis.

The next adjustment is the levelling of the horizontal axis by means of the striding-level, the whole of which operation is in all respects the same as that described for levelling the transit axis, to which therefore the reader is referred. After performing this, the preceding adjustment must be examined, as it will probably be deranged. Indeed it is better first to set the axis horizontal, and then, by equally raising or depressing the two ends, to bring the mieroscopes into a diameter, and finally level again.

The adjustment for the line of collimation requires not only that the middle vertical wire shall describe a great cirele, but that the middle horizontal wire shall have a definite position with respect to the divisions of the limb. It is usual to rectify the position of
one of these at a time, taking the middle vertical wire first.* The error of this wire is ascertained and corrected, precisely in the same manner as that of the transit instrument; with this difference, that instead of taking the axis out of its bearings and turning it end for end, the whole instrument is turned half round in azimuth, which is an equivalent operation. The middle horizontal wire may be adjusted in the following manner: "Point the telescope to a very distant object, bisect it by the middle horizontal wire (near the intersection of the wires,) and read off by the microscopes the apparent zenith distance; now reverse the instrument in azimuth, and turning the telescope again upon the same object, bisect it as before, and again read off the angle which they show. One of these angles will be an altitude, and the other a zenith distance; " and, if there is no error, the sum of the two readings will be 90°, and half of what it differs from 90° will be the error of collimation, which may be either applied to correct any observation made during its existence, or removed in the following manner. One of the readings being the zenith distance, and the other the altitude of the object, reduce the zenith distance to an altitude, or vice versâ, and take the mean; it is evident that " the mean of the two, will be the true zenith distance or altitude respectively; and while the telescope bisects the object, the microscopes must be adjusted by their proper screws, so as to show that mean. This process may be repeated for obtaining a greater degree of accuracy; but its final determination should be deduced from observations upon many heavenly bodies, and the minute error that may remain unadjusted had better be allowed for." This and the preceding operation may be more conveniently performed by a collimating telescope.

The adjustment for setting the cross-wires truly vertical, is the same as that described as belonging to the portable transit; the position of the horizontal wires will then depend on the maker, or the horizontal wire may be put right by making it thread an equatorial star at its transit, when the vertical wires will depend upon the maker.

In conclusion it may be observed, that during a series of observations, if the instrument should be detected to be a small quantity out of level (having previously gone through the principal adjustments,) it may generally be restored by means of the foot-screws only, when they require but a slight touch to effect it: this is more especially essential when the level of the horizontal axis is the one deranged, as correcting it by moving the Y's would derange the adjustment of the vertical circle with regard to its reading microscopes, the construction and adjustments of which î will next be necessary to describe.

The error of the vertical axis is to be detected by the hanging level, and can very readily be allowed for in computing the observation; as a general rule, when great accuracy is required, it is easier and safer to adjust by computation than by mechanical contrivances.

[^13]the reading microscope.

The divisions on the graduated circle, indicate spaces of five minutes each, which are read off along with the degree, by means of an index-pointer. The remaining minutes and seconds, if any, are detcrmined by the reading microscope, as was stated when describing the construction of the circle; it now remains to explain the principal parts of the micrometer, the method of adjusting it, and its application to practice. A A, fig. 1, represents the microscope, passing through a collar or support, B, where it is firmly held by the milled nuts, $g g$, acting on a screw cut on the tube of the microscope. These nuts also serve for placing the instrument at the proper distance, for distinct vision, from the divisions it is employed to read. In the body of the microscope, at a, the common focus of the object and eye-glasses, are placed two wires, crossing each other diagonally, and they are made to traverse the field of view, either up or down, by turning the micrometer-screw, l, working in the box, $c c^{\prime}$. Fig. 2 shows the field of view, with the magnified divisions on the instrument, as seen through the microscope. The shaded part represents the diaphragm, with the cross-wires, the angle made by which, may, by turning the micrometer-screw, b, be bisected by any line on the circle in the field of view, as is shown in the figure. On the left hand of the diaphragm appears the comb or scale of minutes, each of the teeth representing one minute. Moveable with the wires along the comb, is a small index or pointer, e, which, in the figure, is represented at zero, the centre of the scale, as is shown by its bisecting the small hole at the back of the comb. Now one revolution of the screw, b, moves the wires and the pointer over one tooth of the comb, that is, over a space equal to one minute; and part of a revolution moves them but a fraction of a minute. To detcrmine this fractional quantity, a large cylindrical head, $e e$, is attached to the screw, having its edge divided into 60 cqual parts, represcnting seconds, the index being fixed opposite the eye of the observer at f. In reading off an angle by this instrument, observe first the degrce and nearest five minutes shown by the pointer on the graduated circle; then apply to the microscope, and by turning the screw, ℓ, in the order of the numbers upon the hcad, $c e$, make the nearest division nicely bisect the
acute angles formed by the crossing of the wires; the number of teeth the pointer, e, has passed over from zero to produce such bisection, will bc the number of minutes to be added to the degree, \&c. read off from the circle; and lastly, the odd seconds and tenths to be added, are to be taken from the divided head, $e e$, as shown by the inder, f.

The adjustments of the microscope, consist in making the crosswires in its focus, and the divisions on the circle, both appear at the same time distinct, and free from parallax; and also making five revolutions of the screw exactly measure a five-minute space on the graduated circle. For the former of these adjustments, draw out the eye-piece, d, until distinct vision of the wires is obtained, and observe if the divisions of the instrument are also well defined, and whether any motion of the eye causes the least apparent displacement or parallax of the wires with respect to the graduations. If such a dancing motion be found, the microscope must be moved to or from the circle, by turning the nuts, $g g$, unscrewing one and screwing the other, until the wires and graduations both appear distinct, and no parallax can be detected.

Next, to examine and adjust the run (as it is termed) of the screw. If the run has been carefully adjusted by the maker, and no alteration made in the body of the microscope, the image of the space between two of the divisions will be exactly equivalent to five revolutions of the screw, when the wires and divisions are both seen distinctly. Let us, however, suppose that the length of the microscope has been deranged, and that the run is too great; for example, that the space of $5^{\prime} 5^{\prime}$ on the limb is equal to $5^{\prime} 10^{\prime \prime \prime}$ by the micrometer, or that the image is too large. Now the magnitude of the image formed by the object-glass of the microscope, depends entirely on the distance of the object-glass from the limb, and is diminished (in the ordinary construction of the microscope) by increasing the distance between the limb and the object-glass, and vice verst̂. In the case supposed, the image is too large, therefore the object-glass h must be removed further from the limb. Let this be done by turning the screw at h in or towards B. The image now will not be formed at a, as it ought to be, but nearer to B , and distinct vision must be gained by bringing the whole body of the microscope nearer to the limb. In this way, by two or three attempts cautiously conducted, we shall make five revolutions of the cross-wires correspond exactly with the image of the space between two divisions; and for greater accuracy the 5^{\prime} slould be read on each side zero, or 10^{\prime} on the limb made equal to 10 revolutions of the micrometer.

The screw, c^{\prime}, gives motion to the comb or scale of minutes; and the micrometer-head being adjustable by friction, can be made to read either zero, or any required second, when the cross-wires bisect any particular division, by holding fast the milled-head b, and at the same time turning the divided head, $e e$, round until its zero, or whatever division you require, coincides with the index, f : this, it will readily be perceived, is the means of accomplishing the adjustment spoken of at page \% \%

Use of the Altitude and Azimuth Instrument.

This is the most generally useful of all instruments for measuring angles, being applicable to geodesical as well as astronomical purposes. In the hands of the surveyor it becomes a theodolite of rather large dimensions, measuring with great accuracy both vertical and horizontal angles. It does not possess the power of repetition; but the effect of any error of division on the azimuthal circle, may be reduced or destroyed, by measuring the same angle upon different parts of the arc; thus-After each observation, turn the whole instrument a small quantity on its stand, and adjusting it, again measure the required angle. A fresh set of divisions is thus brought into use at every observation, and the same operation being repeated many times, where great accuracy is required, the mean result may be considered as free from any error that may exist in the graduation. A repeating stand has, of late years, been frequently added to this instrument, and is a most powerful and convenient appendage, when great accuracy is required in the measurement of azimuthal angles. The two opposite micrometers being read off at each observation, will always remove the effect of any error in the centering. The vertical angles should, in all cases, be taken twice, reversing the instrument before taking the second observation, when (as before observed) one of the readings will be an altitude, and the other a zenith distance; the sum of the two readings, therefore, if the observation be made with accuracy, and no error exists in the adjustments or the instrument, will be exactly 90°; and whatever the sum differs from this quantity is double the error of the instrument in altitude, and half this double error is the correction to be applied + or - to either of the separate observations, to obtain the true altitude or zenith distance, + when the sum of the two readings is less than 90°, and - when greater.

In applying the instrument to astronomical purposes, it was formerly the custom to clamp it in the direction of the meridian, and after taking an observation, or series of observations, with the face of the instrument one way, to wait till the next night, or till opportunity permitted, and then take a corresponding series of observations of the same objects, with the face of the instrument in a reversed position. But this method being attended both with uncertainty and inconvenience, it is now usual to complete at once the set of observations, by taking the altitudes in both positions of the instrument as soon as possible after each other. When the meridian altitude is required, several observations may be taken, a short time both before and after the meridional passage; with the face of the instrument in one direction, and with it reversed, noting the time at each observation; and if we have the exact time of the object's transit, its hour angle in time, or its distance from the meridian at the moment of each observation may be deduced. This, with the latitude of the place (approximately known) and the declination of the object, affords data for computing a quantity called the reduction to the meridian, which added to the mean of the observed altitudes, when the object is above the pole, and sub-
tracted when the object is below the pole, will give the meridional altitude of the object, and vice versâ, for zenith distances. The nearer the observations are taken to the meridian, the less will the results depend upon an accurate noting or knowledge of the time.

To compute the Reduction to the Meridian.

Practical Rule. Take from Table VII. the natural versed sines of the hour-angles, or times of each observation from the time of transit separately, and take their mean; then to the log. of this mean, add the log. co-sine of the assumed latitude, the co-sine of the declination, the co-secant of the meridian zenith distance, and the constant log. 9.31443 ; the sum, rejecting the tens from the index, will be the log. of the reduction in seconds of space.

The meridional zenith distance employed in the computation need only be approximate; if the latitude of the place and the declination of the body be nearly known, the meridional zenith distance will be equal to the difference between the latitude and the declination, when both are north, or both south; but equal to their sum, when one is north and the other south: and the meridian zenith distance of an object below the pole, is equal to the difference between 180°, and the sum of the latitude and declination.

As an example, we shall take that given in Woodhouse's Astronomy, vol. i. page 422, of the star Arcturus, as observed at the Dublin Observatory.

	Face $\begin{gathered}\text { of } \\ \text { Inst. }\end{gathered}$	Observed Alt.	Hour Angle in Time.	Versed
		- ' "	h ma	
East of meridian,	E.	$5(1)$	$\begin{array}{lll}10 & 35 & 3 \\ 6 & 35 & 3\end{array}$	1067
	E.	$42 \quad 22,9$	$\begin{array}{llll}6 & 35 & 3\end{array}$	0413
West of meridian, $\{$	W.	4510,0	$\begin{array}{lll}2 & 47 & 7\end{array}$	0074
	W.	$43 \quad 23,1$	$\begin{array}{lll}7 & 48 & 7\end{array}$	0580
$\begin{array}{lrl} \text { Means........... } 56 & 42 & 45,3 \\ \text { Reduction } & 1 & 52,4 \end{array}$				533, 5
Refraction		$5644 \quad 37,7$	Declination	, 20
		37,8	Mer. Z. D.	$=331$
				Consta
Meridian Alt		5643 59, 9	Reduction,	í 52,4

If the star be supposed known, the meridian altitude thus determined may be employed in correcting an assumed latitude; or, if the latitude be known, the star's declination may be obtained.

The latitude of a place is its distance from the equator, north or south, and it is equal to the elevation of the celestial pole above the horizon, or to an arc of the meridian contained between the zenith and the celestial equator; which arc can readily be determined, by observing the greatest or meridional altitude of a celestial
object whose declination at the time is known ; for, when the declination is greater than the zenith distance, both being of the same denomination, (either both north or both south,) the latitude will be equal the declination, minus the zenith distance. When the declination and zenith distance are of contrary denomination, then the declination plus the zenith distance will be the latitude. And lastly, when the zenith distance is greater than the declination, then the zenith distance minus the declination will be the latitude. And always of the same denomination as the greater of the two.

Another method of determining the latitude, is by observing the meridional zenith distance of a circumpolar star, both at its upper and lower culmination; then, computing the refraction for each observation, the co-latitude will be equal to half the sum of the two zenith distances added to half the sum of the two refractions. The latitude thus obtained does not depend on a previous knowledge of the declination of the object observed.

The method of determining the latitude by an observation of the altitude of the pole-star at any time of the day, together with the necessary tables, is given in the Nautical Almanac, (as newly arranged.)

A very successful and useful application of this instrument, is the determination of time and the direction of the true meridian, by equal altitudes and azimuths; the method of conducting a series of observations of this kind has been so clearly explained by the late Mr. Wollaston, in his Fasciculus Astronomicûs, that we shall at once transcribe it nearly in the author's own words.
' In the morning, two or three or more hours before noon, let him (the observer) point the telescope toward the sun, and a little above it, and clamping the vertical circle, let him follow the sun till its upper limb just touches the first horizontal wire. Then, noting down the exact second of time, as shown by his chronometer, when that happened, let him follow the sum again till its upper limb just arrives at the second horizontal wire. After setting that down as before, let him prepare for the third or central wire; by now clamping the instrument in azimuth likewise, and holding its adjusting-screw between his finger and thumb, let him bring the preceding limb of the sun just to touch the third or central perpendicular wire, at the same instant that the upper limb just touches the third or central horizontal one. Noting that instant, and setting it down, let him now read off the azimuth marked on the azimuth circle, and set it down under the other, and then prepare for making the preceding limb to touch the fourth perpendicular wire, at the same instant that the upper limb arrives at the fourth horizontal one; setting that time down again, and reading off the azimuth again, and setting it down, let him do the same by the fifth wire at each way, and record them as before, He will now find the lower limb of the sun, and its second or following limb, ready for observing in the same way, at the first, second, and third wire, making each perpendicular wire a tangent to the sun's last imb, at the instant that its lower limb just leaves the correspondent horizontal wire; and setting down the time, and after
reading off the azimuth, setting that down too under the other. After these, the instrument may be released in azimuth, and the lower limb alone be observed, as it quits the fourth and fifth horizontal wires respectively.
'As soon as the sun has thus passed all his wires, he should read off at both the microscopes the zenith distance and altitude at which he had clamped the vertical circle; and if he has a barometer and thermometer, he should set down their station at the same time; for though he probably will have no occasion to regard the precise altitude at which he made these observations, yet, if any thing should deprive him of the correspondent ones, he may wish to have it in his power to deduce his time or his azimuth from them, and the reading off the microscopes after all is over is attended with very little trouble.

