

\because

$$
5: 9=
$$

THE VAN NOSTRAND SCIENCE SERIES.

18me, Boards. Price 50 Cents Each.

with results of American Practice by Richard II. Buel, C.E.
No. 11.-THEORY OF ARCHES. By Prof. W. Allan.
No. 12.-A THEORY OE YOUSSOIR ARCHES. By Prof. W. E. Cain.

No. 13.-GASES MET WITH TV COAL-MINES. BY J. J Atkinson. Third edition, revised and enlarged by Edward H. Willians, jun.
No. 14.-FRICTIUN OF AIR IN MINES. By J.J. Atkinson No. 15 -SKEIV ARCHES. By Prof. E. W. Hyde, C.E. Illinstrated.
No 10.-A GRAPHIC METHOD FOR SOLVING CERTAIN Alfichbaic Equations. by Prof. fieorge L. Vose.

No. 17.-WATER AND WATER-SUPPLY. By Prof. W. II. Cortield of the University College, London.
No. 18. - SEWFRRAGE AND SEWAGE UTILIZATION. By Prof. IV. II. Corfisld, M.A, of the University Collese, London.

STADIA SLRVEVING.

THE

THEORY OF STADIA MEASUREMENTS;

Accompanied by Tables of Horizontal Distances and Differences of Level for the Reduction of Stadia Field Observations.

BY ARTHUR WINSLOW,

Assistant Geologist, Second Geological Survey of Pennsyivania.

Republished by permission from First Report of Progress in the Anthracite Region, Second Geological Survev of Pennsylvania

$$
\begin{aligned}
& 2.41 \\
& \text { dee. } 21 \cdot 1844 \\
& 13
\end{aligned}
$$

PREFACE.

The rapid extension of the practice of stadia measurements has naturally created a demand for a guide to the method. The present hand-book contains a complete exposition of the theory, with directions for its application in the field. The tables for reduction of observations have been in use by the author on the Geological Survey of Pennsylvania.

To increase the serviceableness of the book the trigonometrical four place tables have been added.

Editor of Magazine.

STADIA SURVEYING.*

The fundamental principle upon which stadia measurements are based, is the geometrical one that the lengths of parallel lines subtending an angle are pro-

portional to their distances from its apex. Thus if, in Fig. 1, a represents the

[^0]lengso of a line subtending an angle at a distanne d from its apex, and a^{\prime} the length of line, parallel to and twice the length of α, subtending the same angle at a distance d^{\prime} from its apex, then will c^{\prime} equal $2 d$.

This is, in a general way, the underlying principle of stadia work; the nature of the instruments used, however, introduces several modificatioz:, and these will be best understood by a consideration of the conditions undc- which such measurements are gencrally made.

In the telescopes of most instruments fitted for stadia work, thore are placed either two horizontal wires (usually adjustable) or a glass with two etched horizontal lines at the position of the cross wires, and equidistant from the center wire.

A self-reading stadia rod is further provided, graduated according to the units of measurement usad.

In a horizontal sight with such a telescope and rod, the stadia wires seem to be proiected upon the rod and to inter-

7

cept a distance which in Fig. 2 is repre sented by a.

In point of fact there is formed, at the position of the stadia wires, a small con-
jugate image of the rod which the wires intersect at points b and c, which are respectively the foci of the points B and C on the rod. If, for simplicity's sake, the object glass be considered a simple biconvex lens, then, by a principle of optics, the rays from any point of an object converge to a focus at such a position that a straight line, called a secondary axis, connecting the point with its image, passes through the center of the lens. This point of intersection of the secondary axes is called the optical center. Hence, it follows that lines such as $c \mathrm{C}$ and $b \mathrm{~B}$, in Fig. 2, drawn from the stadia wires through the centre of the object glass will intersect the rod at points corresponding to those which the wires cut on the image of the rod. From this follows the proportion:

$$
\begin{equation*}
\frac{d}{p}=\frac{a}{\overline{\mathrm{I}}} \therefore d=\frac{p}{\mathrm{I}} a \tag{1}
\end{equation*}
$$

Where:
$d=$ the distance of the rod from the center of the objective;
$p=$ the distance of the stadia wires from the center of the objective;
$\alpha=$ the distance intercepted on the rod by the stadia wires;
$I=$ the distance of the stadia wires apart.

If p remained the same for all lengths of sight, then $\frac{P}{I}$ could be made a desirable constant and d would be directly proportional to a. Unfortunately, however, for the simplicity of such measurements, p (the focal length) varies with the length of the sight, increasing as the distance diminishes and vice versa. Thus the proportionality between d and a is variable.

The object, then, is to determine exactly what function α is of d and to express the relation in some convenient formula.

The general formula for bi-convex lenses is:

$$
\begin{equation*}
\frac{1}{p}+\frac{1}{p^{\prime}}=\frac{1}{f} \tag{2}
\end{equation*}
$$

f is the principal fozal length of the lens, and p and p^{\prime} are the focal distances of image and object, and are approximately the same as p and d, respectively, in equation (1) :

$$
\begin{aligned}
& \text { therefore, } \frac{1}{p}+\frac{1}{d}=\frac{1}{f} \text {, approximately. } \\
& \text { and } \frac{d}{p}=\frac{d}{f}-1
\end{aligned}
$$

From (1), $\frac{d}{p}=\frac{a}{\mathrm{I}}$

$$
\begin{equation*}
\therefore \frac{a}{\mathrm{I}}=\frac{d}{f}-1 \tag{3}
\end{equation*}
$$

whence $d=\frac{f}{\mathrm{I}} a+f$
In this formula, it will be noticed that, as f and I remain constant for sights of all lengths, the factor by which a is to be multiplied is a constant, and that d is thus equal to a constant times the length of a, plus f. This formula would seem, then, to express the relation desired, and it is generally considered as the fundamental one for stadia measurements. As above stated, however, the equation

11

$$
\frac{1}{p}+\frac{1}{d}=\frac{1}{f}
$$

is only approximately true and the conjunction of this formula with (1) being, theref $u r e$, not rigid!y admissible, equation (3) does not express the exact relation.* The equation expressing the true relation, however, though differing from (3) in value, agrees with it in form and also in that the expression corresponding to \bar{f} is a constant and that the amount to be added remains, practically, f. The constant corresponding to $\frac{f}{\bar{I}}$ may be called $k \dagger$ and thus the distance of the rod from the objective of the telescope is seen to be equal to a constant times the reading on the rod, plus the principal focal length of the objective. To obtain the exact distance to the center of the in-

[^1]strument, it is further necessary to add the distance of the objective from that centre, to f; which sum may be called c. The final expression for the distance, with a horizontal sight, is then
\[

$$
\begin{equation*}
d=k a+c \tag{4}
\end{equation*}
$$

\]

The necessity of adding c is somewhat of an incumbrance. In the stadia work of the United States Government surveys an approximate method is adopted in which the total distance is read directly from the rod. For this method the rod is arbitrarily graduated, so that, at the distance of an average sight, the same number of units of the graduation are intercepted between the stadia wires on the rod, as units of length are contained in the distance. For any other distance, however, this proportionality does not remain the same ; for, according to the preceding demonstration, the reading on the rod is proportional to its distance, not from the center of the instrument, but from a point at a distance " c " in front of that center; so that,
when the rod is moved from the position where the reading expresses the exact distance to a point, say half that distance from the instrument center, the reading expresses a distance less than half; and, at a point double that distance from the instrument center, the distance expressed by the reading is more than twice the distance. The error for all distances less than the average being minus, and for greater distances plus. The method is, however, a close approximation, and excellent results are obtained by its use.

Another method of getting rid of the necessity of adding the constant was devised by Mr. Porro, a Piedmontese, who constructed an instrument in which there was such a combination of lenses in the objective, that the readings on the rod, for all lengths of sight, were exactly proportional to the distances.* The instru-

[^2]
14

ment was, however, bulky and difficult to construct, and never came into extensive use.

For stadia measurements with inclined sights there are two modes of procedure.

One, is to hold the rod at right angles to the line of sight; the other, to hold it vertical. With the first method it will be seen by reference to Fig. 3, that the distance read is not to the foot of the rod, E, but to a point, f, vertically under the point, F, cut by the center wire. A correction has, therefore, to be made for this. An objection to this method is the difficulty of holding the rod at the same time in a vertical plane and inclined at a definite angle. Further, as the rod changes its inclination with each new position of the transit, the vertical angles of back and foresight are not measured from the same point.

The method usually adopted is the second, where the rod is always held vertical. Here, owing to the oblique view of the rod, it is evident that the space intercepted by the wires on the rod varies, not only with the distance, but also with the angle of inclination of the sight. Hence, in order to obtain the true distance from station to station, and also its vertical and horizontal components, a

16

correction must be made for this oblique view of the rod. In Fig. 4,

$\mathrm{AB}=a=$ the reading on the rod;
$\mathrm{MF}=d=$ the inclined distance $=c+G F$

$$
=c+k \mathrm{CD} .
$$

$M P=D=$ the horizontal distance $=\sigma$ $\cos n$,

$\mathrm{FP}=\mathrm{Q}=$ the vertical distance $=\mathrm{D} \tan n$ $n=$ the vertical angle,

$\mathrm{AGB}=2 \mathrm{~m}$.

It is first required to express d in terms of a, n and m.

From the proportionality existing between the sides of a triangle and the sides of the opposite angles,

$$
\frac{\mathrm{AF}}{\mathrm{GF}}=\frac{\sin m}{\sin \left[90^{\circ}+(n-m)\right]}
$$

or, $\mathrm{AF}=\mathrm{GF} \sin m \frac{1}{\cos (n-m)}$;

$$
\text { and } \frac{\mathrm{BF}}{\overline{\mathrm{GF}}}=\frac{\sin n}{\sin \left[90^{c}-(n+m)\right]}
$$

or, $\mathrm{BF}=\mathrm{GF} \sin m \frac{1}{\cos (n+m)}$;
$\therefore \mathrm{AF}+\mathrm{BF}=\mathrm{GF} \sin m\left(\frac{1}{\cos (n-m)}\right.$

$$
\left.+\frac{1}{\cos (n+m)}\right)
$$

$\cdot i+\mathrm{BF}=r$, and $\mathrm{GF}=\frac{\mathrm{CD}}{2} \frac{1}{\tan m}$
$=\frac{\mathrm{CD} \cos m}{2 \sin m}$
By substituting and reducing to a common denominator,

$$
a=\frac{\mathrm{CD}}{2} \frac{\cos m[\cos (n+m)+\cos (n-m)]}{\cos (n+m) \cos (n-m)}
$$

Reducing this according to trigonometrical formulæ,

$$
\begin{aligned}
& \mathrm{CD}=a \frac{\cos ^{2} n \cos ^{2} m-\sin ^{2} n \sin ^{2} m}{\cos n \cos ^{2} m} \\
& \quad \text { as } d=\mathrm{MF}=c+k \cdot \mathrm{CD} \\
& \therefore \quad d=c+k a \frac{\cos ^{2} n \cos ^{2} m-\sin ^{2} n \sin ^{2} m}{\cos n \cos ^{2} m}
\end{aligned}
$$

The horizontal distance, $\mathrm{D}=d \cos \mathrm{n}$.
$\therefore \mathrm{D}=c \cos \mathrm{n}+k a \cos ^{2} n-k a \sin ^{2} n \tan ^{2} m$.
"The third member of this equation may safely be neglected, as it is very smail even for long distances and large angles of elevation (for $1500^{\prime}, n=45^{\circ}$ and $k=100$, it is but 0.07^{\prime}.) Therefore, the fina, formula for distances, with a stadia
kept vertical, and with wires equidistant from the center wire, is the following:"

$$
\begin{equation*}
\mathrm{D}=c \cos n+\alpha k \cos ^{2} n \tag{5}
\end{equation*}
$$

The vertical distance Q, is easily obtained from the relation : $\mathrm{Q}=\mathrm{D} \tan n$.

$$
\begin{align*}
& \therefore \mathrm{Q}=c \sin n+a k \cos n \sin n \\
& \text { or } \mathrm{Q}=c \sin n+a k \frac{\sin 2 n}{2} \tag{6}
\end{align*}
$$

With the aid of formulæ (5) and (6) the horizontal and vertical distances can be immediately calculated when the reading from a vertical rod, and the angle of elevation of any sight are given; and it is from these formulæ that I have calculated my stadia reduction tables. The values of $\alpha k \cos ^{2} n$ and $\omega k \frac{\sin 2 n}{2}$ were separately calculated for each two minute ${ }_{s}$ up to 30 degrees of elevation; but, $\mathbf{a}_{\mathbf{s}}$ the value of $c \sin n$ and $c \cos n$ have

[^3]quite an inappreciable variation for 1 degree, it was thought sufficient to determine these values only for each degree. As c varies with different instruments these last two expressions were calculated for three different values of c, thus furnishing a ratio from which values of $c \sin n$ and $c \cos n$ can be easily deter. mined for an instrument having any constant (c).

Similar tables have been computed by J. A. Ockerson and Jarech Teeple, of the United States Lake Survey. Their use is, however, limited, from the fact that the meter is the unit of horizontal measurement while the elevations are in feet. The bulk of the tables furnish differences of level for stadia readings up to 400 meters, but only up to 10° of elevation. Supplementary tables give the elevations up to 30° for a distance of one meter. For obtaining horizontal distances reference has to be made to another table, which is somewhat an objectionable feature, and a multiplication ancl a subtraction has to be made in order to obtain

21

the result. Last, but not least, these tables are, apparently, only accurate when used with an instrument whose constant is 0.43 meters.

As stated in the preceding discussion (p. 11), the generally accepted formula expressing the relation between the distance in a horizontal sight, the reading on the rod, the distance of the stadia wires apart, and the focal length of the objective is

$$
\begin{equation*}
d=\frac{f}{\bar{I}} a+f \tag{3}
\end{equation*}
$$

where d, α, I and f represent these factors respectively.

This formula is derived from the conjunction of the two equations:

$$
\begin{gather*}
d=\frac{p}{I} \alpha ; \\
\operatorname{and} \frac{1}{p}+\frac{1}{p^{\prime}}=\frac{1}{f} ; \tag{2}
\end{gather*}
$$

p and p in (2) being considered as equal to p and d in (1). p and d in (1), it will be remembered, are the distances from the center of the objective to the image
and object respectively. But the general formula for lenses, (2), is derived on the supposition that p and p^{\prime} are measure from the exterior fuces of the lens, and therefore p and d in (1) are each greater, by half the thickness of the lens, than p and p^{\prime} in (2). Further, this formula is derived on the supposition that the object glass of the telescope is a simple, biconvex lens, whereas, in fact, it is a compound lens composed of a plano concave and a biconvex lens. Now, though these points may seem insignificant in themselves, they may greatly influence the final result, as a difference of only 1 in the denominator of such a fraction as 1,000,000 $\frac{1,000,000}{2}$ may alter the result by as much as 500,000 . Considerable thought and time has, therefore, been given to the consideration of the effect of these corrections, and, as a result, it was found that the formula (3) does not express the true relation even within practical limits; and that if it were attempted to calculate the distance, d, by this formula, when
the factors f, p and a were given, a re sult would be obtained which would differ considerably from the real distance. The inaccuracy lies in the expression \bar{f}. The one to be substituted for it $1 s$, however, like it, a constant for each instrument; and, as we determine the value of this constant by actual trial and not from a knowledge of the values of f and I, the correction to be made will not affect the practice.

Considering first the case of a telescope with a simple, biconvex lens, the optical center being, here, in the center of the lens, d and p, in equation (1), as before stated, are measured from the center of the lens, while, in equation (2), p and p^{\prime} are measured from the exterior faces. If the thickness of the lens be taken as $2 x$, then
p in equation (1) $=p$ in equation (2), minus x; and
p^{\prime} in equation (1) $=\mathrm{d}$ in equation (2), minus x.

Therefore, while (1) remains

$$
\begin{equation*}
d=\frac{p}{\mathrm{I}} a, \text { or } p=\frac{\mathrm{I}}{a} d \tag{la}
\end{equation*}
$$

by substitution, (2), becomes,

$$
\begin{equation*}
\frac{1}{p-x}+\frac{1}{d-x}=\frac{1}{f} \tag{ea}
\end{equation*}
$$

Substituting $d \frac{I}{a}$ for p in (2a)

$$
\frac{1}{a \frac{I}{a}-x} \times \frac{1}{d-x}=\frac{1}{f}
$$

$$
\therefore d-x+d \frac{I}{a}-x=\frac{1}{f}(d-x)\left(d \frac{I}{a}-x .\right)
$$

$$
=\frac{1}{f} d^{2} \frac{\mathrm{I}}{a}-\frac{1}{f} d \frac{\mathrm{I}}{a} x-\frac{1}{f} d x+\frac{1}{f} x^{2}
$$

whence, $-2 x-\frac{1}{f} x^{2}=\frac{1}{f} d d^{2} \frac{I}{a}$

$$
-d \frac{1}{f} x\left(\frac{I}{a}+1\right)-d\left(\frac{I}{a}+1\right)
$$

or $\quad=\frac{1}{f} d d^{2} \frac{I}{a}-d\left\{\left(\frac{I}{a}+1\right)\left(\frac{1}{f} x+1\right)\right\}$.
Multiplying both sides by $\frac{I}{a} \frac{1}{f}$,
$-\frac{1}{a} \frac{1}{f}\left(2 x+\frac{1}{f^{\prime}} x^{2}\right)=\frac{1}{f^{2}} d l^{2} \frac{I^{2}}{a^{2}}$

$$
-\frac{1}{a} \frac{1}{f} d\left\{\left(\frac{I}{a}+1\right)\left(\frac{1}{f} x+1\right)\right\}
$$

Adding to both sides $\frac{\left\{\left(\frac{I}{a}+1\right)\left(\frac{1}{f} x+1\right)\right\}}{2 \text { squared, }}$
$\frac{\left\{\left(\frac{1}{a}+1\right)\left(\frac{1}{f} x+1\right)\right\}}{4}-\frac{I}{a} \frac{1}{f}\left(2 x+\frac{1}{f} x^{2}\right)$ $=\left(d \frac{1}{f} \frac{1}{a}\right)^{2}-d \frac{I I}{f a}$
$\left\{\left(\frac{\mathrm{I}}{a}+1\right)\left(\frac{1}{f} x+1\right)\right\} \times \frac{\left\{\left(\frac{\mathrm{I}}{a}+1\right)\left(\frac{1}{f} x+1\right)\right\}^{2}}{4}$
Extracting the square root of both terms,

$$
\begin{aligned}
& \frac{\sqrt{\left\{\left(\frac{1}{a}+1\right)\left(\frac{1}{f} x+1\right)\right\}^{2}}}{4} \\
& \left.-\frac{1-\frac{I}{f} \frac{(}{a}\left(2 x+\frac{1}{f} x^{2}\right)=d \frac{1}{f} \frac{1}{a}\left(\frac{1}{f} x+1\right)}{2}\right)
\end{aligned}
$$

Therefore,

$$
\left\{\begin{array}{r}
\frac{\sqrt{\left.\left(\frac{1}{a}+1\right)\left(\frac{1}{f} x+1\right)\right\}^{2}}}{4}-\frac{1}{f} \frac{I}{a}\left(2 x+\frac{1}{f} x^{3}\right) \\
\left.+\frac{\left(\frac{I}{a}+1\right)\left(\frac{1}{f} x+1\right)}{2}\right\} \frac{a f}{\mathrm{I}}=k
\end{array}\right.
$$

or, $d=\frac{(\mathrm{I}+a)}{2} \frac{(x+f)}{\mathrm{I}}$

$$
+\sqrt{\frac{\left[(\mathrm{I}+a)\left(x+f^{\prime}\right)\right]^{2}}{4 \mathrm{I}^{2}}-\frac{a}{\mathrm{I}}-\left(x^{2}+2 x f\right)}(3 a)
$$

This is the exact formula corresponding to (3), for biconvex lenses. This can, however, be considerably reduced without materially affecting its value. With a telescope of the dimensions of that of an ordinary engineer's transit, the term $\frac{a}{\bar{I}}\left(x^{2}+2 x f\right)$ diminishes the result by about $\frac{1}{3}$ of an inch and, therefore, may be neglected. Formula ($3 a$), then becomes:

$$
d=2 \frac{(\mathrm{I}+a)}{2} \frac{(x+f)}{\mathrm{I}}
$$

$$
\begin{aligned}
& =\frac{\mathrm{I} x+\mathrm{I} f+a x+a f}{\mathrm{I}} \\
& =a \frac{x+f}{\mathrm{I}}+f+x
\end{aligned}
$$

The addition of x (half the thickness of the object glass) would be inappreciable in the length of any ordinary sight, and may be omitted. The final expression becomes, then,

$$
\begin{equation*}
d=\frac{x+f}{I} a+f \tag{3b}
\end{equation*}
$$

This formula, it will be observed, differs from (3) in that the reading on the $\operatorname{rod}(\alpha)$, is multiplied by $x+f$ instead of f. The numerical difference between the results is seen in the following examp ${ }^{1}$ es:

Consider first the case with a one-foot. reading on the rod, and let $x=. \mathbf{1 8}^{\prime \prime}$, $f=9.00^{\prime \prime}$, and $\mathrm{I}=.08^{\prime \prime}$.*

Formula (3) becomes, then:
$d=\frac{9.00^{\prime \prime}}{.08^{\prime \prime}} 12.00^{\prime \prime}+9.00^{\prime \prime}=1359^{\prime \prime}=113.25^{\prime} ;$

[^4]Formula (3b) becomes.
$d=\frac{.18^{\prime \prime}+9.00^{\prime \prime}}{.08^{\prime \prime}} 12.00^{\prime \prime}$

$$
+9.00^{\prime \prime}=1386=115.50^{\prime}
$$

Difference $=2.25$
When the reading on the rod is 5 feet (or $60^{\prime \prime}$) then, (3) becomes:

$$
d=\frac{9.00^{\prime \prime}}{.08^{\prime \prime}} 60.00^{\prime \prime}+9.00=563.25^{\prime} ;
$$

and (3b) becomes:

$$
\begin{aligned}
d=\frac{.18^{\prime \prime}+9.00^{\prime \prime}}{.08^{\prime \prime}} 60.00^{\prime \prime}+9.00 & =574.50^{\prime} \\
\text { Difference } & =\overline{11.25^{\prime *}}
\end{aligned}
$$

The above demonstration shows, then, that, with a simple biconvex object glass, the usually accepted formula expressing the relation between the distance, the reading on the rod, the distance of the stadia wires apart, and the focal length of the objective, is not accurate even

[^5]within the limits of accuracy of such measurements. With the usual combination of lenses in objectives this error would still remain. The derivation of a formula similar to ($3 b$), for such lenses, would, however, be extremely difficult, and would only hold for the special lens in question. For, with such a combination of lenses, the optical center would no longer remain in the center of the lens, but would vary its position according to the relative thicknesses of the two glasses, their radii of curvature and their indices of refraction; and, after its position had been d̉etermine ${ }^{3}$ by abstruse calculation and refined experiment, its distance from the two exterior faces of the compound lens would be expressed by two different values (x and x^{\prime}) instead of two equal values (x); and this would very much complicate further calculation.

It was seen that, in the newly deduced formula, for biconvex objectives, like that heretofore accepted, the factor by which the reading on the rod is multiplied is a
constant for each instrument, and that the practical method of adjusting the instrument remains the same. The question now arises, does this remain the case with a compound objective?

In view of the difficulty of demonstrating this mathematically it was decided to make a practical test of this point with a carefully adjusted instrument. A distance of 500 feet was first measured off on a level stretch of ground, and each 50 foot point accurately located. From one end of this line three successive series of stadia readings* were then taken from the first, 50 foot and each succeeding 100 foot mark. The following table contains the results :

[^6]| Distances. | Spaces Intercepted on the Rod. | | | |
| :---: | :---: | :---: | :---: | :---: |
| | 1st Series. | 2 d Series. | 3 d Series. | Mean. |
| Feet. | Feet. | Feet. | Feet. | Feet. |
| 50.00 | . 4850 | . 4860 | . 4855 | .4855 |
| 100.00 | . 9850 | . 9870 | . 9830 | . 9850 |
| 200.00 | 1.9850 | 19860 | 1.9840 | 1.9850 |
| 300.00 | 2.9890 | 2.9875 | 2.9870 | 2.9878 |
| 400.00 | 3.9830 | 3.9800 | 3.9890 | 3.9840 |
| 50000 | 4.9850 | 4.9850 | 4.9900 | 4.9867 |

32

Multiplying the mean of these readings by 100 , and subtracting the result from the corresponding distance, we obtain the following table:

Distances.	Mean of Starlia Readings times 100.	Differences.	Variations from Mean.
Feet.	Feet.	Feet.	Feet.
50.00	48.55	1.45	+.02
10000	98.50	1.50	+.07
200.00	198.50	1.50	+.07
30000	298.78	1.22	-.21
400.00	398.40	1.60	+.17
500.00	498.67		-.10

The variations between the numbers of the column of differences are slight, the maximum from a mean value of 1.43 feet being only .21 feet. A study of the tables will show that these variations have no apparent relation to the length of the sight ; in the maximum case, the variation corresponds to a reading on the rod cf only .0021 feet (an amount much within the limits of accuracy of any ordinary sight). We are, therefore, perfectiy justified in concluding that these variations are accidental, and that the "difference" is, for all practical purposes, a constant value.

We thus see that with a telescope having a compound, plano-convex objective, whatever the formula may be expressing the relation between d, f, x, etc., the horizontal distance is equal to a constant times the reading on the rod plus a constant, and may, as in the other cases, be expressed by the equation,

$$
d=a k+c^{*}
$$

[^7]The many advantages of stadia measurements in surveying need not be dwelt upon here, both because attention has been repeatedly called to them, and because they are selif-evident to every engineer. Neither will it be within the compass of this article to describe the various forms of rods and instruments, or the conventionalities of stadia work.

A few precautions, necessary for accurate work, should, however, be emphasized. First, as regards the special adjustments : care should be taken that in setting the stadia wires* allowance be
and as, according to the preceding article, this is not so clearly evident, it seemed necessary to redetermine the point.

* This applies to an instrument with movable stadia wires, and not to one with etched lines on glass. In the latter case the graduation of the rod is the adjustable portion. It has been claimed as an advantage for etched lines on glass, that they are not affected by variations of temperature while the distance between stadia wires is. A series of tests which I made with one of Heller \& Brightly's transits, to determine this point, showed no appreciable alteration in the space between the wires, as measured on a rod 500 feet distant, with a range of temperature between that produced in the instrument by the sun of a hot summer's day, and that produced by enveloping the telescope in a bag of ice.
made for the instrument constant, and that the wires are so set that the reading, at any distance, is less than the true distance by the amount of this constant.*

For accurate stadia work it is better to take the reading for both distances and elevations only at alternate stations and then to take them from both back and fore sights, in such a manner that the vertical angle is always read from the same position on each rod, which should be the average height of the telescope at the different stations.

Cases will, of course, occur where this method will be impracticable, and then the mode of procedure must be left to the judgment of the surveyor. If it be desired to have the absolute elevation of the ground under the instrument, the height of the telescope at each station will have to be measured by the rod, and the difference between this measurement and the average height used in sighting to

[^8]the rod either added or subtracted as the case may be. This difference will ordinarily be so small, that in a great deal of stadia work no reduction will be necessary. In sighting to the rod for the angle of depression or elevation, the center horizontal wire must always be used. By this means an exactly continuous line is measured.

For theoretical exactness it is necessary that the stadia wires should be equidistant from the horizontal center wire, for, if this be not the case, the distance read is for an angle of elevation differing from the true one by an amount proportional to the displacement of the wires.

With reasonable care a high degree of accuracy can be attained in stadia measurements. The common errors of stadia reading are unlike the common errors of chaining, the gross ones (such as making a difference of a whole hundred feet) being, in general, the only important ones, and these are readily checked by double readings. To facilitate the subtraction of the reading of one cross hair from that.
of another, one should be put upon an even foot mark, and in the check reading the other one.

A general measure of the efficiency of stadia measurements is furnished in the professional papers of the Corps of Engineers, U. S. A., for 1882, on the Primary Triangulation of the Lake Survey, where it is stated that in computing coördinates of stadia work for 1875, the average amount of discrepancy in 141 lines, varying between 965 and 6,648 meters (mean 2,450 meters) when compared with lines determined by triangulation or chaining, was found to be 1 in 649 . The maximum limit of error is put at 1 in 300 .

Mr. Benjamin Smith Lyman, who has made extensive use of stadia work both in this country and Japan, considers it decidedly more accurate than ordinary grod chaining, if the gross errors be carefully avoided.

The results of stadia survey which have come to my notice fully support this view. During the past summer I had occasion to run a continuous stadia line
between two points some twelve miles apart. It was necessary that the position of these points with reference to each other should be determined as closely as possible with the means at hand. In consequence, the work was checked by taking duplicate vernier and stadia readings, and by taking a series of check sights to prominent objects. The latitudes and departures of this survey were afterwards calculated out, and the check angles computed and compared with those observed. The results are shown in the accompanying diagram and table. From the results of the tests tabulated on pp. 31, 32, Mr. Lyman has kindly furnished me with the following deductions, as an indication of the exactness of stadia measurements.*

[^9]
40
Table of Check Angles.

Sights.	Course as read.	Course as Deduced.	Difference.	Minimum Proportional Linear Displacement.
19-1	N. $26^{\circ} 9^{\prime} \mathrm{E}$.	N. $26^{\circ} 8^{\prime} \mathrm{E}$.	$0^{\circ} 1^{\prime}$	1.3 E.
28-a	N. $28^{\circ} 8^{\prime} \mathrm{E}$.	N. $28^{\circ} 3^{\prime} \mathrm{E}$.	$0^{\circ} 5^{\prime}$	5.6 E.
59-e	N. $5^{\circ} 9^{\prime} \mathrm{E}$.	N. $5^{\circ} 12^{\prime} \mathrm{E}$.	$0^{\circ} 3^{\prime}$	$76^{\prime} \mathrm{W}$.
$73-\mathrm{N}$	S. $87^{\circ} 14^{\prime}$ E.	S. $87^{\circ} 19^{\prime} \mathrm{E}$.	$0^{\circ} 5^{\prime}$	3.6 ' S.
$77-\mathrm{N}$	N. $77^{\circ} 8^{\prime} \mathrm{E}$.	N. $72^{\circ} 7^{\prime} \mathrm{E}$.	$0^{\circ} 1^{\prime}$	$1.0^{\prime} \mathrm{S}$.
94-N	N. $72^{\circ} 26^{\prime}$ E.	N. $72^{\circ} 24^{\prime} \mathrm{E}$.	$0^{\circ} 2^{\prime}$	6.0 S.
$97-\mathrm{N}$	N. $73^{\circ} 35^{\prime} \mathrm{E}$.	N. $73^{\circ} 34^{\prime} \mathrm{E}$.	$0^{\circ} 1^{\prime}$	3.6 S.

41

42

Taking the mean, 1.43 , as exactly correct, we see, then, that the total error of the eighteen sights was only .06 feet, or $\frac{1}{77500}$ of the whole distance measured, 4,650 feet, a precision (as it happens) seven times greater than I suggested in my paper for a telescope magnifying ten times. But the mean of the errors .000817 (or $\frac{1}{122 \frac{1}{4}}$), which, so far as the insufficient number of eighteen sights can show, would be the mean of the errors of an infinite number of trials, would correspond to a probable error for any one of the number of trials (that is, in general) of the same kind, of .00069 , or $\frac{1}{1450}$. This is within half the exactness I claimed as possible for the stadia in my paper. The difference may be due to several causes that I neglected to consider, such as a slight leaning of the rod forward or back, imperfect graduation of the rod, imperfect cleanliness or transparency of the glasses or of the air, imperfection in the shape of the lenses, or in their adjustments to one another, waviness from the varying refraction of the air with the
heat from the sun and the ground, inacurate focussing, inexact placing of the center hair upon the center of the target or graduation. This last difficulty might be avoided by taking one edge of the upper or lower cross hairs, and by special painting of the target for the center hair.

* * * But at any rate the superior exactness of stadia measurement over chaining is shown, so far as eighteen trials could do it."

> Tables of Horizontal Distances and Differences of Level for Stadia Measurements.

The formulæ used in the computation of the following tables, were those given by Mr. Geo. J. Specht in an article on Topographical Surveying, published in Van Nostrand's Engineering Magazine for February, 1880. These formulæ furnish expressions for horizontal distances and differences of level for stadia measurements with the conditions that the stadia rod be held vertical, and the stadia wires

44

be equidistant from the centre wire. They are as follows:
$\mathrm{D}=c \cos n+\alpha k \cos ^{2} n$.
$\mathrm{Q}=\mathrm{D} \tan n=c \sin n+\frac{a k \sin 2 n}{2}$
$\mathrm{D}=$ Horizontal distance.
$\mathrm{Q}=$ Difference of level.
$c=$ the distance from the center of the instrument to the center of the object glass, plus the focal lengti of the object glass.
$\kappa=$ the focal length of the object glass divided by the distance of the stadia wires apart.
$a=$ the reading on the stadia rod.
$n=$ the vertical angle.
αk is the reading on the rod multiplied by k, which is a constant for each instrument (generally 100.) In the tables the vertical columns consist of two series of numbers for each degree, which series represent respectively the different values of $a k \cos ^{2} n$ and $\frac{a k \sin 2 n}{2}$ for
every two minutes, when $\alpha k=100$. To obtain the horizontal distance or the difference of level in any case, the corresponding value of $c \cos n$ or $c \sin n$ must further be added, and the mean of each of_{f} these expressions, for each degree, with 3 of the most common values of ε, is given under each column.

As an example, let it bo required to find the horizontal distance and the difference of level when, $n=+6^{\circ} 18^{\prime}, \alpha k=$ 570 , and the instrument constant, $c=.75$. In the column headed 6°, opposite 18^{\prime} in the series for "Hor. Dist.," we find 98.80 as the expression for $\alpha k \cos ^{2} n$ when $a k$ $=100$, therefore, when $a k=570$.
$a k \cos ^{2} n=98.80 \times 5.70=563.16$.
To this must be added $c \cos n$, which in this case is found in the subjoined column to be .75 .
$563.16+.75=563.91$, which is the required horizontal distance.

In a similar manner,

$$
10.91 \times 5.70+.08=62.27 \text { is the ro- }
$$

quired difference of level. One multiplication and one addition must be made in each case.

It is to be noticed, that, with the smaller angles, cos n may be neglected in the expression $c \cos n$, and $c \sin n$ may be entirely neglected without appreciable error.

For values of c which differ from those given, an approximate correction proportional to the amount of difference may very easily be made in these two expres sions.