- These things will appear at first hurrying, and till a person becomes a little accustomed to it they certainly will be so. But after a little practice, there will be found time enough to go through the whole with ease; for the vertical circle remains clamped the whole time, and all the six azimuths lie much within the limits of their adjusting screw.
' The easiest method of keeping so many observations from confusion, is to have a slate, or sheet of paper, ready ruled into five columns, to correspond with the five wires in the telescope as they occur in succession, in which to write down the observation belonging to each wire, whether that be time or azimuth; for if any cloud or accident should deprive him of any one or more of his observations, he will then at once see afterwards, which of them is missing, when he comes to compare the two sets together.
' Leaving the instrument clamped for altitude, and covered entirely from the sun's rays, he must wait till it is at the same distance from noon in the evening to resume his task. For that, he must hold himself ready against the time comes; and previous to it, he will do well to re-examine the adjustment of his instrument, to be certain that no change has happened in the stand or the central cone, so as to throw its axis out of a perpendicular. Let him then observe the same method in this second set of observations as he did in those of the forenoon, considering those wires as first, at which the sun's limbs touch first, and setting down the times of their appulse to each respective horizontal wire, and bringing the preceding or subsequent limb to the corresponding perpendicular one, and reading off the azimuths just as he did before. When all are passed, he may release all the clamps, and replacing his shade, leave the instrument till he has reduced his observations of corresponding altitudes: if he has observed them all, he will have obtained ten pair, and of azimuths six pair, which he must now select from each other, and properly class them, by taking the last in the morning, in conjunction with the first in the evening, and so on, till each observation is paired with its opposite corresponding one.'

The time of the meridional passage of the sun's centre, as indicated by the time-keeper employed, will be very nearly equal to half
the sum of the times at which each pair of the observations were made, and would be exactly so if the declination did not change during the interval elapsed; (similar observations being made upon any star, the result will show the exact sidereal time of its transit.) The correction to be applied to the time of the sun's transit or apparent noon deduced as above, on account of the change of declination, may be computed by the following formula: *

$$
\text { Make } \frac{T}{1440 \sin \cdot \frac{T}{2}}=-A
$$

$$
\frac{\mathrm{T}}{1440 \tan \cdot \frac{\mathrm{~T}}{2}}=\mathrm{B}
$$

correction $=\mp \mathrm{A} . \delta \cdot \tan \mathrm{L}+\mathrm{B} . \delta \cdot \tan . \mathrm{D}$
in which $\mathrm{L}=$ the latitude of the place (minus when south)
$\delta=$ the double daily variation in the sun's declination (deduced from the noon of the preceding day, to the noon of the following day; minus when the sun is receding from the north)
$\mathrm{D}=$ the declination, at the time of noon, on the given day (minus when south)
$\mathbf{T}=$ the interval of time between the observations expressed in hours.
Note. B is to be considered plus, when the interval of time is less than 12 hours, otherwise minus.

Practical Rule. To the constant log. 3. 1584 add the log. sine of half the interval of time between the observations reduced to space, and subtract their sum from the log. of the whole interval, expressed in hours and decimals; call the remainder A , always minus.

To the constant log. 3. 1584, add the log. tangent of the above half interval, and subtract their sum from the log. of the whole interval as before, and call the remainder B, plus, when the interval is less than twelve hours.

To A, add the log. of double the daily variation of the sun's declination, expressed in seconds, (minus when the sun is receding from the north,) and the log. tangent of the latitude, (minus when south,) the natural number corresponding to the sum to be considered as seconds of time, \&c. plus or minus as it may result.

To B, add the log. of double the daily variation of the sun's declination, as before, and the log. tangent of the sun's declination, minus when south, for noon of the given day, the natural number corresponding to the sum, must be taken as seconds of time with its proper sign. The algebraic sum of these two quantities will be the correction required, and must be added to, or subtracted

[^14]from, the half sum of the times of observation, according as it is plus or minus, to obtain the correct apparent time.

Example.

(From Mr. Baily's Volume of Astronomical Tables, \&c. page 227.)

On July 25, 1823, in N. Lat. $54^{\circ} 20^{\prime}$ at $8^{\mathrm{h}} 59^{\mathrm{m}} 4^{\mathrm{s}}$ A. M., and at $3^{\mathrm{h}} 0^{\mathrm{m}} 40^{\mathrm{s}} \mathrm{P}$. M. the sun had equal altitudes. Required the equation, or correction to be applied to the mean of those times, in order to find the time of noon. The interval of time is $6^{\mathrm{h}} 1^{\mathrm{m}} 36^{\mathrm{s}}$, which converted into arc $=90^{\circ}, 24^{\prime}$, and by the Nautical Almanac, the declination of the sun, at noon on that day, was $+19^{\circ} 48^{\prime} 29^{\prime \prime}$, and its double daily variation equal to $-25^{\prime} 29^{\prime \prime}=-1529^{\prime \prime}$. The operation therefore will stand thus:

$$
\begin{aligned}
& \text { Constant log. . . }=3 \cdot 1584 \text {. } 3 \cdot 1584 \\
& \frac{\mathrm{~T}}{2}=45^{\circ} 12^{\prime} \text { sin. }=9 \cdot 8510 \ldots \text { tangent }=0 \cdot 0030
\end{aligned}
$$

$$
\begin{aligned}
& \text { A }=-7 \cdot 7 \% 07 \text {......... } B=+7 \cdot 6187 \\
& \delta=-1529^{\prime \prime} \log . ニ-3 \cdot 1844 \ldots \log .-3 \cdot 1844 \\
& \mathrm{~L}=+54^{\circ} 20 \tan .+0 \cdot 1441 \ldots \mathrm{D}=19^{\circ} 48^{\prime} \text { tan. }+9 \cdot 5563 \\
& +12^{5}, 57=+1 \cdot 0992 \cdots-2^{\text {s }}, 29=-0 \cdot 3594 \\
& \text { correction }=+12^{\mathrm{s}}, 57-2 \cdot 29=+10^{3}, 28
\end{aligned}
$$

This value, being added to the mean of the times of the observed altitudes, or $\frac{1}{2}\left(20^{\mathrm{h}} 59^{\mathrm{m}} 4^{\mathrm{s}}+27^{\mathrm{h}} 0^{\mathrm{m}} 40^{\mathrm{s}}\right)=23^{\mathrm{h}} 59^{\mathrm{m}} 52^{\mathrm{s}}$, will give $0^{\mathrm{h}} 0^{\mathrm{m}} 2^{\mathrm{s}}, 28$ for the time at apparent noon, to which, if the equation of time be applied, the result will be the time of mean noon.

The equal azimuths may similarly be employed for finding the direction of the true meridian. "They must be opposed to each other in pairs, just in the same manner as corresponding altitudes; the first in the morning to the last in the evening, and so of the rest. Then, deducting the one from the other, and applying half the difference between the two to the smallest number in each pair, it will give a number of degrees, minutes, and seconds, in which, if all the observations were perfect, the whole six pair would coincide; and if they do not, the fair mean deduced from among them will approach nearly to the truth, i.e. the error of 180° on the azimuth circle from the true meridian.

To that mean point, deduced from these observations, the instrument must now be turned, and fixed there till the proper correction can be applied to it. Upon the telescope being turned down to the horizon each way, it may be observed what distinct object there may be, either to the north or south, that coincides with one of the perpendicular wires; or, if no such object should occur, a mark may be placed each way, or either way, to which to keep the instrument, till the correction can be investigated, which
is requisite, on account of the change of the sun's declination during the interval between the morning and evening observations; for any alteration in his declination will affect the azimuth deduced in this way, as it does the hour. This correction is greatest about the time of the equinoxes, as the change in the sun's declination is then the most rapid: it may be computed from the following formula; but when deduced from a star, no such correction is requisite.

$$
\text { Correction }=\frac{1}{2}\left(\mathrm{D}^{\prime}-\mathrm{D}\right) \text { sec. Lat. cosec. } \frac{\left(\mathrm{T}^{\prime}-\mathrm{T}\right)}{2}
$$

In which expression, $\left(D^{\prime}-\mathrm{D}\right)=$ the change in the sun's declination during the interval between the observations, and ($\mathrm{T}^{\prime}-\mathrm{T}$) = the interval itself.

Practical Rule. To the log. of half the change of declination, add the log. secant of the latitude, and the log. co-secant of half the interval of time converted into space: the sum - 20 will be the log. of the correction in seconds of space.

When the sun is advancing towards the elevated pole, the middle point, or meridian, as found by equal altitudes, will be too much to the west of the true meridian, by the amount of this correction, and vice versâ, when he is receding from the elevated pole; therefore, the telescope being shifted in azimuth by the quantity thus computed, will be correctly in the meridan.

EXAMPLE.

On February 28, 1834. When the sun had equal altitudes, the azimuth circle read $130^{\circ} 10^{\prime} 15^{\prime \prime}$ and $32^{\circ} 36^{\prime} 15^{\prime \prime}$, therefore the middle point or reading of the approximate meridian was $81^{\circ} 23^{\prime} 15^{\prime \prime}$. The interval of time between the observations was 5 hours, the half of which converted into arc $=37^{\circ} 30^{\prime} 0^{\prime \prime}$. The sun's hourly change of declination $=56^{\prime \prime}, 7 \%$, therefore the change for half the interval $=$ 141", 92, (approaching the north pole.) The latitude of the place $51^{\circ} 28^{\prime} 39^{\prime \prime}$, required the correction to be applied to the middle point to obtain the direction of the true meridian.

$$
\begin{aligned}
& \frac{1}{2}\left(\mathrm{D}^{\prime}-\mathrm{D}\right)=14 \mathrm{l}^{\prime \prime}, 92 \ldots \log .=2 \cdot 1510436 \\
& \text { Lat. }-51^{\circ} 28^{\prime} 39^{\prime \prime} \ldots . . \text { sec. }=0 \cdot 1065913 \\
& \frac{\left(\mathrm{~T}^{\prime}-\mathrm{T}\right)}{2}=37^{\circ} 30^{\prime}, 0 \quad \text { co-sec. }=0 \cdot 2155529 \\
& \text { Correction }=297^{\prime \prime}, 29 \ldots \log .=2 \cdot 4731868 \\
& =4^{\prime} 57^{\prime \prime}, 29 \\
& \text { Reading of the middle point }=81^{\circ} 23^{\prime} 15^{\prime \prime} \\
& \text { correction - } 457 \text {, } 29 \\
& \left.\begin{array}{c}
\text { Reading of the instrument when set } \\
\text { to the true meridian }
\end{array}\right\}=81 \quad 1817, \% 1
\end{aligned}
$$

Another, and an easy method of finding a meridian line, where dependence can be placed upon the time shown by a chronometer (or watch,) is to compute the time of the meridional passage of a
star ncar the polc, either above or below the pole, and pointing the telescope of the instrument to the star, bisect it at the exact moment; when, if the adjustments of the instrument are perfect, the tclescope will be very ncarly in the plane of the meridian.

A third method, which admits of great accuracy, when instruments of large dimensions are employed, consists in bisecting a circumpolar star when at its greatest eastern and western elongation: a line bisecting the horizontal interval, contained betwecn the two positions of the telescope, will be the direction of the meridian; this interval being measured on the azimuthal circle, and the telescope moved through half that interval, from either its eastern or western position, will place it in the meridian. But it will often be inconvenient to wait till the star attains its second greatest clongation; and as one of the observations must be made in the day-time, (except at particular seasons of the year,) a star will not be visible through telescopes of small size. To make a single observation available for the purpose, the azimuth, (cast or west) of a star, when at its greatest elongation, as well as the time of its attaining such position, must be computed, (which may be done by the annexed rules,) when the observer must first bisect the star, and follow it in its slow motion, until he is satisfied that it is stationary; or, what is perhaps better, if he is certain of his time, bisect it at the exact moment. The azimuth circle must now be read off, and the position of some fixed object, with respect to the azimuth of the star, should be determined; a lamp may at the time be placed at some distance for reference, and its azimuth being thus obtained, other objects may be referred to it at leisure.

To compute the azimuth of a circumpolar star, when at its greatest elongation.
Rule. From the log. sine of the polar distance, subtract the \log. co-sine of the latitude: the remainder will be the log. sine of the azimuth required.

To compute the time (before or after its meridional passage) of a circumpolar star attaining its greatest elongation, either east or west.
Rule: Add together the log. tangent of the polar distance, and the log. tangent of the latitude: their sum, rejecting ten from the index, will be the log. co-sine of the hour-angle (in space;) which, divided by fifteen, will be the sidereal time a star attains its greatest elongation before or after it passes the meridian at its upper culmination; therefore, having the time of the meridional passage, the time of its greatest elongation will be known.

It is only stars whose polar distance is less than the co-latitude of the place of observation, that can be used in the two latter methods of determining the direction of the meridian.

The last method which we shall advert to, and which is mostly applied to objects south of the zenith, consists in computing the azimuth of a celestial object, from an observation of its altitude, the latitude being known; at the same time observing the horizontal angle containcd between it and any fixed object ; for the difference or sum of the azimuth of the celestial body, and this observed hori-
zontal angle, will be the angular distance of the fixed object from the meridian : the sum when the fixed object is on the same side of, and further from, the meridian than the celestial object, otherwise, the difference.

Formula for computing the azimuth of a celestial object from its observed altitude, \&c.

$$
\text { Tang. } \frac{1}{2} \text { azimuth }=V \frac{\sin \cdot \frac{\mathrm{~s}}{2}-\mathrm{z} \cdot \sin \cdot \frac{\mathrm{~s}}{2}-\lambda}{\sin \cdot \frac{\mathrm{s}}{2} \cdot \sin \cdot \frac{\mathrm{~s}}{2}-\pi}
$$

In which $\frac{s}{2}=$ half the sum of the polar distance, the co-latitude and the zenith distance, π and $i=$ the polar distance and co-latide, $\mathrm{Z}=$ the zenith distance of the object.

Practical Rule. Add together the polar distance, the co-latitude, and the zenith distance, and call their sum S. To the log. sine of half S minus the zenith distance, add the log. sine of half S minus the co-latitude, and increasing the index by 20 , call the sum of the two logs. A.

To the log. sine of half S add the log. sine of half S minus the polar distance, and call the sum of the two logs. B.

From A subtract B, and divide the remainder by 2; the quotient will be the log. tangent of half the object's azimuth, which doubled will be the whole azimuth, or horizontal angular distance from the south meridian.

EXAMPLE.

On February 20, 1834, in latitude $51^{\circ} 28^{\prime} 39^{\prime \prime}$. The zenith dis$t$ ance of α Geminorum (east of the meridian) corrected for refraction $=56^{\circ} 20^{\prime} 10^{\prime \prime}$, the azimuth circle reading $125^{\circ} 18^{\prime} 24^{\prime \prime}$: after which the clamps of the instrument were released, and a fixed terrestrial object bisected, also to the east, but nearer the meridian than the star, the azimuth circle now read $83^{\circ} 15^{\prime} 20^{\prime \prime}$, consequently the horizontal angle between the star and the object $=42^{\circ} 3^{\prime} 4^{\prime \prime}$ required the azimuth of the object from the meridian.

$$
\begin{aligned}
& \pi(\text { from the N.A. })=5{ }^{\circ} 45^{\prime} \quad 1{ }^{\prime \prime} 6^{\prime \prime} \\
& \lambda \text {. . . . }=383121 \\
& \mathrm{z} \text {. . . . }=5620 \quad 10
\end{aligned}
$$

$$
\text { 2) } 1523647
$$

$$
\begin{aligned}
& \frac{\mathrm{s}}{2}=-71823 \\
& \frac{\mathrm{~s}}{2}-\mathrm{z} \quad \cdot \quad=\begin{array}{l}
195813 \\
\frac{\mathrm{~s}}{2}-\lambda \quad
\end{array} \\
&=3747 \quad \text { sine }=9.5334322 \\
& \mathrm{~A} \text { sine }=9.7872371 \\
& \mathrm{~A}=9.3206693
\end{aligned}
$$

The verification of the meridional position of an instrument by observing the passage of a circumpolar star at both its upper and lower culminations, as well as the method by high and low stars, has been fully explained, when speaking of the transit; and as the altitude and azimuth circle, when firmly clamped in the plane of the meridian, becomes a complete transit instrument, and may be employed precisely in the same manner and for the same purposes, we refer for this use of it to the account which we have given of that instrument.

In addition to the method of determining differences of longitude by the observed transits of the moon and moon-culminating stars, (page 68,) we subjoin the following, as applicable to the use of the instrument which we are now describing. The latitudes and longitudes of a great number of the most conspicuous places in this country, as church steeples, \&c. having been determined, and published in the account of the Ordnance Survey, they afford a ready means of finding both the latitude and longitude of places adjacent to them, by means of trigonometrical measurement. The process may be understood from the following example.

Let A represent a place the longitude and latitude of which are known; B the station the situation of which we wish to determine; C any point to form the triangle, N S the direction of the meridian.

First, the angles at the three points must be observed, and one of the sides measured, when the distance A B must be computed by plane trigonometry. Suppose it to be $=6040 \cdot 6$ feet. Then the azimuth of A , from the meridian, or the angle, A B N , must be determincd, which may be done by any of the methods we have described; suppose it $=56^{\circ} 5 S^{\prime} 40^{\prime \prime}$; now the line A D perpendicular to the meridian, and
 B D the difference of latitude of B and A, may
be computed from the right-angled triangle A B D, having A B $6040 \cdot 6$ feet, and the angle A B D $=56^{\circ} 58^{\prime} 40^{\prime \prime}$; A D comes out $=5064 \cdot 8$ feet, and $B \mathrm{D}=3292 \cdot$ feet.

With the latitude of A , which suppose $=51^{\circ} 27^{\prime} 44^{\prime \prime}$, enter table VIII, and take out the length of a second, both of latitude and longitude; divide the distances A D and B D by those numbers, and the quotients will be the difference of longitude and latitude (in arc) required. Thus:

$$
\begin{aligned}
& =\quad 5^{\mathrm{s}}, 29 \text { in time. } \\
& \begin{array}{l}
\mathrm{B} D=\frac{3292.2}{102.02}=32,27 \text { difference of latitude } . \\
\text { Table }=2 .
\end{array} \\
& \begin{array}{l}
\text { Longitude of } A=21 \quad \begin{array}{r}
\text { m. } \\
\text { L. } \\
\text { Difference . . }
\end{array} \\
\\
\text { 5, } 40 \text { West. }
\end{array} \\
& \text { Longitude of } \mathrm{B}=21 \text { 5, } 11 \text { West. } \\
& \text { Latitude of } \mathrm{A}=512 \gamma 44,0 \mathrm{~N} \text {. } \\
& \text { Difference . . . } 0 \text { 32, } 27 \text { South. } \\
& \text { Latitude of } \mathrm{B}=512711,73 \mathrm{~N} \text {. }
\end{aligned}
$$

Lastly, we shall give the method of finding the longitude by observations of the eclipses of Jupiter's satellites.

The Nautical Almanac contains the Greenwich mean time when the phenomena happen, consequently the estimated longitude of the place being applied to the time therein given, will be the time at which an eclipse may be expected to happen at the station of the observer, who, being at his telescope a few minutes before, should steadily watch the spot near the body of the planet where the phenomenon is expected, till he discovers the first glimpse or point of light appear, if it be an emersion from the shadow, or of the final disappearance, if an immersion; noting, by a previously regulated time-keeper, the exact mean time (at his own station) when this happens. The difference between this time and the Greenwich time given in the Nautical Almanac, will be the longitude in time; east, if the Greenwich time is less than that observed, otherwise west. Before the opposition of the planet to the sun, the eclipses always happen on the west side of the planet, and afterwards on the east. But when using an inverting telescope, the appearance will be reversed. The situation of the satellite with respect to the planet where the eclipse takes place, is given in the Nautical Almanac.

APPENDIX.

In the execution of extensive surveys upon scientific principles, the accurate measurement of angles is of the utmost importance, requiring the employment of instruments of a superior construction, as well as considerable care and skill in their management. And one great object of such surveys being the formation of correct maps and charts, it is no less essential, that the angles, when accurately measured, should be accurately laid down. We therefore purpose to describe briefly, in this Appendix, the most approved methods of laying down angles, \&c. as supplementary to our account of surveying instruments.

Extensive surveys are best performed, by extending a series of triangles over the country to be delineated; and from the length of a side of one triangle measured or otherwise determined, as a base, and the angles found by means of appropriate instruments, the lengths of the various lines forming the sides of the several triangles throughout the series are computed. The accuracy of the distances thus obtained, will depend on the correct measurement of the angles; and the distance assumed as a base, provided due attention be paid in the first instance to the judicious dispositions of the triangles, which ought to be as nearly equilateral as circumstances will admit. The accurate protracting of the triangles thus determined, is of the next importance. They can be more correctly laid down by means of their sides than by their angles, and one side only; for measures of length, can be taken from a scale and transferred to paper, with more exactness than an angle can be pricked off from a protractor. But it being in most cases requisite, in plotting a survey, to show the direction of the meridian with regard to the triangulation, it becomes necessary to lay down, from one of the principal stations, the azimuthal angle subtended by some other (remote) station and the meridian : now this angle cannot be laid off from a protractor, even of the most approved construction, so accurately as the plotting of the triangulation may be made from the measured or computed sides of the triangles. To obtain a corresponding degree of
exactness, recourse must be had to some other method, and the following is the best that we have seen practised.

Let A and B represent two stations of a trigonometrical survey, and let it be required to lay off the direction of the true meridian, N S, with regard to the line A B, the azimuth of which, west of north, being $40^{\circ} 30^{\prime}$ $30^{\prime \prime}$. Take from an accurately divided diagonal scale, exactly five inches as a radius, and from A, as a centre, describe an arc C D; now the chord of an arc being equal to twice the sine of half that are, it follows that the chord C D is equal to twice the natural sine of half the angle C A D or B A D, viz. 20°
 $15^{\prime} 15^{\prime \prime}$; but the radius of the tables of natural sines being $=1$ or 10 , and taking but the half of 10 , or 5 inches for our radius, we must take from the table the natural sine of half the angle B A D, which will, to radius 5 , be equal to C D, the chord of the whole angle; and having taken that distance from the same scale of inches as the radius, place one foot in the point \mathbf{C}, and with the other mark the point D on the arc $\mathrm{C} D$, then through D and A draw the line N S, which will represent the meridian. But instead of employing a pair of compasses and a scale for this purpose, it is better to use a beam-compass graduated to inches, and having a vernier for minute subdivision, as a measure of length can be taken by its means with greater exactness, than by a pair of compasses from a scale.

This method of laying off angles may be conveniently employed in dividing a circle to be used as a protractor, when the work is to be laid down to a scale not exceeding six inches to a mile. The protractor may be made, either on the same sheet of paper intended to receive the drawing, or on a separate sheet of card-board, when it may be preserved and used on after occasions. During the time which must necessarily be occupied in plotting an extensive and minute survey, the paper which receives the work is often sensibly affected by the changes which take place in the hygrometrical state of the air, causing much annoyance to the draftsman, as the parts laid down from the same scale at different times will not exactly correspond. To remedy in some measure this inconvenience, it has been recommended that the apartments appropriated to the purposes of drawing, should be constantly kept in as nearly the same temperature as possible, and also that the intended scale of the plan should be first accurately laid down upon the paper itself; and from this scale all dimensions for the work
should invariably be taken, as the scale would always be in the same state of expansion as the plot, though it may no longer retain its original dimensions. The protractor may also be laid down upon the paper, and when a great many angles are to be plotted, as in a road or town survey, made with a theodolite and chain, especially if done by traversing, or what is frequently called surveying by the back angle, this kind of protractor will enable the draftsman to plot the work with great rapidity, and with less chance of error, when the scale is small, than by the method of laying off angles by placing the centre of a metallic protractor at every angular point, and pricking off the angle from its circular edge. The application of the theodolite to surveying by a traverse, as well as the method of protraction, we shall endeavour to explain by means of an example.

Let the above plan represent a survey of roads to be performed with a theodolite and chain. Commencing on a conspicuous spot, a, near the place at which two roads meet, the theodolite must be set up and levelled, the upper and lower horizontal plates clamped at zero, and the whole instrument turned about until the magnetic needle steadily points to the N S line of the compass-box, and then fixed in that position by tightening the clamp-screw, H , (see page 8.) Now release the upper plate, and direct the telescope to any distant conspicuous object within or near the limits of the' survey, such as a pole purposely erected in an accessible situation, that it may be measured to, and the instrument placed upon, the same spot at a subsequent part of the operation, as A and B, and after bisecting it with the cross wires, read both the verniers of the horizontal limb and enter the two readings in the field-book; likewise in the same manner take bearings, or angles, to all such remarkable objects as are likely to be seen from other stations, as the tree situated on a hill; and lastly, take the angle to your forward station, b, where an assistant must hold a staff for the purpose, on a picket driven into the ground,* in such a situation as will enable you to

[^15]take the longest possible sight down each of the roads that meet there. In going through the above process, at this and every subsequent station, great caution must be used to prevent the lower horizontal plate from having the least motion after being clamped in its position by the screw H.

Next measure the distance from a to b, and set up the instrument at b, release the clamp-screw H only, not suffering the upper plate to be in the least disturbed from the reading it had when directed at a to the forward station b, with the instrument reading this forward angle; turn it bodily round, till the telescope is directed to the station a (which is now the back station) where an assistant must hold a staff; tighten the clamp-screw H, and by the slowmotion screw, I, (page 8,) bisect the staff as near the ground as possible, and having examined the reading, to see that no disturbance has taken place, release the upper plate, and setting it to zero, see if the magnetic needle coincides, as in the first instance, with the N S line of the compass-box; if it does, all is right; if not, an error must have been committed in taking the last forward angle, or else the upper plate must have moved from its position before the back station had been bisected: when this is the case, it is necessary to return and examine the work at the last station. If this is done every time the instrument is set up, a constant check is kept upon the progress of the work; and this indeed is the most important use of the compass. Having thus proved the accuracy of the last forward angle, release the upper plate, and measure the angles to the stations m and r, and, as before, to whatever objects you may consider will be conspicuous from other places; and lastly observe the forward angle to the station c, where the theodolite must next be set up, and measure the distance $b c$.

At c, and at every succeeding station, a similar operation must be performed, bisecting the back station with the instrument reading the last forward angle; then take bearings to every conspicuous object, as the tree on the hill, the station A, \&c. which will fix their relative situations on the plan, and they afterwards serve as fixed points to prove the accuracy of the position of such other stations as may have bearings taken from them to the same object; for, if the relative situations of such stations are not correctly determined, these bearings will not all intersect in the same point on the plan. The last operation at each station is to measure the forward angle. In this manner proceed to the stations $d, e, f, g, \& \in .$, and having arrived at g, measure an angle to the pole A, as to a forward station, and placing the theodolite upon that spot, direct the telescope to g, as a back station, in the usual way; this done, release the upper plate, and direct the telescope to the first station a, from which A had been observed, and if all the intervening angles have been correctly taken, the reading of the two verniers will be precisely the same as when directed to A from the station a : this is called closing the work, and is a test of its accuracy so far as the angles are concerned, independent of the compass needle. If the relative situation of the conspicuous points, A B, \&c. were previously fixed by triangulation, there would be no necessity to have
recourse to the magnetic meridian at all, as a line connecting the starting point a with any visible fixed object, may be assumed as a working meridian, and if it be thought necessary, the reading of the compass-needle may be noted at a, when such fixed object is bisected, and upon the theodolite being set to the reading of this assumed meridian, at any subsequent station, the compass-needle will also point to the same reading as it did at first, if the work is all correct, and no local attraction influences the compass.

While the instrument is at A , take angles to all the conspicuous objects, particularly to such as you may hereafter be able to close upon, which will (as in the above instance) verify the accuracy of the intervening observations; having done this, return to g and $f, \& c$. and proceed with the survey in the same manner as before, setting the instrument up at each bend in the road, and taking offsets to the right and left of the station lines; arriving at i, survey up to, and close upon B ; then return to i, and proceed from station to station till you arrive at m, where, if the whole work is accurate, the forward angle taken to b will be the same as was formerly taken from b to m, which will finish the operation.

The next step is to lay down the lines and angles thus surveyed; and first, the protractor must be constructed. The great difficulty of dividing a circle accurately is well known, but if the arcs are laid off by means of their chords, the division may be performed with sufficient exactness for the purpose in hand. The lengths of the chords should be taken from an accurately divided beam-compass, which, to insure success, should be set with the utmost possible exactness.

With a radius of five inches describe a circle, and immediately, without altering the compasses, step round the circle, making a fine but distinct mark at each step; this will divide the circle into six parts of 60° each.

Next set the compasses to the natural sine of 15°, which to radius five, will be equal to the chord of 30°, and this distance will bisect each 60° and divide the circle into arcs of 30° each. A proof may be obtained of the accuracy of the work as it proceeds, by setting the succeeding chords off each way, from those points which they are intended to bisect; for if any inaccuracy exists, the bisection will not be perfect, and if the error proves inconsiderable the middle point may be assumed as correct.

Each sixty degrees may next be trisected, by setting off the natural sine of 10° (equal the chord of 20° to our radius) which will divide the circle to every ten degrees.

Next the natural sine of $7^{\circ} 30^{\prime}$ (equal the chord of 15°) stepped from the points already determined, will divide the circle to every fifth degree.

The natural sine of 3° (equal the chord of 6°) being laid off divides 30° into five parts, and set off from the other divisions, divides the circle to single degrees.

Fifteen degrees bisected, or the natural sine, $3^{\circ} 45^{\prime}$ (equal the chord of $7^{\circ} 30^{\prime}$) set off from the other divisions, divides the circle into half degrees.

The natural sine of $3^{\circ} 20^{\prime}$ (equal the chord of $6^{\circ} 40^{\prime}$) divides 20° into three parts, and set off from the rest of the divisions, divides the whole circle to every ten minutes, which is as minute a subdivision as such a circle will possibly admit of ; smaller quantities must therefore be estimated by the eye. The divisions should be numbered from $0,10^{\circ}, 20^{\circ}, \& c$. quite round the circle to 360°, the same as the theodolite, which the protractor represents.

It may be considered troublesome to lay down a protractor of this kind upon every sheet of paper to be plotted on, but having done one, several copies may be obtained from it, by pricking through the divisional points upon paper placed under it for the purpose. Or, if made upon a sheet of card-board, the paper within the graduated circle must be cut out, as the work is plotted within the circle forming the protractor.

Suppose, with a protractor of the latter kind, we proceed to lay down the work of our survey. First draw a line through the assumed starting point, a, across the paper, to represent the magnetic meridian; or, if the points, A B, \&c. have been fixed by previous triangulation, they should be laid down and a line drawn through \boldsymbol{a}, and any one of them (which has been observed from \boldsymbol{a}) may be assumed as a working meridian; then across the protractor draw a line, through the same divisions that were noted on the theodolite for the reading of the meridian, which in our example was zero, or the divisions marked 180° and 360° on the protractor.