M.	0°		1°		2°		3°	
	Hor.	Diff.	Hor.	Diff.	Hor.	Diff.	Hor.	Diff.
	Dist.	Elev.	Dist.	Elev.	Dist.	Elev.	Dist.	Elev.
0^{\prime}.	100.00	. 00	99.97	1.74	99.88	3.49	9973	5.23
		. 06	6	1.80	99.87	3.55	9972	5.28
	"	. 12	${ }^{66}$	1.86	6	3.60	99.71	5.34
	"	.17	99...96	1.92	66	3.66	6	5.40
	"	. 23	6	1.98	99.86	3.72	99.70	5.16
10.	"	. 29	،	2.04	66	3.78	99.69	5.52
12.	،	. 35	"	2.69	99.85	3.84	66	5.57
14.	"	. 41	99.95	215	6	3.90	99.68	5.63
16.	'6	. 47	، 6	2.21	9984	3.95	66	5.69
18.	6	. 52	"	2.27	6	4.01	99.67	5.75
20.....	6	. 58	"	2.33	99.83	4.07	99.66	5.80
22.	،	. 64	9994	2.38	6	4.13	6	5.86
24.	${ }^{66}$. 70	6	2.44	99.82	4.18	99.65	5.92
26	99.99	.76	6	2.50	6	4.21	99.64	5.98
28.	، 6	. 81	99.93	2.56	99.81	4.30	99.63	6.04
30.....	,	. 87	6	2.62	6	4.36	66	6.09
32.	"	. 93	6	2.67	93.80	4.42	99.62	6.15
34.	'6	. 99	${ }^{66}$	2.73	6	4.48	6	6.21
36.	-6	1.05	99.92	2.79	99.79	4.53	9961	6.27
38.	'6	1.11	6	2.85	$6{ }^{6}$	4.59	99.60	6.33
40.....	"	1.16	6	2.91	99.78	4.65	99.59	6.38
42.....	${ }_{6}$	1.22	99.91	2.97	66	4.71	"6	6.44
44.	99.98	1.28	6	3.02	99.77	4.76	99.58	6.50
	.	1.34	99.90	3.08	6	4.82	99.57	6.56
48.....	"	1.40	${ }^{6} 6$	3.14	99.76	4.88	99.56	6.61
50.....	6	1.45	6	3.20	6	4.94	66	6.67
52.	6	1.51	99.89	3.26	99.75	4.99	99.55	6.73
54.	${ }^{6}$	1.57	6	3.31	99.74	5.05	99.54	6.78
56.	99.97	1.63	6	3.37	6	5.11	99.53	6.84
58.	"	1.69	99.88	3.43	99.73	5.17	99.52	6.90
60.	،	1.74	66	3.49	66	5.23	99.51	6.96
$c=.75$. 75	. 01	.75	. 02	. 75	. 03	. 75	. 05
$c=1.00$	1.00	. 01	1.00	. 03	1.00	. 04	1.00	. 06
$c=1.25$	1.25	. 02	1.25	. 03	1.25	. 05	1.25	. 08

M.	4°		5°		6°		7°	
	Hor.	Diff.	Hor.	Diff.	Hor.	Diff.	Hor.	Diff.
	Dist.	Elev.	Dist.	Elev.	Dist.	Elev.	Dist.	Elev.
0^{\prime}	99.51	6.96	99.24	8.68	98.91	10.40	98.51	12.10
		7.02	99.23	8.74	98.90	10.45	98.50	12.15
4.	99.50	7.07	99.22	8.80	98.88	10.51	98.48	12.21
6	99.49	7.13	99.21	8.85	98.87	10.57	98.47	12.26
8.	99.48	7.19	99.20	8.91	98.86	10.62	98.46	12.32
	99.47	7.25	99.19	8.97	98.85	10.68	98.44	12.38
12.	99.46	7.30	99.18	9.03	98.83	10.74	98.43	12.43
14	6	7.36	99.17	9.08	98.82	10.79	98.41	12.49
16	99.45	7.42	99.16	9.14	98.81	10.85	98.40	12.55
18	Y9.44	7.48	99.15	9.20	98.80	10.91	98.39	12.60
	99.43	7.53	99.14	9.25	98.78	10.96	98.37	12.66
22.	99.42	7.59	99.13	9.31	98.77	11.02	98.36	12.72
24.	99.41	7.65	99.11	9.37	98.76	1108	98.34	12.77
26.	99.40	7.71	99.10	9.43	98.74	11.13	98.33	12.83
28.	99.39	7.76	99.09	9.48	98.73	11.19	98.31	12.88
30	99.38	7.82	99.08	9.54	98.72	11.25	98.29	12.94
32.	99.38	7.88	99.07	9.60	98.71	11.30	98.28	13.00
34.	99.37	7.94	99.06	9.65	98.69	11.36	98.27	13.05
36.	99.36	7.99	99.05	9.71	98.68	11.42	98.25	13.11
38.	99.35	8.05	99.04	9.77	98.67	11.47	98.24	13.11
40.	99.34	8.11	99.03	9.83	98.65	11.53	98.22	13.22
42.	99.33	8.17	99.01	9.88	98.64	11.59	98.20	13.28
44.	99.32	8.22	99.00	9.94	98.63	11.64	98.19	13.33
46.	99.31	8.28	98.99	10.00	98.61	11.70	98.17	13.39
48.	99.30	8.34	98.98	10.05	98.60	11.76	98.16	13.45
50.	99.29	8.40	98.97	10.11	98.58	11.81	98.14	13.50
52.	99.28	8.45	98.96	10.17	98.57	11.87	98.13	13.55
54.	99.27	8.51	98.94	10.22	98.56	11.93	98.11	13.61
56.	99.26	8.57	98.93	10.28	98.54	11.98	98.10	13.67
58.	99.25	8.63	98.92	10.34	98.53	12.04	98.08	13.73
60.	99.24	8.68	98.91	10.40	98.51	12.10	98.06	13.78
$c=.75$. 75	. 06	. 75	. 07	. 75	. 08	. 74	. 10
$c=1.00$	1.00	. 08	. 99	. 09	. 99	. 11	. 99	. 13
$c=1.25$	1.25	. 10	1.24	. 11	1.24	. 14	1.24	. 16

M.	8°		9°		10°		11°	
	Hor.	Diff.	Hor.	Diff.	Hor.	Diff.	Hor.	Diff.
	Dist.	Elev.	Dist.	Elev.	Dist.	Elev.	Dist.	Elev.
0^{\prime}	98.06	13.78	97.55	15.45	96.98	17.10	96.36	1873
2.	98.05	13.84	97.53	15.51	96.96	17.16	96.34	18.78
4	98.03	13.89	97.52	15.56	96.94	17.21	96.32	12.84
	98.01	13.95	97.50	15.62	96.92	17.26	96.29	1889
8.	98.00	14.01	97.48	15.67	96.90	17.32	90.27	1895
10.	97.98	14.06	97.46	15.73	96.88	17.37	96.25	1900
12.	97.97	14.12	97.44	15.78	96.86	17.43	96.23	19.05
14.	97.95	14.17	97.43	15.84	96.84	17.48	96.21	19.11
16.	97.93	14.23	97.41	1589	96.82	17.54	96.18	19.16
18.	97.92	14.28	97.39	15.95	96.80	17.59	96.16	19.21
20.	97.90	14.34	9737	${ }^{\circ} 1600$	96.78	17.65	96.14	19.27
22.	97.88	14.40	97. 35	16.06	96.76	17.70	96.12	19.32
24.	97.87	14.45	97.33	16.11	96.74	17.76	96.09	19.38
26.	97.85	14.51	97.31	16.17	96.72	17.81	96.07	19.43
28.	97.83	14.56	97.29	16.22	96.70	17.86	96.05	19.48
30.	97.82	14.62	97.28	16.28	96.68	17.92	96.03	19.54
32.	97.80	14.67	97.26	16.33	96.66	17.97	96.00	19.59
34.	97.78	14.73	97.24	16.39	96.64	18.03	95.98	19.64
36.	97.76	14.79	97.22	16.44	96.62	18.08	95.96	19.70
38.	97.75	14.84	97.20	16.50	96.60	18.14	95.93	19.75
40.	97.73	14.90	97.18	16.55	96.57	18.19	95.91	19.80
42.	97.71	14.59	97.16	16.61	96.55	18.24	95.89	19.86
44.	97.69	1501	97.14	16.66	96.53	18.30	95.86	19.91
	97.68	15.06	97.12	16.72	96.51	18.35	95.84	19.96
48.	97.66	15.12	97.10	16.77	96.49	18.41	95.82	20.02
50.....	97.64	15.17	97.08	16.83	96.47	18.46	95.79	20.07
52.	97.62	15.23	97.06	16.88	96.45	18.51	95.77	20.12
	97.61	15.28	97.04	16.94	96.42	18.57	95.75	20.18
56	97.59	15.34	97.02	16.99	96.40	18.62	95.72	20.23
58.	97.57	15.40	97.00	17.05	96.38	18.68	95.70	20.28
60.	97.55	15.45	96.98	17.10	96.36	18.73	95.68	20.34
$c=.75$. 74	. 11	.74	.12	. 74	. 14	.73	. 15
$c=1.00$. 99	. 15	. 99	. 16	. 98	. 18	. 98	. 20
$c=1.25$	1.23	. 18	1.23	. 21	1.23	. 23	1.22	. 25

50

M.	12°		13°		14°		15°	
	Hor.	Diff.	Hor.	Diff.	Hor.	Diff.	Hor.	Diff.
	Dist.	Elev.	Dist.	Elev.	Dist.	Elev.	Dist.	Elev.
0^{\prime}	95.68	20.34	94.94	21.92	94.15	$23.4{ }^{\circ}$	93.30	25.00
	95.65	20.39	94.91	21.97	94.12	23.52	93.27	25.05
	95.63	20.44	94.89	22.02	94.09	23.58	93.24	25.10
6.	95.61	20.50	9486	22.08	94.07	23.63	93.21	25.15
	95.58	20.55	94.84	22.13	94.04	23.68	93.18	25.20
10.	95.56	20.60	94.81	22.18	94.01	23.73	93.16	25.25
12.	95.53	20.66	94.79	22.23	93.98	23.78	93.13	25.30
14.	95.51	20.71	94.76	22.28	93.95	23.83	93.10	25.35
16.	95.49	20.76	94.73	22.34	93.93	23.88	93.07	25.40
18.	95.46	20.81	94.71	22.39	93.90	23.93	93.04	25.45
20.	95.44	20.87	94.68	22.44	93.87	23.99	93.01	25.50
22.	95.41	20.92	94.66	22.49	93.84	24.04	92.98	25.55
	95.39	20.97	94.63	22.54	93.81	24.09	92.95	25.60
	95.36	21.03	94.60	22.60	93.79	24.14	9292	25.65
28.	95.34	21.08	94.58	22.65	93.76	24.10	92.89	25.70
30.	95.32	21.13	94.55	22.70	93.73	24.24	92.86	25.75
32.	95.29	21.18	94.52	22.75	93.70	24.29	92.83	25.80
34.	95.27	21.24	94.50	22.80	93.67	24.34	92.80	25.85
36	95.24	21.29	94.47	22.85	03.65	24.39	92.77	25.90
38.	95.22	21.34	94.44	22.91	93.62	24.44	92.74	25.95
40.	95.19	21.39	94.42	22.96	93.59	24.49	92.71	26.00
42.	95.17	21.45	94.39	23.01	93.56	24.55	92.68	26.05
44.	95.14	21.50	94.36	23.06	93.53	24.60	92.65	26.10
46.	95.12	21.55	94.34	23.11	93.50	24.65	92.62	26.15
48.	95.09	21.60	94.31	23.16	93.47	24.70	92.59	26.20
50.	95.07	21.66°	94.29	23.22	93.45	24.75	92.56	26.25
52.	95.04	21.71	94.26	23.®\%	93.42	24.80	92.53	26.30
54.	95.02	21.76	94.23	23.32	93.39	24.85	92.49	26.35
56.	94.99	21.81	94.20	23.37	93.36	24.90	92.46	26.40
58.	94.97	21.87	94.17	23.42	93.33	24.95	92.43	26.45
60.	94.94	21.92	94.15	23.47	93.30	25.00	92.40	26.50
$c=.75$. 73	. 16	. 73	. 17	.73	. 19	. 72	. 20
$c=100$. 98	. 22	. 97	. 23	. 97	. 25	. 96	. 27
$c=1.25$	1.22	. 27	1.21	. 29	1.21	. 31	1.20	. 84

51

M.	- 16°		17°		18°		19°	
	Hor.	Diff.	Hor.	Diff.	Hor.	Diff.	Hor.	Diff.
	Dist.	Elev.	Dist.	Elev.	Dist.	Elev.	Dist.	Elev.
0^{\prime}	92.40	26.50	91.45	27.96	90.45	29.39	89.40	30.78
2.	92.37	26.55	91.42	28.01	90.42	29.44	89.36	30.83
4.	92.34	26.59	91.39	28.06	90.38	29.48	89.33	30.87
6	92.31	26.64	91.35	28.10	90.35	29.53	89.29	30.92
8	92.28	2:.69	91.32	28.15	90.31	29.58	89.26	30.97
10.	92.25	26.74	91.29	28.20	90.28	29.62	89.20	31.01
12.	92.22	26.79	91.26	28.25	90.24	29.67	89.18	31.06
14.	92.19	26.84	91.22	2830	90.21	29.72	89.15	31.10
16.	92.15	26.89	91.19	28.34	90.18	29.76	89.11	31.15
18.	92.12	26.94	91.16	28.39	90.14	29.81	89.08	31.19
20.	92.09	26.99	91.12	28.44	90.11	29.86	89.04	31.24
22.	92.06	27.04	91.09	28.49	90.07	29.90	89.00	31.28
24.	92.03	27.09	91.06	28.54	90.04	29.95	88.96	31.33
26	82.00	27.13	91.02	28.58	90.00	30.00	88.93	31.38
28.	91.97	27.18	90.99	28.63	89.97	30.04	8889	31.42
30.	91.98	27.23	90.96	28.68	89.93	30.09	88.86	31.47
32.	91.90	27.28	90.92	28.73	89.90	30.14	88.82	31.51
34.	91.87	27.33	90.89	28.77	89.86	30.19	88.78	31.56
36.	91.84	27.38	9086	28.82	89.83	30.23	88.75	31.60
38.	91.81	27.43	90.82	28.87	89.79	30.28	88.71	31.65
40.	91.77	27.48	90.79	28.92	89.76	30.3%	88.67	3169
42.	91.74	27.52	90.76	28.96	89.72	30.37	88.64	31.74
44.	91.71	27.57	90.72	29.01	89.69	30.41	88.60	31.78
46	9168	27.62	90.69	29.06	89.65	30.46	88.53	31.83
48.	91.65	27.67	90.66	29.11	89.61	30.51	88.53	31.87
50.	91.61	27.72	90.62	29.15	89.58	30.55	88.49	31.92
52.	91.58	27.77	90.59	29.20	89.54	30.60	88.45	31.96
54.	91.55	27.81	90.55	29.25	89.51	30.65	88.41	32.01
56.	91.52	27.86	90.52	29.30	89.47'	30.69	88.38	32.05
58.	91.48	27.91	90.48	29.34	89.44	30.74	88.34	32.09
60.	91.45	27.96	90.45	29.39	89.40	30.78	88.30	32.14
$c=.75$. 72	. 21	. 72	. 23	. 71	. 24	.71	. 25
$c=1.00$. 96	. 28	. 95	. 30	. 95	. 32	. 94	. 33
$c=1.25$	1.20	.36	1.19	. 38	1.19	. 40	1.18	. 42

M.	20°		21°		22°		23°	
	Hor.	Diff.	Hor.	Diff.	Hor.	Diff.	Hor.	Diff.
	Dist.	Elev.	Dist.	Elev.	Dis.	Elev.	Dist.	Elev.
0	88.30	32.14	87.16	33.46	85.97	34.73	84.73	35.97
	88.26	32.18	87.12	33.50	85.93	34.77	84.69	36.01
	88.23	32.23	87.08	33.51	85.89	34.82	84.65	36.05
6	88.19	32.27	87.04	33.59	85.85	34.86	84.61	36.09
8	88.15	32.32	87.00	33.63	85.80	34.90	84.57	36.13
10	88.11	32.56	86.96	33.67	85.76	34.94	84.52	36.17
12.	88.08	32.41	86.9*)	33.72	85.72	35.98	84.48	36.21
14.	88.04	32.45	86.88	33.76	85.68	$35.0{ }^{2}$	84.44	36.25
16.	88.00	32.49	86.84	33.80	85.64	35.67	84.40	36.29
18.	87.96	32.54	86.80	33.84	85.60	35.11	84.35	36.33
20.	87.93	32.58	86.77	33.89	85.56	35.15	84.31	36.37
22.	87.89	32.63	86.73	33.93	85.52	35.19	84.27	36.41
24.	87.85	32.67	8669	33.97	85.48	35.23	84.23	36.45
	87.81	32.72	86.65	34.01	85.44	3527	84.18	36.49
28.	87.77	32.76	86.61	34.06	85.40	3531	84.14	36.53
30.	87.74	32.80	86.57	34.10	85.36	35.36	84.10	36.57
32.	87.70	32.85	86.53	34.14	85.31	35.40	84.06	36.61
34	87.66	32.89	86.49	34.18	85.27	35.44	84.01	36.65
36.	87.62	32.93	86.45	34.23	85.23	35.48	83.97	36.69
38.	87.58	32.93	86.41	34.27	85.19	35.52	83.93	36.73
40	87.54	33.02	86.37	34.31	85.15	35.56	83.89	36.77
42.	87.51	33.07	86.33	34.35	¢5.11	35.60	83.84	36.80
	87.47	33.11	86.29	34.40	85.07	35.64	83.80	36.84
46	87.43	33.15	86.25	34.44	85.02	35.68	83.76	36.88
48.	87.39	33.20	86.21	34.4	84.98	35.72	8372	36.92
50.	87.35	33.24	86.17	34.58	84.94	35.76	83.67	36.96
52.	87.31	32.28	86.13	34.57	84.90	35.80	83.63	37.00
54	87.27	33.33	86.09	34.61	84.86	35.55	63.59	37.04
56.	8724	33.37	86.05	34.65	81.82	35.89	83.54	37.08
58.	87.20	33.41	86.01	34.69	84.77	35.93	83.50	37.12
60.	87.16	33.46	85.97	34.73	81.73	35.97	83.46	37.16
$c=.75$. 70	. 26	. 70	. 27	. 69	. 29	. 69	. 30
$c=1.00$. 94	. 35	. 93	. 37	. 92	. 38	. 92	. 40
$c=1.25$	1.17	. 44	1.16	. 46	1.15	. 48	1.15	. 50

M.	24°		25°		26°		27°	
	Hor.	Diff.	Hor.	Diff.	Hor.	Diff.	Hor.	Diff.
	Dist.	Elev.	Dist.	Elev	Dist.	Elev.	Dist.	Elev.
0^{\prime}	83.46	37.16	82.14	38.30	80.78	39.40	79.39	40.45
2.	83.41	37.20	82.09	38.34	80.74	39.44	79.34	40.49
4.	83.37	37.23	82.05	38.38	80.69	39.47	79.30	40.52
	83.33	37.27	82.01	38.41	80.65	39.51	79.25	40.55
8.	83.28	37.31	81.96	38.45	80.60	39.54	79.20	40.59
10.	83.24	37.35	81.92	38.49	80.55	39.58	79.15	40.62
12.	83.20	37.39	81.87	38.53	80.51	39.61	79.11	40.66
14.	83.15	37.43	81.83	38.56	80.46	39.65	79.06	40.69
16.	83.11	$37.4{ }^{4}$	81.78	38.60	80.41	39.69	79.01	40.72
18.	83.07	37.51	81.74	38.64	80.37	39.72	78.96	40.76
20.	83.02	37.54	81.69	38.67	80.32	39.76	78.92	40.79
22.	82.98	37.58	81.65	38.71	80.28	39.79	78.87	40.82
24.	82.93	37.62	81.60	38.75	80.23	39.83	78.82	40.86
26.	82.89	37.66	81.56	38.78	80.18	39.86	78.77	40.89
28.	82.85	37.70	81.51	38.82	80.14	39.90	78.73	40.92
30.	82.80	37.74	81.47	38.86	80.09	39.93	78.68	40.96
32.	82.76	37.77	81.42	38.89	80.04	39.97	78.63	40.99
34.	82.79	37.81	81.38	38.93	80.00	40.00	78.58	41.02
36.	82.67	37.85	81.33	38.97	79.95	40.04	78.54	41.06
38.	8263	37.89	81.28	39.00	79.90	40.07	78.49	41.09
40.	82.58	37.93	81.24	39.04	79.86	40.11	78.44	41.12
42.	82.54	37.96	81.19	39.08	79.81	40.14	78.39	41.16
44.	82.49	38.00	81.15	39.11	79.76	40.18	78.34	41.19
46.	82.45	38.04	81.10	39.15	79.72	40.21	78.30	41.22
48.	8241	38.08	81.06	39.18	79.67	40.21	78.25	41.26
50.	82.36	38.11	81.01	39.22	79.62	40.28	78.20	41.29
52.	82.32	38.15	80.97	39.26	79.58	40.31	78.15	41.32
54.	82.27	38.19	80.92	39.29	79.53	40.35	78.10	41.35
56.	82.23	38.23	80.87	39.33	79.48	40.38	78.06	41.39
58.	82.18	38.26	80.83	39.36	\%9.44	40.42	78.01	41.42
60.	82.14	38.30	80.78	39.40	79.39	40.45	77.96	41.45
$c=.75$. 68	. 31	. 68	. 32	. 67	. 33	. 66	. 35
$c=1.00$. 91	. 41	. 90	. 43	. 89	. 45	. 89	. 46
$c=125$	1.14	. 52	1.13	. 54	1.12	. 56	1.11	. 58

M.	28°		29°		30°	
	Hor.	Diff.	Hor.	Diff.	Hor.	Diff.
	Dist.	Elev.	Dist.	Elev.	Dist.	Elev.
0^{\prime}	77.96	41.45	76.50	42.40	75.00	43.30
2.	77.91	41.48	76.45	42.43	74.95	43.33
4	77.86	41.52	76.40	42.46	74.90	4336
6	77.81	41.55	76.35	42.49	74.85	43.39
	77.77	41.58	76.30	42.53	74.80	43.42
	77.72	41.61	76.25	42.56	74.75	43.45
12.	77.67	41.65	76.20	42.59	74.70	43.47
14	r7. 62	41.68	76.15	42.62	74.65	43.50
16	77.57	41.71	76.10	42.65	74.60	43.53
18.	77.52	41.74	76.05	42.68	74.55	43.56
20.	77.48	41.77	76.00	42.71	74.49	43.59
22.	r7\% 42	41.81	75.95	42.74	74.44	43.62
2	77.38	41.84	75.90	42.77	74.39	43.65
26	77.33	41.87	75.85	42.80	74.34	43.67
28.	77.28	41.90	75.80	42.83	74.29	43.70
	77.23	41.93	75.75	42.86	74.24	43.73
32.	${ }^{67} 7.18$	41.97	75.70	42.89	74.19	4376
34.	77.13	42.00	75.65	4292	74.14	43.79
36.	77.09	4203	75.60	42.95	74.09	43.82
38.	77.04	42.06	75.55	42.98	74.04	43.84
40.	76.99	42.09	75.50	43.01	73.99	43.87
42.	76.94	42.12	75.45	43.04	73.93	43.90
44.	76.89	42.15	75.40	43.07	73.88	43.93.
46.	76.84	42.19	75.35	43.10	73.83	43.95
48.	76.79	42.22	75.30	43.13	73.78	43.98
50.....	76.74	42.25	75.25	43.16	73.73	44.01
52.	76.69	42.28	75.20	43.18	73.68	44.04
54.	76.64	42.31	75.15	42.21	73.63	44.07
56	76.59	42.34	75.10	43.24	73.58	44.09
58.	76.55	42.37	75.05	43.27	73.52	44.12
60.	76.50	42.40	75.100	43.30	7347	44.15
$c=.75$. 66	. 36	. 65	. 37	. 65	. 38
$c=1.00$. 88	. 48	. 87	. 49	. 86	. 51
$c=1.25$	1.10	. 60	1.09	. 62	1.08	. 64

55

NOTE BYTHE EDITOR OFVAN NOSTRAND'S ENGINEERING MAGAZINE.

After the foregoing essay had been published in the Magazine, a criticism of the formula, and of Mr. Winslow's estimate of its applicability, was contributed by R. S. Woodward, C. E., of the Naval Observatory, Washington. The article appeared in the June No. of the Magazine, vol. 30, page 473 .

The object of the writer is to show: "1st; that although the formula for conjugate distances, as commonly understood, is inaccurate, yet, if properly interpreted, this formula is not only approximate but exact; and, moreover, applies equally without modification to any combination of lenses as well as to a single biconvex lens; 2d, that the ordinary formula for the stadia instrument, if properly understood, is exact whatever may be the number, kind, or disposition of the lenses in the telescope so long as they are properly centered."

Although the criticism is of importance in its bearing upon the optical principles involved, it in no wise affects the value of the reduction tables given above, nor the general principles governing stadia practice as set forth by Mr. Winslow.

Logaritimic sines and tangents.

LOGARITHMIC SINES AND TANGENTS.

D.	M.	$\log \sin$.	log tang.	$\log \operatorname{cotg}$.	log cos.	,	-
0	0	-	∞	+ ∞	IO	0	90
	I	6,46 37	6,46 37	13,53 63	10,00 00	59	
	2	6,76 48	6,76 48	13,23 52	10,00 00	53	
	3	6,94 09	6,94 o3	13,0591	10,00 00	57	
	4	7,06 5^{8}	7,06 5^{8}	12,93 42	10,00 00	56	
	5	7, 16 27	7,16 27	12,83 73	10,00 00	55	
	6	7,24 19	7,24 I9	12,75 81	10,00 00	54	
	7	7,30 88	7,30 88	12,69 12	10,00 00	53	
	8	7,36 63	7,36 63	12,63 32	10,00 00	52	
	9	7,41 80	7,41 80	12,58 20	10,00 00	5 I	
0	10	7,46 37	7,46 37	12,53 63	10,00 00	50	89
	II	7,50 5 I	7,50 51	12,49 49	10,00 00	49	
	12	7,54 29	7,54 29	12,45 71	Io,00 00	48	
	13	7,57 77	7.5777	12,42 23	10,00 00	47	
	It	7, Co 9^{3}	7,60 99	12,39 OI	10,00 00	46	
	I5	7,63 98	7,63 9^{8}	12,36 02	10,00 00	45	
	16	7,66. 73	7,66 73	12,33 21	10,00 00	$4+$	
	17	7,69 42	7,6942	12,30 58	10,00 00	43	
	18	7,71 90	7,71 90	12,28 10	10,00 00	42	
	I9	7,74 25	7,74 25	12,25 75	Io,00 00	4 I	
0	20	7,76 47	7,76 48	12,23 52	10,00 00	40	89
	21	7,78 59	$7,78 \quad 59$	I2,21 40	Io,00 00	39	
	22	7,80 61	7,80 61	I2,19 38	10,00 00	38	
	23	7,8254	7,8255	12,17 45	10,00 00	37	
	$2+$	7,8439	7,84 39	12,15 6I	10,00 00	36	
	25	7,86 17	7,86 17	12,13 83	10,00 00	35	
	26	7,8787	7,8787	12,12 13	10,00 00	34	
	27	7,89 51	7,89 51	I2, 10 49	Io,00 00	33	
	28	7,91 09	7,9109	12,08 91	Io,00 OO	32	
	29	7,92 6I	7,92 6I	12,07 39	10,00 00	3 I	
0	30	7.94	7,94 09	12,05 9I	10,00 00	30	89
\bigcirc	,	$\log \cos$.	$\log \operatorname{cotg}$.	log tang.	$\log \sin$.	M.	D.

60 Logarithmic Sines and Tangents.

D.	M.	$\log \sin$.	log tang.	$\log \operatorname{cotg}$.	log cos.		
0	30	7,94 08	7,94 09	12,05 9^{1}	10,00 00	30	89
	31	7,95 5 5.	7,95 51	12,04 49	10,00 oo	29	
	32	7,96 89	7,96 89	12,03 If	Io,00 00	$\left.\begin{gathered} 28 \\ 27 \end{gathered} \right\rvert\,$	
	33	$\begin{array}{lll}7,98 & 22 \\ 7,99 & 52\end{array}$	$\begin{array}{lll}7,98 & 22 \\ 7,99 & 52\end{array}$	$\begin{array}{ll}\text { I2,OI } & 77 \\ \text { 12,oo } & 48\end{array}$	$\left\lvert\, \begin{array}{ll} \text { Io,oo } & 00 \\ \text { IO, } & 00 \end{array}\right.$	27 26	
	34	7,99 5^{2}	7,99 5^{2}	12,00 48	$\|10,0000\|$		
	35	8,00 78	8,00 7^{8}	11,99 22	Io,00 oo	25	
	36	8,0200	8,02 00	II, 9800	10,00 00	24	
	37	8,0319	8,0319	II, $968 \mathrm{8I}$	Io,oo Oo	23	
	38	8,0435 8,05	8,0435 8,05	$\begin{array}{ll}\text { II,95 } \\ \text { II, } & 65 \\ 52\end{array}$	Io,00 00 Io,oo	22	
	39	8,05 48	8,05 4^{8}	11,94 52	10,00 00	2 I	
0	40	8,0658	$8,06{ }^{8}$	11,93 42	io,00 oo	20	89
	41	8,0765	8,07 65	II, 9235	10,00 00	19	
	42	8,0870	8,08 70	II, 9I 30	10,00 00	18	
	43	8,09 72	8,09 72	$\|11,9028\|$	$1 \mathrm{i}, 00 \mathrm{oo}$	17	
	44	8,10 72	8, 1072	11,89 28	10,00 00	16	
		8,11 69	8, II 70	11,88 30	10,00 00	15	
	46	8 8, 12 65	8 , 1265	11,87 35	10,00 00	It	
	47	8,1358	8, 13 58	II, 86	10,00 oo	13	
	48	8,14 49	8, I4 50	$\begin{array}{ll}\text { II, } 85 & 50 \\ \text { II, } 84 & 60\end{array}$	10,00 00 10,00	I2	
	49	8,15 39	8,15 39	11,84 60	10,00 00	II	
0	50	$8,16 \quad 27$	8,16 27	11,83 73	9,99 99	10	89
	51	8,17 13	8,1713	II, 8287	9,99 99	$\begin{aligned} & 9 \\ & 8 \end{aligned}$	
	52	8,17 97	$8,17{ }^{8}$	II, 82 O 2	9,99 99	8	
	53	8,18 80	8,1880	II, 8120	9,99 99	7	
	54	8,19 6r	8,19 62	II, 8038	9,99 99	6	
	55	8,20 4 I	8,20 4 I	11,79 59	9,99 99	5	
	56	8,2119	8,2119	II, 7880	9,99 99	4	
	57	8,21 8,22 81	8,21 8,22 8,2	II, 78 O4	9,99 99	3	
	58 59	8,22 8,23 16	$\begin{array}{ll}8,22 & 72 \\ 8,23 & 46\end{array}$	$\begin{array}{ll}11,77 & 28 \\ 11,76 & 54\end{array}$	9,c9 99 9,99	I	
1	0	8,24 19	8,2+ 19	11,75 81	9,99 99	0	89
-	,	$\log \cos$.	log cotg.	log tang.	log sin.	M.	D.

Logarithmic Sines and Tangents.

D.	M.	$\log \sin$.	log tang.	$\log \operatorname{cotg}$.	$\log \cos$.	,	-
1	0	8,24 IG	8,24 I9	II,75 8i	9,99 99	0	89
	1	8,24 90	8,24 9I	II,75 09	9,99 99	59	
	2	8,25 6 I	8,25 62	11,74 3^{8}	9,99 99	58	
	3	8,26 30	8,26 3 I	II,73 69	9,99 99	57	
	4	8,26 99	8,27 oo	If,73 00	9,99 ¢9	56	
	5	8,27 66	8,27 67	11,72 33	9,99 99	55	
	6	8,23 32	8,28 33	II,71 67	9,99 99	$5+$	
	7	8,28 9^{8}	8,28 99	II,7I OI	9,99 99	53	
	8	8,29 62	8,29 63	II, 7037	9,99 99	52	
	9	8,30 25	8,30 26	II,69 74	9,99 99	5 I	
1	10	8,30 88	8,30 89	II,69 II	9,99 99	50	88
	II	8,31 49	8,31 50	II,68 49	9,99 99	49	
	12	8,32 10	8,32 II	II,6789	9,99 99	48	
	I3	8,32 70	8,32 71	11,67 29	9,99 99	47	
	If	8,33 29	8,33 30	11,66 70	9,99 99	46	
	15	8,33 87	8,33 89	II, 66 II	9,99 99	45	
	I6	8,34 45	8,34 46	II,65 54	9,99 99	44	
	17	8,35 02	8,35 O3	II, $6+97$	9,99 99	43	
	I8	$8,35 \quad 58$	8,35 59	II, $6+4 \mathrm{t}$	9,99 99	42	
	19	8,36 13	8,36 14	11,63 86	9,99 99	4 I	
1	20	8,36 68	8,36 69	II, 63 3I	9,99 99	40	88
	21	8,37 22	8,37 23	If,62 77	9,99 99	39	
	22	8,37 75	8,37 76	11,62 24	9,99 99	38	
	23	8,38 28	8,38 29	11,61 71	9,99 99	37	
	24	8,38 80	8,38 81	If,6i 19	9,99 99	36	
	25	8,39 31	8,39 32	II,60 68	9,99 99	35	
	26	8,39 82	8,39 83	I 1,60 I7	9,99 99	34	
	27	8,40 32	8,40 33	II,59 67	9,99 99	33	
	28	8,40 82	8,40 83	11,59 17	9,99 99	32	
	29	$8,4 \mathrm{I} 3 \mathrm{I}$	8,41 32	II,58 68	9,99 98	3 I	
1	30	8,41 79	8,4I 8I	II, 58 I9	9,99 9^{8}	30	88
-	,	$\log \cos$.	$\log \operatorname{cotg}$.	log tang.	$\log \sin$.	M.	D.

62 Logarithmic Sines and Tangents.

D.	M.	$\log \sin$.	log tang.	$\log \operatorname{cotg}$.	$\log \cos$.		
2	0	8,54 28	8,54 3I	11,45 69	9,99 97	0	88
	1	8,54 64	8,5467	II, 4533	9,99 97	59	
	2	8,55 00	8,55 03	II, 4497	9,99 97	58	
	3	8,5535	8,5538	11,44 62	9.99 97	57	
	4	8,5570	8,55 73	11,44 27	9,99 97	56	
	5	8,56 05	8,56 os	I1,43 92	9,99 97	55	
	6	8,5640	8,5643	11,43 57	9,99 97	54	
	7	8,56 8,57 8,5	8,56 8,57 81	11,43 23	9,9997 0,99 9	5	
	9		8,57 17	11,42 11	9,99 97 9,99	5	
2	10	8,57 76	8,57 79	11,42 21	9,99 97	50	87
	Ir	8,58 og	$8,58 \mathrm{I2}$	II, 4I 83	9,99 97	49	
	12	$8,58{ }^{2}$	8,58 45	II,4I 55	9,99 97	4^{8}	
	13	8,5875	8,58 78	11,4122	9,99 97	47	
	14	8,59 07	8,59 10	11,4089	9,99 97	46	
	15	8,59 39	8,59 43	11,40 57	9,99 97	45	
	16	8,59 71	8,5975	11,40 25	9,99 97	44	
	17	$8.60 \mathrm{o3}$	8,60 07	11,39 93	9,99 97	43	
	18	$8,60 \quad 35$	8,60 38	11,39 62	9,99 96	42	
	19	8,60 66	8,60 70	II, 3930	9,99 96	4^{1}	
2	20	8,60 97	$8,6 \mathrm{x}$ or	11,38 99	9,99 96	40	87
	21	8,6128	8,61 32	11,38 63	9,99 96	39	
	22	8,6159	$8,6 \times 63$	11,38 37	9,99 96	38	
	23	8,61 89	8,61 93	rr, 3807	9,99 96	37	
	24	8,62 20	8,62 23	11,37 77	9,99 96	36	
	25	8,62 50	8,62 53	II, 3746	9,99 96	35	
	26	8,62 79	8,62 83	I1,37 17	9,99 9^{6}	34	
	27	$8,63 \mathrm{og}$	8,6313	11,36 87	9,99 96	33	
	28	8,63 38	$\|8,6343\|$	$\|11,3657\|$	9,99 96	32	
	29	8,63 68	8,63 72	11,36 28	9,99 96	31	
2	30	8,63 97	8,64 or	11,35 99	9,99 96	30	87
-	,	log cos.	log cotg.	log tang.	$\log \sin$.	M.	D.