Place the protractor upon the paper, so that the line drawn on the former shall coincide with the meridian-line drawn upon the latter, and to prevent its shifting, lay weights on its corners. Place the edge of a large parallel ruler on the divisions which were read off for the forward angle to b, and slide the ruler parallel to itself till its edge passes through the station a, and draw a line from a in the direction $a b$, then with a pair of compasses, and from the scale of the plot, lay off the distance, $a b$, which will determine the point b. Next place the edge of the ruler on the angles taken at b, to the stations r and c respectively, and slide it parallel to itself, till its edge passes through b, then draw the lines, $b r$, and $b c$, and lay off those distances from the scale of the plot; and the stations r and c will be fixed. Next set the ruler to the forward angle taken at c to the station d, and move it till its edge passes through c, and draw the line, $c d$; lay off the distance, $c d$, and the station d will be determined. In like manner proceed with the remaining stations of the survey, until you come to the point m, when, if the lines have been correctly measured and protracted, the forward angle will pass through the station b, and the distance exactly correspond. If the lines have been measured on very uneven ground, each of them must be reduced to the horizontal measure, which may be done at the time of measuring them, by the vertical arc of the theodolite, (see page 9.)

The bearings taken at different stations to various conspicuous objects, are to be laid down as the plotting of the forward angles proceed, for when several bearings have been taken to the same object, the crossing of such lines in the same point, is a proof of the
relative accuracy of the work, and if these objects have been independently fixed and laid down by triangulation, the bearings will then prove the accuracy of the work with respect to these fixed points.

We have remarked, that the plotting must be performed within the circle forming the protractor, which direction is to be understood as applicable only when the protractor is not on the same paper with the plot, for when it is on the same paper, the angles may be transferred by the parallel ruler to any part of the sheet; but care must be taken in numbering the divisions of the protractor, so that the working meridian may be in the best direction for getting into the sheet the greatest portion of the survey. If the protractor is on a separate sheet, and the work has proceeded to its edge, it must be shifted on the paper in the direction of the survey, but must be moved exactly parallel to itself, which may easily be done by drawing more meridian lines parallel to the first meridian, on which to place the protractor, as in the first instance.

When a survey is to be plotted upon a very large scale, it is necessary, to insure the greatest accuracy in laying down the angles, to protract them by their chords, or by means of a circular metallic protractor; as the kind of protractor we have just been describing would not answer the purpose, its chief use being, as has been already described, to plot a traverse upon a moderately small scale. There are several constructions of the protractor adapted to the purpose now under consideration, but the most approved is represented in the subjoined figure. It consists of an entire circle, A A, connected with its centre by four radial bars, $a a$, \&c. The centre of the metal is removed, and a circular disk of glass fixed in its place, on which are drawn two lines crossing each other at right angles, and dividing the small circle into four quadrants, the intersection of the lines denoting the centre of the protractor. When the instrument is used for laying down an angle, the protractor must be so placed on the paper, that its centre exactly coincides with, or covers the angular point, which may easily be done, as the paper can be seen through the glass centre-piece.

Round the centre, and concentric with the circle, is fitted a collar, b, carrying two arms, c c, one of which has a vernier at its extremity adapted to the divided circle, and the other a milled-head, d, which turns a pinion, working in a toothed rack round the exterior circle of the instrument; sometimes a third arm is applied at right angles to the other two, to which the pinion is attached, and a vernier can then (if required) be applied to each of the other two, and it also prevents the observer disturbing that part of the instrument with his hand when moving the pinion. The rack and pinion give motion to the arms, which can be thus turned quite round the circle for setting the vernier to any angle that may be required. Upon a joint near the extremity of the two arms (which form a diameter to the circle) turns a branch, e e, which for packing may be folded over the face of the instrument, but when in use must be placed in the position shown in the figure : these branches carry, near each of their extremities, a fine steel pricker, the two points of which, and the centre of the protractor, must (for the instrument to be correct) be in the same straight line. The points are prevented from scratching the paper as the arms are moved round, by steel springs, which lift the branches a small quantity, so that, after setting the centre of the protractor over the angular point, and the vernier in its required position, a slight downward pressure must be given to the branches, and each of the points will make a fine puncture in the paper; a line drawn through one of these punctures and the angular point will be the line required to form the angle.

Any inaccuracy in placing the centre of the protractor over the angular point may easily be discovered, for, if incorrectly done, a straight line drawn through the two punctures in the paper will not pass through the angular point, which it will do, if all be correct.

The face of the glass centre-piece on which the lines are drawn is placed as nearly even with the under surface of the instrument as possible, that no parallax may be occasioned by a space between the lines and the surface of the paper.

By help of the vernier, the protractor is graduated to single minutes, which, taking into consideration the numerous sources of inaccuracy in this kind of proceeding, is the smallest angular quantity that we can pretend to lay down with certainty. Greater accuracy may perhaps be obtained by the help of a table of natural sines and a well-graduated beam-compass, as explained at page 90 .

For plotting offsets, measured to the right and left of the station lines, ivory scales with fiducial edges are usually employed. The figure in the following page represents an ingenious contrivance for an offset scale, extensively employed on the Ordnance Survey of Ireland.

The graduated scale, A A, is perforated nearly its whole length by a dovetail-shaped groove, for the reception of a sliding piece which is fastened to the cross scale, BB B , by the screw, C . It will readily be understood from an inspection of the figure, that the cross scale, B, slides along the scale, A, the whole length of the groove, and at right angles to it. The graduations on both the
scales represent either feet or links, \&c., or whatever length may have been assumed as the unit in the operation of measuring. The mode of its application is simply this, place the scale, A A, on the paper, parallel to the line on which the offsets are to be plotted, and at such a distance, that the zero division on the cross scale, B, (which is placed about its middle) may coincide with it as the scale slides along, and also that the zero of the scale, \mathbf{A}, may be exactly opposite that end of the line at which the measurement commenced; then, in sliding the scale, B, from the beginning of the line, stop it at every divisional line on A , corresponding to the distance on the station line at which an offset was taken, and lay off the exact length of the offset from the edge of the scale, B, either to the right or left of the station line, to which it will be at right angles as taken in the field; the instrument thus gives both dimensions at the same time. It is perhaps needless to add, that the extremities of the offsets being connected, will represent the curved line, \&c. to which they were measured: weights may be placed at the two ends of the scale, A A, to keep it steadily in its position. In our figure, the instrument is represented as in the act of plotting offsets upon a station line.

"Maritime surveying is of a mixed kind: it not only determines the positions of the remarkable headlands and other conspicuous objects that present themselves along the vicinity of a coast, but likewise ascertains the situations of the various inlets, rocks, shallows, and soundings, which occur in approaching the shore. To survey a new or inaccessible coast, two boats are moored at a suitable interval, which is carefully measured or otherwise determined; and from each boat, the bearings of all the prominent points of land are taken by means of an azimuth compass, or the angles subtended by these points and the other boat are measured by a sextant. Having now on paper drawn the base to any scale, straight lines radiating from each end at the obscrved angles, will, by their
intersections, give the positions of the several points from which the coast may be sketched. But a chart is more accurately constructed, by combining a survey made on land, with observations taken on the water. A smooth level picce of ground is chosen, on which a base of considerable length is measured, and station staves are fixed at its cxtremities. If no such place can be found, the mutual distance and position of two points conveniently situated for planting the staves, though divided by a broken surface, arc determined from one or more triangles, connected with a shorter and temporary base measured near the beach. A boat then explores the offing, and at evcry rock, shallow, or remarkable sounding, the bearings of the station staves are noticed. These observations furnish so many triangles, from which the situation of the scveral points are easily ascertained. When a correct map of the coast can be procured, (or previously constructed) the labour of executing a maritime survey is materially shortened. From each important point on the water, the bearings of two known objects on the land are taken, or the intcrmediate angles subtended by three such objects are observed." The situation of the observer at the time such angles are taken, may then be laid down by means of an instrument called a Station Pointer, which is represcnted in the annexed figure, and which we shall now describe.

This instrument consists of three rulers, A B C, (fig. 1,) connected together by a common centre upon which they turn, and can be opened to form two angles of any inclination. The ruler B is connected with the circular are, b, the ruler, C , with the are, c, and
the middle ruler, A, with the two verniers, $a \boldsymbol{a}$, adapted to the two arcs. The middle ruler is double, and has a fine wire or thread stretched along its opening; the other rulers have likewise a fine wire stretched from end to end, and so adjusted by the little projecting pieces which carry them, that all the three wires tend to the centre of the instrument, where they would meet if produced. The graduated circular arcs, b and c, are for setting the rulers, or rather the fine wires, at whatever angles they may be required to form at the centre of the instrument. Through the centre is an opening sufficiently large to admit a steel pricker, (fig. 2) to be gently pressed into the paper, when the instrument is adjusted in its position: the puncture thus made will represent the station required.

That the application of the instrument may be more readily understood, we have represented it in the act of being used. Suppose the points marked D E F to be three conspicuous objects on the coast, whose relative situations are known and laid down upon the map; and that, on exploring the offing in a boat, a remarkable sounding occurred, which it was necessary should be marked in the chart, the situation of the boat, at the time the sounding was taken, with regard to the shore, must therefore be determined; with a sextant measure the angle, subtended by the objects F and E , likewise the angle subtended by D and E , which suppose to be $35^{\circ} 10^{\prime}$ and 20° 50^{\prime}, then, to lay down on the chart the position of the boat, open the rulers of the station pointer, and by the circular arcs, set them to the observed angles; lay the instrument on the paper, and move it till the three wires pass through the three fixed objects; the centre of the instrument will then occupy the relative situation of the boat, and by the steel pricker, the place may be marked on the paper. When several soundings have been taken, and angles observed at the time to any three fixed objects, the station pointer affords great facility in laying them down: thus the position of shoals, sunken rocks, \&c. may be correctly determined.*

In the absence of the station pointer, a substitute may be obtained, by drawing on a piece of tracing paper three lines forming the observed angles, and moving them about till they pass through the three fixed objects, and the angular point of these angles will then occupy the position of the boat. A very good station pointer may be made by graduating an arc of a circle on a piece of plate glass, one side of which must be ground, to receive the lines forming the observed angles, and it may be applied to the paper as above described, the centre of the graduated arc showing the situation of the boat on the chart.

The position of the boat may also be determined geometrically as follows; (but this would be too tedious a process where a great number of stations are to be determined.) Let A B C be three fixed objects on shore, and from the boat at D, suppose the angles C D B and B D A were found $=40^{\circ}$ and 60°. Subtract double the angle

[^16]C D B from 180°, and take half the remainder $=50^{\circ}$, and lay off this angle from C and \mathbf{B}, the two lines will meet in E, which will be the centre of a circle passing through B, C, and the place of the boat, which will be somewhere on this circle. To find the exact point, take double the angle, B D A, from 180°, and lay off half the remainder $=30^{\circ}$ from B and A ; these lines will
 meet in a point. F , which will also be the centre of a circle passing through A, B, and the place of the boat; consequently where these two circles intersect each other, viz. at D , will be the situation of boat on the plan, with regard to the shore, as required.

TABLE I.

To reduce the Apparent to the True Level.
Argument $=$ the Distance in Fect.

$\begin{aligned} & \text { Dist. } \\ & \text { in } \\ & \text { Feet. } \end{aligned}$	Correct"in Decimals of a Fout.	$\begin{aligned} & \text { Dist. } \\ & \text { in } \\ & \text { Feet. } \end{aligned}$	$\begin{gathered} \text { Correctn in } \\ \text { Decimals } \\ \text { of a Foot. } \end{gathered}$	$\begin{gathered} \text { Dist. } \\ \text { in } \\ \text { Feet. } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { Correctul } \\ \text { Decimals } \\ \text { of a l'oot. } \end{gathered}\right.$	$\begin{aligned} & \text { Dist. } \\ & \text { in } \\ & \text { Feet. } \end{aligned}$	Correctn Decinals of a Foot of a Foot	$\begin{gathered} \text { Dist. } \\ \text { in } \\ \text { in } \end{gathered}$	$\begin{aligned} & \text { Correctu in } \\ & \text { Decimals } \\ & \text { of a Foot. } \end{aligned}$
20	0•00001	1020	0 -02489	2020	009762	3020	0-21821	4020	0•38665
40	-00004	40	-02588	40	-09957	40	-22111	40	-39050
60	$\cdot 00009$	60	$\cdot 02688$	60	-10153	60	$\cdot 22403$	60	-39439
80	$\cdot 00015$	80	-02791	80	-10351	80	22697	80	-39828
100	$0 \cdot 00024$	1100	0.02895	2100	0•10551	3100	$0 \cdot 22493$	4100	0-40218
20	$\cdot 00034$	20	-03001	20	$\cdot 10753$	20	23290	20	-40613
40	-00047	40	-03109	40	-10956	40	-23590	40	-41008
60	-0006	60	-03219	60	-11162	60	-23892	60	-41404
80	$\cdot 00077$	80	-03:331	80	-11370	80	24195	80	41805
200	0.00096	1200	0.03445	220	0.11580	3200	0-24500	4200	0.42205
20	-00116	20	.03561	20	-11792	20	'24807	20	-42607
40	-00138	40	-03679	40	-12005	40	-25117	40	-43014
60	-00162	60	-03798	60	-12220	60	-25427	60	43420
80	00187	80	-03920	80	-12437	80	-25740	80	-43827
300	0.00215	1300	$0 \cdot 04043$	2300	0•12657	3.300	$0 \cdot 26055$	4300	$\overline{0 \cdot 44239}$
20	-00245	20	-04169	20	-12878	20	-26372	20	-44650
40	$\cdot 00276$	40	$\cdot 04296$	40	-13101	40	-26691	40	-45066
60	-00310	60	-04425	60	-13326	60	27011	60	$\cdot 45483$
80	-00345	80	-04556	80	-13553	80	27334	80	45899
400	$0 \cdot 00383$	1400	0.0468!	2400	0.13781	3400	0 27638	4400	0.46320
20	-00422	20	-0482	20	-14012	20	2798	20	-46742
40	-00462	40	$\cdot 04961$	40	$\cdot 14244$	40	2831:	40	47166
60	$\cdot 00506$	60	$\cdot 05100$	60	-14480	60	-28643	60	$\cdot 47591$
80	00551	80	-05241	80	-147	80	28975	80	48020
500	$0 \cdot 005!$	1500	$0 \cdot 053$	2500	0-1495	3500	0-29309	4500	0.48449
20	-0064	20	$\cdot 05528$	20	-15194	20	-2964	20	48881
40	$\cdot 00697$	40	-05674	40	-15436	49	2998	40	49316
60	00750	60	05822	60	$15 ; 80$	60	'30323	60	49749
80	00805	80	05972	80	15926	80	3066	80	-50189
600	$\overline{0 \cdot 00861}$	1600	0.06125	2600	0-16173	3600	0:31008	4600	$0 \cdot 50627$
20	$\cdot 00920$	20	$\cdot 06279$	20	-16423	20	'31,35,	20	-51067
40	'00980	40	$\cdot 06435$	40	$\cdot 16675$	40	-3170	40	51511
60	-01042	60	$\cdot 06593$	60	-16929	60	-32050	60	51957
80	01106	80	-06753	80	-17184	80	2401	80	52404
700	$0 \cdot 01172$	1700	0.06914	2700	0-17441	3700	$0 \cdot 32754$	$\overline{4700}$	0-52852
20	-01240	20	-07078	20	$\cdot 17701$	20	3311	20	53302
40	-01310	40	-07244	40	-17962	40	3346	40	53755
60	-01382	60	$\cdot 07411$	60	-18225	60	33825	60	54211
80	-01456	80	-07581	80	-18490	80	-34186	80	54667
800	0.01531	1800	0.07752	2800	0-18758	3800	$0 \cdot 34548$	4800	0-55124
20	-01609	20	$\cdot 0792 \mathrm{5}$	20	-19026	20	34913	20	55586
40	-01688	40	-08100	40	-19298	40	-3528	40	56048
(i)	-01769	60	-08277	60	$\cdot 19571$	${ }_{6} 6$	$\cdots 35650$	6	-56512
80	-018.3	80	-08456	80	$\cdot 19844$	80	36018	80	-56978
900	0-01938	1900	0-08637	2900	$0 \cdot 20121$	3900	$0 \cdot 36390$	4900	0-57447
20	-02025	20	$\cdot 08820$	20	-20400	20	-36766	20	57917
40	-02114	40	-09005	40	-20681	40	-37142	40	58388
60	-0220.5	60	-09191	60	-20962	(i)	-37520	60	58860
80	-(122:98	80	-09380	80	'21247	80	-37899	80	-59333
1000	$0 \cdot 02392$	2000	0 09570	3000	0 0 21533	1000	$0 \cdot 38281$	5000	$0 \cdot 59814$

=	For determining Altitudes with the Barom Computed by Mr. Baily's Formula XXXVIII.								
Thermometers in open Air.						Thermometers to the Barometer		Latitude of the Place.	
S	A	S	A	S	A	D	B	L	C
$4{ }^{\circ}$	$4 \cdot 76891$	$8 \stackrel{0}{4}$	4•79019	128	$4 \cdot 81048$	0	$0 \cdot 00000$	-	$0 \cdot 00117$
41	- 76940	85	-79066	129	$\cdot .81093$	1	-00004	3	$\cdot 00116$
42	-76989	86	-79113	130	-811:38	2	-00009	6	$\cdot 00114$
43	-77039	87	- 79160	131	-81183	3	-()0013	9	-00111
44	. 77089	88	$\cdot 79207$	132	-81228	4	-00017	12	-00107
45	4•77138	89	$\overline{4.79254}$	133	4.81272	5	0.00022	15	0. 00101
46	. 77187	90	-79301	134	$\cdot 81317$	6	-00026	18	-00095
47	.77236	91	-79348	135	- 81362	7	-00030	21	-00087
48	-77286	92	-79395	136	-81407	8	-00035	24	-00078
49	. 77335	93	$\cdot 79442$	137	-81451	9	-00039	27	-00069
50	$4 \cdot 77383$	94	4.79488	138	4.81496	10	$0 \cdot 00043$	30	$0 \cdot 00059$
51	$\cdot 77433$	95	-9535	139	-81541	11	-00048	33	-00048
52	$\cdot 77482$	96	-79582	140	-81585	12	-00052	36	-00036
53	$\cdot 77531$	97	$\cdot 79629$	141	- 81630	13	-00056	39	-00024
54	$\cdot 77579$	98	$\cdot 79675$	142	-81675	14	-00061	42	-00112
55	$4 \cdot 77628$	99	$\overline{4.79722}$	143	4.81719	15	$0 \cdot 00065$	45	1) $\cdot 00000$
56	- 77677	100	. 79768	144	- 81763	16	-00069	48	9-99988
57	- 77726	101	$\cdot 79814$	145	- 81807	17	-00074	51	.99976
58	$\cdot 77774$	102	-79860	146	-81851	18	- 00078	54	-99964
59	$\cdot 77823$	103	- 79907	147	-81896	19	-00083	57	-99952
60	4.77871	104	$4 \cdot 79953$	148	$4 \cdot 81940$	20	$0 \cdot 00087$	60	$9 \cdot 99941$
61	-77920	105	-79999	149	-81983	21	-00091	63	-99931
62	- 77968	106	-80045	150	-82027	22	-00096	66	-99922
63	- 78017	107	-80091	151	-82072	23	-00100	69	-99913
64	$\cdot 78065$	108	$\cdot 80137$	152	-82116	24	-00104	72	.99905
65	478113	169	4.80183	153	$4 \cdot 82160$	25	$0 \cdot 00109$	75	9-9!889
66	. 78161	110	-80229	154	-82204	26	-00113	78	:90893
67	-78209	111	-80275	15.5	- 82248	27	$\cdot 00117$	81	:09889
68	-78257	112	-80321	156	-82291	28	-00122	84	-99886
69	-78305	113	-80367	157	-82335	29	-00126	87.	-99884
70	4.7833.3	114.	4.80412	158	4.82 .379	30	-001:30	90	$9 \cdot 0988$
71	- 78401	115	$\cdot 80458$	159	-8242	- 31	. $0 \cdot 00134$		
72	-78449	116	-80.504	160	-82466				
73	- 78497	117	-80549	161	-82510	$\begin{aligned} & S=\left\{\begin{array}{l} \text { the sum of the detached } \\ \text { thermometers at the } \\ \text { two stations. } \end{array}\right. \\ & D=\left\{\begin{array}{r} \text { the difference of the at } \\ \text { tached thermometers } \\ \text { at the two stations. } \end{array}\right. \\ & I_{S}= \\ & \beta=\left\{\begin{array}{l} \text { the latitude. } \begin{array}{l} \text { at of the barometer } \\ \text { ather station. } \end{array} \\ \beta^{\prime}=\left\{\begin{array}{r} \text { the log. of the barometer } \\ \text { at the lower station. } \end{array}\right. \end{array} .\right. \end{aligned}$			
74	-78544	118	-80595	162	-8255:3				
75	$4 \cdot \overline{78592}$	119	4.80641	163	$4 \cdot 82.57$				
76	- 78640	120	- 80687	164	- 82640				
77	- 78688	121	-80732	165	-82683				
78	$\cdot 78735$	122	-80777	166	-82726				
79	$\cdot 78783$	123	-80823	167	-82770				
80	$4 \cdot 78830$	124	$4 \cdot 80869$	168	4.8281:3				
81	-78878	. 125	. 80914	169	-828.77				
82	-78925	126	-89958	170	$.82900$				
83	$\cdot 78972$ $4 \cdot 79019$	127	81003 4.81048	171	$\begin{array}{r} .82943 \\ 1.8 \cdot 0986 \end{array}$				
84	$4 \cdot 79019$	128	$4 \cdot 81048$	172	$4 \cdot 82986$				

Make $R=\log \cdot \beta^{\prime}-(B+\log . \beta)$
The log. diff. of altitude in English feet $=A+C+\log$. of R.

TABLE III.

For converting Intervals of Sidereal into corresponding Intervals of Mean Solar Time.

Hours.	Minutes.						Seconds.					
m												
0 9, 830		0,164		3, 440	41	6,717		0, 003	21	0,057	41	0,112
0 19, 659		0,328	22	3, 604	42	6,881		0,005		0,060	42	0,115
3029,489	3	0,491	23	3, 268	43	7,044		0,008		0,0663	43	0, 1
4 4 0 39, 318	4	0,655	24	3,932	44	7,208		0,011	24	0,066	4	0, 12
5049,148	5	0,819	25	4, 096	45	7,372	5	0,014		0, 068	5	0, 123
6058,977		0, 983	26	4,259	46	7,536		0,016		0,071	6	0,126
1 8,807		1,147	27	4,423	47	7,700		0, 019	27	0, 074	17	0,128
1 18,636		1,311	28	4,587	48	7,864		0, 022	28	0,076		0 ,
128,466		1,474	29	4,751	49	8,027		0,025	29	0,079	9	0,
10138,296	10	1,638	30	4,915	50	8,191	10	0,027	30	0,08		0,
11 148,125	11	1,802	31	5,079	51	8,355	11	0,030	31	0,085	51	0,140
12157,955	12	1,966	32	5,242	52	8,519	12	0,033	32	0,087	52	0,142
$13.2 \begin{array}{ll}13 & 7,784\end{array}$	13	2, 130	33	5,406	53	8, 683	13	0,036	33	0,090		0,145
14217,614	14	2,294	34	5, 570	54	8,847	14	0, 038	34	0,093	4	0,148
$15.227,443$	15	2,457	35	5,734	55	9,010	15	0,041	35	0,096	5	0, 150
16237,273	16	2, 621	36	5,898	56	9, 174	16	0,044	36	0, 098	56	0, 153
17247,103	17	2,785	37	6, 062	57	9,338	17	0,047	37	0, 101	57	0, 15
18 2 56, 932	18	2, 949	38	6,225	58	9,	18	0, 049	38		8	0,
19.3 6, 762	19	3,113	40		59		20					
$\frac{20}{21} \frac{316,591}{326,421}$	20											
3 36,250	The quantities taken from this Table must be subtracted from a sidereal interval, to obtain the corresponding interval in mean solar time.											
2333464,080												
24355,909												

TABLE IV.
For converting Intervals of Mean Solar into cor:esponding Intervals of Siderea! Time.

Hours.	Minutes.						Seconds.					
m												
1 10 9,856	1	0, 164	21	3,450	41	6,735		0,003	21	0,057	41	0,112
2019,713	2	0,329	22	3,614	42	6, 900	2	0,005	22	0,060	42	0,115
30029,569	3	0, 493	23	3,778	43	7,064	3	0,008	23	0, 063	43	0,118
4 0.39), 426	4	0,657	24	3, 943	44	7,228	4	0,011	24	0,066	44	0, 120
$5.049,282$	5	0, 821	25	4, 107	45	7,392	5	0, 014	25	0, 068	45	0,
66059,139	6	0,986	26	4,271	46	7,557		0,016	$\begin{aligned} & 26 \\ & 27 \end{aligned}$	0,071	46	0 ,
7118,995	7	1, 150	27	4,436	47	7,721		0,019	27	0, 074	47	0,12
$8.118,852$	8	1,314	28	4, 600	48	7,885	8	0,022	28	0,076	48	0, 131
. 9128,708	9	1,478	29	4, 764	49	8,050	9	0, 025	29	0, 079	49	0, 134
101138,565	10	1, 643	30	4,928	50	8,214	10	0,027	30	0,082	0	0,137
-11 148,421	11	1,807	31	5,092	51	8,378	11	0,030	31	0,085	51	0,140
12158,278	12	1,971	32	5, 257	52	8,542	12	0,033	32	0,087	52	0,142
133. 2. 8, 134	13	2, 136	33	5, 421	53	8,707	13	0, 036	33	0,090	33	0,145
$14.217,991$	14	2,300	34	5,585	54	8,871	14	0, 038	34	0,093	54	0,148
$15.2 .27,847$	15	2,46-1	35	5,750	55	9, 035	15	0,041	35	0,096	55	0, 150
$16 \cdot 2 \cdot 37,704$	16	2, 628	36	5, 914	56	9, 199	16	0,044	36	0,098	56	0,153
17 17 277560	7	2,793	37	6,078	57	9, 364	17	0,047	37	0,101	57	0, 15
$18.257,416$	18	2,957	38	6, 242	8	9,528	18	0,049	38	0, 104	58	0, 159
19 3 37,273	19	3, 121	39	6,407	59	9, 6.92	19	0, 032	39	0, 106	59	0,161
20 3, 17,129	20	3, 285	40	6,571		9, 856	20	0, 0.55	40	0,109	60	0,164

The quantities taken from this Table must be added to a mean interval, to obtain the corresponding interval in sidereal time.

TABLE V.

Logarithms to compute the Longitude from the Difference between the Intervals of the Transit of the Moon's bright Limb and a Star.