64 Logarithmic Sines and Tangents.

Logarithmic Sines and Tangents.

D.	M.	$\log \sin$.	log tang.	\log cotg.	$\log \cos$.	,	-
3	0	8,71 88	8,71 94	II, 28 O6	9,99 9+	0	87
	I	8,72 12	8,72 18	II, 2782	9,99 97	59	
	2	8,72 36	8,72 42	II,27 58	9,99 94	58	
	3	8,72 60	8,72 66	II, 2734	9,99 94	57	
	4	8,72 83	3,72 90	II, 27 IO	9,99 94	56	
	5	8,73 07	8,73 13	II, 2687	9,99 94	55	
	6	8,73 30	8,73 37	II, 2663	9,99 94	54	
	7	8,73 53	8,73 60	II, 2640	9,99 9+	53	
	8	8,73 77	8,73 83	II, 26 I7	9,99 93	52	
	9	8,74 00	8,74 06	II, 2594	9,99 93	51	
3	10	8,74 23	8,74 29	II, $257 \mathrm{7I}$	9,99 93	50	86
	II	8,74 45	8,74 5^{2}	II,25 48	9,99 93	49	
	12	8,74 68	8,74 75	II,25 25	9,99 93	48	
	13	8,74 91	8,74 97	II,25 O3	9,99 93	47	
	14	8,75 I3	8,75 20	II, 2480	9,99 93	46	
	15	8,75 35	8,75 42	II, 245^{8}	9,99 93	45	
	16	8,75 57	8,75 64	II, $2+35$	9,99 93	44	
	17	8,75 79	8,75 87	II, 24 I3	9,99 93	43	
	18	3,76 or	8,76 o9	II,23 9I	9,99 93	42	
	Ig	8,76 23	8,76 3 I	II, 2369	9,99 93	4 I	
3	20	8,76 45	8,76 52	II, 2347	9,99 93	40	86
	2 T	8,76 67	8,76 74	II, 2326	9,99 93	39	
	22	8,76 88	8,76 95	II, 23 O4	9,99 92	33	
	23	8,77 10	8,77 17	II, 2283	9,99 92		
	24	8,77 31	8,77 39	II, 226 I	9,09 92	36	
	25	8,77 52	8,77 60	II, 2240	9,99 ¢2	35	
	26	8,77 73	8,77 81	II, 22 I9	9,99 92	34	
	27	8,77 94	8,78 02	II,21 98	9,99 92	33	
	28	8,78 15	8,78 23	Ix,21 77	9,99 92	32	
	29	8,78 36	8,78 44	II,2I 56	9,99 92	3 I	
3	30	8,78 57	8,78 65	II, 2135	9,99 92	30	86
-	,	$\log \cos$.	$\log \operatorname{cotg}$.	log tang.	log \sin.	M.	D.

D.	M.	$\log \sin$.	log tang.	$\log \operatorname{cotg}$.	log cos.		
3	30	8,78 57	8,7865	II,21 35	9,99 92	30	86
	31	8,7877	8,7885	II, 2114	9,99 92	29	
	32	$8,78{ }^{88}$	8,79 06	II, 20 9+	9,99 92	28	
	33	8,79 I8	8,7927	Ir,20 73	9.99 92	27	
	34	8,79 39	8,79 47	II, 2053	9,99 92	26	
	35	8.7959	8,7967	11,20 33	9,99 91	25	
	36	8,79 79	8,7987	II, 20 I2	9,99 91	24	
	37	8,79 99	8,80 08	II, I9 92	9,99 9x	23	
	38	8,8019	$\begin{array}{ll}8,80 & 28 \\ 8,80\end{array}$	II,19 72	9,99 91	22	
	39	8,80 37	8,80 48	II, I9 52	9,99 9I	I	
3	40	8,8058	8,8067	II,19 33	9,99 91	20	86
	41	8,80 78	8,8087	It, I9 J3	9,99 91	19	
	42	8,80 9^{3}	8,81 07	II, 1893	9,99 91	18	
	43	8,8157	$8,8 \mathrm{r} 26$	II, I8 74	9,99 91	17	
	44	8,81 37	8,81 46	II, I8 54	9,99 9r	16	
	45	$\begin{array}{llll}8,81 & 55 \\ 8,85\end{array}$	$\begin{array}{llll}8,81 & 65\end{array}$	11,18 35	9,99 91	15	
	46	8,8I. 75	$\begin{array}{ll}8,81 & 85 \\ 8,82 & 04\end{array}$	I1,18 15	9,99 91	It	
	$\begin{array}{\|l} 47 \\ 48 \end{array}$	$\begin{array}{ll}8,81 & 9+ \\ 8,82 & 13\end{array}$	$\begin{array}{ll}8,82 & 04 \\ 8,82 & 23\end{array}$	$\begin{array}{ll}\text { II, } 17 \\ \text { II, } & 96 \\ 17 & 77\end{array}$	9,99 90	I3	
	49	8,82 32	8,82 42	II, $17 \begin{array}{ll}58 \\ \text { II, }\end{array}$	9,99 90	II	
3	50	8,8251	8,82 61	11, 1739	9,99 90	10	86
	51	8,82 70	8,82 80	11,17 20	9,99 90	9	
	52	8,82 89	8,82 99	ir, 17 or	9,99 90	8	
	53	8,83 07	8,8317	if, i6 82	9,99 90	7	
	54	$8,83 \quad 26$	$8,83 \quad 36$	II, $166+$	9,99 90	6	
		8,83 45	8,83 55	ir, 1645	9,99 90	5	
	56	8,8363	8,83 73	11, 1627	9,99 90	4	
	57	$8,838 \mathrm{rr}$	8,8392	ir, 16 o8	9,99 90	3	
	58	8,84 oo	8,84 10	II, 1590	9,99 90	2	
	59	8,84 18	8,84 28	II, 15 72	9,99 89	I	
4	0	8,84 36	8,84 46	ir, 1554	9,99 89	0	86
	,	$\log \cos$.	log cotg.	log tang.	$\log \sin$.	M.	D.

D.	M.	$\log \sin$.	log tang.	$\log \operatorname{cotg}$.	$\log \cos$.		。
4	0	8,84 36	8,84 46	II, 15. 54	9,99 89	0	86
	I	8,8454	8,84 65	II, I5 35	9,99 89	59	
	2	8,84 72	8,8483	II, 15 I7	9,99 89	58	
	3	$\begin{array}{ll}8,84 & 90 \\ 8,85 & \text { O7 }\end{array}$	$\begin{array}{ll}8,85 & \text { OI } \\ 8,85 & \text { I8 }\end{array}$	II, I4 99	9,99 89	57	
	4	8,85 07	8,85 18	II, I4 8r	9,99 89	56	
	5	8,85 25	$8,85 \quad 36$	II, I4 64	9,99 89	55	
		8,85 43	8,85 54	II, I4 46	9,99 89	54	
	7	8,8560	$8,85 \quad 72$	II, 1428	9,99 89	53	
	8	8,8578	$8,85 \quad 89$	II, I4 II	9,99 89	52	
	9	8,85 95	8,86 07	II, I3 93	9,99 89	5 I	
4	10	8,86 13	8,86 24	II, 1376	9,99 88	50	85
	If	8,86 30	8,86 42	II, 135^{8}	9,99 88		
	12	8,86 47	8,86 59	ir, 13 4I	9,99 88	48	
	13	8,86 64	8,86 76	IT, 1324	9,99 88	47	
	14	8,86 82	8,86 93	II, 13 O6	9,99 88	46	
	15	8,86 99	$8,87 \mathrm{II}$	II, 1289	9,99 88	45	
	16	8,87 16	8,87 28	II,12 72	9,99 88	44	
	17	$\begin{array}{ll}8,87 & 32 \\ 8,87\end{array}$	8,87 45	II, I2 55	9,99 88	43	
	18	8,8749	8,87 62	II,12 38	9,99 88	42	
	19	8,8766	8,8778	II, 12 2I	9,99 88	4 I	
4	20	8,87 83	8,87 95	II, 1205	9,99 88	40	85
	21	8,8799	8,88 12	ir,il 88	9,99 87	39	
	22	8,88 16	8,8829	ir,il 7 I	9,99 87	38	
	23	8,88 33	8,88 45	II, II 55	9.9987	37	
	24	3,88 49	8,88 62	II, ix 38	9,99 87	36	
		8,88 65	8,88 78	If, II 22		35	
	25	8,88 82	8,88 95	II, il $\mathrm{O}^{\text {a }}$	9,99 87	$3+$	
	27	8,8898	$8,89 \mathrm{II}$	Ir, io 89	9,99 87	33	
	28	8,8914	8,8927	II, io 73	9,99 87	32	
	29	8,89 30	8,89 44	II, io 56	9,99 87	3 I	
4	30	8,89 46	8,89 60	II, io 40	9,99 87	30	85
-	,	log cos.	log cotg.	log tang.	$\log \sin$.	M.	D.

D.	M.	$\log \sin$.	log tang.	$\log \operatorname{cotg}$.	log cos.		
4	30	8,89 46	8,89 60	II, 1040	9,99 87	30	85
	3 I	8,89 62	8,89 76	II,IO 24	9,99 86	29	
	32	8,89 78	8,89 92	II, 1008	9,99 86	28	
	33	8,89 94	8,90 08	11,09 92	9,99 86	27	
	$3+$	8,90 10	8,9024	11,09 76	9,99 86	26	
	35	8,90 26	8,90 40	11,09 60	9,99 86	25	
	36	8,90 42	8,90 56	II,09 $4+$	9,99 86	24	
	37	8,90 57	8,90 71	II,09 28	9,99 86	23	
	38	8,90 73	8,9087	II,o9 13	9,99 86	22	
	39	8,90 88	8,91 03	11,08 97	9,99 86	21	
4	40	8,9104	8,918	II,OS 81	9,99 86	20	85
	4 I	8,91 19	8,91 34	It,08 66	9,99 85	I9.	
	42	8 8,91 35	8 8,91 49	I1,08 50	9,99 85	18	
	43	8,9150	8,91 65	11,08 35	9,99 85	17	
	44	8,91 65	8,91 80	11,08 20	9,99 85	16	
	45	8,91 8 I	8,91 96	ir,08 04	9,99 85	15	
	46	8,91 96	8,92 11	11,07 89	9,99 85	I+	
	47	8,92 IT	8,92 26	11,07 74	9,99 85	I3	
	48	8,9226	8,92 4 I	11,07 59	9,99 85	I2	
	49	8,92 4.1	8,92 56	11,07 43	9,99 85	II	
4	50	8,92 56	8,92 72	11,07 28	9,99 84	10	85
	51	8,92 71	8,92 87	11,07 13	9,99 84		
	52	8,92 86	8,93 o2	11,06 9^{8}	9,99 8+	8	
	53	8,93 or	8,93 16	II,06 83	9,99 84	6	
	54	8,93 15	8,93 3I	i1,06 69	9,99 84	6	
	55	8,93 30	8,93 46	II, 0654	9,99 84	5	
	56	8,93 45	$8,936 \mathrm{f}$	II, 0639	9,99 8+	4	
	57	8,9359	8,93 76	I1,06 24	9,99 84	3	
	53 59	8,93 8,94 8,93 88	8,93 8,90 8.05	II, 06 II, 05 105	9,99 $9,9+$ 9,98 $8+4$	2 1	
5	0	8,94 03	8,94 19	11,05 80	9,99	0	35
-	,	log cos.	$\log \mathrm{c}$	log tang	$\log \sin$.	M.	D

D.	M.	$\log \sin$.	log tang.	$\log \operatorname{cotg}$.	$\log \operatorname{cos.}$,	-
5	0	8,94 03	8,94 19	II, 0580	9,99 83	0	85
	I	8,94 17	8,94 34	11,05 66	9,99 83	59	
	2	8,94 32	8,94 48	II,05 5I	9,99 83	58	
	3	8,94 46	8,94. 63	II, O5 37	9,99 83	57	
	4	8,94 60	8,94 77	II, 0523	9,99 83	56	
	5	8,94 75	8,94 92	11,05 08	9,99 \& 3	55	
	6	8,94 89	8,95 o6	II,04 94	9,99 83	54	
	7	8,95 03	8,95 20	11,04 80	9,99 83	53	
	8	8,95 17	8,95 34	II,04 66	9,99 82	52	
	9	8,95 31	8,95 49	II,04 51	9,99 82	5 I	
5	10	8,95 45	8,95 63	II,04 37	9,99 82	50	84
	II	8,95 59	8,95 77	II, 0423	9,99 82	49	
	12	8,95 73	8,95 91	II, 04 O9	9,99 82	48	
	13	8,95 87	8,96 05	11,03 95	9,99 82	47	
	14	8,96 oo	8,96 I9	II,03 8I	9,99 82	46	
	15	8,96 14	8,96 32	II,03 67	9,99 82	45	
	16	8,96 28	8,96 46	II, O3 54	9,99 82	44	
	17	8,96 42	8,96 60	II,03 40	9,99 81	43	
	I8	8,96 55	8,96 74	11,03 26	9,99 81	42	
	19	8,9669	8,96 88	11,03 12	9,99 81	4 I	
5	20	8,96 82	8,97 or	II,02 99	9,99 81	40	84
	21	8,96 96	8,97 15	II, O2 85	9,99 8 I	39	
	22	8,97 09	8,97 28	11,02 71	9,99 81	38	
	23	8,97 23	8,97 42	II,O2 5^{8}	9,99 8i	37	
	24	8,97 36	8,97 56	II, O2 44	9,99 8i	36	
	25	8,97 50	8,97 69	11,02 31	9,99 81	35	
	26	8,97 63	8,97 82	II, 02 I 7	9,99 80	34	
	27	8,97 76	8,97 9^{6}	If,02 O4	9,99 80	33	
	28	8,97 89	8,98 o9	If,oi 91	9,99 80	32	
	29	8,98 03	8,98 22	II,OI 77	9,99 80	31	
5	30	8,98 16	8,98 36	II,OI 64	9,99 80	30	84
-	,	$\log \cos$.	$\log \operatorname{cotg}$.	log tang.	$\log \sin$.	M.	D.

Logarithmic Sines and Tangents. , $7 \mathrm{I}^{\top}$

D.	M.	$\log \sin$.	log tang.	$\log \operatorname{cotg}$.	$\log \operatorname{cos.}$,	-
6	0	9,OI 92	9,02 I6	10,97 84	9,99 76	0	84
	I	9,02 04	9,02 28	10,97 72	9,99 76	59	
	2	9,02 16	9,02 40	10,97 60	9,99 76	58	
	3	9,02 28	9,02 52	10,97 47	9,99 76	57	
	4	9,02 40	9,02 64	10,97 35	9,99 76	56	
	5	9,02 52	9,02 77	10,97 23	9,99 75	55	
	6	9,02 64	9,02 88	Io,97 II	9,99 75	54	
	7	9,02 76	9,03 00	10,96 99	9,99 75	53	
	8	9,02 87	9,03 12	Io,96 88	9,99 75	52	
	9	9,02 99	9,03 24	10,96 76	9,99 75	5 I	
6	10	9,03 II	9,03 36	10,96 64	9,99 75	50	83
	II	9,03 23	9,03 48	10,96 52	9,99 75	49	
	12	9,03 34	9,03 60	10,96 40	9,99 74	48	
	I3	9,03 46	9,03 7I	10,96 29	9,99 74	47	
	14	9,03 57	9,03 83	10,96 I7	9,99 74	46	
	15	9,03 69	9,03 95	Io,96 05	9,99 74	45	
	16	9,03 80	9,04 06	10,95 93	9,99 74	44	
	17	9,03 92	9,04 18	10,95 82	9,99 74	43	
	18	9,04 03	9,04 30	10,95 70	9,99 74	42	
	19	9,04 I5	9,04 4 I	10,95 59	9,99 74	4 I	
6	20	9,04 26	9,04 53	10,95 47	9,99 73	40	83
	2 I	9,04 3^{8}	9,04 64	Io,95 36	9,99 73	39	
	22	9,04 49	9,04 76	10,95 24	9,99 73	38	
	23	9,04 60	9,04 87	10,95 I3	9,99 73		
	24	9,04 7I	9,04 99	Io,95 OI	9,99 73	36	
	25	9,04 83	9,05 10	Io,94 90	9,99 73	35	
	26	9,04 94	9,05 21	Io,94 79	9,99 73	34	
	27	9,05 05	9,05 33	Io,94 67	9,99 72	33	
	28	9,05 16	9,05 44	10,9+ 56	9,99 72	32	
	29	9,05 27	9,05 55	Io,94 45	9,99 72	3 I	
6	30	9,05 39	9,05 67	10,94 33	9,99 72	30	83
-	,	$\log \cos$.	$\log \operatorname{cotg}$.	log tang.	$\log \sin$.	M.	D.

D.	M.	$\log \sin$.	log tang.	$\log \operatorname{cotg}$.	$\log \cos$.	,	-
6	30	9,05 39	9,05 67	10,94 33	9,99 72	30	83
	3 I	9,05 50	9,05 7^{8}	10,9+ 22	9,99 72	29	
	32	9,05 6I	9,05 89	Io,94 II	9,99 72	28	
	33	9,05 72	9,c6 00	10,94 00	9,99 72	27	
	$3+$	9,05 83	9,06 II	10,93 89	9,99 71	26	
	35	9,05 94	9,06 22	10,93 78	9,99 71	25	
	36	9,06 05	9,06 33	10,93 65	9,99 71	24	
	37	9,06 I5	9,06 44	10,93 55	9,99 71	23	
	38	9,06 26	9,06 55	10,93 41	9,99 71	22	
	39	9,06 37	9,06 67	10,9333	9,99 7I	$2 I$	
6	40	9,06 43	9,06 77	10,93 22	9,99 70	20	83
	4 I	9,06 59	9,06 88	10,93 II	9,99 70	I9	
	42	9,06 70	9,06 99	10,93 Or	9,99 70	18	
	43	9,c6 80	9,07 10	10,92 90	9,99 70	17	
	44	9,06 9I	9,07 2I	10,92 79	9,99 70	16	
	45	9,07 02	9,07 32	10,92 68	9,99 70	I5	
	46	9,07 12	9,07 43	10,92 57	9,99 70	It	
	47	9,07 23	9,07 54	10,92 46	9,99 69	I3	
	48	9,07 $3+$	9,07 6	10,92 36	9,99 69	I2	
	49	9,07 44	9,07 75	IO,92 25	9,59 69	II	
6	50	9,07 55	9,07 86	10,92 If	9,99 69	10	83
	5 I	9,07 65	9,07 96	Io, 9204	9,99 69	9	
	52	9,07 76	9,08 07	10,91 93	9,99 69	8	
	53	9,07 86	9,08 18	10,91 82	9,99 69	7	
	54	9,07 97	9,08 28	10,9I 72	9,99 68	6	
	55	9,08 07	9,08 39	10,91 61	9,99 68	5	
	56	9,08 18	9,08 49	10,9I 50	9,99 68	4	
	57	9,08 28	9,08 60	10,91 40	9,99 68	3	
	58	9.0838	9,08 70	10,91 29	9,99 68	2	
	59	9,08 49	9,08 81	10,91 I9	9,99 68	I	
7	0	9,08 59	9,08 91	10,91 09	9,99 67	0	83
-	,	log cos.	$\log \operatorname{cotg}$.	log tang.	$\log \sin$.	M.	D.

D.	M.	$\log \sin$.	log tang.	$\log \cot$.	$\log \cos$.	,	-
7	0	9,08 59	9,08 9I	10,9I 09	9,99 67	0	88
	I	9,08 69	9, 0902	10,90 98	9,99 67	59	
	2	9,08 79	9,09 12	IO,90 83	9,99 67	58	
	3	9,08 90	9,09 23	10,90 77	9,99 67	57	
	4	9,09 00	9,09 33	IO,90 67	9,99 67	56	
	5	9,09 10	9,09 43	10,90 57	9,99 67	55	
	6	9,09 20	9,09 54	10,90 46	9,59 67	54	
	8	9, C9 30	9,09 6 +	10,90 36	9,99 66	53	
	8	9,09 40	9,09 74	Io,90 26	9,99 66	52	
	9	9,09 5 I	9,09 84	Io,90 I5	9,99 66	5 I	
7	10	9,09 6I	9,09 95	10,90 O5	9,99 66	50	82
	II	9,09 7I	9,10 05	Io,89 95	9,99 66	49	
	12	9,09 8I	9, IO I5	Io, 8985	9,99 66	48	
	13	9,09 9I	9,10 25	Io,89 75	9,99 65	47	
	If	9, IO OI	9, IO 35	IO,89 65	9,99 65	46	
	15	9, IO II	9,10 45	Io,89 55	9,99 65	45	
	I6	9,10 20	9,10 55	Io,89 44	9,99 65	44	
	17	9, IO 30	9,10 66	Io,89 34	9,99 65	43	
	18	9,10 40	9,10 76	10,89 24	9,99 65	42	
	19	9, IO 50	9,10 86	Io,89 I4	9,99 64	4 I	
7	20	9, IO 60	9,10 96	10,89 04	9,99 64	40	82
	21	9,10 70	9, II o6	10,88 94	9,99 64	39	
	22	9,10 79	9, II I5	Io,88 84	9,99 64	38	
	23	9, 1089	9,II 25	10,88 75	9,99 64	37	
	24	9, Io 99	9, II 35	10,88 65	9,99 64	36	
	25	9, II O9	9,II 45	Io, 8855	9,99 63	35	
	26	9, II I8	9, II 55	10,88 45	9,99 63	34	
	27	9, II 28	9, II 65	10,88 35	9,99 63	33	
	28	9, II 38	9,II 75	Io, 8825	9,99 63	32	
	29	9,II 47	9,II 84	IO, 88 I5	9,99 63	3 I	
7	30	9,II 57	9,II 94	10,88 06	9,99 63	30	82
-	,	$\log \cos$.	$\log \operatorname{cotg}$.	log tang.	$\log \sin$.	M.	D.

74 Logarithmic Sines and Tangents.

D.	M.	$\log \sin$.	log tang.	$\log \operatorname{cotg}$.	$\log \cos$.	,	-
7	30	9, II 57	9,II 97	Io, 88 o6	9,99 63	30	82
	31	9, II 67	9,12 104	Io, 8796	9,99 62	29	
	32	9, II 76	9, 12 I4	Io, 8786	9,99 62	28	
	33	9, II 86	9,12 23	10, 8776	9,99 62	27	
	34	9, II 95	9,12 33	Io, 8767	9,99 62	26	
	35	9, 12 ०亏	9, 1243	10, 8757	9,99 62	25	
	36	9,12 If	9, 12 52	10,87 47	9,99 62	24	
	37	9, $12 \begin{array}{ll}12 & 4\end{array}$	9, 1262	10,87 38	9,99 61	23	
	38	9, 1233	9, 1272	10, 8728	9,99 6I	22	
	39	9, 1242	9,12 8I	Io, 87 I9	9,99 6I	2 I	
7	40	9, 1252	9,12 91	10, 87 o9	9,99 6I	20	82
	41	9, I2 6I	9, I3 oo	Io, 8700	9,99 6I	I9	
	42	9, I2 7I	9,13 10	Io, 8690	9,99 6I	I8	
	43	9,12 80	9, I3 I9	Io, 86 81	9,99 60	17	
	44	9, 1289	9,13 29	Io, 8671	9,99 60	I6	
	45	9,12 98	9, I3 38	10,86 62	9,99 60	I5	
	46	9, I3 08	9, I3 48	Io,86 52	9,99 60	It	
	47	9, I3 I7	9, I3 57	*0,86 43	9,99 60	13	
	48	9, I3 26	9, 13 67	Io, 8633	9,99 60	12	
	49	9, I3 35	9, I3 76	IO,86 24	9,99 59	II	
7	50	9, 1345	9, I3 85	Io,86 I5	9,99 59	10	82
	5 I	9, 13 $5+$	9, I3 95	10,86 05	9,99 59	9	
	52	9, 工3 63	9, 14 O4	10,85 96	9,99 59	8	
	53	9, I3 72	9, I4 I3	10,85 87	9,99 59	7	
	54	9, I3 SI	9, 14 23	10, 8577	9,99 59	6	
	55	9, I3 90	9, I4 32	10, 8568	9,99 58	5	
	56	9, I3 99	9,14 41	Io, 8559	9,99 58	4	
	57	9, I4 08	9, I4 50	IO, 8550	9,99 5^{8}	3	
	58	9, I4 I7	9, 4460	IO, 8540	9,99 5^{8}	2	
	59	$9, \mathrm{I}+27$	9,14 69	10,8531	9,99 58	I	
8	0	9, If 36	9, 1478	Io, 8522	9,99 57	0	82
-	,	$\log \cos$.	log cotg.	log tang.	$\log \sin$.	M.	D.

D.	M.	$\log \sin$.	log tang.	$\log \operatorname{cotg}$.	\log cos.		
8	0	9,14 36	9,14 78	10,85 22	9,99 57	0	82
	1	9, $1+44$	9, It 87	10,85 13	9,99 57	59	
	2	9, 1453	9,14 96	Io, 8504	9,99 57	58	
	3	9,I4 62	9,15 05	Io, 8495	9,99 57	57	
	4	9, I. 71	9,15 I4	10,84 85	9,99 57	56	
	5	9, $1+80$	9,15 24	io, 8476	9,99 57	55	
	6	9, If 89	9,15 33	10, 8467	9,99 56	54	
	7	9, $14{ }^{98}$	9,15 42	io, $8+5{ }^{3}$	9,99 56	53	
	8	$\begin{array}{lll}9,15 & 07\end{array}$	9,15 51	10, $8+49$	9, 9 ¢ 56	52	
	9	9,15 16	9,15 60	io, 8440	9,99 56	5 I	
8	10	9, $15 \times 2+$	9,15 69	Io, 84 3I	9,99 56	50	81
	11	9, 1533	9,15 78	$1 \mathrm{io}, 8_{4}{ }^{22}$	9,99 56	49	
	12	9, 1542	9,15 87	io, 84 I3	9,99 55	48	
	I_{1}	9,15 51	9,15 96	io, 840	9,99 55	47	
	I4	9,15 60	9,16 05	Io, 8395	9,99 55	46	
	15	9,15 68	9,16 13	ro, 8386	9,99 55	45	
	16	9,15 77	9,16 22	10, 8378	9,99 55	44	
	17	9,15 86	9, 1631	10,83 69	9,99 54	43	
	18	9,15 94	9,16 40	10,83 60	9,99 54	42	
	19	9,16 103	9,16 49	Io,83 5 I	9,99 54	4 I	
8	20	9, 1612	9,16 58	Io, 8342	9,99 54	40	81
	21	9, 1620	9,1666	Io, 8333	9,99 54	39	
	22	9, 1629	9,16 75	10,83 25	9,99 53	33	
	23	9,16 37	9,16 84	10,83 16	9,99 53	37	
	24	9,16 4^{6}	9,16 93	10,83 07	9, ¢9 53	36	
	25	9,16 54	9,17 02	10,82 98	9,99 53	35	
	26	9, 1663	9,17 10	10,82 90	9,99 53	34	
	27 28	9,16 9 0,16 72	9,17 919		'9,99 53	33	
	28	9, 1680	9,17 28	10, 82	9,99 52	32	
	29	9,16 89	9,17 3^{6}	10,82 64	9,99 52	3 I	
8	30	9,16 97	9,17 45	10, 8255	9,99 52	30	81
-	,	$\log \cos$.	log cotg.	log tang.	$\log \sin$.	M.	D.

D.	M.	$\log \sin$.	log tang.	log cotg.	log cos.		
8	30	9,16 97	9,1745	10,82 55	9,99 52	30	81
	3 I	9,1705	9, $17 \begin{array}{ll}7 & 5+\end{array}$	10,82 46	9,99 52	29	
	32	9, 17 It	9,17 62	ro,82 38	9,99 52	28	
	33	9,17 22	9,17 71	10,82 29	9,99 5I	27	
	$3+$	9,17 31	9,17 79	10,82 21	9,99 51	26	
	35	9,17 39	9,17 88	10,82 12	9,99 51	25	
	36	9,17 47	9,17 c ${ }^{6}$	10, 8203	9,99 51	2	
	37	9,17 56	9, 18 O5		9,99 51	23 22	
	38	9,17 9,17 0	9,18 1	10,81 86	9,9950 0,9950	22	
	39	9,17 72	9, 1822	10,81 78	9,99 50	21	
8	40	9, 1781	9, 1831	ro, 816	9,99 50	20	81
	41	9,1789	9,18 39	10,81 61	9,99 50		
	42	9,17 97	9, 1847	10,81 52	9,99 50	18	
	43	9,18 18	9, 18 56	10,8I 44	9,99 49	17	
	$4+$	9, 18 It	9, 186	10,81 3^{6}	9,99 49	16	
	45	9, 1822	9, 1873	Io,SI 27	9,99 49	15	
	46	9,18 30	9, I8 81	ro, SI 19	9,93 49	I4	
	47	9,18 38	9, 18 90	Io, SI 10	9,99 49	I3	
	48	9,18 96	9,18 98		9,9949 9,9948	I2	
	49	9,18 55	9,19 06	10,80 9+	9,99 48	11	
8	50	9,18 63	9,19 15	10, 8085	9,99 48	10	81
	5 I	9,18 71	9,19 23	10,8077	9,99 48	$\stackrel{y}{8}$	
	52	9,18 189 0,18 18	9,19 31	10,80 69	9,99 9,98 18	$\begin{aligned} & 8 \\ & 7 \end{aligned}$	
	53 54	9,1887 9,1885	$\begin{array}{ll}9,19 & 39 \\ 9,19 & 48\end{array}$	10, 80 10, So 60 52	9,99 9,98 18	$\begin{aligned} & 7 \\ & 6 \end{aligned}$	
	54	9, 1895	9,19 48	10,50 52	9,99 47		
	55	9,19 03	9,19 5^{6}	10,80 44	9,93 47	5	
	56	9, I9 II	9, 196	10,80 3^{6}	9,99 47	4	
	57	9,19 19	9,19 72	10,80 27	9,99 47	3 2 2	
	5	$\begin{array}{ll}9,19 & 27 \\ 9,19 & 35\end{array}$	$\left\lvert\, \begin{array}{ll}9,19 & 81 \\ 9,19 & 89\end{array}\right.$	[10.80 19	9,99 47 9,99 16	2 1	
9	0	9,19 43	9,19 97	10,80 03	9,99 46	0	\$1
-		$\log \cos$.	log cotg.	log tang.	log sin.	M.	D.

D.	M.	$\log \sin$.	log tang.	log cotg.	$\log \cos$.	,	-
9	0	9,19 43	9,19 97	IO, 80 O3	9,99 46	0	81
	I	9,19 5 I	9,20 05	10,79 95	9,99 46	59	
	2	9,19 59	9,20 13	Io, 7987	9,99 46	58	
	3	9,19 67	9,20 22	10,79 78	9,99 46	57	
	4	9,19 75	9,20 30	Io,79 70	9,99 45	56	
	5	9,19 83	9,20 3^{8}	IO, 7962	9,99 45	55	
	6	9, I9 9r	9,20 46	IO,79 54	9,99 45	54	
	7	9,19 99	9,20 54	IO,79 46	9,99 45	53	
	8	9,20 07	9,20 62	IO,79 38	9,99 45	52	
	9	9,20 I4	9,20 70	10,79 30	9,99 44	5 I	
9	10	9,20 22	9,20 78	10, 7922	9,99 44	50	80
	II	9,20 30	9,20 86	Io,79 14	9,99 44	49	
	12	9,2038	9,20 94	10,79 c6	9,99 44	48	
	13	9,20 46	9,2I O2	Io, $78{ }^{88}$	9,99 44	47	
	I4	9,20 53	9,2I IO	10, 7890	9,99 43	46	
	J5	9,20 6I	9,21 IS	10, 7882	9,99 43	45	
	16	9,20 69	9,21 26	10,78 74	9,99 43	44	
	17	9,20 77	9,2I $3+$	10,78 66	9,99 43	43	
	18	9,20 84	9,2I 42	Io,78 5^{8}	9,99 42	42	
	19	9,20 92	9,2I 50	IO, 7850	9,99 42	4 I	
9	20	9,2I 00	9,2I 5^{8}	Io, $7^{8} 42$	9,99 42	40	80
	2 I	9,2I 08	9,2I 66	10,78 34	9,99 42	39	
	22	9,2I I5	9,2I 74	Io,78 26	9,99 42	38	
	23	9,2I 23	9,2I 8 I	10,78 19	9,99 4I	37	
	24	9,2I 3 I	9,2I 89	IO,78 II	9,99 4 I	36	
	25	9,2I 38	9,21 97	10,78 03	9,99 41	35	
	26	9,2I 46	9,22 05	10,77 95	9,99 4 I	34	
	27	9,2I 53	9,22 13	IO,77 87	9,99 4I	33	
	28	9,2I 61	9,22 20	10,77 79	$9,9940$	32	
	$\stackrel{29}{ }$	9,2I 68	9,22 28	10,77 72	9,99 40	3I	
9	30	9,21 76	9,22 36	10,7764	9,99 40	30	80
。	,	log cos.	$\log \operatorname{cotg}$.	log tang.	$\log \sin$.	M.	D.