$\underset{\text { Min. }}{1}$	Log.	Parts	$\left\lvert\, \begin{aligned} & 1 \\ & \text { Min. } \end{aligned}\right.$	Log.		$\begin{gathered} 1 \\ \text { Min. } \end{gathered}$	Log.	Pa	$\stackrel{2}{2}_{\text {Min. }}$	Jous	Part
$42 \cdot$	$1 \cdot 536$.	1510875	0	, $4 \cdot 0$	-486648			463627	0
	1 -536004	43		$1 \cdot 510461$	41		$1 \cdot 486255$	39		$1 \cdot 463253$	37
-2	$1 \cdot 535566$	87		$1 \cdot 510047$	82		$1 \cdot 485862$	78		1-462879	75
$\cdot 3$	$1 \cdot 535130$	130	31	$1 \cdot 509633$	123		$1 \cdot 485469$	118		$1 \cdot 462505$	112
	1.534693	174	4	$1-509220$	165	4	$1 \cdot 485077$	157		$1 \cdot 462132$	149
\bigcirc	$1 \cdot 534256$	217	5	$1 \cdot 508808$	206	51	$1 \cdot 484685$	196		$1 \cdot 461739$	187
	$1-533821$	261	61	$1-508395$	217	$\cdot 6$	$1 \cdot 484294$	235		1-461386	224
$\cdot 7$	$1-533385$	304	71	$1 \cdot 507983$	288	71	1-483903	274		$1 \cdot 461014$	261
8	i 5332950	348	8	$1 \cdot 507571$	330	8	$1 \cdot 483512$	313		$1 \cdot 460642$	298
	$1 \cdot 532515$	391	91	$1 \cdot 507161$	371	9	$1 \cdot 483121$	353		$1 \cdot 460270$	336
43.0	1-532081	0	49.0	1-506749	()	550	$1 \cdot 482731$	0	$1 \cdot 0$	$1 \cdot 459898$	0
-	1-531647	43	$\cdot 11$	$1 \cdot 506337$	41	$\cdot 1$	$1 \cdot 482341$	39		$1 \cdot 459527$	37
	$1 \cdot 531214$	86	$\cdot 2$	$1 \cdot 505928$	82		$1 \cdot 481952$	78		$1 \cdot 459156$	74
3	$1 \cdot 530781$	130	31	1.505518	123	3	1-481562	117		1-458785	111
4	$1 \cdot 530348$	173	4	$1 \cdot 505108$	164		$1 \cdot 481173$	155		1-458414	148
5	1.529916	216	51	$1-504699$	205		$1-480785$	194		$1 \cdot 458044$	185
$\cdot 6$	1 -529484	259	61	1.504290	245		$1 \cdot 480397$	233		$1 \cdot 457674$	222
7	$1 \cdot 529053$	302	$\cdot 71$	1-503881	286	41	$1 \cdot 480009$	272		$1 \cdot 457305$	259
8	1-528622	346	-81	$1-503473$	327	81	$1 \cdot 479621$	311		$1 \cdot 456936$	296
$\cdot 9$	$1 \cdot 528191$	389	$\cdot 91$	$1 \cdot 503065$	368	91	1-479234	350	91	$1 \cdot 456567$	333
$\overline{44 \cdot 0}$	$1 \cdot 527761$	0	$50 \cdot 0$	[502658		$56 \cdot 0$	$1 \cdot 478847$	0	$2 \cdot 0$	1-456198	0
$\cdot 1$	1.527331	43		$1 \cdot 502251$	41		1.478460	39		$1 \cdot 455830$	37
2	1.526902	86		1-501844	81		1-478074	77		$1 \cdot 455462$	73
3	$1 \cdot 526473$	128	31	1-501438	122	31	1-477688	116		$1 \cdot 455094$	110
4	$1 \cdot 526044$	171	41	1.501032	162		$1 \cdot 477302$	154		$1 \cdot 454727$	147
5	$1 \cdot 525616$	214	51	$1 \cdot 500526$	203		$1 \cdot 476917$	193	51	$1 \cdot 454360$	184
6	$1 \cdot 525188$	237	61	1-500221	243	$\cdot 61$	$1 \cdot 476532$	231		$1 \cdot 453993$	220
7	$1 \cdot 524761$	300	7	$1 \cdot 499816$	284		$1 \cdot 476147$	270		$1 \cdot 453627$	257
8	$1 \cdot 524334$	342	81	$1 \cdot 499411$	324	81	1.475763	308		1-453261	294
$\cdot 9$	$1 \cdot 523907$	385	9	$1 \cdot 499007$	365	91	1.475379	347		$1 \cdot 452895$	330
$\overline{45 \cdot 0}$	$1 \cdot 523481$	0	$51 \cdot 0$	1.498603	0	$57 \cdot 0$	$1 \cdot 474995$	0	$3 \cdot 0$	1.452529	
	$1-523055$	42	$\cdot 1$	$1 \cdot 498200$	40		$1 \cdot 474612$	38		1452164	36
	1.522630	85	,	$1 \cdot 4.9797$	80		1-474228	76		$1 \cdot 451799$	73
3	1 -522205	127	3	1-497393	121		$1 \cdot 473845$	115		$1 \cdot 451434$	109
$\cdot 4$	[521780	170	-4	$1 \cdot 496991$	161		1-473462	153		1.451069	146
\bigcirc	1-521355	212	5.5	$1 \cdot 496589$	201		$1 \cdot 473080$	191		1.450705	182
6	$1-520932$	254	$\cdot 6$	$1 \cdot 496188$	241		$1 \cdot 472699$	229		$1 \cdot 450341$	218
7	1.520508	297	$\cdot 7$	$1 \cdot 495786$	281		$1 \cdot 472317$	267		1-44997\%	255
$\cdot 8$	1-520085	339	8	$1 \cdot 495385$	322		$1 \cdot 471936$	306		$1-449614$	291
-9	1-519662	382	9.9	$1 \cdot 494984$	362	.91	$1 \cdot 471555$	344		$1 \cdot 449251$	328
$\overline{46 \cdot 0}$	$1 \cdot 519240$	0	$\overline{52 \cdot 0}$	$1 \cdot 494584$	0	8.0	1-471174	0	$4 \cdot 0$	$\overline{1 \cdot 448888}$	0
	1 -518820	42	$\cdot 1$	1-494184	40		$1 \cdot 470794$	38		$1 \cdot 448525$	36
	1-518400	84	-2	1-493784	80		$1 \cdot 470414$	76		$1 \cdot 448163$	72
	$1 \cdot 517980$	126		$1-493385$	120		$1 \cdot 470034$	114		$1 \cdot 447801$	108
	1 -517560	168	4	$1 \cdot 492986$	159		$1 \cdot 469655$	152		$1 \cdot 447439$	144
	1-517140	210	\% 1	$1 \cdot 492587$	199		$1 \cdot 469276$	190		1-447078	181
	$1-516719$	252	$\cdot 61$	$1 \cdot 492189$	239		$1 \cdot 468897$	227		$1 \cdot 446717$	217
	$1-516299$	294	71	1-491791	279		$1 \cdot 468518$	265		1-446356	253
-8	$1-515879$	336	81	$1 \cdot 491393$	319		$1 \cdot 468140$	303		$1 \cdot 445995$	289
9	$1 \cdot 51.5459$	378	41	$1 \cdot 490996$	35.9	91	$1 \cdot 467762$	341		$1 \cdot 445635$	325
$47 \cdot 0$	$1 \cdot 515039$	0	$53 \cdot 0$	$1 \cdot 490599$	0	59 0	$1 \cdot 467385$	0	$5 \cdot 0$	$1 \cdot 445275$	0
	$1-514621$	42	11	$1 \cdot 490202$	39	$\cdot 1$	$1 \cdot 467008$	38		$1 \cdot 444915$	36
'2	1-514203	83	21	$1-489806$	79		$1 \cdot 466631$	75		$1 \cdot 444556$	71
	$1 \cdot 513786$	125	31	1-489410	119		$1 \cdot 466255$	113		$1 \cdot 444196$	107
	$1-513369$	167	41	1-489014	158		$1 \cdot 4635878$	150		$1 \cdot 443837$	143
	$1-512952$	208		1-488619 ${ }^{\text {d }}$	198		$1 \cdot 465502$	188		$1 \cdot 443478$	179
	$1 \cdot 512536$	250	-61	$1 \cdot 488224$	237		$1 \cdot 4(6) 127$	226		$1 \cdot 443120$	215
7	1 -512120	2.92		1-487830	277		$1 \cdot 464751$	2 (i3		$1 \cdot 442762$	251
$\cdot 8$	1 -511705	333	81	$1 \cdot 487436$	316		$1 \cdot 464: 376$	301		$1 \cdot 142404$	286
$\cdot 9$	1-511290	375	-9)	1-487042			$1 \cdot 464001$	338		$1 \cdot 442046$	3

TABLE V.

Logarithms to compute the Longitude from the Difference between the Intervals of the 'Transit of the Moon's bright Limb and a Star.

$\stackrel{2}{\text { Min. }}$	Log.	Parts	$\begin{array}{r} 2 \\ \mathrm{Vin} \end{array}$		Par	2	Log.	Parts	2	Log.	Parts
	$1 \cdot 441$	0		1	0		82	0			
$\cdot 1$	$1 \cdot 441332$	36	,	$1 \cdot 420396$	34	$\cdot 1$	1-400355	33	-	$1 \cdot 381134$	31
$\cdot 2$	440	71	2	$1 \cdot 420055$	68	-2	$1 \cdot 400028$	65	$\cdot 2$	$1 \cdot 380820$	63
3	$1 \cdot 440619$	107	3	$1 \cdot 419715$	102	$\cdot 3$	$1 \cdot 399701$	98	3	-380506	94
4	$1 \cdot 440263$	142	4	$1 \cdot 419373$	136	4	1 -399375	130	4	380193	125
5	$1 \cdot 439907$	178	5	$1 \cdot 419033$	170	5	1 -399049	163	-5	-379880	156
6	3955	214	6	$1 \cdot 418693$	204	-6	$1 \cdot 398723$	196	-6	$\cdot 379567$	188
7	$1 \cdot 43919$	249	7	$1 \cdot 418354$	238	- 7	$1 \cdot 398397$	228	$\cdot 7$	$1 \cdot 379254$	219
$\cdot 8$	43884	285	8	$1 \cdot 418014$	272	- 8	L-398071	261	-8	$1 \cdot 378941$	50
$\cdot 9$	$1 \cdot 438486$	320	$\cdot 9$	$1 \cdot 417674$	306	$\cdot 9$	$1 \cdot 397746$	293	-9	$1 \cdot 378629$	282
$7 \cdot 0$	$1 \cdot 4381$	0	$\overline{13 \cdot 0}$	$1 \cdot 417$	0	$\overline{19 \cdot 0}$	$1 \cdot 397421$	0	$25 \cdot 0$	378317	0
$\cdot 1$	$1 \cdot 437$	35		$1 \cdot 416996$	34	$\cdot 1$	$1-397096$	32	-1	378005	31
$\bullet 2$	437423	71	2	$1 \cdot 4166$	67	2	1-396752	65	2	1-377693	62
3	$1 \cdot 437069$	106	3	$1 \cdot 416319$	101	3	96447	97	-3	- 377382	93
$\cdot 4$	$1 \cdot 436715$	141	4	$1 \cdot 415981$	1.35	4	$1 \cdot 396123$	129	4	$1 \cdot 377071$	124
$\cdot 5$	$1 \cdot 436362$	177	5	$1 \cdot 415643$	168	J	395799	161	$\cdot 5$	$1 \cdot 376759$	155
$\cdot 6$	$1 \cdot 436009$	212	6	$1 \cdot 415306$	202	.6	$1 \cdot 395476$	194	6	-376449	186
$\cdot 7$	$1 \cdot 435650$	247	$\cdot 7$	$1 \cdot 414969$	236	7	1 395152	226	7	$1 \cdot 376138$	218
-8	1-43530	282	-8	$1 \cdot 414631$	276	-8	1-394829	258	8	$1 \cdot 375827$	249
$\cdot 9$	$1 \cdot 434952$	318	$\cdot 9$	$1 \cdot 414294$	303	$\cdot 9$	$1 \cdot 394506$	291	9	$1 \cdot 375517$	280
8.0	$1 \cdot 4346$	0	14.0	$1 \cdot 4139$	0	20.0	1-394183	0	$\cdot 0$	7	0
$\cdot 1$	$1 \cdot 43424$	35	$\cdot 1$	$1 \cdot 413621$	33	-1	$1 \cdot 393860$	32	-1	374897	1
$\cdot 2$	$1 \cdot 4338$	70	2	$1 \cdot 41328$	67	2	-393538	64	2	374587	2
$\cdot 3$	$1 \cdot 43354$	105	3	$1 \cdot 412949$	100	3	1-393216	96	3	-374278	92
-	$1 \cdot 43319$	140	4	$1 \cdot 4126$	134	4	$1-392894$	128	- 4	$1 \cdot 373969$	123
5	$1 \cdot 43284$	175	5	$1 \cdot 412278$	167	-5	$1-392572$	160	5	$1 \cdot 373659$	154
-	$1 \cdot 43249$	210	6	$1 \cdot 411942$	201	$\cdot 6$	1 :392251	193	$\cdot 6$	$1 \cdot 373351$	185
$\cdot 7$	$1 \cdot 43214$	245	7	$1 \cdot 411607$	234	$\cdot 7$	1-391930	225	7	$1 \cdot 373042$	216
-8	$1 \cdot 43179$	280	8	$1 \cdot 411273$	268	- 8	$1 \cdot 391608$	257	-8	$1 \cdot 372733$	246
$\cdot 9$	$1 \cdot 431445$	315	$\cdot 9$	$1 \cdot 410938$	301	9	1-391288	289	$\cdot 9$	1-372425	277
$9 \cdot 0$	1	0	$\overline{15 \cdot 0}$	1.410604	0	$21^{\circ} 0$	390967	0	$27^{\circ} 0$	17	0
$\cdot 1$	$1 \cdot 4307$	35	1	$1 \cdot 410270$	33	1	1-390647	32	$\cdot 1$	$1 \cdot 371809$	31
$\cdot 2$	3039	70		$1 \cdot 409936$	67	2	390327	64	. 2	371501	,
\cdot	$1 \cdot 43005$	104	3	$1 \cdot 409602$	100	3	1-390007	96	-3	-371194	92
$\cdot 4$	$1 \cdot 42970$	139	4	1-409269	133	4	1-389687	128	4	370887	122
\bigcirc	$1 \cdot 42935$	174	S	$1 \cdot 408935$	166	$\cdot 5$	1-389367	159	$\cdot 5$	$1: 370579$	153
-6	$1 \cdot 42900$	209	,	1-408602	200	6	1-389048	191	$\cdot 6$	$1 \cdot 370273$	184
$\cdot 7$	$1 \cdot 428659$	244	7	$1 \cdot 408270$	233	$\cdot 7$	$1 \cdot 388729$	223	$\cdot 7$	$1 \cdot 369966$	214
-8	$1 \cdot 428312$	278	8	$1 \cdot 407937$	266	-8	$1 \cdot 388410$	25.5	-8	1-369659	245
$\cdot 9$	$1 \cdot 427965$	313	$\cdot 9$	1-407605	300	$\cdot 9$	$1 \cdot 388091$	287	9	$1 \cdot 369353$	275
$\overline{10 \cdot 0}$	1-427	0	$\overline{16 \cdot 0}$	-10271	,	$22 \cdot 0$	1-387773	,	-0	369047	0
$\cdot 1$	$1 \cdot 4272$	35	$\cdot 1$	$1 \cdot 406941$	33	1	$1 \cdot 387454$	32	$\cdot 1$	368741	30
$\cdot 2$	$1 \cdot 42692$	69	$\cdot 2$	406610	66	2	387137	63		$1 \cdot 3684.35$;
$\cdot 3$	$1 \cdot 42658$	103	3	406278	99	3	$1-386819$	95		:368130	1
$\cdot 4$	$1 \cdot 4262$	138	4	$1 \cdot 405947$	132	4	-386501	127		667825	122
5	1. 42588	172		405617	165	\bigcirc	$1 \cdot 3866183$	158		367520	152
$\cdot 6$	$1 \cdot 425543$	207	6	$1 \cdot 40.228$	198	6	$1 \cdot 385867$	190		367215	183
7	$1 \cdot 425198$	242	-	4049	231	7	$1 \cdot 385550$	222		66910	213
$\cdot 8$	$1 \cdot 424854$	276	-8	$1 \cdot 404626$	264	-8	$1 \cdot 385233$	254	-8	$1 \cdot 366605$	244
$\cdot 9$	$1 \cdot 424509$	310	-9	$1 \cdot 4042$?	297	-	$1 \cdot 384916$	28.5			274
$\overline{11 \cdot 0}$	1.424165	0	$17 \cdot 0$	$1 \cdot 403$	0	$\overline{23 \cdot 0}$	1-384600	0	$\overline{29 \cdot 0}$	65997	0
	1-4238			$1 \cdot 403$	33		$1 \cdot 38428$	31		$1 \cdot 365693$	30
	1-423477	69	2	$1 \cdot 403307$	66		. 383996	6,3		65389	61
	$1 \cdot 42313.1$	103	3	$1 \cdot 402978$	98		$\cdot 383652$	94		365086	91
	$1 \cdot 422791$	137	4	$1 \cdot 402(650$	131	$\cdot 4$	$1 \cdot 383337$	126		-364782	121
\bigcirc	1-422448	171	5	$1 \cdot 402321$	164	5	1 :383021	157		1364479	151
	1-422105	206	6	$1 \cdot 401993$	197	-6	$1: 382706$	189		$1 \cdot 364176$	182
	1.421763	240	7	$1 \cdot 401665$	230	$\cdot 7$	$1 \cdot 382391$	220		$1 \cdot 363873$	212
	1-421421	274	8	$1 \cdot 401333$	262		$1 \cdot 382077$	2.2		$1 \cdot 363.571$	242
?	$1 \cdot 421079$	309	$\cdot 9$	1-401009	295	-)	$1 \cdot 381762$	28.3	$\cdot 9$	$1 \cdot 36: 3268$	273

TABLE V.

Logarithms to compute the Longitude from the Difference between the Intervals of the Transit of the Moon's bright Limb and a Star.