78 Logarithmic Sines and Tangents.

D.	M.	$\log \sin$.	log tang.	$\log \operatorname{cotg}$.	$\log \cos$.	,	-
9	30	9,21 76	9,22 36	10,77 64	9,99 40	30	80
	31	9,2I $8+$	9,22 44	10,77 56	9,99 40	29	
	32	9,2I 9I	9,22 52	10,77 48	9,99 40	28	
	33	9,21 97	9,22 59	10,77 41	9,99 39	27	
	34	9, 22 об	9,22 67	10,77 33	9,99 39	26	
	35	9,22 I4	9,22 75	10,77 25	9,99 39	25	
	36	9,22 2 I	9,22 82	10,77 18	9,99 39	24	
	37	9,22 29	9,22 90	10,77 10	9,99 38	23	
	38	9,22 36	9,22 98	10,77 02	9,99 38	22	
	39	9,22 43	9,23 05	10,76 95	9,99 38	2 I	
9	40	9, 225 I	9,23 I3	I0, 7687	9,99 38	20	80
	4 I	9,22 58	9,23 2 I	10,76 79	9,99 38	I9	
	42	9,22 66	9,23 28	10,76 72	9,99 37	18	
	43	9,22 73	9,23 36	$10,766+$	9,99 37	17	
	44	9,22 80	9,23 43	10,76 56	9,99 37	16	
	45	9,22 88	9,23 5I	10,76 49	9,99 37	I5	
	46	9,22 95	9,23 59	10,76 41	9,99 37	It	
	47	9,23 02	9,23 66	10,76 34	9,99 36	13	
	48	9,23 Io	9,23 74	10,76 26	9,99 36	12	
	49	9,23 I7	9,23 8I	10,76 19	9,99 36	II	
9	50	$9.23 \quad 24$	9,23 89	Io, 76 II	9,99 36	10	80
	5 I	9,23 32	9,23 96	10,76 O4	9,99 35	9	
	52	9,23 39	9,24 ${ }^{\text {a }}$	10,75 96	9,99 35	8	
	53	9,23 46	9,24 II	10,75 89	9,99 35	7	
	54	9,23 53	9,24 I9	10,75 8 I	9,99 35	6	
	55	9,23 6I	9,24 25	10, 7574	9,99 35	5	
	56	9,23 68	9,24 33	10,75 66	9,99 34	+	
	57	9,23 75	9,24 4 I	10,75 59	9,99 34	3	
	58	9,23 82	9,2+ 48	10,75 52	9,99 34	,	
	59	9,23 89	9,24 56	10,75 44	9,99 34	I	
10	0	9,23 97	9,24 63	10,75 37	9,99 33	0	80
-	,	$\log \cos$.	$\log \operatorname{cotg}$.	log tang.	$\log \sin$.	M.	D.

D.	M.	$\log \sin$.	log tang.	$\log \operatorname{cotg}$.	$\log \cos$.	,	。
10	0	9,23 97	9,24 63	10,75 37	9,99 33	0	80
	I	9,24 04	9,24 7I	10,75 29	9,99 33	59	
	2	9,2+ II	9,24 7^{8}	10,75 22	9,99 33	58	
	3	9,24 18	9,24 85	IO,75 15	9,9933	57	
	4	$9,2+25$	9,24 93	10,75 07	9,99 33	56	
	5	9,24 32	9,25 00	10,75 00	9,99 32	55	
	6	9,24 39	9,25 07	$10,7+93$	9,99 32	54	
	7	9,24 47	9,25 I5	10,74 85	9,99 32	53	
	8	9,24 54	9,25 22	10,74 78	9,99 32	52	
	9	9,24 61	9,25 29	Io, 747 I	9,99 31	5 I	
10	10	9,24 68	9,25 36	IO, 7463	9,99 3I	50	79
	II	9,24 75	9,25 44	10,74 56	9,99 31	49	
	12	9,24 82	9,25 51	IO,74 49	9,99 31	48	
	I3	9,24 89	$9.25 \quad 58$	Io,74 42	9,99 31	47	
	I4	9,24 96	9,25 65	10,7+34	9,99 30	46	
	15	9,25 03	9,25 73	Io, 7427	9,99 30	45	
	16	9,25 10	9,25 80	10,74 20	9,99 30	44	
	17	9,25 I7	9,25 87	10,74 13	9,99 30	43	
	18	9,25 24	9,25 94	10,74 06	9,99 29	42	
	19	9,25 3I	9,26 OI	10,73 9^{8}	9,99 29	4 I	
10	20	9,25 33	9,26 o9	10, 73 91	9,99 29	40	79
	21	9,25 44	9,26 16	10,73 8.	9,99 29	39	
	22	9,25 5 I	9,26 23	10,73 77	9,99 28	38	
	23	9,25 58	9,26 30	10,73 70	9,99 28	37	
	24	9,25 65	9,26 37	10,73 63	9,99 28	36	
	25	9,25 72	9,26 44	10,73 56	9,99 28	35	
	26	9,25 79	9,26 5 I	10,73 49	9,99 28	34	
	27	9,25 86	9,26 5^{3}	IO, 7341	9,99 27	33	
	28	9, 2593	9,26 65	10,73 34	9,99 27	32	
	29	9,25 99	9,26 73	10,73 27	9,99 27	3 I	
10	30	9,26 06	9,26 So	10,73 20	9,99 27	30	79
	,	$\log \cos$.	log cotg.	log tang.	$\log \sin$.	M.	D.

8o Logarithmic Sines and Tangents.

D.	M.	$\log \sin$.	\log tang.	$\log \operatorname{cotg}$.	$\log \cos$.		
10	30	9,26 06	9,26 80	10,73 20	9,99 27	30	79
	31	9,26 I_{3}	9,26 87	10,73 13	9,99 26	29	
	32	9, 2620	9,26 94	10,73 06	9,99 26	28	
	33	9, $26 \quad 27$	9,27 or	10, 7299	9,99 26	27	
	34	9,26 33	9,27 08	10, 7292	9,99 26	26	
	35	9,26 40	9,27 15	10,72 85	9,99 25	25	
	36	9,26 47	9,27 22	10, 7278	9,99 25	24	
	37	9,26 54	9,27 29	Io, 7271	9,99 25	23	
	38 39	9,26 9,26 26	9,27 0,27 , 26	Io,72 Io, 72 1	$\begin{array}{ll}9,99 & 25 \\ 9,99 & 2 .\end{array}$	22 21	
			9,27 43	10,72 51			
10	40	9,26 74	9,27 50	10,72 50	9,99 24	20	79
	4 I	9,26 81	9,27 57	Io,72 43	9,99 24	19	
	42	9,26 87	9,27 63	10,72 36	9,99 24	18	
	43	9,26 94	9,27 70	10,72 30	9,99 24	17	
	44	9,27 or	9,27 77	10,7223	9,99 23	16	
	45	9,27 07	9,27 84.	10, 7216	9,99 23	15	
	46	9,27. I4	9,27 9 I	10,7209	9,99 23	${ }^{\text {x }} 4$	
	47	9,27 21	9,27 98	10,72 02	9,99 23	13	
	48	9,27 27	9,28 05	10,71 95	9,99 22	12	
	49	9,27 34	9,28 12	10,71 88	9,99 22	II	
10	50	9,27 40	9,28 19	io,71 81	9,99 22	10	79
	51	9,27 47	9,28 25	ro, 7175	9,99 22	9	
	52	9,27 54	9,28 32	10,7I 68	9,99 2I	8	
	53	9,2760	9,28 39	Io,71 61	9,99 21	7	
	54	9,27 67	9,28 4^{6}	Io,71 54	9,99 2I	6	
	55	9,27 73	9,28 53	ro,71 47	9,99 21	5	
	56	9,27 80	9,28 59	ro,71 40	9,99 20	4	
	57	9,27 86	9,28 66	10,71 34	9,99 20	3	
	58	9,27 93	9,28 73	10,71 27	9,99 20	2	
	59	9,27 99	9,28 80	10,71 20	9,99 20		
11	0	9,28 o6	9,28 86	10,71 13	9,99 19	0	79
		$\log \cos$.	log cotg.	log tang.	$\log \sin$.	M.	D.

Logarithmic Sines and Tangents.

D.	M.	$\log \sin$.	log tang.	$\log \operatorname{cotg}$.	\log cos.	,	-
11	0	9,28 06	9,28 86	10,7I I3	9,99 I9	0	79
	I	9,28 I2	9,2'S 93	10,71 07	9,99 I9	59	
	2	9,28 19	9,29 00	10,71 00	9,99 I9	58	
	3	9,28 25	9,29 07	10,70 93	9,99 19	57	
	4	9,28 32	9,29 I3	10,70 87	9,99 I8	56	
	5	9,28 38	9,29 20	10,70 80	9,99 18	55	
	6	9,28 45	9,29 27	10,70 73	9,99 18	54	
	7	9,28 5I	9,29 33	10,70 66	9,99 18	53	
	8	9,28 58	9,29 40	10,70 60	9,99 17	52	
	9	9,28 64	9,29 47	10,70 53	9,99 17	5 I	
11	10	9;28 70	9,29 53	10,70 46	9,99 I7	50	78
	II	9,28 77	9,29 60	IO,70 40	9,99 17	49	
	12	9,28 83	9,29 67	10,70 33	9,99 16	48	
	I3	9,28 90	9,29 73	10,70 27	9,99 16	47	
	14	9,28 96	9,29 80	10,70 20	9,99 16	46	
	I 5	9,29 02	9,29 87	10,70 13	9,99 16	45	
	16	9,29 09	9,29 93	10,70 07	9,99 15	4.4	
	17	9,29 I5	9,30 00	10,70 00	9,99 I5	43	
	18	9,29 21	9,30 06	Io,69 94	9,99 15	42	
	19	9,29 28	9,30 I3	Io,69 87	9,99 I5	4 I	
11	20	9,29 34	9,30 19	10,69 80	9,99 I4	40	78
	2 I	9,29 40	9,30 26	10,69 74	9,99 14	39	
	22	9,29 47	9,30 33	Io,69 67	9,99 I4	38	
	23	9,29 53	9,30 39	Io,69 61	9,99 I4	37	
	24	9,29 59	9,30 46	10,69 54	9,99 13	36	
	25	9,29 65	9,30 52	10,69 48	9,99 I3	35	
	26	9,29 72	9,30 59	10,69 4I	9,99 13	34	
	27	9,29 78	9,30 65	10,69 35	9,99 I3	33	
	28	9,29 84	9,30 72	Io,69 28	9,99 I2	32	
	29	9,29 90	9,30 78	IO,69 22	9,99 I2	3 I	
11	30	9,29 97	9,30 85	10,69 I5	9,99 I2	30	78
	,	$\log \cos$.	$\log \operatorname{cotg}$.	log tang.	$\log \sin$.	M.	D.

D.	M.	$\mathrm{log} \sin$.	log tang.	$\log \operatorname{cotg}$.	log cos.		。
11	30	9,29 97	9,30 85	Io,69 I5	9,99 12	30	78
	31	9,30 03	9,30 91	10,69 09	9,99 I2	29	
	32	9,30 og	9,30 97	10,69 02	9,99 II	28	
	33	9,30 15	9,31 O_{4}	10,68 96	9,99 II	27	
	34	9,30 21	9,31 10	10,68 90	9,99 II	26	
	35	9,30 27	9,31 17	10,68 83	9,99 II	25	
	36	9,30 34	9,31 23	10,68 77	9,99 10	$2+$	
	37	9,30 40	9,3I 30	10,68 70	9,99 10	23	
		9,30 46	9,31 36	10,68 64	9,99 10	22	
	39	9,30 52	9,3I 42	10,68 57	9,99 10	2 I	
11	40	9,30 58	9,31 49	10,68 51	9,99 09	20	78
	4 I	9,30 64	9,3I 55	10,68 45	9,99 09	19	
	42	9,30 70	9.31 62	10,68 38	9,99 09	18	
	43	9,30 76	9,31 68	10,68 32	9,99 09	17	
	$4+$	9,3083	9,3I 74	10,68 26	9,99 08	I6	
	45	9,30 89	9,31 8I	ro,68 19	9,99 08	15	
	46	9,30 95	9,3187	10,68 63	9,99 08	It	
	47	9,31 3 or	9,31 93	10,68 07	9,99 07	13	
	43	9,31 07	9,32 00	$\left\|\begin{array}{\|cc\|} 10,68 & 00 \\ 10 \end{array}\right\|$	9,99 07	12	
	49	9,31 I_{3}	9,32 o6	10,67 9+	9,99 07	II	
11	50	9,31 19	9,32 12	ro,67 88	9,99 07	10	78
	51	9,31 25	9,32 18	10,6781	9,99 06	8	
	52	9,31 3I	9,32 25	10,67 75	9,99 06	8	
	53	9,31 37	9,32 31	10,6769	9,99 06	7 6	
	$5+$	9,3I 43	9,32 37	10,67 63	9,99 06	6	
		9,31 49	9,32 44	ro,67 56	9,99 05	5	
	56	9,31 55	9,32 50	10,67 50	9,99 05	4	
	57	9,3I 6 r	9,32 56	10,67 $4+$	9,99 05	3	
	58	9,3167	9,32 62	10,67 38	9,99 05	2	
	59	9,31 73	9,32 68	10,67 31	9,99 04	I	
12	0	9,31 79	9,32 75	10,67 25	9,99 04	0	78
-	,	\log cos.	log cotg.	log tang.	$\log \sin$.	M.	

Logarithmic Sines and Tangents.

D.	M.	$\log \sin$.	log tang.	$\log \operatorname{cotg}$.	$\log \cos$.	,	-
19	0	9,31 79	9,32 75	10, 6725	9,99 04	0	78
	I	9,3I 85	9,32 81	10,67 19	9,99 04	59	
	2	9,3I 91	9,32 87	10,67 I3	9,99 03	58	
	3	9,3I 97	9,32 93	10,67 07	9,99 03	57	
	4	9,32 02	9,32 99	10,67 00	9,99 03	56	
	5	9,32 o8	9,33 06	10,66 94	9,99 03	55	
	6	9,32 14	9,33 I2	10,66 88	9,99 02	54	
	7	9,32 20	9,33 I8	10,66 82	9,99 02	53	
	8	9,32 26	9.3324	10,66 76	9,99 02	52	
	9	9,32 32	9,33 30	10,66 70	9,99 02	5 I	
13	10	9,32 38	9,33 36	Io,66 63	9,99 or	50	77
	II	9,32 44	9,33 43	Io,66 57	9,99 or	49	
	12	9,32 49	9,33 49	Io,66 51	9,99 ог	48	
	13	9,32 55	9,33 55	Io, ¢ 645	9,99 оо	47	
	14	9,32 6r	9,33 6I	Io,66 39	9,99 00	46	
	15	9,32 67	9,33 67	10,66 33	9,99 co	45	
	16	9,32 73	9,33 73	10,66 27	9,99 о0	44	
	17	9,32 79	9,33 79	Io,66 21	9,98 99	43	
	13	9,32 84	9,33 85	Io,66 I5	9,98 99	42	
	I9	9,32 90	9,33 9I	10,66 09	9,98 99	41	
12	20	9,32 96	9,33 97	Io,66 03	9,98 99	40	77
	21	9,33 02	9,34 O3	Io,65 97	9,98 9^{8}	39	
	22	9,33 07	9,34 ○9	10,65 90	9,98 98	38	
	23	9,33 13	9,34 15	10,6584	9,98 98	37	
	24	9,33 I9	9,34 2 I	Io,65 7^{8}	9,98 97	36	
	25	9,33 25	9,34 28	10,65 72	9,98 97	35	
	26	9,33 30	9,34 34	10,65 66	9,98 97	34	
	27	9,33 36	9,34 40	10,65 60	9,98 97	33	
	28	9,33 42	9,34 46	$10,6554$	$9,98 \quad 96$	32	
	29	9,33 48	9,34 52	10,65 48	9,98 96	31	
12	30	9,33 53	9,34 5^{8}	10,65 42	9,98 96	30	77
-	,	$\mathrm{log} \operatorname{cos.}$	log cotg.	log tang.	$\log \sin$.	M.	D.

84 Logarithmic Sines and Tangents.

Logarithmic Sines and Tangents.

D.	M.	$\log \sin$.	log tang.	$\log \operatorname{cotg}$.	log cos.	,	-
13	0	9,35 2 I	9,36 34	10,63 66	9,98 87	0	77
	1	9,35 26	9,36 39	IO,63 6I	9,98 87	59	
	2	9,35 32	9,36 45	10,63 55	9,9887	53	
	3	9,35 37	9,36 51	Io,63 49	9,98 86	57	
	4	9,35 43	9,36 57	10,63 43	9,98 86	56	
	5	9,35 4^{8}	9,36 62	10,63 38	9,98 86	55	
	6	9,35 54	9,36 68	10,63 32	9,988 8	54	
		9,35 59	9,36 74	Io,63 26	9,98 85	53	
	8	9,35 64	9,36 79	10,63 20	9,98 85	52	
	9	9,35 70	9,36 85	Io,63 I5	9,98 85	5 I	
13	10	9,35 75	9,36 9I	10,63 09	9,98 84	50	76
	II	9,35 8I	9,36 97	10,63 03	9,98 84	49	
	12	9,35 86	9,37 02	Io,62 98	9,98 84	48	
	13	9,35 9I	9,37 08	Io,62 92	9,98 83	47	
	14	9,35 97	9,37 I4	IO,62 86	9,98 83	46	
	I5	9,36 02	9,37 I9	Io,62 81	9,98 83	45	
	16	9,36 07	9,37 25	10,62 75	9,98 82	44	
	17	9,36 I3	9,37 3 I	10,62 69	9,98 82	43	
	18	9,36 I8	9,37 36	10,62 64	9,98 82	42	
	19	9,3624	9,37 42	10,62 58	9,98 82	${ }^{\text {II }}$	
13	20	9,36 29	9,37 48	10,62 52	9,98 81	40	76
	2 I	9,36 34	9,37 53	10,62 47	9,98 81	39°	
	22	9,36 39	9,37 59	Io,62 41	9,98 81	38	
	23	9,36 45	9,37 64	10,6236	9,98 80		
	24	9,36 50	9,37 70	10,62 30	9,98 80	36	
	25	9,36 55	9,37 76	Io, 6224	9,98 80	35	
	26	9,36 $6 \mathbf{r}$	9,37 81	10,62 I9	9,98 79	34	
	27	9,36 66	9,37 87	Io,62 I3	9,98 79		
	28	9,36 71	9,37 92	Io,62 08	9,98 79	32	
	29	9,36 77	9,37 98	Io, 6202	9,98 79	3 I	
13	30	9,36 82	$9.38 \quad 03$	10,61 96	9,98 7^{8}	30	76
-	,	log cos.	$\log \operatorname{cotg}$.	log tang.	$\log \sin$.	M.	D.

D.	M.	$\log \sin$.	log tang.	log cotg.	log cos.		
13	30	9,36 82	9,38 03	10,6I 96	9,98 78	30	76
	31	9,36 87	9,38 0 O,	10,61 9r	9,98 78	29	
	32	9,36 92	9,38 ${ }^{3} 15$	10,61 85	9,98 78	28	
	33	9,36 98	9,33 20	10,61 80	9, 9,877	27	
	34	9,37 03	9,38 26	Io,61 $7+$	9,98 77	26	
	35	9,37 08	9,3831	10,61 69	9,98 77	25	
	36	$\begin{array}{ll}9,37 & 13 \\ 0\end{array}$	9,38 37 0,38 18		9,98 76	$2+$	
	37	9,37 18	9,38 9, 38 18 48		9,98 76	23	
	38	9,37 24	$\begin{array}{lll}9,38 & 48 \\ 9,38 & 53\end{array}$	$\begin{array}{ll}10,61 & 52 \\ 10,61 & 47\end{array}$	9,98 76 9,98	22	
	39	9,37					
13	40	9,37 34	9,38 59	10,61 41	9,98 75	20	76
	41	9,37 39	9,38 64	10 61 36	9,98 75	19	
	42	9,37 4 +	9,38 70	10,61 30	9,98 75	18	
	43	9,37 50	9,38 75	10,61 25	9,98 74	17	
	44	9,37 55	9,38 31	10,61 19	9,98 74	I6	
	45	9,37 60	9,38 86	Io,61 14	9,98 7t	15	
	46	9,37 65	9,38 92	10,61 o8	9,98 73	14	
	47	9,37 70	9,38 97	-10,6I 03	9,98 73	13	
	48	9,37 75	$\begin{array}{ll}9,39 & 03\end{array}$	Io,60 97	9,98 73	12	
	49	9,37 81	9,39 08	10,60 92	9,98 72	II	
13	50	9,37 86	9,39 14	10,60 86	9,98 72	10	76
	51	9,37 91	9,39 19	10,60 8I	9,98 72	9	
	52	9,37 96	9,39 $2+$	10,60 75	9,98 7I	8	
	53	9,38 or	9,39 30	$10,6070$	9,98 71	7	
	54	9,38 o6	9,39 35	10,60 65	9,98 7x	6	
	55	9,38 Ir	9,39 4 T	ro,60 59	9,9871	5	
	56	9,38 16	9,39 46	10,60 54	9,98 70	4	
	57	9,38 2 II	9,39 51	10,60 48	9,98 70	3	
	58	9,38 27	9,39 57	$\text { го,60 } 43$	9,98 70	2	
	59	9, $3^{8} \quad 32$	9,39 62	10,60 3^{8}	9,98 69	I	
14	0	9,38 37	9,39 68	10,60 32	9,98 69	0	76
		log cos.	log cotg.	log tang.	$\log \sin$.	M.	D.

D.	M.	$\log \sin$.	log tang.	$\log \operatorname{cotg}$.	$\log \operatorname{cos.}$,	-
12	0	9,38 37	9,39 68	10,60 32	9,98 69	0	76
	1	9,38 42	9,39 73	10,60 27	9,98 69	59	
	2	9,38 47	9,39 78	10,60 21	9,98 68	58	
	3	9,38 52	9,39 8+	10,60 I6	9.9868	57	
	4	9,38 57	9,39 89	Io,60 II	9,98 68	56	
	5	9,38 62	9,39 94	10,60 05	9,98 67	55	
	6	9,38 67	9,40 00	10,60 00	9,98 67	54	
	7	9,38 72	9,40 05	10,59 95	9,93 67	53	
	8	9,38 77	9,40 If	10,5987	9,98 66	52	
	9	9,38 82	9,40 16	10,59 8+	9,98 66	51	
14	10	9,38 87	9,40 2 I	10,59 79	9,98 66	50	75
	II	9,38 92	9,40 27	10,59 73	9,9866	49	
	12	9,38 97	9,40 32	10,59 68	9,98 65	48	
	13	9,39 02	9,40 37	Io,59 63	9,98 65	47	
	14	9,39 07	9,40 42	10,59 57	9,98 65	46	
	15	9,39 12	9,40 4^{8}	10,59 52	9,98 6+	45	
	16	9,39 17	9,40 53	10,59 47	9;98 64	44	
	17	9,39 22	9,40 58	IO,59 42	9,98 64	43	
	18	9,39 27	9,40 $6+$	Io,59 36	9,98 63	42	
	19	9,39 32	9,40 69	Io,59 3I	9,98 63	41	
14	20	9,39 37	9,40 7+	10,59 26	9,98 63	40	75
	21	9,39 42	9,40 79	10,59 20	9,98 62		
	22	9,39 47	9,40 85	10,59 I5	9,98 62	33	
	23	9,39 52	9,40 90	10,59 10	9,98 62	37	
	24	9,39 57	9,40 95	10,59 05	9,98 6I	36	
	25	9,39 6I	9,41 оо	10,58 99	9,98 61	35	
	26	9,39 66	9,41 06	10,58 $9+$	9,98 6I	34	
	27	9,39 71	9,41 II	10,5889	9,98 60	33	
	28	9,39 76	9,41 16	10,5884	9,98 60	32	
	29	9,39 81	9,4I 21	10,5879	9,98 60	31	
14	30	9,39 86	9,41 27	10,58 73	9,98 59	30	75
-	,	$\log \cos$.	log cotg.	log tang.	$\log \sin$.	M.	D.

D.	M.	$\log \sin$.	log tang.	log cotg.	$\log \cos$.		
14	30	9,39 86	9,41 27	10, 5873	9,98 59	30	75
	31	9,39 91	9,41 32	10,5863	9,98 59	29	
	32	9,39 96	9,41 37	10,58 63	9,98 59	28	
	33	9,40 OI	9,41 42	10,58 58	9,98 $\mathbf{l l}^{59}$	27	
	34	9,40 05	9,41 47	10,58 53	9,98 9^{8}		
	35	9,40 10	9,41 53	10,58 47	9,98 58	25	
	36	9,40 15	9,4158	10,5842	9,98 57	24	
	37 38	9,40 9,40 9	9,4163 0,4168	10,58 10,58 10 10	9,98 57	23	
	38	9,40 0,40 10	$\begin{array}{lll}9,41 & 68 \\ 0,4 \mathrm{I} & 73\end{array}$	$\begin{array}{ll}10,58 & 32 \\ 10,58 & 27\end{array}$	$\begin{array}{ll}9,98 & 57 \\ 9,98 & 56\end{array}$	22 21	
	39	9,40 30	9,41 73	10,58 27	9,98 5^{6}	2 I	
14	40	9,40 35	9,41 78	10,58 22	9,98 5^{56}	co	75
	4 I	9,40 39	9,41 8-1	10,58 16	9,98 5^{6}	19	
	42	9,40 44	9,4189	IO,58 If	9,98 55		
	43	9,40 43	9,41 94	10,58 $\mathrm{ch}^{\text {ch }}$	9,99 55	17	
	44	9,40 54	9,41 99	10,58 Or	9,98 55	16	
	45	9,40 59	9,42 04	ro,57 9^{5}	9,98 54	15	
	46	9,40 63	9,42 09	10,57 91	9,98 $5+$	It	
	47	9,4068	9,42 It	10,57 85	9,98 54	13	
	48	9,4073.	9,42 19	10,57 80	9,9853	12	
	49	9,40 78	9,42 25	10,57 75	9,98 53	II	
14	50	9,40 82	9,42 30	10,57 70	9,98 53	10	85
	51	9,40 87	9,42 35	10,5765	9,98 52		
	52	9,40 92	9,42 40	10,5760	9,98 12 0,08	$\begin{aligned} & 8 \\ & 7 \end{aligned}$	
	53	9,40 0,41 0,4 02	9,42 9,42 9,4	Io,57 55		7 6	
	55	9,41 of	9,42 55	10, 5745	9,93 51	5	
	55	9,41 11	9,4260	10,57 40	9,98 51	4	
	57	9,41 16	9,42 65	10,57 35	9,98 9^{10}	3	
	58	9,4I 20	9,42 70	10,57 30	9,98 50	2	
	59	9,41 25	9,42 75	10,57 24	9,98 ${ }^{50}$	I	
15	0	9,41 30	9,42 80	10,57 19	9,98 49	0	75
		log cos.	\| $\log \operatorname{cotg}$.	log tang.	$\log \sin$.	M.	D.

D.	M.	log sin.	\log tang.	log cotg.	$\log \operatorname{cos.}$		
15	0	9,41 30	9,42 8,	10,57 I9	9,98 49°	0	75
	I	9,41 35	9,42 86	10,57 I_{4}	9,98 49	59	
	2	9,4I 39	9,4296	10,57 09	9,98 49	58	
	3	9,41 $4+$	9,42 96	10, 5704	9,98 48	57	
	4	9,41 49	9,43 or	10,56 99	9,98 48	56	
	5	9,41 53	9,43 06	10,56 94	9,98 48	55	
		9, +1 58	9,43 IT	10,56 89	9,98 47	54	
	7	$\begin{array}{lll}9,4 \mathrm{~T} & 63 \\ 0,4 \mathrm{l} & 67\end{array}$	9,43 9,46 0,43 1	ro, 56 8 4	9,98 47	53	
	8	9,41 9,41	9,43 9,43 , 4	10,56 Io,59 I	9,9847 9,9846	52 51	
15	10	9,41 77	9,43 31	10,56 69	46	50	74
	11	9,41 81	9,43 36	10,56 64	9,98 ${ }^{\text {96 }}$	49	
	12	9,41 86	9,43 4 I	10,56 59	9,98 45	48	
	13	9,41 9 I	9,43 46	Io,56 57	9,98 45	47	
	${ }^{1} 4$	9,41 95	9,43 51	10,56 49	9,98 45	46	
	15	9,42 oo	9,43 56	10,56 44	9,98 $4+$	45	
	16	9,42 05	9,43 6I	10,56 39	9,98 4.	44	
	17	9,42 4 os	9, 4366	Io, $563+$	9,98 4.	43	
	18	9,42 14	9,43 71	10,56 29	9,98 43	42	
	19	9,42 19	9,43 76	10,56 $2+$	9,98 43	4 I	
15	20	9,42 23	9,43 8I	10,56 I9	9,98 43	40	74
	21	9,42 28	9,43 85	10,56 14	9,98 42	39	
	22	9,42 32	9,43 90	10,56 o9	9,98 42	38	
	23	9,42 37	9,43 95	10,56 ${ }^{1}$	9,98 41	37	
	24	9,42 4^{2}	9,44 oo	10,56 oo	9,98 41	36	
	25	9,42 46	9,44 05	10,55 95	9,98 4 41	35	
	26	9,42 51	9,44 10	Io,55 90	9,98 40	34	
		$9,4255$	$9,44 \quad 15$	10,55 85	9,98 40	33	
	28	$\|9,4260\|$	$\|9,4420\|$	$10,5580$	9,98 40	32	
	29	9,4264	9,44 25	10,55 75	9,98 39	3 I	
15	30	9,42 69	9,44 30	10,55 70	9,98 39	30	84
-		$\log \cos$.	log cotg.	log tang.	\log sin.	M.	D.

90 Logarithmic Sines and Tangents.

D.	M.	$\log \sin$.	log tang.	log cotg.	$\log \cos$.	,	-
16	0	9,44 03	9,45 75	10,54 25	9,98 28	0	74
	I	9,4+ 08	9,45 80	10,54 20	9,9,8 28	59	
	2	9,44 12	9,45 84	10,54 I5	9,98 28	58	
	3	9,4+ 17	9,45 89	10,54 II	9,98 27	57	
	4	9,44 21	9,45 94	10,54 06	$9,98 \quad 27$	56	
	5	9,44 25	9,45 99	IO,54 OI	9,98 27	55	
	6	9,44 30	9,46 03	10,53 96	9,98 26	54	
	7	9,44 34	9,46 o8	10,53 92	9,98 26	53	
	8	9,44 38	9,46 13	10,53 87	9,98 25	52	
	9	9,44 43	9,46 I8	10,53 82	$9,98 \quad 25$	5 I	
16	10	9,44 47	9,46 22	10,53 78	9,98 25	50	73
	II	9,44 52	9,46 27	10,53 73	9,98 24	49	
	12	9,44 56	9,46 32	10,53 68	9,98 24	48	
	13	9,44 60	9,46 37	10,53 63	9,9 ${ }^{9} 24$	47	
	14	9,44 65	9,46 4 I	10,53 59	9,98 23	46	
	I5	9,44 69	9,46 46	10,53 54	9,98 23	45	
	16	9,44 73	9,46 5 I	10,53 47	9,98 23	44	
	17	9,44 78	9,46 55	10,53 45	9,98 22	43	
	I8	9,44 82	9,46 60	10,53 40	9,98 22	42	
	19	9,44 86	9,4665	IO,53 35	9,98 21	4 I	
16	20	9,44 90	9,46 69	10,53 31	9,9 ${ }^{\text {S }} 2$ 2I	40	73
	2 I	9,44 95	9,46 74	10,5326	9,98 21	39	
	22	9,44 9)	9,46 79	10,53 21	9,98 20	38	
	23	9,45 03	9,46 83	10,53 16	9,98 20	37	
	24	9,45 o8	9,46 88	10,53 12	9,98 20	36	
	25	9,45 12	9,46 93	10,53 07	9,98 19	35	
	25	9,45 I6	9,46 97	10,53 02	9,98 I9	34	
	27	9,45 21	9,47 02	10,52 9^{8}	9,98 18	33	
	28	9,45	9,47 07	10,52 93	9,98 18	32	
	29	$9,45 \quad 29$	9,47 II	10,52 89	9,98 18	3 I	
16	30	9,45 33	9,47 16	10,52 84	9,98 I7	30	73
。	,	log cos.	\log cotg.	log tang.	$l o g \sin$.	M.	D.

D.	M.	$\log \sin$.	log tang.	$\log \operatorname{cotg}$.	$\log \operatorname{cos.}$,	-
16	30	9,45 33	9,47 16	10,52 84	9,98 I7	30	73
	31	9,45 38	9,47 2 I	10,52 77	9,9817	29	
	32	9,45 42	9,47 25	10,52 75	9,98 17	28	
	33	9,45 46	9,47 30	10,52 70	9,98 16	27	
	34	$9,45 \quad 50$	$9,47 \quad 35$	10,52 65	9,98 16	26	
	35	9,45 55	9,47 3)	10,52 61	9,98 15	25	
	36	9,45 59	9,47 44	10,52. 56	9,98 15	24	
	37	9,45 63	9,47 48	10,5252	9,98 I5	23	
	33	9,45 67	9,47 53	10,52 47	9,98 I4	22	
	39	9,45 72	9,47 5^{8}	10,5242	9,98 I4	21	
16	40	9,45 76	9,47 62	10,52 38	9,98 14	20	73
	4 I	9,45 So	9,47 67	10,52 33	9,98 13	I9	
	42	9,45 84	9,47 7I	10,52 27	9:98 13	15	
	43	9,45 88	9,47 76	10,5224	9,98 I2	17	
	44	9,45 93	9,47 8I	10,52 19	9,98 12	I6	
	45	9,45 97	9,47 85	IO, 5215	9,98 I2	15	
	46	9,46 or	9,47 90	10,52 10	9,98 II	It	
	47	9,46 o5	9,47 94	10,52 of	9,98 II	13	
	48	9,46 o9	9,47 99	Io, 52 OI		12	
	49	9,46 I4	9,48 03	10,5I 96	9,98 10	II	
16	50	9,46 IS	9,48 08	10,5I 92	9,98 $\mathbf{1 0}$	10	73
	5 I	9,46 22	9,48 I3	10,5187	9,98 09	9	
	52	9,46 26	9,48 I7	Io,51 83	9,98 o9	8	
	53	9,46 30	9,48 22	10,5I 78	9,98 n9	7	
	54	9,46 34	9,48 26	10,5I 74	9,98 08	6	
	55	9,46 39	9,48 31	10,51 69	9,98 08	5	
	56	9,46 43	9,48 35	10,51 65	9,98 07	4	
	57	¢, 4647	9,48 40	10,5I 60	9,98 07	3	
	58	9,46 5 I	9,48 44	IO, 5156	9,98 07	2	
	59	9,46 55	9,4849	10,5I 5 I	9,98 06	I	
17	0	9,46 59	9,48 53	10,51 47	9,98 о6	0	73
-	,	$\log \cos$.	$\log \operatorname{cotg}$.	log tang.	$\log \sin$.	M.	D

D.	M.	$\log \sin$.	log tang.	$\log \operatorname{cotg}$.	$\log \cos$.	,	-
17	0	9,46 59	9,48 53	10,5I 47	9,98 06	0	78
	I	9,46 63	9,48 53	IO,5I 42	9,98 06	59	
	2	9,46 68	9,48 62	10,5138	9,98 05	58	
	3	9,46 72	9,4867	10,5133	9,98 05	57	
	4	9,46 76	9,48 71	10,5I 29	9,98 04	56	
	5	9,46 80	9,48 76	10,5 52.4	9,98 04	55	
	6	9,46 8.4	9,48 80	10,51 20	9,98 0.4	5.	
	7	9,4683	9,48 85	10,5I I5	9,98 03	53	
	8	9,46 92	9,48 89	10,5I II	9,98 03	52	
	9	9,4696	9,48 94	Io,5 5 ob	9,98 02	5 I	
17	10	9,47 00	9,48 98	10,51 02	9,98 02	50	73
	II	9,47 04	9,49 03	10,50 97	9,98 02	49	
	12	9,47 09	9,49 07	10,50 93	9,98 OI	48	
	13	9,47 I3	9,49 12	10,50 88	9,98 or	47	
	I. 4	9,47 I7	9,49 I6	10,50 84	9,98 оо	46	
	15	9,47 21	9,49 21	10,50 79	9,98 00	45	
	16	9,47 25	9,49 25	10,50 75	9,98 00	44	
	I 7	9,47 29	9,49 30	10,50 70	9,97 99	43	
	18	9,47 33	9,49 34	10,50 66	9,97 99	42	
	19	9,47 37	9,49 3^{3}	10,50 61	9,97 99	41	
17	20	9,47 41	9,49 43	10,50 57	9,97 9^{8}	40	72
	21	9,47 45	9,49 47	10,50 53	9,97 98	39	
	22	9,47 49	9,49 52	10,50 48	9,97 97	38	
	23	9,47 53	9,49 56	10,50 44	9,97 97	37	
	24	9,47 57	9,49 6r	10,50 39	9,97 97	36	
	25	9,47 6I	9,49 65	10,50 35	9,97 96	35	
	26	9,4765	9,49 70	10,50 30	9,97 9^{6}	34	
	27	9,47 69	9,49 74	10,50 26	9,97 95	33	
	28	9,47 73	9,49 78	10,50 22	9,9795	32	
	29	9,47 77	9,49 83	10,50 17	9,9795	3 I	
17	30	9,47 81	9,49 87	10,50 13	9,97 94	30	72
-	,	$\mathrm{log} \cos$.	$\log \operatorname{cotg}$.	log tang.	$\log \sin$.	M	D.

94 Logarithmic Sines and Tangents.

D.	M.	log sin.	log tang.	log cotg.	$\log \cos$.	,	。
17	30	9,47 8I	9,49 87	10,50 I3	9,97 94	30	72
	3 I	9,47 85	9,49 92	10,50 08	9,97 94	29	
	32	9,47 89	9,49 96	10,50 04	9,97 93	28	
	33	9,47 93	9,50 oo	10,50 00	9,97 93	27	
	34	9,47 97	9,50 05	10,49 95	9,97 93	26	
	35	9,48 or	9,50 09	10,49 91	9,97 92	25	
	36	9,48 05	9,50 I 4	10,49 86	9,97 92	24	
	37	9,48 09	9,50 18	IO,49 82	9,97 91	23	
	38	9,48 I3	9,50 22	IO,49 78	9,97 9I	22	
	39	9,48 I7	9,50 27	10,49 73	9,97 91	2 I	
17	40	9,48 21	9,50 31	10,49 69	9,97 90	20	72
	41	9,48 25	9,50 35	Io,49 64	9,97 90	19	
	42	9,48 29	9,50 40	Io,49 60	9,97 89	18	
	43	9,48 33	9,50 44	10,49 5^{6}	9,97 89	17	
	$4+$	9,4837	9,50 48	IO,49 5I	9,97 89	16	
	45	9,48 41	9,50 53	10,49 47	9,97 88	I5	
	46	9,48 45	9,50 57	IO,49 43	9,97 88	If	
	47	9,4849	9,50 62	Io,49 38	9,97 87	13	
	48	9,48 53	9,50 66	IO,49 34	9,97 87	12	
	49	9,48 57	9,50 70	10,49 30	9,97 87	II	
17	50	9,48 61	9,50 75	10,49 25	9,97 86	10	72
	5 I	9,48 65	9,50 79	Io,49 21	9,97 86		
	52	9,48 69	9,50 83	10,49 17	9,97 85	8	
	53	9,48 72	9,50 88	10,49 I2	9,97 85	7	
	54	9,48 7^{76}	9,50 92	Io,49 08	9,9784	6	
	55	9,48 80	9,50 96	10,49 04	9,97 84	5	
	56	9,48 81	9,5I 00	Io,48 99	9,97 8t	4	
	57	9,48 88	9,5I 05	10,48 95	9,97 83	3	
	58	$9,48 \quad 92$	9,5I 09	Io,48 91	9,97 83	2	
	59	$9,4^{8} \quad 96$	9,51 13	10,48 86	9,97 82	I	
18	0	9,49 oo	9,51 18	10, $48 \quad 82$	9,97 82	0	72
-		$\log \cos$.	$\log \operatorname{cotg}$.	log tang.	$\log \sin$.	M.	D.

Logarithmic Sines and Tangents.

D.	M.	$\log \sin$.	log tang.	log cotg.	$\log \cos$.	,	。
18	0	9,49 00	9,5I I8	10,48 82	9,97 82	0	72
	1	9,49 0 +	9,5I 22	10, 4878	9,97 82	59	
	2	9,49 08	9,51 26	10,48 74	9.9781	58	
	3	9,49 II	9,5I 3 I	10,48 69	9,9781	57	
	4	9,49 I5	9,5 I 35	10,48 65	9,97 80	56	
	5	9,49 19	9,5 5139	10,48 6 I	9,97 80	55	
	6	9,49 23	9,5I 43	10,48 5^{6}	9,97 80	54	
	7	9,4927	9,5I 48	10,48	9,97 79	53	
	8	9,49 3 L	9,5 515	10, 48 48	9,97 79	52	
	9	9,49 35	9,5 I^{56}	10,48 44	9,97 78	5 I	
18	10	9,49 38	9,5I 6I	10,48 39	9,97 78	50	71
	II	9,49 42	9,5 I 65	10,48 35	9,97 77	49	
	12	9,49 46	9,5I 69	10,48 3 I	9,97 77	48	
	13	9,19 50	9,5 I 73	10,48 27	9,97 77	47	
	14	9,49 54	9,5 I 78	10,4822	9,97 76	46	
	15	9,49 58	9,5I 82	10,48 18	9,97 76	45	
	16	9,49 6I	9,5I 86	10,4 414	9,97 75	44	
	17	9,49 65	9,5I 90	10,48 10	9,97 75	43	
	18	9,49 69	9,5I 95	10,48 05	9,97 75	42	
	19	9,49 73	9,51 99	10,48 oi	9,97 74	41	
18	20	9,49 77	9,52 03	10,47 97	9,97 74	40	71
	21	9,49 81	0,5207	10,47 93	9,97 73	39	
	22	9,49 84	9,52 II	10,47 88	9,97 73	38	
	23	9,49 88	9,52 16	10,47 8t	9,97 72	37	
	24	9,49 92	9,52 20	10,47 80	9,97 72	36	
	25	9,49 96	9,52 24	10,47 76	9,97 72	35	
	26	9,50 0о	9,52 28	10,47 72	9,97 71	34	
	27	9,50 03	9,52 33	10,47 67	9,97 71	33	
	28	9,5007	9,52 37	10,47 63	9,97 70	32	
	29	9,50 II	9,52 4 I	10,47 59	9,97 70	3 I	
18	30	9,50 I5	9,52 45	10,47 55	9,97 70	30	71
-	,	$\log \cos$.	$\log \operatorname{cotg}$.	log tang.	$\log \sin$.	M.	D.

96 Logarithmic Sines and Tangents.

Logarithmic Sines and Tangents.

D.	M.	$\log \sin$.	log tang.	$\log \operatorname{cotg}$.	$\log \cos$.	,	。
19	0	9,51 26	9,53 70	IO,46 30	9,97 57	0	71
	1	9,51 30	9,53 74	10,46 26	9,97 56	59	
	2	9,51 34	9,53 78	10,46 22	9,97 56	58	
	3	9,5I 37	9,53 82	10,46 18	9,97 55	57	
	4	9,5 14 4	9,53 86	10,46 14	9,97 55	56	
	5	9,5I 45	9,53 90	10,46 10	9,97 54	55	
	6	9,51 48	9,53 94	10,46 06	9,97 54	54	
	7	9,51 52	9,53 9^{8}	10,46 02	9,97 54	53	
	8	9,5I 56	9,54 02	10,45 97	9,97 53	52	
	9	9,5 I 59	9,54 06	10,45 93	9,97 53	5 I	
19	10	9,5 563	9,54 II	10,45 89	9,97 52	50	70
	11	9,5I 67	9,54 15	10,45 85	9,97 52	49	
	12	9,5 $\mathrm{I}^{7} 7$	9,54 19	Io,45 81	9,97 51	48	
	13	9,5I 74	9,54 23	IO,45 77	9,97 5I	47	
	14	9,51 77	9,54 27	10,45 73	9,9751	46	
	15	9,51 81	9,54 3I	10,45 69	9,97 50	45	
	16	9,51 85	9,54 35	10,45 65	9,97 50	44	
	17	9,5 I 88	9,54 39	10,45 6I	9,97 49	43	
	18	9,5I 92	9,54 43	10,45 57	9,97 49	42	
	19	9,51 95	9,54 47	10,45 53	9,97 48	41	
19	20	9,51 99	9,54 5 I	10,45 49	9,97 48	40	70
	21	9,52 03	9,54 55	10,45 45	9,97 47	39	
	22	9,52 06	9,54 59	10,45 41	9,97 47	38	
	23	9,52 10	9,54 63	10,45 37	9,97 47	37	
	24	9,52 I3	9,54 67	10,45 33	9,97 46	36	
	25	9,52 17	9,54 71	10,45 29	9,97 46	35	
	26	9,52 21	9,54 75	10,45 25	9,9745	34	
	27	9,52 24	9,54 79	10,45 21	9,9745	33	
	28	9,52 28	9,54 83	10,45 16	9,9744	32	
	29	$9,523 \mathrm{I}$	9,54 87	10,45 12	9,9744	3 I	
19	30	9,52 35	9,54 91	10,45 08	9,97 43	30	80
-	,	$\log \cos$.	log cotg.	log tang.	$\log \sin$.	M.I.	D.

98 Logarithmic Sines and Tangents.

D.	M.	$\log \sin$.	log tang.	log cotg.	$\log \cos$.		。
20	0	9,53 40	9,56 11	Io, 4389	9,97 30	0	70
	1	9,53 44	9,56 15	Io,43 85	9,97 29	59	
	2	9,53 47	9,56 18	10,43 81	9,97 29	58	
	3	9,53 51	9,56 22	10,43 78	9.9728	57	
	4	9,53 54	9,56 26	10,43 74	9,97 28	56	
	5	9,53 58	9,56 30	10,43 70	9,97 28	55	
	6	9,53 61	9,56 34	10,43 66	9,97 27	54	
	7	9,53 65	9,56 38	10,43 62	9,97 27	53	
	8	9,53 68	9,56 42	10,43 58	9,97 26	52	
	9	9,53 72	9,56 46	10,43 54	9,97 26	51	
20	10	9,53 75	9,56 50	IO,43 50	9,97 25	50	69
	11	9,53 78	9,56 54	Io,43 46	9,97 25	49	
	12	9,53 82	9,56 58	10,43 42	9,97 24	48	
	13	9,53 85	9,56 61	10,43 38	9,97 24	47	
	14	9,53 89	9,56 65	10,43 35	9,97 23	46	
	15	9,53 92	9,56 69	10,43 31	9,97 23	45	
	16	9,53 96	9,56 73	Io,43 27	9,97 22	44	
	17	9,53 99		10,43 23	9,9722	43	
	18	9,54 O2	9,56 81	10,43 19	9,97 21	42	
	19	9,54 06	9,56 85	10,43 15	9,97 21	41	
20	20	9,54 ${ }^{\text {of }}$	9,56 89	Io,43 II	9,97 21	40	69
	21	9,54 13	9,56 93	10,43 77	9,97 20	39	
	22	9,54 16	9,56 9^{6}	10,43 03	9,97 20	38	
	23	9,54 19	9,57 oo	10,43 оо	9,97 9		
	24	9,54 23	9,57 04	10,42 96	9,97 19	36	
	25	9,54 26	9,57 08	10,42 92	9,97 18		
	26	9,54 30	9.5712	ro,42 88	9,97 18	34	
	27	9,54 33	9,57 16	10,42 84	9,97 17	33	
	28	9,54 36	9,57 20	10,42 80	9,97 17	32	
	29	9,54 40	9,57 23	Io,42 76	9,97 16	31	
20	30	9,54 43	9,57 27	10,42 73	9,97 16	30	69
		log cos.	log cotg.	log tang.	$\log \sin$.	M.	D.

sco Logarithmic Sines and Tangents.

D.	M.	$\log \sin$.	log tang.	$\log \operatorname{cotg}$.	$\log \cos$.		
20	30	9,54 43	9,57 27	10,42 73	9,97 16	30	69
	31	9,54 47	9,57 31	10,42 69	9,97 15	29	
	32	9,54 50	9,57 35	10,42 65	9,97 15	28	
	33	9,54 53	9,57 39	10,42 61	9,97 14	27	
	$3+$	9,54 57	9,57 43	Io,42 57	9,97 14	26	
	35	9,54 60	9,57 47	10,42 53	9,97 I3	25	
	36	9,54 63	9,57 50	10,42 50	9,97 13	24	
	37	9,54 67	9,5754	Io, 4246	9,97 13	23	
	38	9,54 70	9,57 58	10,42 42	9,97 12	22	
	39	9,54 73	9,57 62	10,42 38	9,97 12	21	
20	40	9.5477	9,57 66	10,42 34	9,97 II	20	69
	4 I	9,54 80	9,57 70	10,42 30	9,97 II	19	
	42	9,54 84	9,57 73	10,42 27	9,97 10		
	43	9,54 87	9,57 77	10,42 23	9,97 10	17	
	44	9,54 90	9,57 81	10,42 19	9,97 09	16	
	45	9,54 94	9,57 85	Io,42 15	9,97 09	15	
	46	9,54 97	9,57 89	10,42 11	9,97 08	I4	
	47	9,55 00	9,57 92	10,42 07	9,97 08	13	
		9,55 04	9,5796	$\begin{array}{ll}10,42 & \mathrm{O}_{4} \\ 1\end{array}$	9,97 07	12	
	49	9,55 07	9,58 oo	10,42 00	9,97 07	II	
20	50	9,55 $\mathbf{1 0}$	9,58 04	10,41 96	9,97 06	10	69
	51	9,55 14	9,58 08	10,41929	9,97 06	9	
	52	9,55 17	9,58 11	10,41 88	9,97 05	8	
	53	9,55 20	9,58 15	10,4185	9,97 05	7	
	54	9,55 23	9,58 19	10,4181	9,97 04	6	
	55	9,55 27	9,58 23	10,41 77	9,97 04	5	
	56	9,55 30	9,58 27	10,41 73	9,97 03	4	
	57	9,55 0,55 0,55	9,58 30	10,41 70	9,97 03	3 2 2	
	59	9,55 37	9,588 9,58	10,4110,4 10,4I 1	$\begin{array}{llll}\text { 9,97 } & \text { O2 } \\ 9,97 & \text { 02 }\end{array}$	I	
21	0	9,55 43	9,58 42	10,4I 58	9,97 or	0	69
		log cos.	log cotg.	log tang.	$\log \sin$.	M.	D.

D.	M.	$\log \sin$.	log tang.	$\log \operatorname{cotg}$.	$\log \cos$.	,	-
21	0	9,55 43	9,58 42	IO,4I 58	9,97 OI	0	69
	1	9,55 47	9,58 45	10,4I 54	9,97 ОI	59	
	2	9,55 50	9,58 49	10,4I 5 I	9,97 оо	58	
	3	9,55 53	9,58 53	10,41 47	9,97 00	57	
	4	9,55 56	9,58 57	IO,4I 43	9,97 00	56	
	5	9,55 60	9,58 61	10,4I 39	9,96 99	55	
	6	9,55 63	9,58 64	10,4I 36	9,96 99	54	
	7	9,55 66	9,58 68	IO,4I 32	9,96 98	53	
	8	9,55 69	9,58 72	10,4I 28	9,96 ¢88	52	
	9	9,55 73	9,58 76	10,4I 24	9,96 97	5 I	
21	10	9,55 76	9,58 79	IO,4I 21	9,96 97	50	68
	II	9,55 79	9,58 83	10,41 17	9,96 96	49	
	12	9,55 83	9,58 87	IO,4I I3	9,96 96	43	
	13	9,55 86	9,58 9I	Io,4I O9	9,96 95	47	
	14	9,55 89	9,58 94	10,4I 06	9,96 95	46	
	15	9,55 92	9,58 g^{8}	IO,41 02	9,96 94	45	
	16	9,55 96	9,59 02	10,40 98	9,96 94	4-	
	17	9,55 99	9,59 06	In,40 94	9,96 93	43	
	18	9,56 02	9,59 09	10,40 9I	9,96 93	42	
	19	9,56 05	9,59 I3	Io,40 87	9,96 92	4 I	
21	20	9,56 08	9,59 17	10,40 83	9,96 92	40	68
	21	9,56 I2	9,59 20	10,40 79	9,96 9]	39	
	22	9,56 I5	9,59 24	IO,40 76	9,96 91	38	
	23	9,56 18	9,59 28	10,40 72	$9,9690$	37	
	24	9,56 21	9,59 32	10,40 68	9,96 90	36	
	25	9,56 25	9,59 35	10,40 65	9,96 89	35	
	26	9,56 28	9,59 39	10,40 61	9,96 89	34	
	27	9,56 31	9,59 43	10,40 57	9,96 88		
	28	9,56 34	9,59 47	10,40 53	9,96 88	33	
	29	9,5637	9,59 50	10,40 50	9,96 87	3 I	
21	30	9,56 4 I	9,59 54	10,40 46	9,96 87	30	68
	,	log cos.	$\log \operatorname{cotg}$.	log tang.	$\log \sin$.	M.	D.

Logarithmic Sines and Tangents.

D.	M.	$\log \sin$.	log tang.	$\log \operatorname{cotg}$.	$\log \cos$.	,	-
21	30	9,56 41	9,59 54	10,40 46	9,96 87	30	68
	3 I	9,56 $4+$	9,59 58	10,40 42	9,96 86	29	
	32	9,56 47	9,59 61	10,40 39	9,96 86	28	
	33	9,56 50	9,59 65	10,40 35	9,96 85	27	
	34	9,56 $5+$	9,59 69	10,40 31	9,96 85	26	
	35	9,56 57	9,59 72	10,40 27	9,96. 8_{4}	25	
	36	9,56 60	9,59 76	10,40 $2+$	9,96 84	24	
	37	9,56 63	9,59 80	10,40 20	9,96\% 83	23	
	38	9,56 66	9,59 83	10,40 16	9,96 83	22	
	39	9,56 69	9,59 87	10,40 13	9,96 82	21	
21	40	9,56 73	9,59 9I	10,40 09	9,96. 82	20	6 S
	41	9,56 76	9,59 95	10,40 05	9,96 81	r9	
	42	9,56 79	9,59 98	10, 10 02	9,96 $\mathbf{9}^{\mathbf{8}}$ I	13	
	43	9,56 82	9,60 02	10,39 98	9,96. 80	17	
	4	9,56 85	9,60 06	10,39 94	9,96 80:	16	
	45	9,56 89	9,60 09	10,39 91	9,96. 79	I5	
	46	9,56 92	9,60 I3	10,39 87	9,96 79	14	
	47	9,56 95	9,60 17	10,39 83	9,96 78	I 3	
	4^{8}	9,56 98	9,60 20	10,39 80	9,96 78	12	
	49	9,57 OI	9,60 24	10,39 76	9,96 77	II.	
21	50	9,57 of	9,60 28	10,39 72	9,96, 77	10	68
	51	9,57 07	9,60 31	10,39 69	9,96 76:	8	
	52	9,57 II	9,60 35	10,39 65	9,96 26	8	
	53	9,57 14	9.6039	10,39 61	9,96 7.5	7	
	$5+$	9,57 17	9,60 42	10,39 58	9,96: 7.5	6	
	55	9,57 20	9,60 46	10,39 54	9,96 74	5	
	56	9,57 23	9,60 49	10,39 50	9,96 7.4	4	
	57	9,57 26	9,60 53	IO,39 47	9,96 73	3	
	58	9,57 29	9.6057	10. $39+3$	9,96 73	2	
	59	9,57 33	9,60 60	10,39 39	9,96 72	1	
22	0	9,57 36	9.6064	10,39 36	9,96 72	0	68
。	,	\log cos.	$\log \operatorname{cotg}$.	log tang.	$\log \sin$.	M.	D.

D.	M.	$l o g \sin$.	log tang.	$\log \operatorname{cotg}$.	$\log \cos$.	,	。
22	0	9,57 36	9,60 64	10,39 36	9,96 72	0	68
	I	9,57 39	9,60 68	10,39 32	9,96 7I	59	
	2	9,57 42	9,60 71	10,39 29	9,96 7I	58	
	3	9,57 45	9,60 75	10,39 25	9,96 70	57	
	4	9,57 4^{8}	9,60 79	10,39 2 I	9,96 70	56	
	5	9,57 51	9,60 82	10,39 I8	9,96 69	55	
	6	9,57 54	9,60 86	10,39 It	9,96 69	54	
	7	9,57 58	9,60 89	10,39 10	9,96 68	53	
	8	9,57 6I	9,60 93	10,39 07	9,96 68	52	
	9	9,57 64	9,60 97	10,39 03	9,96 67	5 I	
22	10	9,57 67	9,61 00	10,39 00	9,96 66	50	67
	II	9,57 70	9,61 of	10,38 96	9,96 66	49	
	12	9,57 73	9,61 o8	10,38 92	9,96 65	48	
	13	9,57 76	9,6 II	10,38 89	9,96 65	47	
	14	9,57 79	9,6I 15	10,38 85	9,9664	46	
	15	9,57 82	9,61 18	10,3882	9,96 64	45	
	16	9,57 85	9,61 22	10,3878	9,96 63	$4+$	
	17	9,57 88	9,61 26	10,3874	9,96 63	43	
	18	9,57 92	9,6I 29	10,38 7 I	9,96 62	42	
	19	9,57 95	9,6I 33	10,3867	9,96 62	4 I	
22	20	9,57 98	9,6I 36	10, $3^{8} 64$	9,96 6r	40	67
	21	9,58 OI	9,61 40	10,38 60	9,96.6I	39	
	22	9,58 o4	9,61 44	IO,38 56	9,96 60	38	
	23	9,58 07	9,61 47	10,38 53	9,96 60	37	
	2.4	9,58 10	9,6I 51	10,3849	9,96 59	36	
	25	9,58 13	9,61 54	10,38 46	9,96 59	35	
	26	9,58 16	9,61 58	10,38 42	9,96 53	$3+$	
	27	9,58 I9	9,61 6 ¢	10,38 38	9,96 58	33	
	28	9,58 22	9,6I 65	10,38 35	9,96 57	32	
	29	9,58 25	9,61 69	10,38 3I	9,96 57	3 I	
22	30	9,58 23	9,61 72	10,3828	9,96 56	30	67
\bigcirc	,	log cos.	$\log \cot 5$.	log tang.	\log sin.	M.	D.

104 Logarithmic Sines and Tangents.

D.	M.	$\log \sin$.	log tang.	$\log \operatorname{cotg}$.	$\log \cos$.	,	-
22	30	9.58128	9,6172	10,38 28	9,96 56	30	67
	3 I	9,58 31	9,61 76	10,3824	9,96 56	29	
	32	9,53 34	9,61 79	10,3821	9,96 55	28	
	33	9,58 37	9,61 83	10,38 17	9,96 55	27	
	$3+$	9,58 4 I	9,6r 86	10,38 13	9,96 54	26	
	35	9,58 44	9,61 90	10,38 10	9,96 53	25	
	36	9,58 47	9,61 9+	10,38 06	9,96 53	24	
	37	9,58 50	9,61 97	10,38 03	9,9,6 52	23	
	38	9,58 53	9,62 of	10,37 99	9,96 52	22	
	39	9,58 56	9,62 of	10,37 96	9,96. 51	21	
29	40	9,58 59	9,62 08	10,37 92	9;96 51	20	67
	41	9,58 62	9,62 II	10,3789	9,96 50	I9	
	42	9,58 65	9,62 15	10,37 85	9,96 50	18	
	43	9,58 68	9,62 18	10,37 81	9,96 49	17	
	$4+$	9,58 71	9,62 22	10,3778	9,96 49	16	
	45	9,58 71	9,62 26	10,37 74	9,96 48	15	
	46	9,58 77	9,62 29	10,37 71	9,96 48	It	
	47	9,53 80	9,62 33	10,37 67	9,96 47	13	
	48	9,58 53	9,62 36	10,37 64	9,96 47	I2	
	49	9,58 86	9,62 40	10,37 60	9,96 46	II	
22	50	9,58 89	9,62 43	10,37 57	9,96. 46	10	67
	51	9,58 92	9,62 47	10,37 53	9,96 45		
	52	9,58 95	9,62 50	10,37 50	9,96. 44	8	
	53	9,58 $\mathbf{5}^{8}$	9,62 5 +	10,37 46	9,96. 44	6	
	54	9,59 OI	9,62 57	10,37 43	9,96 43	6	
	55	9,59 04	9,62 6I	10,37 39	9,96 43	5	
	56	9,59 07	9,62 64	10,37 35	9,96, 42		
	57	9,59 10	9,62 68	10,37 32	2,96 ${ }^{2} 2$	3	
	58	9,59 13	9,62 71	10,37 2 ;	$9,9641$	2	
	59	9,59 16	9,62 75	10,37 25	9,96 ${ }^{\text {4I }}$		
23	0	9,59 59	9,62 78	10,37 21	9,96 40	0	67
-	,	log cos.	$\log \operatorname{cotg}$.	log tang	$\log \sin$.	M.	D

Logarithmic Sines and Tangents. Io5

D.	M.	$\log \sin$.	log tang.	$\log \operatorname{cotg}$.	\log cos.	,	。
28	0	9,59 19	9,62 78	10,37 21	9,96 40	0	67
	1	9,59 22	9,62 82	10,37 18	9,96 40	59	
	2	9,59 25	9,62 85	10,37 I4	9,96 39	58	
	,	9,59 28	9,62 89	Io,37 II	9,96 39	57	
	4	9,59 3I	9,62 93	10,37 07	9,96 38	56	
	5	9,59 34	9,62 96	10,37 04	9,96 38	55	
	6	9,59 37	9,63 00	10,37 00	9,96 37	54	
	7	9,59 40	9,63 03	10,36 97	9,96 36	53	
	8	9,59 42	9,63 07	10,36 93	9,96 36	52	
	9	9,59 45	9,63 10	10,36 90	9,96 35	5 I	
23	10	9,59 48	9,63 13	Io,36 86	9,96 35	50	66
	II	9,59 51	9,63 17	10,36 83	9,96 34	49	
	12	9,59 54	9,63 20	10,36 79	9,96 34	48	
	13	9,59 57	9,63 24	10,36 76	9,96 33	47	
	14	9,59 60	9,63 27	10,36 72	9,96 33	46	
	15	9,59 63	9,63 31	10,36 69	9,96 32	45	
	16	9,59 66	9,63 3+	10,36 65	9,96 32	44	
	17	9,59 69	9,63 38	10,36 62	9,96 31	43	
	18	9,59 72	9,63 41	10,36 59		42	
	19	9,59 75	9,63 45	Io,36 55	9,96 30	4 I	
23	20	9,59 78	9,63 48	IO,36 52	9,96 29	40	66
	21	9,59 81	9,63 52	10,36 48	9,96 29	39	
	22	9,59 84	9,63 55	10,36 45	9,96 28	38	
	23	9,59 87	9,63 59	10,36 41	$9,96 \quad 28$	37	
	24	9,59 89	9,63 62	10, 3638	9,96 27	36	
	25	9,59 9^{2}	9,63 66	10,36 34		35	
	26	9,59 95	9,63 69	10,36 31	9,96 26	34	
	27	9,59 98	9,63 73	10,36 27	9,96 26	33	
	28	9,60 or	9,63 76	10, 3624	$9,96 \quad 25$	32	
	29	9,60 04	9,63 80	10,36 20	9,96 24	3 I	
23	30	9,60 07	9,63 83	10,36 17	9,96 24	30	66
-	,	log cos.	$\log \operatorname{cotg}$.	log tang.	$\log \sin$.	M.	D.

106 Logarithmic Sines and Tangents.

D.	M.	$\log \sin$.	log tang.	$\log \operatorname{cotg}$.	$\log \cos$.	,	。
24	0	9,60 93	9,6+ 86	10,35 I4	9,96 07	0	66
	1	9,60 96	9,6+ 89	Io, 35 II	9,96 07	59	
	2	9,60 99	9,64 93	10,35 07	9,96 06	58	
	3	9,6I 02	9,64 96	10,35 04	9,96 06	57	
	4	9,6I 04	9,64 99	Io,35 OI	9,96 05	56	
	5	9,61 07	9,65 03	10,34 97	9,96 04	55	
	6	9,61 10	9,65 o6	10,34 94	9,96 04	54	
	7	9,61 13	9,65 $\mathbf{1 0}$	10,34 90	9,96 o3	53	
	8	9,61 16	9,65 13	10,3+87	9,96 o3	52	
	9	9,61 19	9,65 16	$10,3+84$	9,96 02	5 I	
24	10	9,61 21	9,65 20	10,34 80	9,96 02	50	65
	II	9,6I 24	9,65 23	10,3+ 77	9,96 OI	49	
	12	9,61 27	9,65 26	10,34 73	9,96 oo	48	
	13	9,61 30	9,65 30	10,34 70	9,96 00	47	
	14	9,61 33	9,65 33	10,34 67	9,95 99	46	
	15	9,6I 35	9,65 37	10,34 63	9,95 99	45	
	16	9,6I 38	9,65 40	Io,34 60	9,95 98	44	
	17	9,6I 41	9.6543	10,34 57	9,95 98	43	
	18	9,6I 44	9,65 47	10,34 53	9,95 97	42	
	19	9,61 47	9,65 50	10,34 50	9,95 96	41	
24	20	9,6I 49	9,65 53	10,34 46	9,95 96	40	65
	21	9,6I 52	9,65 57	$10,3+43$	9,95 95	39	
	22	9,6ı 55	9,65 60	10,3+40	9,95 95	38	
	23	9,61 58	9,65 64	10,34 36	9,95 94	37	
	24	9,61 61	9,65 67	10,3+ 33	9,95 94	36	
	25	9,6I 63	9,65 70	10,34 30	9,95 93	35	
	26	9,6I 66	9,65 74	$10,3+26$	9,95 92	34	
	27	9,61 69	9,65 77	10,3423	9,95 92	33	
	28	9,61 72	9,65 80	10,34 20	9,95 91	32	
	29	9,61 74	9,65 84	10,34 16	9,95 9I	3 I	
24	30	9,61 77	9,65 87	10,34 13	9,95 90	30	65
-	,	$\log \cos$.	$\log \operatorname{cotg}$.	log tang.	$l o g \sin$.	M.	D.

io8 Logaritimic Sines and Tangents.

D.	M.	$\log \sin$.	log tang.	log cotg.	log cos.		
24	30	9,61 77	9,65 87	Io,34 I3	9,95 90	30	65
	35	9,61 80	9,65 90	10,34 10	9,95 90	29	
	32	9,6I 83	9,65 94	10,34 06	9,95 89	28	
	33	9,61 86	9,65 97	Io,34 03	9,95 88	27	
	34	9,6ı 88	9,66 oo	10,3+ 00	9,95 88	26	
	35	9,6x 9I	9,66 o+	Io,33 9^{6}	9,95 87	25	
	36	9,6I 94	9,66 07	10,33 93	9,95 87	24	
	37 38	$\begin{array}{lll}9,61 & 97 \\ 9,61 & 99\end{array}$	9,66 10		9,95 86	23	
	38 39	$\begin{array}{ll}9,61 & 99 \\ 9,62 & \text { O2 }\end{array}$	9,66 9,66 17	Io,33 Io, 33 18	9,95 9,96 , 95	21	
24	40	9,62 05	9,66 20	10,33 80	9,05 84	20	65
	4 I	9,62 08	9,66 24	Io,33 76	9,95 81	19	
	42	9,62 10	9,66 27	10,33 73	9,95 83	18	
	43	$\begin{array}{ll}9,62 & 13 \\ 0,62 & 13\end{array}$	9,66 30	10,33 70	9,95 83	17	
	44	9,62 16	9,66 34	Io,33 66	9,95 82	16	
	45	9,62 19	9,66 37	10,33 63	9,95 81	15	
	46	9,62 21	9,66 40	10,33 60	9,95 81	It	
	47	9,62 24	9,66 44	10,33 56	9,95 80	13	
	48	9,62 9,62 9,60	9,6647 9,66 10	10,33 Io,33 I	9,9580 9,95	I2	
				10,33 50			
24	50	9,62 32	9,66 54	10,33 46	9,95 79	10	65
	51	9,62 35	9,66 57	10,33 43	9,95 78	9	
	52	9,62 38	9,66 60	Io,33 40	9,95 77	8	
	53	9,62 40	9,66 64	10,33 36	9,95 77	7	
	54	9,62 43	9,66 67	10,33 33	9,95 76	6	
	55	9,62 46	9,66 70	10,33 30	9,95 76	5	
	56	9,62 49	9,66 73	Io,33 26	9,55 75	4	
	57	9,62 51	9,66 77	Io, 3323	9,95 74	3	
	58	9,62 54	9,66 80	10,33 20	9,95 74	2	
	59	9,62 57	9,66 83	10,33 17	9,95 73	I	
25	0	9,62 59	9,66 87	ro,33 I3	9,95 73	0	65
		log cos.	log cotg.	log tang.	$\log \sin$.	M.	D.

D.	M.	$\log \sin$.	log tang.	log cotg.	log cos.	,	。
25	0	9,62 59	9,66 87	10,33 I3	9,95 73	0	65
	I	9,62 62	9,66 90	10,33 10	9,95 72	59	
	2	9,62 65	9,66 93	10,33 07	9,95 72	58	
	3	9,62 63	9,66 97	10,33 03	9,95 71	57	
	4	9,62 70	9,67 00	10,33 00	9,95 70	56	
	5	9,62 73	9,67 03	IO,32 97	9,95 70	55	
	6	9,62 76	9,67 06	10,32 93	9,95 69	54	
	7	9,62 78	9,67 10	10,32 90	9,95 69	53	
	8	9,62 81	9,67 I3	IO,32 87	9,05 68	52	
	9	9,62 84	9,67 16	10,32 84	9,95 67	5 I	
25	10	9,62 86	9,67 20	10,32 80	9,95 67	50	64
	II	9,62 89	9,67 23	10,32 77	9,95 66	49	
	12	9,62 92	9,67 26	10,32 74	9,95 66	48	
	13	9,62 94	9,67 29	10,32 70	9,95 65	47	
	I.4	9,62 97	9,67 33	10,32 67	9,95 64	46	
	15	9,63 00	9,67 36	10,32 64	9,95 64	45	
	16	9,63 03	9,67 39	10,3261	9,95 63	44	
	17	9,63 05	9,67 43	10,32 57	9,95 63	43	
	18	9,63 08	9,67 46	10,32 54	9,95 62	42	
	19	9,63 II	9,67 49	10,32 51	9,95 6I	4 I	
25	20	9,63 13	9,67 52	10,32 48	9,95 6I	40	64
	21	9,63 16	9,67 56	10,32 44	9,95 60	39	
	22	9,63 I9	9,67 59	10,32 41	9,95 60	38	
	23	2,63 21	9,67 62	10,32 38	9,05 59	37	
	24	9,63 24	9,67 65	IO,32 35	9,95 58	36	
	25	9,63 27	9,67 69	10,32 31	9,95 58	35	
	26	9,63 29	9,67 72	10,32 28	9,95 57	34	
	27	9,63 32	9,67 75	10,32 25	9,95 57	33	
	28	9,63 34	9,67 78	10,3221	9,95 56	32	
	29	9,63 37	9,67 82	Io,32 IS	9,95 55	3 I	
25	30	9,63 40	9,6785	10,32 15	9,95 55	30	64
-	,	$\log \cos$.	log cotg.	log tang.	$\log \sin$.	M.	D.