$\begin{gathered} 2 \\ \text { Min. } \end{gathered}$	Log.	Paits	$\begin{gathered} 2 \\ \text { Min. } \end{gathered}$	og.	Parts	$\begin{gathered} 2 \\ \mathrm{Min} . \end{gathered}$		Parts	$\underset{\text { Min. }}{2}$	Log.	Parts
$30 \cdot 0$	$1 \cdot 362$	0		351035	0		396	0	$42 \cdot 0$	$1 \cdot 328034$	0
	$1 \cdot 362664$	30	$\cdot 1$	$1 \cdot 350740$	29		[339109	29	$\cdot 1$	$1 \cdot 327753$	28
	$1 \cdot 362362$	60	2	$1 \cdot 350446$	59		$1 \cdot 338821$	57	$\cdot 2$	1-327473	56
$\cdot 3$	$1 \cdot 362061$	90	3	$1 \cdot 350152$	88		$1 \cdot 338534$	86	3	$1 \cdot 327192$	84
$\cdot 4$	$1 \cdot 361759$	120	4	1 '349858	118		$1 \cdot 338248$	115	4	$1 \cdot 326912$	112
$\cdot 5$	I 361458	150	5	$1 \cdot 349564$	147		$1 \cdot 337961$	143	5	$1 \cdot 326632$	140
	$1 \cdot 361157$	181	-6	$1 \cdot 349271$	176		$1 \cdot 337675$	172	-6	$1 \cdot 326352$	168
	$1 \cdot 360856$	211	$\cdot 7$	$1 \cdot 348977$	206		$1-337388$	201	$\cdot 7$	$1 \cdot 326073$	196
	$1 \cdot 360556$	241	$\cdot 8$	$1 \cdot 348684$	235		$1 \cdot 337102$	230	-8	$1 \cdot 325793$	224
$\cdot 9$	$1 \cdot 360255$	271	$\cdot 9$	$1 \cdot 348391$	265	$\cdot 9$	$1 \cdot 336816$	258	$\cdot 9$	$1 \cdot 325514$	2.52
31.0	1-359955	0	$5 \cdot 0$	1-348098	0	39 0	1-336530	0	$\cdot 0$	$1 \cdot 325235$	0
	1-359655	30	$\cdot 1$	$1 \cdot 347805$	29	$\cdot 1$	$1 \cdot 336244$	28	$\cdot 1$	$1 \cdot 324956$	28
	1 359355	60	$\cdot 2$	$1 \cdot 347513$	58		$1 \cdot 335959$	57	$\cdot 2$	1-324675	56
	$1 \cdot 359055$	90	3	$1 \cdot 347220$	88		$1 \cdot 335674$	85	$\cdot 3$	$1 \cdot 324399$	83
	$1 \cdot 358756$	120	-4	$1 \cdot 346928$	117		$1 \cdot 335389$	114	4	1-324120	111
$\cdot 5$	$1 \cdot 358457$	149	$\cdot 5$	1 346636	146		$1 \cdot 335104$	142	$\cdot 5$	$1 \cdot 323842$	139
	1358157	179	$\cdot 6$	$1 \cdot 346344$	175		$1 \cdot 334819$	171	-6	$1 \cdot 323564$	167
	1-357859	209	$\cdot 7$	$1 \cdot 346053$	204		$1 \cdot 334534$	199	$\cdot 7$	$1 \cdot 323286$	19.5
-8	1-357560	239	-8	$1 \cdot 345761$	234		- 334250	228	-8	$1 \cdot 323008$	222
$\cdot 9$	1-357261	269	$\cdot 9$	$1 \cdot 345470$	263		$\cdot 333966$	256	9	$1 \cdot 322730$	250
$\overline{32 \cdot 0}$	1-356963	0	$36 \cdot 0$	$1 \cdot 345179$	0	40	-333682	0	$44 \cdot 0$	$1 \cdot 322453$	0
	$1 \cdot 356665$	30	$\cdot 1$	$1 \cdot 344888$	29		$1 \cdot 333398$	28		$1 \cdot 322176$	28
	1-356367	59	$\cdot 2$	$1 \cdot 344598$	58		1-333114	57	$\cdot 2$	$1 \cdot 321898$	55
	1 -356069	89	3	$1 \cdot 344307$	87		$1 \cdot 332831$	85		1 321621	83
	$1 \cdot 355772$	119	-4	$1 \cdot 344017$	116		$1 \cdot 332547$	113	-4	1 321345	111
	$1 \cdot 355474$	148	$\cdot 5$	$1 \cdot 343727$	145		$1 \cdot 332264$	141	5	1321068	138
	$1 \cdot 355177$	178	-6	$1 \cdot 343437$	174		$1 \cdot 331981$	170	$\cdot 6$	$1 \cdot 320791$	166
	$1 \cdot 354880$	208	$\cdot 7$	$1 \cdot 343147$	203		1-331698	198	7	$1 \cdot 320515$	194
	$1 \cdot 354583$	238	-8	$1 \cdot 342858$	232		$1 \cdot 331415$	226	8	$1-320239$	222
$\cdot 9$	1-354286	267	$\cdot 9$	$1 \cdot 342568$	261	9	$1 \cdot 331132$	255	9	$1 \cdot 319963$	249
$\overline{330}$	$1 \cdot 353990$	0	$\overline{37} 0$	1.342279	0	$41 \cdot 0$	$1 \cdot 330850$	0	45-0	$1 \cdot 319687$	0
	1-353694	29	$\cdot 1$	$1 \cdot 341990$	29		1-330568	28		1 -319411	27
	$1 \cdot 353397$	59	$\cdot 2$	$1 \cdot 341701$	58		$1 \cdot 330285$	56	$\cdot 2$	$1 \cdot 319136$	55
	$1 \cdot 353102$	88	3	$1 \cdot 341412$	86		$1 \cdot 330003$	84	3	$1 \cdot 318860$	82
	$1 \cdot 352806$	118	$\cdot 4$	1-341124	115		$1 \cdot 329722$	112	$\cdot 4$	1-318585	110
$\cdot 5$	1-352510	147	- 5	1-340835	144		$1 \cdot 329440$	140	5	$1 \cdot 318310$	137
$\cdot 6$	$1 \cdot 352215$	177	-6	$1 \cdot 340547$	173		1-329158	169		$1 \cdot 318035$	165
$\cdot 7$	$1 \cdot 351920$	206	$\cdot 7$	$1 \cdot 340259$	202		1-328877	197	$\cdot 7$	$1 \cdot 317760$	192
-8	1-351624	236		$1 \cdot 339671$	230		1-328596	225	-8	$1 \cdot 31$ 万48	220
$\cdot 9$	$1 \cdot 351330$	265	$\cdot 9$	$1-339683$	259	-9	$1 \cdot 328315$	253	$\cdot 9$	$1 \cdot 317211$	247

TABLE VI.

Effect of a Change in the Moon's Semidiameter on the Time of its passing the Meridian.

Change of D 's Semidiam	Moon's Declination.				
	0°	8°	16°	22°	28°
"	${ }^{5}$	s	${ }^{\text {s }}$	s	${ }^{5}$
1	-07	$\cdot 07$	$\cdot 07$	$\cdot 07$	$\cdot 07$
2	-14	-14	-14	$\cdot 15$	-15
3	$\cdot 21$	-21	$\cdot 22$	$\cdot 23$	-23
4	-28	- 28	-29	$\cdot 30$	$\cdot 31$
5	$\cdot 34$	$\cdot 35$	$\cdot 36$	$\cdot 38$	$\cdot 39$
6	-41	-42	-43	$\cdot 45$	$\cdot 47$
7	-48	-49	$\bigcirc 0$	$\cdot 53$	$\bullet 5$
8	$\cdot 55$. 56	$\cdot 58$	-60	-62
9	-62	$\cdot 63$	-6.5	$\cdot(68$	$\cdot 70$
10	-6.)	- 0	.72	75	$\cdot 78$

TABLE VII.

Reduction to the Meridian.

Argument $=$ the Hour Angle from the Meridian.

	(iv1 1 "	1 10. 2	$2^{\text {min }}$			$6^{\text {min }}$	7	$8^{\text {m }}$		$10^{\text {m }}$	$11^{\text {m }}$	12"	13	$14^{\text {tw }}$			
	0		38	152								1370	1608	5	2141		
	1	10	39	871532	240	345	469	612	74	955	1155	1374	1612	1870	214		
	1	10	39	88155	2413	346	471	614		958	1159	1378	16171		215		
	1	10	40	89156	2433	348	473	17			1162	1382	1621	879	215		
	1	11	41	901572				19	782	964	1166	1386	1625	1883	21		
	1	11	41	9115						968	116	1390	1629	887			
	1	12	42	92						971							
	1	12	43	93161				[22	91			39	163	896			
	1	12	43	93163			484	630	94	977	180	1401	1641	901			
	1	13	44	94164			487		797	981	18.	140	1646		21		
10	1	13	45	95165	254			95	800		87			1910			
11	1	13	45	1	25					987	,						
12	1	14	46	97168	25					990	119			1			
13		14	47	98169	259				80	99	1197	1420	166	1923	220	502	
14	11	14	47	99171					811	997	1201	1424	166				
15	1	15	48	100172	262					1000	1205	1428	167	93			
16	1	15	4810	102173	26					1003	120	432	167	937			
17	1	10	50	103175	26					1006	1212	S	167	94			
18	1	16	50	104176	2					1010	125						
19	1	17	51	105177	269	380	10		26	1013	1219	1444	168	95			
20)	1	17	52	106179	271	382	.12	661	829	1016	1222	48	1692	1955	223		
1	1	17	53	10718	27	384			832	02	226	1	1696	960	2		
22	1	18	53	10818	$2{ }^{2}$					1023	230	1455	170	1964			
	1	18	54	109	27					1026	123	59	170	96			
24	2.1	19	55	11018	278	390	,		41	102	1237	1463	170	1973	22		
	1	15	56	111185	279	392				1033	1241	1467	171	197			
		,	56	112187	281	39				1036	124	1471	1717				
27	2	20	57	11318						1039	1248	1475	172	198			
	22	20	58	114190	284		53			1043	1251		172	99			
29	2	21	5	16191		400				1046			173	99			
30	2	21	59	$\overline{117} 193$	288	40			859	10	1259	487	1734	2001	22		
		2	60	118194	28	40	$5: 3$			105	1262	1491	1739	20.5	229		
	2	2	61	1919						105	1266		1743	2010			
				2019						10	1270	1499	1747	2014			
34		23	6.3	12119					87	1062	1273	150	1751	2019			
33		24	64	122200	297	12			874	106	1275	1507	175	202		2617	2942
	2	24	64	123201	299	415	550		877	106	1281	1511	1760	202	23	262	2947
	2	25	65	1242031	300	117			8	1073	1284	1.51	1764	203	232		2952
		2.5	6	120204		,				1076	1288	151	1769	20.3			
$3 \cdot$		26	67	127	304	421				1079	1292						
	2	26	Ci8	$\overline{128} \overline{207}$	$\overline{306}$	423			889	08	1295	$\overline{1527}$	1777	204	2	2643	
11	2	27	68	129. 209	7	425			892	108	1299	1531	782	2052	25		
	52	28	69	130210	309	427			89	1090	1303	153	1786	205	23		
4.3	52	28	\%	131212	31	42	50		¢9	1093	1307	1539	1790	2061	235		
1		29	7	1,., 21.	313	432				,	1310	1543	1795	2066			
		29	72	134215						仡	1314	1542	1799	2070			
		30		1135216						103	1318	15	1804	207			
		30	7	136218	318			34	911	107	1321	155	180	208	23		3009
	6 (i)	31	75	137219	320			37	914	1110	1325	1559	1812	2084			
49		31		139221	322				91	1	13	15	1817	208			
	7	32		140	$\overline{324}$				92	117	, 3.	1567	1821	2094			
	3	33.		114122.5	326	447			92:	112	13336	157	1825	2099		2701	
	7 3	33	78	142226	.38				927	112	1340	157	1830	2103	239	70	
	7	34	79	144227	329				930	1127	1344	1580	1834	2108	240	712	
54	8 :	34	80	45	331				3	\|1131	1348	1584	1839	2113			
5	8 8:	35	81	146230	33	45		57	936	113	1352	1588	1843	$211 /$			
	8		82	-	335				.?	138	$1: 355$	1592	18.	212			
	8	36		1492338	[337					1141	1359	1596	185	2127			
	9	37	84	150235	339	462			945	1145	1.363	1600	18.56		2420		
	93	37	85	1512	3.41	464	607		949	114	1367	1604	1861		24.31		
		38															

TABLE VII.

continued.

453345371140964500492353655826 $4633513717 \mid 41024507.493053725833$ 47 3357 372341094514493753805841 48,3363373041164520494453875849 493369373641224.527495253955857 50 $3375 \overline{3742}$ 4129 $4534 \overline{4959} \overline{5402} \overline{5865}$ 513380.374941354541496654105873 523386375541424548497354175881 533392.376141494554498154255888 $543398: 376711554562498854335896$ 55 (3404)3774-11624569499554405904 564340378041684576500254485912 $57: 3416.378641754 .583501054555920$ $583422 \cdot 37934182 \frac{1590501754635928}{25}$ 594328.37994188 15! $5502454705!36$ 60 ($3434 \mid 380541951604503154785944$

TABLE VIII.

Showing the Length of a Second of Longitude and Latitude in English Fect, on the Earth's Surface.

$$
\text { Compression }=\frac{\pi}{3} 0_{0}^{1} \overline{0}
$$

Computed by Mr. Baily's Formula XLIII.

Lat.	Second of Long.	second of Latitude	Lat.	Second of Long.	Second of Latitude.
\bigcirc	Ft.		\bigcirc	Ft.	Ft.
1	101.42		36	83.15	
2	101.36.		37	81.10	
3	101.28		38	80.02	
4	101.17		39	78.92	
5	101.03	101.43	40	77.80	101.84
6	100.87		41	76.65	
7	100.67		42	75.48	
8	100.44		43	74.29	
9	100.18		44	73.07	
10	99.85	$\overline{101.45}$	45	71.83	101.93
11	99.57		46	70.57	
12	99.22		47	69.29	
13	98.84		48	67.99	
14	98.43		49	66.66	
15	97.99	101.49	50	65.32	102.02
16	97.52		51	63.95	
17	97.02		52	62. 57	
18	96.49		53	61.17	
19	95.44		54	59.75	
20	95.36	101.54	55	58.30	102. 11
21	94.74		56	56.84	
22	94.09		57	55.37	
23	93.41		58	53.87	
24	92.70		59	52.36	
25	91.97	101.60	60	50.84	102.19
26	91.21		61	49.30	
27	90.43		62	47.74	
28	89. 62		63	46.17	
29	88.77		64	44.58	
30	87.90	101.67	65	42.98	102.26
31	87.01		66	41. 37	
32	86.09		67	39. 74	
33	85.14		68	38.10	
34	84.1\%		69	36.45	

" If the equatorial diameter of the earth be assumed equal to 7924 miles, a degree of longitude at the equator will be equal to 69. 15 miles $=365110$ feet ; and consequently one sccond in time at the equator will be equal to 1521.3 fect."