IIo Logarithmic Sines and Tangents.

D.	M.	$\log \sin$.	log tang.	$\log \operatorname{cotg}$.	$\log \operatorname{cos.}$,	。
25	30	9,63 40	9,67 85	10,32 15	9,95 55	30	64
	31	9,63 42	9,67 88	10,32 12	9,95 54	29	
	32	9,63 45	9,67 91	10,32 08	9,95 54	28	
	33	9,63 48	9,67 95	10,32 05	9,95 53	27	
	34	9,63 50	9,67 9^{8}	IO, 32 O2	9,95 52	26	
	35	9,63 53	9,68 ог	10,3I 99	9,95 52	25	
	36	9,63 56	9,68 04	10,3I 96	9,95 51	24	
	37	9,63 5^{8}	9,68 08	10,3I 92	9,95 5I	23	
	38	9,63 61	9,68 II	10,31 89	9,95 50	22	
	39	9,63 64	9,68 If	IO,3I 86	9,95 49	21	
25	40	9,63 66	9,68 17	10,31 83	9,95 49	20	64
	4 I	9,63 69	9,63 21	10,31 79	9,95 48	i9	
	42	9,63 7I	9,68 24	10,31 76	9,95 48	18	
	43	9,63 74	9,68 27	10,3I 73	9,95 47	17	
	+4	9,63 77	9,68 30	10,31 70	9,95 46	16	
	45	9,63 79	9,68 34	10,31 66	9,95 46	15	
	46	9,63 82	9,68 37	10,3I 63	9,95 45	I_{4}	
	47	9,6385	9,68 40	10,31 60	9,95 45	I3	
	48	9,63 87	9,68 43	10,3I 57	9,95 44	12	
	49	9,63 90	9,68 46	IO,3I 53	9,95 43	II	
25	50	9,63 92	9,68 50	10,31 50	9,95 43	10	64
	51	9,63 95	9,68 53	10,3I 47	9,95 42	9	
	52	9,63 98	9,68 56	10,31 44	9,95 41	8	
	53	9,64 00	9,68 59	10,3I 41	9,95 4I	7	
	$5+$	9,6+ 03	9,68 63	10,31 37	9,95 40	6	
	55	9,64 05	9,68 66	10,3I 34	9,95 40	5	
	56	9,64 08	9,68 69	10,3I 3 I	9,95 39	4	
	57	9,64 II	9,68 72	10,3I 28	9,95 38	3	
	58 59	9,6413 9,64 16	9,68 75	$\begin{array}{ll}10,31 & 25 \\ 10,31 & 21\end{array}$	9,95 98	2	
	59	$9,6+16$	9,68 79	10,3I 2 I	9,95 37	I	
26	0	9,64 18	9,68 82	10,31 18	9,95 37	0	64
	,	log cos.	$\log \operatorname{cotg}$.	log tang.	$l o g \sin$.	M.	D.

D.	M.	$\log \sin$.	log tang.	$\log \operatorname{cotg}$.	$\log \cos$.	,	-
26	0	9,64 18	9,68 82	10,31 18	9,95 37	0	64
	1	9,64 21	9,68 85	10,3I 15	9,95 36	59	
	2	9,64 24	9,68 88	10,3I 12	9,95 35	58	
	3	9,64 26	9,68 9I	10,3I o9	9,95 35	57	
	4	9,64 29	9,68 95	10,3I 05	9,95 34	56	
	5	9,64 3I	9,68 98	10,3I 02	9,95 33	55	
	6	9,64 34	9,69 OI	10,30 99	9,95 33	54	
	7	$9,6+36$	9,69 04	10,30 96	9,95 32	53	
	8	9,64 39	9,69 07	10,30 93	9,95 32	52	
	9	9,64 42	9,69 II	10,3089	9,95 3I	5 I	
26	10	9,64 44	9,69 14	IO,30 86	9,95 30	50	63
	II	9,64 47	9,69 17	10,30 83	9,95 30	49	
	12	9,6+ 49	9,69 20	10,3080	9,95 29	48	
	13	9,64 52	9,69 23	10,30 77	9,95 29	47	
	14	9,64 54	9,69 27	10,30 73	9,95 28	46	
	I5	9,64 57	9,69 30	10,3070	9,95 27	45	
	16	9,64 60	9,69 33	10,30 67	9,95 27	44	
	17	9,64 62	9,69 36	10,3064	9,95 26	43	
	18	9,64 65	9,69 39	10,30 6 I	9,95 25	42	
	19	9,64 67	9,69 42	10,3057	9,95 25	4 I	
26	20	9,64 70	9,69 46	10,30 54	9,95 $2+$	40	63
	21	9,64 72	9,69 49	10,30 51	9,95 24	39	
	22	9,64 75	9,69 52	10,30 48	9,95 23	38	
	23	9,6+77	9,69 55	10,30 45	9,95 22	37	
	24	$9,6+80$	9,69 58	10,30 ${ }^{2}$	9,95 22	36	
	25	9,64 83	9,69 6I	10,30 38	9,95 21	35	
	26	9,64 85	9,69 65	10,30 35	9,95 20	34	
	27	9,6+88	9,69 68	10,30 32	9,95 20	33	
	28	9,64 90	9,69 71	10,30 29	9,95 19	32	
	29	9,64 93	9,69 74	10,30 26	9,95 18	31	
26	30	9,64 95	9,69 77	10,30 23	9,95 18	30	63
-	,	$\log \cos$.	log cotg.	log tang.	$\log \sin$.	M.	D.

112 Logarithmic Sines and Tangents.

D.	M.	$\log \sin$.	log tang.	\log cotg.	$\log \cos$.	,	-
26	30	9,64 95	9,69 77	10,3023	9,95 18	30	63
	3 I	9,64 98	9,69 80	10,30 19	9,95 I7	29	
	32	9,65 00	9,69 8t	10,30 16	9,95 I7	28	
	33	9,65 03	9,69 87	10,30 13	9,95 16	27	
	34	9,65 05	9,69 90	Io,30 10	9,95 15	26	
	35	9,65 08	9,69 93	10,30 07	9,95 I5	25	
	36	9,65 10	9,69 96	10,30 04	9,95 14	24	
	37	9,65 13	9,69 99	10,30 00	9,95 13	23	
	38	9,65 I5	9,70 03	Io,29 97	9,95 13	22	
	39	9,65 18	9,70 06	10,29 94	9,95 12	2 I	
26	40	9,65 20	9,70 09	10,29 9I	9,95 12	20	63
	41	9,65 23	9,70 12	10,29 88	9,95 II	19	
	42	9,65 25	9,70 15	IO,29 85	9,95 10	18	
	43	9,65 28	9,70 I8	10,29 82	9,95 10	17	
	44	$9,653 \mathrm{I}$	9,70 2 I	10,29 78	9,95 09	16	
	45	9,65 33	9,70 25	10,29 75	9,95 0 -8	15	
	46	9,65 36	9,70 28	10,29 72	9,95 08	I+	
	47	9,65 38	9,70 31	10,29 69	9,95 07	13	
	48	9,65 41	9,70 3+	10,29 66	9,95 о6	12	
	49	9,65 43	9,70 37	Io,29 63	9,95 o6	II	
26	50	9,65 46	9,70 40.	10,29 60	9,95 05	10	63
	51	9,65 48	9,70 43	IO,29 56	9,95 05	8	
	52	9,65 51	9,70 47	10,29 53	9,95 04	8	
	53	9,65 53	9,70 5 ?	10,29 50	9,95 03		
	54	9,65 56	9,70 53	Io,29 47	9,95 03	6	
	55	9,65 58	9,70 56	IO,29 44	9,95 O2	5	
	56	9,65 6o	9,70 59	10,29 41	9,95 or		
	57	9, 6563	9,70 012	Io,29 38	9,95 oi	3	
	58	9,65 65	9,70 65	IO,29 35	9,95 оо	2	
	59	9,65 68	9,70 68	10,29 31	9,94 99	I	
27	0	9,65 70	9,70 72	10,29 28	9,94 99	0	63
-	,	$\log \cos$.	$\log \operatorname{cotg}$.	log tang.	$\log \sin$.	M.	D.

Logarithmic Sines and Tangents.

D.	M.	$\log \sin$.	log tang.	$\log \operatorname{cotg}$.	$\log \cos$.	,	-
27	0	9,65 70	9,70 72	10,29 28	9,94 99	0	63
	1	9,65 73	9,70 75	IO,29 25	9,94 98	59	
	2	9,65 75	9,70 78	10,29 22	9,94 97	58	
	3	9,65 78	9,70 81	10,29 19	9,94 97	57	
	4	9,65 80	9,70 84	10,29 16	9,94'96	56	
	5	9,65 83	9,70 87	IO,29 13	9,9+96	55	
	6	9,65 85	9,70 90	10,29 10	9,94 95	54	
	7	9,65 88	9,70 93	10,29 06	9,94 94	53	
	8	9,65 90	9,70 97	10,29 03	9,94 94	52	
	9	9,65 93	9,71 00	10,29 00	9,94 93	5 I	
27	10	9,65 95	9,71 03	I0,28 97	9,94 92	50	62
	11	9,65 98	9,71 06	10,28 94	9,94 92	49	
	12	9,66 оо	9,7I 09	10,28 91	9,94 91	48	
	13	9,66 02	9,71 12	Io,28 88	9,94 90	47	
	14	9,66 05	9,71 15	IO,28 85	9,94 90	46	
	15	9,66 07	9,71 18	10,28 82	9,94 89	45	
	16	9,66 10	9,71 21	10,2878	9,94 88	44	
	17	9,66 I2	9,7] 25	10,28 75	9,94 88	43	
	18	9,66 15	9,7I 28	IO, 2872	9,94 87	42	
	19	9,66 I7	9,71 31	Io, 2869	9,94 86	4 I	
27	20	9,66 20	9,71 34	10,28 66	9,94 86	40	62
	21	9,66 22	9,71 37	IO,28 63	9,94 85	39	
	22	9,66 25	9,71 40	IO, 2860	9,94 84	38	
	23	9,66 27	9,71 43	IO,28 57	9,94 84	37	
	24	9,66 29	9,71 46	10,28 54	9,94 83	36	
	25	9,66 32	9,71 49	10,28 51	9,94 83	35	
	26	9,66 34	9,71 52	IO,28 48	9,94 82	34	
	27	9,66 37	9,71 55	IO, 2844	9,94 81	33	
	28	9,66 39	9,71 59	IO, 2841	9,94 81	32	
	29	9,66 42	9,71 62	IO, 2838	9,94 80	3 I	
27	30	9,66 44	9,71 65	10,28 35	9,94 79	30	62
0°	,	$\log \cos$.	$\log \operatorname{cotg}$.	log tang.	$\log \sin$.	M.	D.

114 Logarithmic Sines and Tangents.

D.	M.	$\log \sin$.	log tang.	$\log \operatorname{cotg}$.	$\log \cos$.	,	-
27	30	9,66 44	9,71 65	IO,28 35	9,94 79	30	62
	3 I	9,66 46	9,71 68	10,28 32	9,94 79	29	
	32	9,66 49	9,71 71	10,28 29	9,9+78	28	
	33	9,66 51	9,71 74	10,28 26	9,94 77	27	
	34	9,66 54	9,71 77	IO, 2823	9,9+ 77	26	
	35	9,66 56	9,71 80	Io,28 20	9,94 76	25	
	36	9,66 59	9,71 83	10,28 17	9,94 75	24	
	37	9,66 6I	9,71 86	Io, 28 I4	9,94 75	23	
	38	9,66 63	9,71 89	Io,28 II	9,9+74	22	
	39	9,66 66	9,71 92	10,23 07	9,94 73	2 I	
27	40	9,66 68	9,71 95	10,28 04	9,9+73	20	62
	41	9,66 7I	9,71 99	IO, 28 OI	9,94 72	I9	
	42	9,66 73	9,72 02	10,27 98	9,9+7I	18	
	43	9,66 75	9,72 05	10,27 95	9,94 7	17	
	44	9,66 78	9,72 08	10,27 92	9,94 70	16	
	45	9,66 80	9, 72 II	10,27 89	9,94 69	15	
	46	9,66 83	9,72 14	10,27 86	9,9+69	It	
	47	9,66 85	9,72 17	10,27 83	9,9+ 68	I3	
	48	9,65 87	9,72 20	10,27 80	9,9+ 67	12	
	49	9,66 90	9,72 23	10,27 77	9,9+ 67	II	
27	50	9,66 92	9,72 26	10,27 74	9,94 66	10	62
	5 I	9,66 95	9,72 29	10,27 71	9,9+ 65		
	52	9,66 97	9,72 32	IO,27 68	9,94 65	8	
	53	9,66 99	9,72 35	10,2765	9,94 64	7	
	54	9,67 02	9,72 33	10,27 62	9,9+63	6	
	55	9,67 o4	9,72 4 I	10,27 58	9,94 63	5	
	56	9,67 07	9,72 44	10, 2755	$9,9+62$	4	
	57	9,67 09	9,72 $\mathbf{4}^{\text {8 }}$	10,27 52	9,9+6I		
	58	9,67 II	9,72 51	10,2749	9,94 6I	2	
	59	9,67 I4	9,72 $5+$	IO,27 46	9,9+60	I	
28	0	9,67 16	9,72 57	10,27 43	9,94 59	0	62
-	,	$\log \mathrm{cos}$.	$\log \operatorname{cotg}$.	log tang.	$\log \sin$.	M.	D.

D.	M.	$\log \sin$.	log tang.	$\log \operatorname{cotg}$.	$\log \cos$.		
28	0	9,67 16	9,72 57	10,27 43	9,94 59	0	62
	1	9,67 68	9,7260	10,27 40	9,9+59	59	
	2	9,67 21	9,72 63	10,27 37	9,94 58	58	
	3	9,6723	9,7266	10,27 34	9,9+57	57	
	4	9,67 26	9,72 69	10,27 31	9,94 57	56	
	5	9,67 28	9,72 72	10,27 28	9,94 56	55	
	6	9,67 30	9,72 75	10,2725	9,94 55	54	
	7	9,67 33	9,72 78	10, 2722	9,94 55	53	
	8	9,6735 9,67	9,7281 9,728	10,27 10,27 10	9,9454 $9,9+53$	52 51	
28							
	10	9,67 40	9,72 77	10,27 13	9,9+53	50	61
	11	9,6742	9,72 90	10,27 10	9,9+ 52	49	
	12	9,67 44	9,72 93	10,27 07	9,94 5I	48	
	${ }^{1} 3$	9,6747	9,72 96	10,27 ${ }^{1}$	9,94 51	47	
	14	9,67 49	9,72 99	10, 27 or	9,9+ 50	46	
	15	9,67 51	9,73 02	Io,26 98	9,94 49		
	16	9,67 54	9,73 05	Io,26 95	9,9+48	44	
	17	9,67 56	9,73 08	10,26 92	9,9+48	43	
	18	9,6759	9,73 11	Io, 2689	9,94 47	42	
	19	9,67 61	9,73 14	10,26 86	9,9+ 46	4 I	
28	20	9,67 63	9,73 17	10,26 82	9,94 46	40	61
	21	9,6766	9,73 20	Io,26 79	9,9+45	39.	
	22	9,67 68	9,73 23	10, 2676	9,94 44		
	23	9,67 70	9,73 26	10,26 73	9,9+44	37	
	24	9,67 73	9,73 29	10,26 70	9,9+43	36	
	25	9,67 75	9,73 33	Io,26 67	9,94 42	35	
	26	9,67 77	9,73 36	Io, 2664	9,94 42	$3+$	
	27	$\begin{array}{lll}9,67 & 80 \\ 9,67 & 82\end{array}$	9,73 9 9 73	10,26 61	9,94 41	33	
	28	9,6782 0,67	9,73 42	io, 2658	9,94 40	32	
	29	9,67 84	9,73 45	10,26 55	9,94 40	31	
28	30	9,67 87	9,73 48	10,26 52	9,94 39	30	61
-		$\log \cos$.	$\log \mathrm{c}$	log tang.	$\log \sin$.	M.	D.

ir 6 Logarithmic Sines and Tangents.

D.	M.	$\log \sin$.	log tang.	$\log \operatorname{cotg}$.	log cos.	,	。
29	0	9,68 56	9,7+ 37	10,25 62	9,94 I8	0	61
	I	9,68 58	9,74 40	10,25 59	9,94 I7	59	
	2	9,68 60	9,74 43	10,25 56	9,94 17	58	
	3	9,68 62	9,74 46	10,25 53	9,94 16	57	
	4	9,68 65	9,74 49	IO,25 5I	9,94 15	56	
	5	9,68 67	9,74 5^{2}	10,25 48	9,94 15	55	
	6	9,68 69	9,74 55	10,25 45	9,94 I4	54	
	7	9,68 72	9,7+ 58	10,25 42	9,9+ 13	53	
	8	9,68 74	9,74 6I	10,25 39	9,94 I3	52	
	9	9,68 76	9,74 64	10,25 36	9,94 12	51	
29	10	9,68 78	9,74 67	10,25 33	9,94 II	50	60
	II	9,68 81	9,74 70	10,25 30	9,94 10	49	
	12	9,68 83	9,74 73	10,25 27	9,94 10	48	
	13	9,68 85	9,74 76	I0,25 24	9.94 09	47	
	14	9,68 87	9,74 79	Io,25 21	9,94 08	46	
	15	9,68 90	9,74 82	10,25 18	9,94 08	45	
	16	9,68 92	9,74 85	Io,25 I5	9,94 07	44	
	17	9,68 94	9,74 88	IO,25 12	9,94 06	43	
	18	9,68 9^{6}	9,74 91	IO,25 O9	9,94 05	42	
	19	9,68 99	9,74 94	10,25 06	9,94 05	4 I	
29	20	9,69 OI	9,74 97	10,25 03	9,94 04	40	60
	2 I	9,69 03	9,75 00	Io,25 00	9,94 03	39	
	22	9,69 o5	9,75 03	Io,24 97	9,94 03	38	
	23	9,69 08	9,75 06	Io,24 94	9,94 02	37	
	24	9,69 10	9,75 09	10,24 91	9,94 O1	36	
	25	9,69 12	9,75 12	IO, 2488	9,94 00	35	
	26	9,69 14	9,75 15	10,24 85	9,94 00	34	
	27	9,69 17	9,75 18	IO,24 82	9,93 99	33	
	28	9,69 I9	9,75 20	10,24 79	9,93 98	32	
	29	9,69 21	9,75 23	10,24 76	9,93 98	3 I	
29	30	9,69 23	9,75 26	10, 2474	9,93 97	30	60
-	,	$\log \cos$.	$\log \operatorname{cotg}$.	log tang.	$\log \sin$.	M.	D.

II Logarithmic Sines and Tangents.

D.	M.	log \sin.	log tang.	$\log \operatorname{cotg}$.	$\log \cos$.	,	-
29	30	9,69 23	9,75 26	IO,24 74	9,93 97	30	60
	3 I	9,69 26	9,75 29	10,2+ 71	9,93 96	29	
	32	9,69 28	9,75 32	10,24 68	9,93 95	28	
	33	9.6930	9,75 35	10,2+ 65	9,93 95	27	
	34	9,69 32	9,75 38	IO, $2+62$	9,93 94	26	
	35	9,69 34	9,75 41	$10,2+59$	9,93 93	25	
	36	9,69 37	9,75 4t	10, $2+56$	9,93 93	24	
	37	9,69 39	9,75 47	$10,2+53$	9,93 92	23	
	38	9,69 +I	9,75 50	10,2+ 50	9,93 91	22	
	39	9,69 43	9,75 53	10,24 47	9,93 90	2 I	
29	40	9,69 46	9,75 56	10,24 44	9,93 90	20	60
	41	9,69 48	9,75 59	10,24 41	9,93 89	19	
	42	9,69 50	9,75 62	10,24 38	9,93 88	18	
	43	9,69 52	9,75 65	10,24 35	9,93 88	17	
	44	9,69 54	9,75 68	10,2432	9,93 87	16	
	45	9,69 57	9,75 70	10,24 29	9,93 86	15	
	46	9,69 59	9,75 73	$10,2+26$	9,93 85	I4	
	47	9,69 6I	9,75 76	$10,2+24$	9,93 85	I3	
	48	9,69 63	9,75 79	10, $2+21$	9,93 84	12	
	49	9,69 65	9,75 82	IO,24 18	9,93 83	II	
29	50	9,69 68	9,75 85	IO,24 15	9,93 83	10	60
	5 I	9,69 70	9,75 88	10,24 12	9,93 82		
	52	9,69 72	9,75 91	10,24 09	9,93 81	8	
	53	9,69 74	9,75 94	10,24 06	9,93 80	7	
	54	9,69 76	9,75 97	$10,2+03$	9,93 80	6	
	55	9,69 79	9,76 oo	10, 2400	9,93 79	5	
	56	9,69 81	9,76 03	10,23 97	9,93 78	4	
	57	9,69 83	9,76 06	10,2394	9,93 77	3	
	58	9,69 85	9,76 o9	IO,23 9r	9,93 77	2	
	59	9,69 87	9,76 II	10,23 88	9,93 76	I	
30	0	9,69 90	9,76 14	IO,23 86	9,93 75	0	60
-	,	$\log \cos$.	$\log \operatorname{cotg}$.	log tang.	$\log \sin$.	M.	D.

D.	M.	$\log \sin$.	log tang.	$\log \operatorname{cotg}$.	$\log \cos$.	,	。
30	0	9,69 90	9,76 14	10,23 86	9,93 75	0	60
	1	9,69 92	9,76 I7	IO, 2383	9,93 75	59	
	2	9,69 94	9,76 20	10,23 80	9,93 74	58	
	3	9,69 96	9,76 23	10,23 77	9,93 73	57	
	4	9,69 98	9,76 26	10,23 74	9,93 72	56	
	5	9,70 OI	9,76 29	10,23 71	9,93 72	55	
	6	9,70 03	9.7632	10,23 68	9,93 7I	54	
	7	9,70 05	9,76 35	10,23 65	9,93 70	53	
	8	9,70 07	9,76 38	10,23 62	9,93 69	52	
	9	9,70 09	9,76 4 I	10,23 59	9,93 69	5 I	
30	10	9,70 II	9,76 43	10,23 56	9,93 68	50	59
	1 I	9,70 14	9,76 46	IO,23 54	9,93 67	49	
	12	9,70 16	9,76 49	Io, 2351	9,93 66	48	
	13	9,70 18	9,76 5^{2}	10,2348	9,93 66	47	
	I4	9,70 20	9,76 55	IO, 2345	9,93 65	46	
	15	9,70 22	9,76 58	I0,23 42	9,93 64	45	
	16	9,70 24	9,76 61	Io,23 39	9,93 64	$4+$	
	17	9,70 27	9,76 64	10,23 36	9,93 63	43	
	18	9,70 29	9,76 67	10,23 33	$9,9362$	42	
	19	9,70 3 I	9,76 70	IO, 2330	9,93 6I	41	
30	20	9,70 33	9,76 72	10,23 27	9,93 6I	40	59
	2 I	9,70 35	9,76 75	10,23 25	9,93 60	39	
	22	9,70 37	9,76 78	10,2322	9,93 59	38	
	23	9,70 40	9,76 81	10,23 19	9,93 58	37	
	24	9,70 42	9,76 84	10,23 16	9,93 58	36	
	25	9,70 44	9,76 87	10,23 13	9,93 57	35	
	26	9,70 46	9,76 90	10,23 10	9,93 56	$3+$	
	27	9,70 48	9,76 93	10,23 07	9,93 55	33	
	28	9,70 50	9,76 96	10,23 204	9,93 55	32	
	29	9,70 52	9,76 99	10,23 OI	9,93 54	3 I	
30	30	9,70 55	9,77 OI	10,22 98	9,93 53	30	59
-		$\log \cos$.	$\log \operatorname{cotg}$.	log tang.	$\log \sin$.	M.	D.

120 Logarithmic Sines and Tangents.

D.	M.	$\log \sin$.	log tang.	$\log \operatorname{cotg}$.	$\log \cos$.	,	-
30	30	9,70 55	9,77 or	10,22 98	9,93 53	30	59
	31	9,70 57	9,77 04	10,22 96	9,93 52	29	
	32	9,70 59	9,77 07	10,22 93	9,93 52	28	
	33	9,70 61	9,77 10	10,22 90	9,93 51	27	
	34	9,70 63	9,77 I3	10,22 87	9,93 50	26	
	35	9,70 65	9,77 16	10,22 84	9,93 49	25	
	36	9,70 67	9,77 I9	10,2281	9,93 49	$2+$	
	37	9,70 70	9,77 22	10,22 78	9,93 48	23	
	38	9,70 72	9,77 25	IO, 2275	9,93 47	22	
	39	9,70 74	9,77 27	10,22 73	9,93 46	2 I	
30	40	9,7076	9,77 30	10, 2270	9,93 46	20	59
	4 I	9,70 7^{8}	9,77 33	10,22 67	9,93 45	19	
	42	9,70 80	9,77 36	10,2264	9,93 44	18	
	43	9,70 82	9,77 39	10,22 61	9,93 43	17	
	44	9,70 85	9,77 42	10,22 58	9,93 43	16	
	45	9,70 87	9,77 45	10,22 55	9,93 42	15	
	46	9,70 89	9,77 48	IO,22 52	9,93 41	It	
	47	9,70 91	9,77 50	10,22 49	9,93 40	I3	
	48	9,70 93	9,77 53	IO,22 47	9,93 40	12	
	49	9,70 95	9,77 56	IO, 2244	9,93 39	II	
30	50	9,70 97	9,77 59	IO, 2241	9,93 38	10	59
	5 I	9,70 99	9,77 62	10,2238	9,93 37	9	
	52	9,7I OI	9,77 65	IO, 2235	9,93 37	8	
	53	9,71 $0+$	9,77 68	10,2232	9,93 36	7	
	54	9,71 06	9,77 7I	10,22 29	9,93 35	6	
	55	9,71 08	9,77 73	10,22 27	9,93 34	5	
	56	9,7x 10	9,77 76	10,22 24	9,93 34	4	
	57	9,71 12	9,77 79	10,22 21	9,93 33	3	
	58	9,71 If	9,77 82	10,22 18	9,93 32	2	
	59	9,71 16	9,7785	10,22 I5	9,93 3I	I	
31	0	9,71 18	9,7788	10,22 12	9,93 3I	0	59
-	,	$\log \cos$.	$\log \operatorname{cotg}$.	log tang.	$\log \sin$.	M.	D

D.	M.	$\log \sin$.	log tang.	$\log \operatorname{cotg}$.	$\log \cos$.	,	-
31	0	9,71 18	9,77 88	I0,22 12	9,93 3I	0	59
	I	9,71 20	9,7791	10,22 09	9,93 30	59	
	2	9,71 23	9,77 93	10,22 06	9,93 29	58	
	3	9,71 25	9,77 96	10,22 04	9,93 28	57	
	4	9,7I 27	9,77 99	IO,22 OI	9,93 28	56	
	5	9,71 29	9,78 02	10,2198	9,93 27	55	
	6	9,7I 31	9,78 05	10,2I 95	9,93 26	54	
	7	9,71 33	9,78 08	10,2I 92	9,93 25	53	
	8	9,7I 35	9,78 II	10,2I 89	9,93 25	52	
	9	9,7I 37	9,78 I3	IO,2I 86	9,93 24	5 I	
31	10	9,7I 39	9,78 16	10,2I 84	9,93 23	50	58
	II	9,7I 41	9,78 I9	Io,2I 81	9,93 22	49	
	12	9,71 43	9,78 22	10,21 78	9,93 21	48	
	13	9,7I 46	9,78 25	10,2I 75	9,93 21	47	
	I4	9,71 48	9,78 28	IO,21 72	9,93 20	46	
	I5	9,71 50	9,78 3 I	IO,21 69	9,93 19	45	
	16	9,71 52	9,73 33	10,21 67	9,93 I8	44	
	17	9,7x 54	9,78 36	10,21 64	9,93 I8	43	
	18	9,7I 56	9,78 79	10,21 6I	9,93 17	42	
	19	9,7I 5^{3}	9,78 42	IO,2I 5^{8}	9,93 I6	4 I	
31	20	9,71 60	9,78 45	IO,2I 55	9,93 I5	40	58
	21	9,71 62	9,78 48	IO,2I 52	9,93 15	39	
	22	9,7I 64	9,78 50	IO,2I 49	9,93 I4	38	
	23	9,7I 66	9,78 53	IO,2I 47	9,93 I3	37	
	24	9,7I 68	9,78 56	IO,2I 44	9,93 12	36	
	25	9,71 70	9,78 59	10,2141	9,93 II	35	
	26	9,7x 73	9,78 62	IO,2I 38	9,93 II	34	
	27	9,71 75	9,78 65	IO,2I 35	9,93 10	33	
	28	9,7x 77	9,78 67	Io,2I 32	9,93 09	32	
	29	9,71 79	9,78 70	IO,2I 30	9,93 08	3 I	
81	30	9,71 81	9,78 73	10,21 27	9,93 08	30	58
-	,	$\log \cos$.	log cotg.	log tang.	$\log \sin$.	M.	D.

122 Logarithmic Sines and Tangents.

D.	M.	$\log \sin$.	log tang.	$\log \cot$.	log cos.		
31	30	9,7181	9,78 73	10,21 27	9,93 08	30	58
	31	9,7183	9,78 76	10,21 24	9,93 07	29	
	32	9,7185	9,78 79	Io, 212 IL	9,93 06	23	
	33	9,7187	9,78 7^{82}	10, 2 I 18	9, 9305	27	
	34	9,7189	9,78 74	Io,2I 15	9,93 05	20	
	35	9,7191	9,7887	Io,2I I3	9,93 of	25	
	36	9,7193	9,78 70	Io, 2110	9, 93 O3	24	
	37	9,71 95	9,78 73	Io,2I 07	9,93 02	23	
	38 39	9,71 9,71 1		$\begin{array}{\|ll} 10,21 & 0.4 \\ 10,21 & 01 \end{array}$	$\begin{aligned} & 9,93 \text { OI } \\ & 9,93 \text { oI } \end{aligned}$	22	
31	40	9,72 or	9,79 or	10,20 9^{8}	9,93 oo	20	58
	41	9,72 ${ }^{\text {2 }}$	9,79 o_{4}	$10,209^{5}$	9,92 99	19	
	42	9,72 $\mathbf{7}$ 05	9,79 07	Io,20 93	9,92 98	13	
	43	9,72 07	9,79 10	10,20 90	9,92 98	17	
	4	9,72 10	9,79 13	10,20 87	9,92 97	16	
	45	9,72 12	9,79 16	10,20 84	9,92 96	15	
	$4{ }^{6}$	9,72 $1+$	9,79 18	Io,20 8 I	9,92 95	It	
	47	9,72 16	9,79 21	10,20 79	9,92 97	13	
	43	9,72 18	9,79 24	10,20 76	9,92 94	12	
	49	9,72 20	9,79 27	10, 2073	9,92 93	II	
31	50	9,72 22	9,79 30	10,20 70	9,92 92	10	58
	51	9,72 2.4	0,79 33	10,20 67	9,92 91	9	
	52	9,72 25	9,79 35	10,20 65	9,92 90	8	
	53	9,7\% 218	9,79 38	10,2062	9,92 90	7	
	54	9,72 30	9,79 4 I	10,20 59	9,92 89	6	
	55	9,72 32	9,79 $4+$	10,20 56	9,92 88	5	
	56	9,72 34	9,79 47	10,20 53	9,9287	4	
	57	9,72 35	9,79 49	10,20 50		3	
	58	9,72 38	9,79 52	10,20 48	9,92 86	2	
	59	9,72 40	9,79 55	10,20 45	9,92 85	I	
32	0	9,72 42	9,79 58	Io,20 42	9,92 8 +	0	58
		log	$\log \operatorname{cotg}$.	log tans.	\log sin.	M.	D.

D.	M.	los \sin.	log tang.	$\log \operatorname{cotg}$.	log cos.	,	-
32	0	9,72 42	9,79 58	10,20 42	9,92 8 +	0	58
	1	9,72 44	9,79 61	10,20 39	9,92 83	59	
	2	9,72 45	9,79 63	10,20 36	9,92 83	53	
	3	9,72 48	9,79 66	$10,203+$	9,92 82	57	
	4	9,72 50	9,79 69	$10,203 \mathrm{I}$	$9,9{ }^{2} 8 \mathrm{I}$	56	
	5	9,72 52	9,79 72	10,20 28	9,92 80	55	
	6	9,72 54	9,79 75	10,20 25	9,92 79	54	
	7	9,72 56	9,79 78	10,20 22	9,92 79	53	
	8	9,72 58	9,79 80	10,2020	9,92 78	52	
	9	9,72 60	9,79 83	10,20 17	9,92 77	5 I	
32	10	9,72 62	9,79 86	IO, $20 \mathrm{I}+$	9,92 76	50	57
	II	9,72 64	9,79 89	10,20 I [9,92 75	49	
	12	9,72 66	9,79 92	10,20 08	2,92 75	48	
	I3	9,72 68	9,79 94	10,20 06	9,9274	47	
	It	9,72 70	9,79 97	10,20 03	9,92 73	46	
	15	9,72 72	9,80 00	10,20 00	9,92 72	45	
	16	9,72 74	9,80 03	Io, I9 97	9,92 71	44	
	17	9,72 75	9,80 06	Io, I9 94	9,92 71	43	
	13	9,72 78	9,80 08	10, I9 92	9,92 70	42	
	19	9,72 80	9,80 It	Io, 1980	9,92 69	4 I	
32	20	9,72 82	9,80 14	10,19 86	9,92 68	40	57
	2 I	9,72 84	9,80 17	10, I9 83	9,92 67	39	
	22	9,72 86	9,80 19	IO, 1980	9,92 67	38	
	23	9,72 88	9,80 22	10,19 78	9,92 66	37	
	24	9,72 90	9,80 25	IO, I9 75	9,92 65	36	
	25	9,72 92	9, 8o 28	Io, 19 72	9,92 64	35	
	26	9,72 94	9,80 31	10,19 69	9,92 63	$3+$	
	27	9,72 96	9,80 33	10, I9 66	9,92 63	33	
	28	9,72 98	9,80 36	10, 19 $6+$	$9,9262$	32	
	29	9,73 00	9,8039	10, 1961	9,92 61	3 I	
32	30	9,73 02	9,80 42	Io, 19 58	9,92 60	30	57
\bigcirc	,	log cos.	log cotg.	log tang.	$\log \sin$.	M.	D.

124 Logarithmic Sines and Tangents.

D.	M.	$\log \sin$.	log tang.	$\log \operatorname{cotg}$.	$\log \cos$.		
32	30	9,73 02	9,80 42	Io, I9 5^{8}	9,92 60	30	57
	31	9,73 04	9,80 45	Io, 19 55	9,92 59	29	
	32	9,73 06	9,80 47	Io,19 53	9,92 59	28	
	33	9,73 08	9,80 50	Io, I9 50	$\begin{array}{llll}9,92 & 53\end{array}$	27 26	
	$3+$	9,73 10	9,80 53	10,19 47	9,92 57	26	
	35	9,73 72	9,80 56	Io,19 44	9,92 56	25	
	35	9,73 14	9,80 51	Io, 1941	9,92 55	24	
	37 33	9,73 0,73 9,78 18	9,806r	$\begin{array}{ll}\text { 10, I9 } & 39 \\ \text { 10, } 19 & 36\end{array}$	$\begin{array}{ll}9,92 & 55 \\ 0,02 & 5+\end{array}$	23 22	
	39	9,73 20	9,80 67	Io,19 $\begin{aligned} & \text { Io, } 19 \\ & \text { Io } \\ & \text { It }\end{aligned}$	9,92 9,92 9,93	21	
32	40	9,73 22	9,80 70	Io,19 30	9,92 52	20	57
	4	9,73 24	9,80 72	10,19 27	9,92 5 I	19	
	42	9,73 26	9,80 75	10,19 25	9,92 5I	18	
	43	9,73 9,73 0,73	9,80 , 80 8	Io,19 ${ }^{\text {I2 }}$	9,92 50	I7	
	44	9,73 30	9,80 81	10,19 19	9,92 49	I6	
	45	9,73 32	9,80 84	10,19 16	9,92 48	15	
	46	9,73 34	9,80 85	10,19 It	9,92 47	It	
	47	9,73 36	9,80 89	10,19 II	9,92 46	I3	
	48	9,73 38	9,80 92	Io, I9 os	9,92 46	12	
	49	9,73 40	9,80 95	10,19 05	9,92 45	11	
32	50	9,73 42	9,80 97	10,19 03	9,92 44	10	57
	51	9,73 43	9,8I 00	10,19 00	9,92 43	$\begin{aligned} & 9 \\ & 8 \end{aligned}$	
	52	9,73 45	9,8I 03	Io,18 97	9,92 42	8	
	53	9,73 47	9,8I 06	io, 1894	9,92 42	7	
	54	9,73 49	9,8I O9	10,18 91	9,92 41	6	
	55	9,73 71	9, 8111	10,1889	9,92 40	5	
	56	9,73 53 0,73 5 ,	9,81 14	Io, 1886	9,92 39	4	
	57 58	9,73 0,73 0,75	$\begin{array}{ll}9,81 & 17 \\ 0,81 & 20\end{array}$	$\left\lvert\, \begin{array}{lll} 10,18 & 83 \\ \hline \end{array}\right.$	9,9238 9,92	3	
	59	9,73 59	9,81 22	10, 187^{8}	$\begin{array}{ll}9,92 & 37 \\ 9,92 & \end{array}$	I	
33	0	9,73 6I	9,81 25	10,18 75	9,92 36	0	57
-	,	log cos.	log cotg.	log tang.	$\log \sin$.	M.	D.

Logarithmic Sines and Tangents.

D.	M.	$\log \sin$.	log tang.	$\log \operatorname{cotg}$.	$\log \cos$.	,	。
33	0	9,73 6I	9,81 25	IO,I8 75	9,92 36	0	57
	I	9,73 63	9,81 28	10,18 72	9,92 35	59	
	2	9,73 65	9,81 31	10,18 69	9,92 34	58	
	3	9,73 67	9,81 33	IO, I8 66	9,92 33	57	
	4	9,73 69	9,8I 36	IO, 1864	9,92 33	56	
	5	9,73 71	9,8I 39	10, 18 6I	9,92 32	55	
	6	9,73 73	9,8I 42	IO, IS 58	9,92 3 I	54	
	7	9,73 75	9,8I 44	IO, I8 55	9,92 30	53	
	8	9,73 77	9,81 47	IO, I8 53	9,92 29	52	
	9	$9,73 \quad 78$	9,8I 50	IO, 1850	9,92 28	5 I	
33	10	9,73 80	9,8I 53	IO, 1847	9,92 28	50	56
	11	9,73 82	9,81 56	IO, 1844	9,92 27	49	
	12	9,73 84	9,8I 58	IO, I8 42	9,92 26	48	
	13	9,73 86	9,81 61	IO, I8 39	9,92 25	47	
	14	9,73 88	9,8I 64	IO, 1836	$9,92 \quad 24$	46	
	15	9,73 90	9,81 67	IO, I8 33	9,92 23	45	
	16	9,73 92	9,81 69	Io, 183 I	9,92 23	44	
	17	9,73 94	9,8I 72	IO, I8 28	9,92 22	43	
	18	9,73 96	9,81 75	IO, I8 25	9,92 21	42	
	19	9,73 98	9,81 78	IO, 1822	9,92 20	4 I	
33	20	9,74 00	9,81 80	10,18 20	9,92 19	40	56
	2 I	9,74 02	9,81 83	10, 1817	9,92 19	39	
	22	9,74 04	9,81 86	IO, 18 I4	9,92 18	38	
	23	9,74 05	9,81 89	IO,I8 II	9,92 17	37	
	24	9,74 07	9,8I 9 I	IO, 18 O9	9,92 I6	36	
	25	9,74 09	9,81 94	10, 18 O6	9,92 15	35	
	26	9,74 II	9,81 97	10,18 O3	9,92 14	34	
	27	9,74 I3	9,82 00	IO, 18 OO	9,92 I4	33	
	28	9,74 I5	9,82 02	10,17 98	9,92 I3	32	
	29	9,74 I7	9,82 05	10,17 95	9,92 12	3 I	
33	30	9,74 19	9,82 08	10,17 92	9,92 II	30	56
	,	$\log \cos$.	$\log \operatorname{cotg}$.	log tang.	$\log \sin$.	M.	D.

I26 Logarithmic Sines and Tangents.

D.	M.	$l o g \sin$.	log tang.	$\log \operatorname{cotg}$.	$\mathrm{log} \operatorname{cos.}$,	-
34	0	9,74 76	9,82 90	10, 7710	9,91 86	0	56
	I	9,74 77	9,82 93	10,17 07	9,91 85	59	
	2	9,74 79	9,82 95	10,17 05	9,9184	58	
	3	9,74 8I	9,82 98	IO, I7 02	9,9183	57	
	4	9,7483	9,83 ОI	10,16 99	9,91 82	56	
	5	9,74 85	9,83 03	Io, 169^{6}	9,91 8I	55	
	6	9,74 87	9,83 06	10,16 9+	9,91 81	54	
	8	9,74 89	9,83 09	Io, 1691	9,91 80	53	
	8	9,74 9r	9,83 12	Io, 1688	9,91 79	52	
	9	9,74 9^{2}	$9,83 \mathrm{I} 4$	Io, 1686	9,91 78	5 I	
34	10	9,74 94	9, $83 \quad 17$	Io, 1683	9,91 77	50	55
	II	9,74 96	9,83 20	10,16 80	9,91 76	49	
	12	9,74 98	9,83 22	10, 16 77	9,91 75	48	
	13	9,75 00	9,83 25	IO,I6 75	9,01 75	47	
	14	9,75 02	9,83 28	IO,I6 72	9,91 74	46	
	15	9,75 04	9,83 31	IO, 1669	9,91 73	45	
	16	9,75 05	9,83 33	10,16 67	9,91 72	44	
	17	9,75 07	9,83 36	IO, I6 64	9,91 71	43	
	18	9,75 09	9,83 39	Io, 1661		42	
	I9	9,75 II	9,83.4I	IO,I6 5^{8}	9,91 69	4I	
34	20	9,75 73	9,83 44	IO, I6 56	9,91 69	40	55
	21	9,75 15	9,83 47	IO, I6 53	9,91 68	39	
	22	9,75 16	9,83 50	IO, I6 50	9,91 67	38	
	23	9,75 18	9,83 52	IO,I6 4^{3}	9,91 66	37	
	24	9,75 20	9,83 55	IO,I6 45	9,91 65	36	
	25	9,75 22	9,83 5^{8}	IO, 1642	9,91 64	35	
	26	9,75 24	9,83 60	Io, I6 39	9,9I 63	$3+$	
	27	9,75 26	9,83 63	10, 16 37	9,91 62	33	
	28	9,75 28	9,83 66	IO, $163+$	9,91 62	32	
	29	9,75 29	$9,83 \quad 69$	IO, 163 I	9,91 61	3 I	
34	30	9,75 31	9,83 71	IO, 1629	9,91 60	30	55
-	,	$\log \cos$.	log cotg.	log tang.	$\log \sin$.	M.	D.

128 Logarithmic Sines and Tangents.

D.	M.	$\log \sin$.	log tang.	\log cotg.	log cos.		。
34	30	9,75 3T	9,83 7I	Io, 1629	9,91 60	30	55
	31	9,75 33	9, 837	10,16 26	9,9159	29	
	32	9,75 35	9,83 77	10,16 23	9,91 58	28	
	33	9,75 37	9,83 79	10,16 10	9,9157	27	
	34	9,75 39	9,83 82	Io, 16 I8	9,91 56	26	
	35	9,75 40	9, 8385	10, 16 I5	9,91 56	25	
	36	9,75 42	9,83 88	10,16 12	9,91 55	24	
	37	9,75 44	9,83 90	10,16 10	9,9154	23.	
	38	9,75 46	9, 83.93	10,16 07	9,91 53	22	
	39	9,75 48	9,83 96	10,16 04	9,9r 5^{2}	21	
34	40	9,75 50	9,83 g^{8}	10,16 02	9,91 51	20	55
	4 I	9,75 51	9,84 OI	10,15 99	9,91 50	19	
	42	9,75 53	9,84 04	Io,15 96	9,91 49	18	
	43	9,75 55	9,84 06	10,15 93	9,91 49	I7	
	44	9,75 57	9,84 09	Io, I5 91	9,91 48	16	
	45	9,75 59	9,84 12	10,15 88	9,91 47	15	
		9,75 60	9,84 15	10,15 85	9,91 46	It	
	47	9,75 62	9,84 17	10, 1583	9,01 45	I3	
	48	$\begin{array}{lll}9,75 & 64 \\ 9,75 & 66\end{array}$	9,84 9,84 9	10,15 80	9,91 44 9,91	12	
34	50	9,75 68	9,84 25	10,15 75	9,91 42	10	55
	51	9,75 70	9,84 28	10, 1572	9,91 42	$\stackrel{9}{8}$	
	52	0,75 71	9,84 31	10,15 69	9,91 41	8	
	53	9,75 73	9, 8433	10, 15.67	9,91 40	$\begin{aligned} & 7 \\ & 6 \end{aligned}$	
	$5+$	9,75 75	9,84 36	10,15 64	9,91 39	6	
	55	9,75 77	9,84 39	10,15 61	9,91 38	5	
	56	9,75 79	9,84 4 I	10,15 53	9,91 37	4	
	57	9,75 80	9,84 44	10, 15 56	9,91 36	3	
	58	9,75 82	9,84 47	$\begin{array}{ll}10,15 & 53\end{array}$	9,9135	2	
	59	9,75 84	9,84 50	Io, 1550	9,91 34	I	
35	0	9,75 86	9,84 52	10,15 48	9,91 34	0	55
	,	log cos.	log cotg.	log tang.	$\log \sin$.	M.	D.

D.	M.	log sin.	log tang.	$\log \operatorname{cotg}$.	log cos.	,	。
35	0	9,75 86	9,84 52	IO, 1548	9,9I 34	0	55
	I	9,75 88	9,84 55	IO,15 45	9,91 33	59	
	2	9,75 89	9,84 5^{8}	IO, 1542	9,91 32	58	
	3	9,75 91	9,84 60	Io, 1540	9,9I 3I	57	
	4	9,75 93	9,84 63	IO, 1537	9,91 30	56	
	5	9,75 95	9,84 66	10,15 34	9,91 29	55	
	6	9,75 97	9,84 68	IO,I5 32	9,91 28	54	
	7	9,75 98	9,84 71	IO, 1529	9,91 27	53	
	8	9,76 00	9,84 74	IO, I5 26	9,91 27	52	
	9	9,76 02	9,84 76	10, 1524	9,91 26	51	
35	10	9,76 04	9,84 79	IO, 15 2I	9,91 25	50	54
	II	9,76 06	9,84 82	IO,I5 18	9,91 24	49	
	12	9,76 07	9,84 84	Io, 1515	9,91 23	48	
	13	9,76 09	9,84 87	IO, 5513	9,91 22	47	
	If	9,76 II	9,84 90	IO,I5 IO	9,91 21	46	
	15	9,76 I3	9,84 92	10, 1507	9,91 20	45	
	16	9,76 I5	9,84 95	Io, 1505	9,91 I9	44	
	17	9,76 16	9,84 98	IO,15 02	9,91 I8	43	
	18	9,76 18	9, 85 OI	IO,I4 99	9,91 18	42	
	I9	9,76 20	9,85 03	Io,14 97	9,91 I7	4 I	
35	20	9,76 22	9,85 06	IO,I4 94	9,91 16	40	54
	2 I	9,76 24	9,85 o9	10,14 91	9,91 15	39	
	22	9,76 25	9,85 II	Io,14 89	9,91 I4	38	
	23	9,76 27	9,85 I4	IO,14 86	9,91 I3	37	
	24	9,76 29	9,85 17	IO, 1483	9,91 12	36	
	25	9,76 31	9,85 \quad I9	IO, 148 I	9,9I II	35	
	26	9,76 32	9,85 22	10,14 78	9,91 Io	34	
	27	9,76 34	9,85 25	IO, I4 75	9,91 1o	33	
	28	9,76 36	9,85 27	IO,I4 73	$9,91 \circ 9$	32	
	29	9,76 38	9,85 30	IO,I4 70	9,91 08	3 I	
35	30	9,76 39	9,85 33	10,14 67	9,91 07	30	54
-	,	$\log \cos$.	$\log \operatorname{cotg}$.	log tang.	$\log \sin$.	M.	D.

130 Logarithmic Sines and Tangents.

D.	M.	$\log \sin$.	log tang.	$\log \operatorname{cotg}$.	$\log \cos$.		-
35	30	9,76 39	9,85 33	10, If 67	9,91 07	30	54
	3 I	9,76 41	9, 8533	IO, I4 65	9,91 06	29	
	32	9,76 43	9,85 38	10, It 62	9,91 05	28	
	33	9,76 45	9,85 4T	10,14 59	9,91 of	27	
	34	9,76 47	9, 8543	IO, If 57	9,91 03	26	
	35	9,76 48	9,85 46	IO, It 54	9,91 02	25	
	36	9,76 50	9,85 49	IO,14 51	9,91 or	24	
	37	9,76 52	9,85 51	IO,14 49	9,91 oo	23	
	38	9,76 54	9,85 54	IO, I4 45	9,91 oo	22	
	39	9,76 55	9,85 57	IO,I4 43	9,90 99	2 I	
35	40	9,76 57	9,85 59	IO,I4 41	9,90 9^{8}	20	54
	4 I	9,76 59	9,85 62	10,1+ 33	9,90 97	I9	
	42	9,76 6I	9,85 65	IO, I4 35	9,90 96	18	
	43	9,76 62	9,85 67	IO, I4 33	9,90 95	17	
	4	$9,766+$	9,85 70	IO, I4 30	9,90 94	16	
	45	9,76 66	9,85 73	10, I. 27	9,90 93	I5	
	46	9,76 68	9,85 75	IO, It 25	9,90 92	It	
	47	9,76 69	9,85 78	10, 14 22	9,90 9I	13	
	48	9,76 7r	9,85 81	Io, I4 I9	9,90 91	12	
	49	9,76 73	9,85 83	IO, 14 I7	9,90 90	II	
35	50	9,76 75	9,85 86	IO,I4 It	9,90 89	10	54
	51	9,76 76	9,85 89	10, 14 II	9,90 88	9	
	52	9,76 78	9,85 91	Io, It O9	9,90 87	8	
	53	9,76 80	9,85 94	IO, I4 OS	9,90 86	6	
	54	9,76 82	9,85 97	IO, $14{ }^{\text {O }}$	9,90 85	6	
	55	9,76 78	9,85 99	Io, It or	9,90 8t	5	
	56	9,76 85	9,86 02	10,13 99	9,90 83	4	
	57	9,76 87	9,86 05	IO,I3 95	9,90 82	3	
	58	9,76 89	9,86 07	10, I3 93	9,90 81	2	
	59	9,76 90	9,86 10	10, 1390	9,90 80	I	
36	0	9,76 92	9,86 13	10, 1387	9,90 80	0	54
-		log cos.	$\log \operatorname{cotg}$.	log tang.	$\log \sin$.	M.	D.

Logarithmic Sines and Tangents.

D.	M.	$\log \sin$.	log tang.	log cotg.	$\log \cos$.		-
36	0	9,76 92	9,86 13	IO, 1387	9,90 80	0	54
	I	9,76 94	9,86 15	IO, 1385	9,90 79	59	
	2	9,76 96	9,86 18	IO, 1382	9,90 78	58	
	3	9,76 97	9,86 2 I	IO, I3 79	9,90 77	57	
	4	9,76 99	9,86 23	IO, I3 77	9,90 76	56	
	5	9,77 OI	9,86 26	10,13 74	9,90 75	55	
	6	9,77 03	9,86 28	IO, 137 I	9,90 74	$5+$	
	7	9,77 04	9,86 31	10, I3 69	9,90 73	53	
	8	9,77 06	9,86 34	10, I3 66	9,90 72	52	
	9	9,77 08	9,86 36	10,13 63	9,90 71	5 I	
36	10	9,77 09	9,86 39	Io, 1361	9,90 70	50	53
	II	9,77 II	9,86 42	IO, I3 58	9,90 69	49	
	12	9,77 I3	9,86 44	IO, I3 55	9,90 68	48.	
	13	9,77 15	9,86 47	IO, I3 53	9,90 68	47	
	14	9,77 I6	9,86 50	10,13 50	9,90 67	46	
	I5	9,77 18	9,85 52	IO, I3 48	9,90 66	45	
	16	9,77 20	9,86 55	IO, 13 45	9,90 65	44	
	17	9,77 22	9,86 58	IO, I3 42	9,90 64	43	
	18	9,77 23	9,86 60	IO, I3 40	9,9063	42	
	19	9,77 25	9,86 63	IO, I3 37	9,90 62	4 I	
36	20	9,77 27	9,86 66	IO, I3 34	9,90 6r	40	53
	21	9,77 28	9,86 68	10,13 32	9,90 60	39	
	22	9,77 30	9,86 71	IO, 1329	9,90 59	38	
	23	9,77 32	9,86 74	IO, I3 26	9,90 58	37	
	24	9,77 34	9,86 76	IO, I 324	9,90 57	36	
	25	9,77 35	9,86 79	IO, I3 21	9,90 56	35	
	26	9,77 37	9,86 81	IO,13 I8	9,90 55	34	
	27	9,77 39	9,86 84	10, 13 I6	9,90 55	33	
	28	9,7740	9,86 87	10, 13 I3	9,90 54	32	
	29	9,77 42	9,86 89	IO, 13 If	9,90 53	31	
36	30	9,77 44	9,86 92	IO, I3 08	9,90 52	30	53
-	,	$\log \cos$.	$\log \operatorname{cotg}$.	log tang.	$\log \sin$.	M.	D.

132 Logarithmic Sines and Tangents.

D.	M.	$\log \sin$.	log tang.	\log cotg.	$\log \cos$.		
37	0	9,77 95	9,87 71	10, 1229	9,90 23	0	53
	I	9,77 96	9, 8774	10, 1226	9,90 22	59	
	2	9,77 9^{3}	9, 8776	10,1224	9,90 22	58	
	3	9,78 co	9,87 79	10,1221	9,90 21	57	
	4	9,78 OI	9,87 82	10,12 18	9,90 20	56	
	5	9,78 03	9,87 84	10,12 16	9,90 $\quad 19$	55	
	6	9,78 05	9,87 87	IO, 1213	9,90 18		
	7	9,78 06	$\begin{array}{llll}9,87 & 89 \\ 0 & 87 & 9\end{array}$	Io, 12 Io	9,90 17	53 52	
	8	9,78 9,78 a 10	9,87 9,87 8		9,90 16 9,90	52	
37	10	9,78 II	9,87 97	Io, 12 O3	9,90 14	50	52
	11	9,78 13	9,88 oo	10,12 120	9,90 13	49	
	12	9,78 75	9,88 03	Io,II 97	9,90 12		
	13	9,78 16	9,88 05	Io, II 95	9,90 II	47	
	14	9,78 78	9,88 08	10,II 9^{2}	9,90 10	46	
	15	9,78 20	9,88 10	ro,II 89	9,90 09	45	
	16	9,78 2 I	9,88 13	Io, II 87	9,90 08	44	
	17	9,78 23	9,88.16	Io, II 84	9,90 07	43	
	18	9,78 25	9,88 18	IO, II 82	9,90 o6	42	
	19	9,78 26	9,88 2 II	io, II 79	9,90 05	41	
37	20	9,78 28	9,88 24	Io, ix 76	9,90 04	40	52
	21	9,78 780	9,88 25	Io, II 74	9,90 03	$\begin{aligned} & 39 \\ & 38 \end{aligned}$	
	22	9,78 71	9,88 29	10,II 71	9,90 02	38	
	23	9,78 33	9,88 31	Io, II 68	9,90 or	37	
	24	9,78 75	9,88 34	Io, II 66	9,90 oo	36	
	25	9,78 36	9,88 37	Io, II 63	9,89 99	35	
	26	9,78 38	9,88 39	Io, il 61	9,89 98	34	
	27	9,78 79	9,88 42	Io, II 58	9,89 98	33	
		9,78 0,78 13	9,88 45	Io, II 55	9,8997 9,89	32	
		9,78 43	9,88 47	10, II 53			
37	30	9,78 44	9,88 50	10,II 50	9,89 95	30	52
		log cos.	\log cotg.	log tang.	$\log \sin$.	M.	

134 Logarithmic Sines and Tangents.

D.	M.	log \sin.	log tang.	\log cotg.	\log cos.		
37	30	9,78 44	9,88 50	Io,11 50	9,89 95	30	52
	31	9,78 46	9,888 52	Io, If 48	9,89 94	29	
	32	9,78 48	9,8885	10, II 45	9,89 93	28	
	33	9,78 49	9,88 53	10, II 42	9, 899^{2}	27	
	34	9,78 51	9,88 60	io, II 40	9,89 91	26	
	35	9,78 53	9,88 63	IO, II 37	9,89 90	25	
	36	9,78 74	9,88 65	Io, II 34	9,89 89	24	
	37 38	9,78 9,78 9, 98	9,88 9,88 98 7	10, II 32	9,8988 9,898	23 22 2	
	39	9,78 59	9,88 73	IO,II 27	9,89 86	2 I	
37	40	9,78 71	9,88 76	Io,jil $2+$	9,89 85	20	52
	4 I	9,78 62	9,88 79	ro, II 21	9,89 84	19	
	42	9,78 6_{4}	9,88 81	io, il I9	9, 8983	IS	
	43	9,78 66	9,88 84	ro,II 16	9,89 82	17	
	4	9,78 67	9,88 86	io, II It	9,89 8I	16	
	45	9,78 79	9,88 89	Io, II II	9,89 80	15	
	46	9,78 71	9,88 92	io,il 03	9,89 79	It	
	47	9,78 72	9,88 94	Io, I1 ob	9,89 78	13	
	48	9,78 74	9,88 97	Io, II O3	9,89 77	I2	
	49	9,78 76	9,88 99	Io, II or	9,89 76	II	
37	50	9,78 77	9,89 02	ro, io 9^{8}	9,89 75	10	52
	5 5	9,78 79	9,89 05	Io, io 95	9, 8974	$\begin{aligned} & 9 \\ & 8 \end{aligned}$	
	52	9, 7880	9,89 07	10,10 93	9, 8973	8	
	53	9,78 72	9,89 10	10, 1090	9, 8972	6	
	54	9,78 84	9,89 I2	10,10 87	9,89 71	6	
	55	$\begin{array}{llll}9,78 & 85 \\ 0,78 & 8\end{array}$	$\begin{array}{lll}9,89 & 15 \\ 0,89\end{array}$			5	
	56	9,78 9 9 9 88	$\begin{array}{ll}9,89 & 18 \\ 0,89 & 20\end{array}$	$\left.\begin{array}{\|l\|l\|} \text { Io, 1o } & 82 \\ \text { TO, } 10 & 80 \end{array} \right\rvert\,$	9,8969 9,89 88	4	
	$\left\|\begin{array}{\|} 57 \\ 58 \end{array}\right\|$	9,788 9,78 90	$\begin{array}{ll}9,89 \\ 9,89 & 20 \\ 9\end{array}$	10,10 80	${ }_{9} 9,8967$	2	
	59	9,78 92	9,89 25	io, 1074	9,89 66	I	
38	0	9,78 93	9,89 28	10,10 72	9,89 65	0	52
。	,	$\log \mathrm{c}$	log cotg.	log tang.	$\log \sin$.	M.	D.

Logaritimic Sines and Tangents.

D.	M.	$\log \sin$.	log tang.	$\log \operatorname{cotg}$.	$\log \cos$.	,	-
38	0	9,78 93	9,89 28	10,10 72	9,89 65	0	52
	I	9,78 95	9,89 3I	Io, 1069	9,89 64	59	
	2	9,78 97	9,89 33	Io, 1067	9,89 63	58	
	3	9,78 9^{8}	9,89 36	10,10 64	9,89 62	57	
	4	9,79 00	9,8938	10, 1061	9,89 61	56	
	5	9,79 OI	9,89 41	IO, IO 59	9,89 60	55	
	6	9,79 03	9,89 $4+$	IO, IO 56	9,89 59	54	
	7	9,79 05	9,89 46	Io, 1054	9,89 5.8	53	
	8	9,79 06	9,89 49	IO, IO 51	9,89 57	52	
	9	9,79 08	$9,895 \mathrm{I}$	IO, 1048	9,89 56	5 I	
38	10	9,79 09	9,89 54	IO, IO 46	9,89 55	50	51
	II	9,79 II	9,89 57	IO, IO 43	9,89 54	49	
	12	9,79 13	9,89 59	Io, IO 41	9,89 53	48	
	13	9,79 I4	9,89 62	10,10 38	9,89 52	47	
	14	9,79 I6	9,89 64	IO, IO 35	9,89 51	46	
	15	9,79 I8	9,89 67	10,10 33	9,89 50	45	
	16	9,79 19	9,89 70	10,10 30	9,89 49	44	
	17	9,79 21	9,89 72	Io, IO 28	9,89 48	43	
	18	9,79 22	9,89 75	Io, 10 25	9,89 47	42	
	19	9,79 24	9,89 77	10,10 22	9,89 46	4 I	
38	20	9,79 26	9,89 80	10, Io 20	9,89 45	40	51
	21	9,79 27	9,89 83	Io, IO 17	9,89 44	39	
	22	9,79 29	9,89 85	Io, IO 15	9,89 43	38	
	23	9,79 30	9,89 88	IO, Io 12	9,89 42	37	
	24	9,79 32	9,89 90	Io, IO O9	9,89 4I	36	
	25	9,79 33	9,89 93	10, 1007	9,89 40	35	
	26	9,79 35	9,89 96	10, IO 04	9, 8939	34	
	27	9,79 37	9,89 98	IO, IO 02	9,8938	33	
	28	9,79 38	9,90 or	$10,0999$	$9,89 \quad 37$	32	
	29	9,79 40	9,90 03	Io,09 9^{6}	9,8936	31	
38	30	9,79 4I	9,90 06	Io,09 94	9,89 35	30	51
-	,	$\log \operatorname{cos.}$	$\log \operatorname{cotg}$.	log tang.	$\log \sin$.	M.	D.

I36 Logarithmic Sines and Tangents.

D.	M.	$\log \sin$.	log tang.	$\log \operatorname{cotg}$.	log cos.		
38	30	9,79 41	9,90 06	Io,09 94	9,89 35	30	51
	31	9,79 43	9,90 09	10,09 9r	9,89 34	29	
	32	9, 7945	9,90 II	10,09 89	9,89 33	28	
	33	$\begin{array}{ll}9,79 & 46 \\ 0,79 & 48\end{array}$	9,90 I4 9,90	10,0985 10,09 1	$\begin{array}{ll}9,89 & 32 \\ 9,89 & 31\end{array}$	27 26	
	37	9,79 48	9,90 16	10,09 $8+$	9,89 3 T	26	
	35	9,79 49	9,90 I9	to,09 8r	9,89 30	25	
	36	9,79 51	9,90 22	10,09 73	9,89 29	$2+$	
	37	9,79 53	9,90 24	10,09 76	9, 8928	23	
	33	9,79 54	9,90 27	10,09 73	9,89 9 0,89 26	22	
	39	9,79 56	9,90 29	10,09 7 I	9,89 26	21	
38	4.0	9,79 57	9,90 32	10,09 68	9,89 25	20	51
	4 T	9,79 59	9,90 35	10,09 65	9, 8924	19	
	42	9,79 60	9,90 37	10,09 63	9,89 23	18	
	43	9,79 62	9,90 40	10,09 60	9,89 22	17	
	44	9,79 64	9,90 42	10,09 53	9, 8921	I6	
	45	9,79 65	9,90 45	Io,09 55	9, 8920	15	
		9,79 67	9,90 47	10,09 52	9,89 19	It	
	47	9,79 68	9,90 50	10,09 50	9,89 18		
	48	9,79 70	9,90 53	Io,09 47	9,89 17	12	
	49	9,79 71	9,90 55	Io,09 45	9,89 16	1 I	
38	50	9,79 73	9,90 58	10,09 42	9,89 15	10	51
	51	9,79 75	9,90 60	10,09 40	9,89 14	9	
	52	9,79 76	9,90 63	10,09 37	9,89 13	8	
	53	9,79 78	9,90 66	ro,o9 34	9,89 12	7	
	54	9,79 79	9,90 63	10,09 32	9,89 II	6	
		9,79 81	9,90 71	10,09 <9	9,89 10	5	
	56	9,79 82	9,90 73	10,09 27	9,89 09	4	
	57	9,79 74	9,90 75	Io,09 24	9,89 08	3	
	58	9,79 86	9,90 78	10,09 21	$\text { 9,89 } 07$	2	
	59	9,79 87	9,90 81	io,09 I9	$9,8906$		
39	0	9,79 89	9,90 84	10,09 16	9,89 05	0	51
		log cos.	log cotg.	log tang.	$\log \sin$.	M.	D.

Logaritlmic Sines and Tangents.

D.	M.	$\log \sin$.	log tang.	$\log \operatorname{cotg}$.	$\log \cos$.	,	-
39	0	9,79 89	9,90 $8+$	10,09 16	9,89 05	0	51
	I	9,79 90	9,90 86	10,09 I4	9,89 04	59	
	2	9.799^{2}	9,90 89	10,09 II	9,89 03	58	
	3	9,79 93	9,90 91	Io,09 09	9,89 02	57	
	4	9,79 95	9,90 94	10,09 06	9,89 OI	56	
	5	9,79 96	9,90 97	10,09 03	9,89 00	55	
	6	9,79 98	9,90 99	10,09 OI	9,88 99	$5+$	
	7	9,80 00	9,91 02	Io,08 98	9,88 98	53	
	8	9,80 or	9,91 04	10,08 96	9,88 97	52	
	9	$9,80 \quad 03$	9,91 07	Io,08 93	9,88 96	5 I	
39	10	9,80 04	9,91 O9	10,08 90	9,88 95	50	50
	II	9,80 06	9,9I I2	Io,08 88	9,88 94	49	
	12	9,80 07	9,91 I5	Io,08 85	9,88 93	48	
	13	9,80 o9	9,91 I7	10,08 83	9,88 92	47	
	14	9,80 10	9,91 20	10,08 80	9,88 91	46	
	I5	9,80 12	9,91-22	10,08 78	9,88 90	45	
	16	9,80 I4	9,9I 25	10,08 75	9,88 89	44	
	I7	9,80 I5	9,91 28	10,08 72	9,88 87	43	
	18	9,80 17	9,91 30	Io,08 70	9,88 86	42	
	19	9,80 18	9,91. 33	10,08 67	9,88 85	4 I	
39	20	9,80 20	9,91 35	10,08 65	9,88 84	40	50
	2 I	9,80 21	9,94 38	10,08 62	9,88 83	39	
	22	9,80 23	9,91 40	10,08 60	9,88 82	38	
	23	9,80 24	9,91 43	Io,08 57	9,88 81	37	
	24	9,80-26	9,91 46	Io,08 54	9,88 80	36	
	25	9,80 27	9,91 48	10,08 52	9,88 79	35	
	26	9,80 29	9,91 5 I	Io,08 49	9,88 78	34	
	27	9,80 30	9,91 53	10,08 47	9,88 77	33	
	28	9,80 32	9,91 56	10,08 44	9, 88876	32	
	29	9,80 34	9,91 58	10,08 4 I	9,88 75	31	
39	30	9,80 35	9,91 61	I0,08 39	9,88 74	30	50
-	,	$\log \cos$.	\log cotg.	log tang.	$\log \sin$.	M.	D.

138 Logarithmic Sines and Tangents.

D.	M.	$\log \sin$.	log tang.	$\log \operatorname{cotg}$.	\log cos.		
39	30	9,80 35	9,9I 61	Io,08 39	9,88 74	30	50
	3 I	9,80 37	9,9x 64	10,08 36	9,88 73	29	
	32	9,80 38	9,91 66	Io,08 34	9,88 9,88 , 81		
	33	9,80 40	9,91 69	Io,08 Io,08 31	9,88 9,88 7	27	
	34	9,80 4 I	9,91 71	10,08 29	9,88 70		
	35	9,80 43	9,91 74	Io,08 26	9,88 69	25	
	36	9,80 44	9,91 76	10,08 23	9,88 68	24	
	37	9,80 46	9,91 79	Io,08 2 If	9,88 67	23	
	38	$\begin{array}{ll}9,80 & 47 \\ 9,80 & 49\end{array}$	$\begin{array}{ll}\text { 9,91 } & 82 \\ 0,91 & 84\end{array}$	10,08 10,08 16	9,8866 9,88	22	
39	40					20	50
	4 I	9,80 52	9,91 89	Io,08 If	9,88 63	19	
	42	9,80 53	9,91 92	10,08 08	9,88 6ı	18.	
	43	9,80 55	9,91 94	10,08 05	9,88 60	17	
	44	9,80 56	9,91 97	10,08 03	9,88 59	16.	
	45	9,80 58	9,92 oo	10,08 00	9,88 58	I5.	
	46	9,80 59	9,02 02	10,07 98	9,88 57	If	
	47	9,80 61	9,92 05	10,07 95	9,88 56	13	
	48	9,80 62	9,92 07	Io,07 93	9,88 55	12	
	49	9,80 64	9,92 10	10,07 90	9,88 54	II	
39	50	9,80 66	9,92 12	10,07 87	9,88 53	10	50
	51	9,80 67	9,92 15	10,0785	9,88 $\mathbf{5}^{8}$	9	
	52	9,80 69	9,92 18	10,07 82	9,88 51	8	
	53	9,80 70	9,92 20	10,0780	9,88 50	6	
	$5+$	9,80 72	9,92 23	10,07 77	9,88 49	6	
		9,80 73	9,92 25	10,07 75	9,88 48	5	
	56	9,80 75	9,92 28	10,07 72	9,88 47	4	
	57	9,80 76	9,92 30	10,0770	9,88 46	3	
	58	9,80 78	9,92 33	10,07 67	9,88 45	2	
	59	9,80 79	9,92 $\mathbf{9}^{36}$	10,07 64	9,88 44		
40	0	9,80 8I	9,92 38	10,07 62	9,88 42	0	50
		log cos.	log cotg.	log tang.	$\log \sin$.	M.	D.