MADE BY
 TROUGHTON AND SIMMS,

136, FLEET STREE'

LONDON

Spectacles in Gold, Silver, Tortoiseshell, and Stcel.
Hand Spectacles, Opera and Reading Glasses, in various Mountings.
Onc-foot Achromatic Telescopc £ s. d
0
Ditto, Portable. 190
itto, larger aperture 1150
Eighteen-inch ditto 2126
Two-fcet ditto $313 \quad 6$
Thirty-inch ditto $5 \quad 5 \quad 0$
Three-feet ditto 660
Military Casc and Sling 0106
Portable Brass Stand, for any of the above Telcscopes 1180
Two-fect Navy Telescopc. $212 \quad 6$
Thircc-fcct ditto $5 \quad 5 \quad 0$
Ditto, with Spray Shade $515 \quad 6$
Day or Night Telcscopes $4 \quad 4 \quad 0$
Night Glass $3 \quad 3 \quad 0$
Large size ditto $5 \quad 5 \quad 0$
Thirty-inch Achromatic Tclescope, mounted on Pillar-and-claw Stand, with Terrestrial and Astronomical Eyc-pieces, in a Mahogany Case. $10 \quad 10 \quad 0$
Ditto, with Vertical Rack Motion $1212 \quad 0$
Forty-five-inch Achromatic Telescope, 23 inches apcrture, on Stand, with Terrestrial and Astronomical Eyc-pieces $25 \quad 2 \quad 0$
Ditto, with Vcrtical Rack Motion and Finder $26 \quad 5 \quad 0$
Ditto, with Horizontal Rack and Steadying Rods $3110 \quad 0$
Ditto, $3 \frac{x}{4}$ inch aperture, with Rack-Work Motions, Finder, 1 Tcr- restrial and 3 Astronomical Eyc-pieces, in Mahogany Box $42 \quad 0 \quad 0$
Ditto, $5 \frac{3}{4}$ inclı apcrture, Mounted as above $68 \quad 5 \quad 0$
Equatorial, instead of Pillar-and-claw Stand to the above Telcscopes, 20 Guineas cxtra.
Tclescopes, from 5 to 7 fcet, variously Mounted from 100l. to 280 0
Dynameter 4146
One-foot Rcflceting Telescope. $\begin{array}{lll}7 & 7 & 0\end{array}$
Eighteen-inch ditto 14140
Two-fect ditto, with Rack Work 2100
Threc-fcet ditto $29 \quad 8 \quad 0$
Solar Microscopes from 6l. 16s. to 2100
Compound Microscopes from $1 l$. $1 s$. to 2400Botanic, Cloth, \&c. Microscopes, Diagonal Print Machincs, Black Mirrorsfor Landscapes, Claude Glasses, Magic Lanterns, \&c.

Azimuth Compasses
Pocket Compasses
Ebony Quadrant, with Tangen
Best ditto, with 'relescope.
Ebony Scxtant, with Telescopes
Optical Square.
Box Sextant

£ s.
Metal Sextant, six-inch Radius, divided on Silver to 20 seconds 14140
Ditto, seven-inch Radius, divided to 10 seconds 16160
Eight-inch improved ditto, with double Frames, divided on Silver to 10 seconds 18180
Ditto, divided on Platina or Palladium 210
Ditto, divided on Gold $23 \quad 2$
Dip Sector 12120
Troughton's Reflecting Circle 2320
Brass Stand for Circle or Sextant 4146
Glass Plane, Artificial Horizons 136
Best Mercurial ditto 4146
Brass Folding ditto 550
Mahogany ditto 440
Ebony ditto 4146
Pocket Levels from 10 s. $6 d$. to 220
Portable Levelling Instrument, with Telescope and Compass
$1010 \quad 0$
Fourteen-inch improved Level
11 il 0
Ditto, with Tripod Staff
12120
Twenty-inch improved Level
13130
13130
Ditto, with Tripod Staff
$1010 \quad 0$
$1010 \quad 0$
Y Levels, with nine-inch Telescope
Y Levels, with nine-inch Telescope
15150
15150
Twenty-inch ditto
Twenty-inch ditto 16160
Plane Tables from 5l. 5s. to 12120
Circumferenters from $2 l .12 s .6 d$. to 515
Best Brass Miner's Compass, with Legs $\begin{array}{lll}7 & 7 & 0\end{array}$
Prismatic Compasses 2l. 12s. 6d. to 3136
Common Theodolite $9 \quad 9 \quad 0$
Four-inch ditto, with Telescope 12120
Ditto divided on Silver 13150
Five-inch ditto ditto 17170
Ditto, improved 18180
Five-inch ditto, best construction, Tangent-Screw Motions, divided on Silver 2540
Six-inch ditto, divided to 20 seconds $29 \quad 80$
Ditto, most improved, with two Telescopes $\begin{array}{ll}37 & 16\end{array}$
Seven-inch ditto. 39180
Twelve-inch ditto, for Horizontal Angles only 4200
(Larger Theod lulites made to Order.)
Station Pointers from 62. 16s. 6d. to 1818
Protractors 5156
Eighteen-inch best Brass Pentagraph 0
Two-feet ditto 60
Two-and-half-feet ditto 0
Three-feet ditto 0
Three-feet-and-half ditto $9 \quad 0$
Trochianneter, for counting the Revolutions of a Carriage-wheel 5
Perambulators $9 \quad 0$
Best ditto, with Metallic Wheel 14140
Common twelve-feet Levelling Staff 116
Best ditto 0
Improved Portable ditto, with Level 6
Tape Measures, in Boxes from 5 s. to 176
Gunter's Chain from $12 s$. to 10
Standard Chain, 50 or 66 feet 0
Ditta 100 feet 1010 0
Plotting, Marquois, and Gunter's Scales, Gunner's and other Rules
Camera Lucida from $1 l .5 s$. to50
Stand for ditto from $1 l$. 1 s. to 1116
Drawing Instruments in Skin Cases1l. 1s. and 220
Magazine Cases from 4l. 14s. 6d. to 2
Proportional Compasses 116
Ditto, with adjusting Screw. 220
Beam Compasses from $1 l$. $10 s$. to 0
Horizontal, Universal, and Ring Dials. £ s. 12
Two-feet Transit Instrument, with Irou Stand 2100
Ditto, with Portable Brass Stand $26 \quad 5 \quad 0$
Two-and-half-feet ditto, with Iron Stand $42 \quad 0 \quad 0$
Ditto improved $47 \quad 5 \quad 0$
Three-and-half-feet ditto, construeted for fixing upon Stone Piers, complete. 8400
Variation Transit, best construetion 6300
Dipping Needle, ditto 2650
Annular Mierometer, with Eye-piece 150 0
Parallel Wire ditto from $12 l .12 s$. to
Twelve inch improved Altitude and Azimuth Instrument, divided on Silver,the Azimuth Circle reading by Verniers, and the Altitude by Miero-ineters10500
Fifteen-ineh ditto, both Circles with reading Micrometers $\begin{array}{lll}130 & 0 & 0\end{array}$ 0
Ditto, the Altitude Cirele 18, and Azimuth 15 inehes, with Mierometers. 150
Ditto, both Cireles 18 inches $210 \quad 0 \quad 0$
Twelve-ineh Repeating Cirele (Borda's) 8400
Eighteen-inch ditto 1050
(Larger Circles to Order.)
Marine Barometer eomplete $5 l .5 s$. and 7176
Chamber ditto from $3 l .3 s$ s. to 660
Best ditto, with Float Gauge $616 \quad 6$
Wheel Barometer from $3 l$. $15 s$ s. to 4146
Englefield Barometers from 15s. to 11
Mountain Barometer, best construetion 12120
Thermometers from 5s. to 1150
Standard ditto 2126
Six's Registering ditto from $1 l$. $10 s$ s. to 220
Horizontal ditto from 7s. 6d, to $0 \quad 9 \quad 0$
Day or Night ditto, singly from 13s. to 220
Daniell's ditto 2126
Wollaston's Goniometer 3136
Professor Leslie's Maehine for making Iee. $78 \quad 0$
A ditto ditto, with one Plate $48 \quad 0 \quad 0$
A large Table Air Pump, exelusive of Apparatus 14140
Ditto, on a Stand, with Barometer Gauge 18180
Middle size ditto 10100 0
Small ditto. 61. 6s. to
Single-barrelled ditto from $1 l .11 s .6 d$. to 440

APPARATUS:

Guinea and Feather Experiment, Receiver ineluded 2150
A set of Windmills from $1 l$. $15 s$. to 2126
Apparatus for Freezing Water 140
A Bell for proving that without Air there can be no Gound, from 10s.6d. to 116
Brass Hemispheres, to demonstrate external Pressure from 20 s. to 180
Model of a Water Pump 1116
Double Transferrer 330
Single Transferrer, with Fountain Pipe 150
Glass Vessel for Fountain in Vacuo 070
Six Breaking Squares, Cage, and Cap 0180
Apparatus for striking Steel and Flint in Vacuo 0180
Copper Bottle, Beam, and Stand, for weighing Air, and various other Experiments 330
Electrical Machines from 2l. 10s. to 21 s.

APRARATUS.

An universal Discharger and Press. 1160
Jointed Discharger, with Glass Handles 126
Ditto plain 0 6
Exhausted Flasks for showing the Aurora Borealis $0 \quad 8 \quad 6$
Electrical Batteries of combined Jars. from 2l. 12s. 6d. to 1 100
Cuthbertson's Improved Electrometer, with Grain Weight 2126
Bennet's Gold-Leaf Electrometer 0180
Cavallo's Bottle Electrometer, for Atmospherical purposes .. from 12s. to 146
Quadrant Electrometer, with divided Arch $\begin{array}{lll}0 & 9 & 6\end{array}$
Luminous Conductors from 12 s . to 0
Kinnersley's Electrical Air Thermometer
A Thunder House, for showing the use of Conductors 0 \& 0
Ditto ditto, with Draw 6
A Powder House for ditto 160
An Obelisk or Pyramid for ditto 0106
A Magic Picture for giving Shocks 166
Spiral Tubes to illuminate by the Spark 6
A Set of 5 Spiral Tubes on a Stand 160
Ditto with a Dome 280
Luminous Names or Words 1116
A Set of 3 Plain Bells. 0106
A Set of \& Bells, containing the Gamut 1140
Diamond or Spotted Jars 160
A Double Jar for explaining the Franklinian Theory.. from 18s. to 80
An Electrical Cannon for discharging Inflammable Air by a Spark 0180
A Brass Pistol for the same purpose $0 \quad 96$
Copper Plates and Stand for Dancing Images 0106
A small Head with Hair $0 \quad 8 \quad 0$
An Artificial Spider 16
Medical and other Electrical Apparatus
Magnets from 1s. 6d. to $110 \quad 0$
Galvanic BatteriesHydrostatic Balances-Attwood's Machine-Whirling Tables-Sets of Mechanical Powers, \&c. \&c,
300 K.
Dr. Pearson's work on Practical Astronomy, in 2 vols. 4to, and a Third Volume of Plates 770
Navigation and Nautical Astronomy, by Edward Riddle, F.R.A.S. 0110
Nautical Almanac and Astronomical Ephemeris $0 \quad 5 \quad 0$

E, \& SOLD BY E. \& F. N. SPON,

6, Crombies Row, Commercial Trd., East, LOMDON.

[^0]: * The reader is supposed to have an instrument before him while porusing these instructions.

[^1]: * It would be better to have the letters A, B, \&c. engraved over the verniers, making it a rule always to read the degrees from the one called A, which wonld prevent confusion, and the possibility of a mistake when observing a number of objects from one station. This is always done (by the makers) upon the verniers of large instruments.
 \dagger The reason of their reading differently, arises from the errors of eccentricity, or of graduation, and perhaps of both; the object of having two readings is to diminish the effect of these errors, which is more effectually done by three verniers; but this being inconvenient in small instruments, two only are applied.

[^2]: * The eye-piece must first be drawn out until the cross wires are perfectly well defined, then the object-glass moved till distinct vision is obtained without parallax, which will be the case if, on looking through the telescope at some distant object, and moving the eye sidewise before the eye-glass, the object and the wires remain steadily in contact; but if the wires have any parallax, the object will appear flitting to and from them.

[^3]: * When the distance has been measured in links of Gunter's chain, and the difference of level is required in feet, it may be obtained by adding to the above logarithm, the constant $\log .9 .819543$?, when the sum, rejecting 10 from the index, will be the log. of the difference of level in feet.

[^4]: * The mean result of several observations should be taken is that to be used for computation.

[^5]: * This is not the case when one object is much brighter than the other, as the sun and moon; in taking the distance between which, the screw, M, should be moved more than above stated, until they are both nearly of the same brightness, as an observation can be made better when this is the case than when otherwise.

[^6]: * When reading off the arc of excess, the vernier must be read backwards, or from its contrary end, as explained at page 5.

[^7]: * If the observer knows his latitude approximately, he may find the meridional altitude nearly, to which he may previously set his instrument; when he will not only find his object more casily, but have only a small quantity to move the index to perfect the observation.

 Take from the Nautical Almanac the declination of the object, and if it be of the same name with the latitude, add it to the co-latitude; if of a different name, subtract it: the sum or clifference will be the meridian altitude.

 + An observation of a star requires no correction for cither parallax or semidiameter.

[^8]: * When the contact is formed at the lower limb, the images will separate shortly after the contact has been made, if the altitude be increasing; but if the altitude be decreasing, they will begin to overlap; but when the contact is formed at the upper limb, the reverse takes place. An observer, if in doubt as to which limb he has been observing, should watch the object for a short time after he has made the observation.

[^9]: * Persons desirous of avoiding computation, and who do not want the greatest possible aecuracy, may proceed conveniently thus: Get the error of the time-keeper from stars as near the zenith as may be, levelling with the utmost eare before each observation, and reversing the instrument once during the series. By taking a mean of the whole, an excellent error of the time-keeper will be found, unaffected by errors of deviation or collimation, and, if the levelling has been performed with all eare, of inelination too. With this error, find what time, by the tine-kecper, Polaris, δ Ursx Minoris, or Cephei 51 Kev., should transit, and adjust the azimuthal screws accordingly. If the observer has made out, as he always ought to do, the time between each wire, and the middle wire, as well as the value of the revolutions of kis adjusting serew, he may compute the time for each wire, and examine his suecess at each, as the star passes through the field of the telescope. It is neeessary to add, that the level should always be examined after touching the azimuth screws.

[^10]: * The sidereal time, as given in the Nautical Almanac, is for mean noon at Greenwich, and therefore must be corrected for any other meridian, as directed in the explanation of the articles, given at the end of the Almanac.

[^11]: * The vialue of the divisions of the scale may be had from the maker.

[^12]: * The foot-screws are sometimes made in the following ingenious manner, as described by Mr. Troughton, in the Memoirs of the Astronomical Society, vol. i. p.37. "Each of the three screws is doublc, that is, a screw within a screw: the exterior one, as usuat, has its female in the end of the tripod, and the female of the interior screw is within the exterior ; the interior one is longer than the other, its flat end rests on a small cup on the top of the support, and its milled head is a little above the other. Now by this arrangement we gain threc distinct motions : for by turning both screws together, an effect is produced equal to the natural range of the exterior serew ; by turning the interior one alone, the effect produced is what is duc to this screw; and by turning the cxterior one alone (which may be done, because the friction of the interior screw in the cup is greater than that which exists between the two screws,) an effect is produced cqual to the difference of the ranges of the two screws. Thus, were the exterior one to have 30 turns in an inch, and the interior 40, the effect last described will be exactly equal to what would be produced by a simple screw of 12^{\prime} threads in an inch."

[^13]: * We speak of the middle wire only, as the side wires are supposed to be fixed parallel to it by the maker, and cannot be adjusted by the observer.

[^14]: * Tables of equation of equal altitudes are contained in Mr. Baily's volume of Astronomical Tables and Formula, and in Schumacher's Hülfstafeln. The log. of double the sun's daily variation in declination, is given in the Berlin Ephemeris as $\log . \mu$, in the page relating to true noon.

[^15]: * A picket should always be left in the ground at every station, in order to recognise the precise spot, should it afterwards be found nccessary to return to it again.

[^16]: * It will readily be perceived, that the station-pointer may be successfully employed in land surveys of considerable extent.