D.	M.	\log sin.	log tang.	$\log \operatorname{cotg}$.	$\log \cos$.		
40	0	9,80 8I	9,92 38	10,07 62	9,88 42	0	50
	I	9,80 82	9,92 41	10,07 59	9,88 41	59	
	2	9,80 84	9,92 43	10,07 57	9,88 40	58	
	3	9,80 85	9,92 46	10,07 $5+$	9,88 39	57	
	4	9,80 87	9,92 48	10,07 52	9,88 38	56	
	5	9,80 88	9,92 51	10,07 49	9,88 37	55	
	6	9,80 90	9,92 53	10,07 46	9,88 36	54	
	7	9,80 91	9,92 56	10,07 44	9,8835	53	
		9,80 93	9,92 59	10,07 41	9,88 34	52	
	9	9,80 94	9,92 61	10,07 39	9,88 33	5 I	
40	10	9,80 96	9,92 64	10,07 36	9,88 32	50	49
	If	9,80 97	9,92 66	10,07 34	9,8831	49	
	12	9,80 99	9,92 69	10,07 31	9,88 30	48	
	13	9,81 00	9,92 7I	10,07 28	9,88 29	47	
	14	9, 8I O2	9,92 74	10,07 26	9,88 28	46	
	15	9,81 $\mathrm{O}^{\text {2 }}$	9,92 77	10,07 23	9,88 27	45	
	16	9,8I 05	9,92 79	10,07 21	9,88 25	44	
	17	9,81 06	9,92 82	10,07 18	9,88 2.4	43	
	18	9,8I 08	9,92 84	10,07 16	9,88 23	42	
	19	9,8I 09	9,92 87	Io,07 13	9,88 22	4 I	
40	20	9,8r II	9,92 89	10,07 II	9,88 21	40	49
	2 I	9,81 12	9,92 92	Io,07 08	9,88 20	39	
	22	9,88 14	9,92 9 9+	10,07 05	9,88 19	38	
	23	9,81 15	9,92 97	IO,07 03	9,88 18	37	
	24	9,81 17	9,93 00	10,07 00	9,88 17	36	
	25	9,81 18	9,93 02	זо,06 98	9,88 16	35	
	26	9,81 19	9,0305	10,06 95	9,88 15	34	
	27	9,81 21	9,93 07	Io,06 93	9,88 14	33	
	28	9,81 22	9,93 10	$\|10, \mathrm{c} 690\|$	9,88 13	32	
	29	9,81 24	9,93 12	10,06 88	9,88 II	3 I	
40	30	9,81 25	9,93 15	10,06 85	9,88 ${ }^{\text {¢о }}$	30	49
-	,	log cos.	log cotg.	log tang.	log sin.	M.	D.

140 Logarithmic Sines and Tangents.

D.	M.	$\log \sin$.	log tang.	$\log \operatorname{cotg}$.	$\log \cos$.	,	
41	0	9,31 69	9,93 92	10,06 08	9,87 78	0	49
	I	9,8I 7I	9,93 9+	Io,06 06	9,87 77	59	
	2	9,81 72	9,93 97	10,06 03	9,87 76	58	
	3	9,81 74	9,93 99	10,06 OI	9,87 74	57	
	4	9,81 75	9,94 02	10,05 9^{8}	9,87 73	56	
	5	9,81 77	9,94 of	10,05 96	9,87 72	55	
	6	9,81 78	9,94 07	10,05 93	9,87 71	54	
	7	9,81 80	9,94 09	10,05 90	9,87 70	53	
	8	9,8I 81	9,94 J2	10,05 88	9,8769	52	
	9	9,81 82	9,94 I5	10,05 85	9,87 68	5 I	
41	10	9,81 84	9,94 17	Io,05 83	9,87 67	50	48
	11	9,81 85	9,9+ 20	10,05 80	9,87 66	49	
	12	9,81 87	9,94 22	10,05 78	9,87 65	48	
	13	9,8I 88	9,94 25	10,05 75	9,87 63	47	
	I4	9,8I 90	9,94 27	IO,05 73	9,87 62	46	
	I5	9,8I 9 I	9,94 30	10,05 70	9,87 6I	45	
	16	9,81 93	9,94 32	10,05 68	9,87 60	44	
	17	9,81 94	9,94 35	IO,05 65	9,87 59	43	
	18	9,8I 95	9,94 37	10,05 62	9,87 58	42	
	I9	9,81 97	9,9+40	10,05 60	9,87 57	4 I	
41	20	9,8I 9^{8}	9,94 43	10,05 57	9,87 56	40	48
	21	9,82 oo	9,94 45	10,05 55	9,87 55	39	
	22	9,82 or	9,94 48	10,05 52	9,87 53	38	
	23	9,82 03	9,94 50	10,05 50	9,87 52	37	
	24	9,82 04	9,94 53	10,05 47	9,87 51	36	
	25	9,82 05	9,94 55	10,05 45	9,87 50	35	
	26	9,82 07	9,94 58	10,05 42	9,87 49	34	
	27	9,82 08	9,94 60	10,05 40	9,87 48		
	28	9,82 10	9,94 63	10,05 37	$9,8747$	32	
	29	9,82 11	9,94 65	10,05 34	9,87 46	3 I	
41	30	9,82 13	9,94 68	10,05 32	9,87 45	30	48
-	,	$\log \cos$.	log cotg.	log tang.	$\log \sin$.	M.	D.

142 Logarithmic Sines and Tangents.

D.	M.	$\log \sin$.	log tang.	$\log \operatorname{cotg}$.	$\log \cos$.	,	-
42	0	9,82 55	9,95 44	10,04 5^{6}	9,87 II	0	48
	1	9,82 56	9,95 47	10,04 53	9,87 10	59	
	2	9,82 5^{8}	9,95 49	10,04 50	9,87 08	58	
	3	9,82 59	9,95 52	10,o+ 48	9,87 07	57	
	4	9,82 61	9,95 $5+$	IO,04 45	9,87 06	56	
	5	9,82 62	9,95 57	10,04 43	9,87 05	55	
	6	9,82 63	9,95 60	10,04 40	9,87 04	54	
	7	9,82 65	9,95 62	10,04 38	9,87 o3	53	
	8	9,82 66	9,95 65	IO,04 35	9,87 02	52	
	9	9,82 68	9,95 67	Io,04 33	9,87 00	5 I	
42	10	9,82 69	9,95 70	10,04 30	9,86 99	50	47
	II	9,82 70	9,95 72	10,04 28	9,86 98	49	
	12	9,82 72	9,95 75	10,04 25	9,86 97	48	
	13	9,82 73	9,95 77	IO,04 23	9,86 96	47	
	14	9,82 75	9,95 80	10,04 20	9,86 95	46	
	15	9,82 76	9,95 82	10,04 17	9,86 94	45	
	16	9,82 77	9,95 85	10,04 15	9,86 92	44	
	17	9,82 79	9,95 87	10,04 12	9,86 91	43	
	18	9,82 80	9,95 90	10,04 10	9,86 90	42	
	19	9,82 82	9,95 93	10,04 07	9,86 89	41	
42	20	9,82 83	9,95 95	J0,04 O5	9,86 88	40	47
	21	9,82 84	9,95 98	10,04 02	9,86 87		
	22	9,82 86	9,96 on	10,04 00	9,86 85	38	
	23	9,82 87	9,96 03	10,03 97	9,86 84	37	
	24	9,82 88	9,96 05	IO,03 95	9,86 83	36	
	25	9,82 90	9,96 08	10,03 92	9,86 82	35	
	26	9,82 91	9,96 10	10,03 90	9,86 81	34	
	27	9,82 93	9,96 13	10,03 87	9,86 80	33	
	28	9, 8294	9,96 I5	10,03 84	9,86 79	32	
	29	9,82 95	9,96 18	10,03 82	9,86 77	3 I	
42	30	9,82 97	9,96 20	10,03 79	9,86 76	30	47
	,	$\log \cos$.	$\log \operatorname{cotg}$.	log tang.	$\log \sin$.	M.	D.

144 Logarithmic Sines and Tangents.

D.	M.	log sin.	log tang.	log cotg.	log cos.		
42	30	9,82 97	9,96 20	10,03 79	9,86 76	30	47
	31	9,82 98	9,96 23	10,03 77	9,86 75	29	
	32	9,83 oo	9,96 26	10,03 74	9,86 74	28	
	33	9,83 or	9,96 28	10,03 72	9,86 73	27	
	34	9,83 oz	9,96 31	10,03 69	9,86 72	26	
	35	9,83 804	9,96 33	10,03 67	9,86 70	25	
	36	9,83 05	9,96 36	10,03 $6+$	9,85 69	$2+$	
	37	9,83 06	9,96 38	10,03 62	9,86 68	23	
	38	9,83 08	9,96 41	10,03 59	9,86 67	22	
	39	9,83 09	9,96 43	10,03 57	9,86 66	21	
42	40	9,83 II	9,96 46	10,03 54	9,86 65	20	47
	4 T	9,83 12	9,96 48	10,03 52	9,86 63	19	
	${ }^{2}$	9, 8313	9,96 51	10,03 49	9,86 62	18	
	43	9,83 15	9,96 53	10,03 46	9,86 61	17	
	+	9,83 16	9,96 56	10,03 4t	9,86 60	16	
	45	9, 3317	9,96 59	10,03 41	9,86 59	15	
	46	9, 8319	9,96 6r			14	
	47	9.8320	9,96 $6+$	Io,03 36	9,86 56	I3	
	48	9,83 21	9,96 66	10,0334	9,86 55	12	
	49	9,83 23	9,96 69	10,03 31	9,86 54	11	
42	50	9,83 24	9,96 71	10,03 29	9,86 53	10	47
	51	9,83 26	9,96 74	10,03 26	9,86 52	9	
	52	9.83 0 27		$\begin{array}{ll}10,03 & 2+ \\ 10\end{array}$	9,86 51	8	
	53	9,83 28	9,96 79	10,03 21	9,86 49	7	
	54	9,83 30	9,96 81	10,03 19	9,86 48	6	
		9,83 31	9,96 8_{4}	10,03 16	9,86 47	5	
	56	9,83 32	9,96 86	10,03 14	9,86 46	4	
	57	9,83 34	9,96 89	10,03 II	9,86 45	3	
	58	9, 8335	$\left\|\begin{array}{ll} 9,96 & 91 \end{array}\right\|$	$10,0308$	9,86 44	2	
	59	9,83 36	9,96 94	10,03 06	9,86 42	I	
43	0	9,83 38	9,96 97	10,03 03	9,86 41	0	47
-		$\log \mathrm{co}$	log	log tang	$\log \sin$.	M.	D.

Losarithmic Sines and Tangents.

D.	M.	$\log \sin$.	log tang.	$\log \operatorname{cotg}$.	$\log \cos$.	,	。
43	0	9,83 38	9,96 97	10,03 03	9,86 41	0	47
	1	9,83 39	9, 96.99	10,03 OI	9,86 40	59	
	2	9,83 40	9,97 02	10,02 98	9,86 39	58	
	3	9, $83 \quad 42$	9,97 04	10,02 96	9,86 38	57	
	4	9,83 43	9,97 07	IO,02 93	9,86 37	56	
	5	9,83 45	9,97 09	10,02 91	9,86 35	55	
	6	9,83 46	9,97 12	10,02 88	9,86 34	54	
	7	9, $83 \quad 47$	9,97 14	10,02 86	9,86 33	53	
	8	9,83 49	9,97 I7	10,02 83	9,86 32	52	
	9	9,83 50	9,97 19	$10,028 \mathrm{I}$	9,86 3I	5 I	
43	10	9,83 51	9,97 22	10,02 78	9,86 29	50	46
	II	9,83 53	9,97 24	10,02 76	9,86 28	49°	
	12	9,83 54	9,97 27	10,02 73	9,86 27	48	
	13	9,83 55	9,97 29	10,02 70	9,86 26	47	
	14	9,83 57	9,97 3^{2}	Io,02 68	9,86 25	46	
	15	9,83 58	9,97 34	10,02 65	9,86 23	45	
	16	9,83 59	9,97 37	10,02 63	9,86 22	44	
	17	9,83 6 I	9,97 40	In,02 60	9,86 21	43	
	18	9,83 62	9,97 42	Io,02 58	9,86 20	42	
	19	9,83 63	9,97 45	10,02 55	9,86 I9	41	
43	20	9,83 65	9,97 47	10,02 53	9,86 18	40	46
	21	9,83 66	9,97 50	10,02 50	9,86 16	39	
	22	9,83 67	9,97 5^{2}	IO,02 48	9,86 I5	38	
	23	9,83 69	9,97 55	Io,02 45	9,86 I4	37	
	24	9,83 70	9,97 57	10,02 43	9,86 13	36	
	25	9,83 71	9,9760	10,02 40	9,86 I2	35	
	26	9,83 73	9,97 62	10,02 38	9,86 Јо	34	
	27	9,83 74	9,97 65	10,02 35	9,86 o9	33	
	28	9,83 75	9,97 67	10,02 33	$9,86 \text { ०8 }$	32	
	29	9,83 77	9,97 70	10,02 30	9,86 07	3 I	
43	30	9,83 78	9,97 72	10,02 27	9,86 о6	30	46
-		$\log \cos$.	log cotg.	log tang.	$\log \sin$.	M.	D.

146 Logarithmic Sines and Tangents.

D.	M.	$\log \sin$.	log tang.	log cotg.	$\log \cos$.	,	。
43	30	9,83 7^{8}	9,97 72	10,02 27	9,86 06	30	46
	3 I	9,83 79	9,97 75	10,02 25	9,86 04	29	
	32	9,83 81	9,97 78	10,02 22	9,86 03	28	
	33	9,83 82	9,97 80	10,02 20	9, 86	27	
	34	9,83 83	9,97 83	10,02 I7	9,86 OI	26	
	35	9,83 85	9,97 85	10,02 I5	9,86 00	25	
	36	9,83 86	9,97 88	10,02 12	9,85 9^{8}	$2+$	
	37	9,83 87	9,97 90	10,02 10	9,85 97	23	
	38	9,83 89	9,97 93	10,02 07	9,85 96	22	
	39	9,83 90	9,97 95	10,02 05	9,85 95	21	
43	40	9,83 91	9,97 9^{8}	10,02 02	9,85 94	20	46
	4 I	9,83 93	9,98 0)	10,02 00	9,85 92	19	
	42	9,83 94	9,98 03	Io,oi 97	9, 85 9I	18	
	43	9,83 95	9,98 05	10,ox 95	9,85 93	17	
	$4+$	9,83 97	9,98 08	IO,OI 92	9,85 89	16	
	45	9,83 9^{8}	9,08 10	IO,OI 90	9,85 88	I5	
	+6	9,83 9)	9,98 I3	10,oi 87	9,85 86	I_{4}	
	47	9,84 OI	9,98 I5	Io, oi $8+$	9,85 85	I3	
	48	9,84 02	9,98 18	Io,oi 82	9, 8584	12	
	49	9,8+ 03	9,98 2 I	IO,OI 79	9,85 83	II	
43	50	9,84	9,98 23	10,01 77	9, 858 I	10	46
	5 I	9,84 06	9,98 26	Io,oi 74	9,85 80		
	52	9,84 07	9,98 28	ro,oi 72	9,85 79	8	
	53	9,84 08	9,98 31	10,OI 69	9,85 78	7	
	$5+$	9,84 10	9,98 33	Io, or 67	9,85 77		
	55	9,84 II	9,98 36	10,or 64	9, 8575	5	
	56	9,84 I2	9,98 3^{8}	IO, oI 62	9,85 74	4	
	57	9,84 14	9,98 4 L	IO,OI 59	9,85 73	3	
	58	9,84 I5	9,98 43	Io,oI 57	9,85 72	2	
	59	9,84 16	9,98 46	10,OI 54	9,8571	I	
44	0	9,84 I8	9,98 48	IO,OI 52	9,85 69	0	46
-	,	$\log \cos$.	log cotg.	log tang.	$\log \sin$.	M.	D.

D.	M.	$\log \sin$.	log tang.	log cotg.	$\log \cos$.	,	。
44	0	9,84 18	9,98 48	IO,OI 52	9,85 69	0	46
	I	9,84 I9	9,98 51	Io,oI 49	9,85 68	59	
	2	9,84 20	9,98 53	IO,OI 47	9,85 67	58	
	3	9,84 22	9,98 56	Io,oI 44	9,85 66	57	
	4	9,84 23	9,98 5^{8}	IO,OI 4 I	9,85 64	56	
	5	9,84 24	9,98 6I	IO,OI 3)	9,85 63	55	
	6	9,84 25	9,98 63	Io,or 3^{5}	9,85 62	54	
	7	9,84 27	9,98 66	Io,oI 34	9,85 6I	53	
	8	9,84 28	9,98 69	Io,oI 3 I	9,85 60	52	
	9	9,84 29	9,98 71	IO,OI 29	9,85 5^{8}	5 I	
44	10	9,84 3I	$9.98 \quad 74$	IO,OI 26	9,85 57	50	45
	II	9,84 32	9,98 76	IO, OI 24	9,85 56	49	
	12	9,84 33	9,98 79	IO,OI 2 I	9,85 55	48	
	13	9,84 35	9,98 81	Io,oI I9	9,85 53	47	
	14	9,84 36	9,98 84	IO,OI I6	9,85 52	46	
	I5	9,84 37	9,98 86	IO,OI I4	9,85 51	45	
	16	9, 3433	9,c,8 89	IO,OI II	9,85 50	44	
	17	9,84 40	9, 9,891	Io,oI O9	9,85 48	43	
	18	9,84 4 I	9,98 94	10,0I 06	9,85 47	42	
	I9	9,84 42	9,98 96	Io,OI O4	9,85 46	4 I	
44	20	9,84 44	9,98 99	IO,OI OI	9,85 45	40	45
	$2 I$	9,84 45	9,99 OI	Io,00 93	9,85 44	39	
	22	9,84 46	9,99 04	10,00 96	9,85 42	33	
	23	9,84 48	9,59 06	10,00 93	9,85 4 I	37	
	24.	9,84 49	9,99 09	Io,00 9I	9,85 40	36	
	25	9,84 50	9,99 I2	I0,00 85	9,85 39	35	
	26	9,84 51	9,59 I4	10,00 86	9,85 37	34	
	27	9,84 53	9,99 17	Io,00 83	9,85 36	33	
	28	9,84 54	9,99 I9	Io,00 8I	9,85 35	32	
	29	9,84 55	9,99 22	10,00 78	9,85 34	31	
44	30	9,84 57	9,99 24	10,00 76	9,85 32	30	45
-	,	log cos.	log cotg.	log tang.	$\log \sin$.	M.	D.

148 Lograrithmic Simes and Tangents.

CATALOGUEOF THE
SCIENTIFIC PUBLICATIONSof
D. VAN NOSTRAND COMPANY,
23 Murray Street and 27 Warren Street, N. Y.
ADAMS (J. W.) Sewers and Drains for Populous Dis- tricts. 8 vo , cloth $\$ 250$
ALEXANDER (J. H.) Universal Dictionary of Weights and Measures. 8 vo , cloth 350
(S. A) Broke Down: What Should I Do? AReady Reference and Key to Locomotive Engineersand Firemen, Round-house Machinists, Conductors,Train Hands and Inspectors. With 5 folding plates.12 mo , cloth50
ANDERSON (WILLIAM). On the Conversion of Heat into Work. A Practical Hand-book on Heat Engines. Illustrated. 12 mo , cloth 200
ATKINSON (PHILIP). The Elements of Electric Light- ing, including Electric Generation, Measurements, Storage, and Distribution. Seventh edition. Illus- trated. 12 mo , cloth 150The Elements of Dynamic Electricity and Magnet-ism. 120 illustrations. 12mo, cloth............ 200
Elements of Static Electricity, with full description of the Holtz and Topler. Machines, and their mode of operating. Illustrated. r2mo, cloth 50
AUCHINCLOSS (W. S.) Link and Valve Motions Sim- plified. Illustrated with 37 woodcuts and 2 I litho- graphic plates, together with a Travel Scale, and numerous useful tables. Eleventh edition. 8vo, cloth 300
BACON (F. W.) A Treatise on the Richards Steam-Engine Indicator, with directions for its use. By Charles T. Porter. Revised. Illustrated. 12 mo , cloth........ 1∞
BADT (F. B.) Dynamo Tender's Hand-book. With 70 illustrations. Second edition. 18mo, cloth............ I 00
Bell-hangers' Hand-book. With 97 illustrations.18 mo , cloth100
_- Incandescent Wiring Hand-book. With 35 illus- trations and five tables. 18 mo , cloth. 1∞
-_Electric Transmission Hand-book. With 22 illus- trations and 27 tables. 18mo, cloth 100
BALE (M. P.) Pumps and Pumping. A Hand-book for Pump Users. 12 mo , cloth 1∞
BARBA (J.) The Use of Steel for Constructive Purposes. Method of Working, Applying, and Testing Plates and Bars. With a Preface by A. L. Holley, C.E. 12 mo , cloth I 50
BARNARD (F. A. P.) Report on Machinery and Pro- cesses of the Industrial Arts and Apparatus of the Exact Sciences at the Paris Universal Exposition, 1867. 152 illustrations and 8 folding plates. 8vo, cloth.... 500
BEAUMONT (ROBERT). Color in Woven Design. With 32 colored Plates and numerous original illus- trations. Large 12 mo. 750
BEILSTEIN (F.) An Introduction to Qualitative Chem- ical Analysis. Translated by I. J. Osbun. 12mo, cloth 75
BECKWITH (ARTHUR). Pottery. Observations on the Materials and Manufacture of Terra-Cotta, Stone- ware, Fire-brick. Porcelain, Earthenware, Brick, Majolica, and Encaustic Tiles. 8vo, paper. 60
BERNTHSEN (A.) A Text-book of Organic Chemistry. Translated by George McGowan, Ph.D. 544 pages. Illustrated. 12mo, cloth 250
BIGGS (C. H. W.) First Principles of Electrical Engi- neering. 12mo, cloth. Illustrated. 100
BLAKE (W. P.) Report upon the Precious Metals. 8vo, cloth 200
Ceramic Art. A Report on Pottery, Porcelain,Tiles, Terra-Cotta, and Brick. 8vo, cloth............. 2 oo
BLAKESLEY (T. H.) Alternating Currents of Elec- tricity. For the use of Students and Engineers. 12 mo , cloth I 50
BLYTH (A. WYNTER, M.R.C.S., F.C.S.) Foods : their Compositions and Analysis. Crown 8vo, cloth 6 oo
——Poisons: their Effects and Detection. Crown 8vo, cloth 600
BODMER (G. R.) Hydraulic Motors; Turbines and Pressure Engines, for the use of Engineers, Manu- facturers, and Students. With numerous illustra- tions. 12mo, cloth 500
BOTTONE (S. R.) Electrical Instrument Making for Amateurs. With 48 illustrations. 12mo, cloth 50
——Electric Bells, and all about them. Illustrated. 12 mo , cloth 50
—— The Dynamo: How Made and How Used. 12mo, cloth I 00
—— Electro Motors: How Made and How Used. 12 mo. cloth 50
BONNEY (G. E.) The Electro-Platers' Hand-book。6o Illustrations. 12 mo , cloth I 20
BOW (R. H.) A Treatise on Bracing. With its applica- tion to Bridges and other Structures of Wood or Iron. 156 illustrations. 8vo, cloth I 50
BOWSER (Prof. E. A.) An Elementary Treatise on Analytic Geometry. Embracing plain Geometry, and an Introduction to Geometry of three Dimensions. 12mo, cloth. Thirteenth edition 75

- An Elementary Treatise on the Differential and Integral Calculus. With numerous examples. 12mo, cloth. Twelfth edition 225
An Elementary Treatise on Analytic Mechanics.With numerous examples. 12mo, cloth. Fifth edi-tion.300
BOWSER (Prof. E. A.) An Elementary Treatise on Hydro-mechanics. With numerous examples. 12mo, cloth. Third edition................... 250
BOWIE (AUG. J., Jun., M. E.) A Practical Treatise on Hydraulic Mining in California. With Description of the Use and Construction of Ditches, Flumes, Wrought-iron Pipes, and Dams; Flow of Water on Heavy Grades, and its Applicability, under High Pressure, to Mining. Third edition. Small quarto, cloth. Illustrated 500
BURGH (N. P.) Modern Marine Engineering, applied to Paddle and Screw Propulsion. Consisting of 36 colored plates, 259 practical woodcut illustrations, and 403 pages of descriptive matter. Thick 4 to vol., half morocco 1000
BURT (W. A.) Key to the Solar Compass, and Survey- or's Companion. Comprising all the rules necessary for use in the field. Pocket-book form, tuck 250
CAIN (Prof. WM.) A Practical Treatise on Voussoir and Solid and Braced Arches. 16mo. cloth extra I 75
CALDWELL (Prof. GEO. C., and BRENEMAN (Prof. A. A.) Manual of Introductory Chemical Practice. 3vo, cloth. Illustrated 150
CAMPIN (FRANCIS). On the Construction of Iron Roofs. A Theoretical and Practical Treatise, with wood-cuts and plates of Roofs recently executed. 8vo, cloth 2∞
CHURCH (JOHN A.) Notes of a Metallurgical Journey in Europe. 8vo, cloth 200CLARK (D. KINNEAR, C.E.) A Manual of Rules,Tables and Data for Mechanical Engineers. Illus-trated with numerous diagrams. rorz pages. 8vo,cloth5 o
Half morocco 750
- Fuel; its Combustion and Economy, consisting ofabridgments of Treatise on the Combustion of Coal.By C.W. Williams; and the Economy of Fuel, byT.S. Prideaux. With extensive additions in recentpractice in the Combustion and Economy of Fuel,Coal, Coke, Wood, Peat, Petroleum, etc. 12mo, cloth. I 50
CLARK (D. KINNEAR, C.E.) The Mechanical Engineer's Pocket Bouk of Tables, Formulæ, Rules, and Data. A Handy Book of Reference for Daily Use in Engineering Practice. 16mo, morocco......... 300
- (JACOB M.) A new System of Laying Out Railway Turn-outs instantly, by inspection from tables. 12 mo , leatherette
1∞
CLEVENGER (S. R.) A Treatise on the Method of Government Surveying as prescribed by the U. S. Congress and Commissioner of the General Land Office. 16 mo , morocco
COLBURN (ZERAH). The Gas-Works of London. i2mo, boards
COLLINS (JAS. E.) The Private Book of Useful Alloys and Memoranda for Goldsmiths, Jewellers, etc. I8mo, cloth
CORNWALL (Prof. H. B.) Manual of Blow-pipe Analysis, Qualitative and Quantitative, With a Complete System of Descriptive Mineralogy. 8vo, cloth. with many illustrations.
CRAIG (B. F.) Weights and Measures. An account of the Decimal System, with Tables of Conversion for Commercial and Scientific Uses. Square 32 mo , limp cloth
- (Prof. THOMAS). Elements of the Mathematical Theory of Fluid Motion. 16mo, cloth
CUMMING (LINNळUS, M.A.) Electricity treated Experimentally. For the use of Schools and Students. New edition. 12mo, cloth
DIXON (D. B.) The Machinist's and Steam Engineer's Practical Calculator. A Compilation of Useful Rules and Problems arithmetically solved, together with General Information applicable to Shop-Tools, MillGearing, Pulleys and Shafts, Steam Boilers and Engines. Embracing valuable Tables and Instruction in Screw cutting, Valve and Link Motion, etc. 16 mo , full morocco, pocket form
DODD (GEO.) Dictionary of Manufactures, Mining, Machinery, and the Industrial Arts. 12mo, cloth. .

DORR (B. F) The Surveyor's Guide and Pocket Table Book. 18mo, morocco flaps. Second edition 200
DUBOIS (A. J.) The New Method of Graphic Statics. With 60 illustrations. 8vo, cloth
EDDV (Prof. H. T.) Researches in Graphical Statics. Embracing New Constructions in Graphical Statics, a New General Method in Graphical Statics, and the Theory of Internal Stress in Graphical Statics. 8vo, cloth
-_Maximum Stresses under Concentrated Loads. Treated graphically. Illustrated. 8vo, cloth... 150
EISSLER (M.) The Metallurgy of Gold; a Practical Treatise on the Metallurgical Treatment of GoldBearing Ores. 187 illustrations. 12 mo , cl............. 500
——The Metallurgy of Silver; a Practical Treatise on the Amalgamation, Roasting, and Lixiviation of Silver Ores. 124 illustrations. 12mo, cloth
——The Metallurgy of Argentiferous Lead; a Practical Treatise on the Smelting of Silver Lead Ores and the refining of Lead Bullion. With 183 illustrations. 8 vo , cloth
ELIOT (Prof. C. W.) and STORER (Prof. F. H.) A Compendious Manual of Qualitative Chemical Analysis. Revised with the co-operation of the authors, by Prof. William R. Nichols. Illustrated. ath edition. Newly revised by Prof. W. B. Lindsay. 12mo, cloth

EVERETT (J. D.) Elementary Text-book of Physics. Illustrated. 12 mo , cloth
FANNING (J. T.) A Practical Treatise on Hydraulic and Water-supply Engineering. Relating to the Hydrology. Hydrodynamics, and Practical Construction of Water-works in North America. Illustrated. 8 vo , cloth
FISKE (Lieut. BRADLEY A., U. S. N.) Electricity in Theory and Practice; or, The Elements of Electrical Engineering. 8vo, cloth
FLEMING (Prof. A. J.) The Alternate Current Transformer in Theory and Practice. Vol. I.-The Induction of Electric Currents. Illustrated. 8vo, cloth.... 300
FOLEY (NELSON), and THOS. PRAY, Jr. The Mechanical Engineers' Reference-book for Machine and Boiler Construction, in two parts. Part I-General Engineering Data. Part 2-Boiler Construction. With fifty-one plates and numerous illustrations, specially drawn for this work. Folio, half mor....... 25 oo

FORNEY (MATTHIAS N.) Catechism of the Locomotive. Revised and enlarged. 8 vo , cloth.

FOSTER (Gen. J. G., U. S. A.) Submarine Blasting in Boston Harbor, Massachusetts. Removal of Tower and Corwin Rocks. Illustrated with 7 plates. 4to, cloth

FRANCIS (Jas. B., C.E.) Lowell Hydraulic Experiments. Being a selection from experiments on Hydraulic Motors. on the Flow of Water over Weirs, in open Canals of uniform rectangular section, and through submerged Orifices and diverging Tubes. Made at Lowell, Mass. Illustrated. 4to, cloth......15 00
GERBER (NICHOLAS). Chemical and Physical Analysis of Milk, Condensed Milk, and Infant's MilkFood. 8vo, cloth... 125

GILLMORE (Gen. Q. A.) Treatise on Limes. Hydraulic Cements, and Mortars. With numerous illustrations. 8vo, cloth

- Practical Treatise on the Construction of Roads, Streets, and Pavements. With 70 illustrations. 12 mo , cloth

Report on Strength of the Building-Stones in the United States, etc. Illustrated. 8vo, cloth.... I ∞
GOODEVE (T. M.) A Text-book on the Steam-Engine With a Supplement on Gas-Engines. r 43 illustrations. ェ2mo, cloth
GORE (G., F.R.S.) The Art of Electrolytic Separation of Metals, etc. (Theoretical and Practical.) Illustrated. 8vo, cloth

GRAY (JOHN, B.Sc.) Electrical Influence Machines. A full account of their historical development and modern forms, with instructions for making them. 89 illustrations and 3 folding plates. 12 mo , cloth.
GRIMSHAW (ROBERT, M.E.) The Steam Boiler. Catechism. A Practical Book for Steam Engineers, Firemen and Owners and Makers of Boilers of any kind. Illustrated. Thick 18 mo , cloth.
200
GRIFFITHS (A. B., Ph.D.) A Treatise on Manures, or the Philosophy of Manuring. A Practical Hand-book for the Agriculturist, Manufacturer, and Student. 12 mo , cloth.
GRUNER (M. L.) The Manufacture of Steel. Translated from the French, by Lenox Smith; with an appendix on the Bessemer process in the United States, by the translator. Illustrated. 8vo, cloth............. 350
GURDEN (RICHARD LLOYD). Traverse Tables: computed to 4 places Decimals for every ${ }^{\circ}$ of angle up to 100 of Distance. For the use of Surveyors and Engineers. New edition. Folio, half mor.............. 750

HALSEY (F. A.) Slide-valve Gears, an Explanation of
the Action and Construction of Plain and Cut-off Slide
Valves. Illustrated. 12mo, cloth. Second edition.. 150

HALF-HOURS WITH MODERN SCIENTISTS. Lec
tures and Essays. By Profs. Huxley, Barker, Stir
ling, Cope, Tyndall, Wallace, Roscoe, Huggins,
Lockyer, Young, Mayer, and Reed. Being the Uni
versity Series bound up. With a general introduction
by Noah Porter, President of Yale College. 2 vols.
12 mo , cloth. Illustrated. 250

HAMILTON (W. G.) Useful Information for Railway Men. Tenth edition, revised and enlarged. 562 pages, pocket form. Morocco, gilt..................... 2∞

HARRISON (W. B.) The Mechanics' Tool Book. With Practical Rules and Suggestions for use of Machinists, Iron-Workers, and others. Illustrated with 44 engravings. 12mo, cloth.................................. 150
HASKINS (C. H.) The Galvanometer and its Uses. A Manual for Electricians and Students. 12mo, cloth.. I 50
HEAP (Major D. P., U. S. A.) Electrical Appliances of the Present Day. Report of the Paris Electrical Exposition of 188 r .250 illustrations. 8 vo , cloth........ 2∞

HERRMANN (GUSTAV). The Graphical Statics of Mechanism. A Guide for the Use of Machinists, Architects, and Engineers; and also a Text-book for Technical Schools. Translated and annotated by A. P. Smith, M.E. I2mo, cloth, 7 folding plates..... 2∞

HEWSON (WM.) Principles and Practice of Embanking Lands from River Floods, as applied to the Levees of the Mississippi. 8vo, cloth
HENRICI (OLAUS). Skeleton Structures, Applied to the Building of Steel and Iron Bridges. Illustrated.. I 50
HOBBS (W. R. P.) The Arithmetic of Electrical Measurements, with numerous examples. 12mo, cloth....50

HOLLEY (ALEXANDER L.) Railway Practice. American and European Railway practice in the Economical Generation of Steam, including the Materials and Construction of Coal-burning Boilers, Combustion, the Variable Blast, Vaporization, Circulation, Superheating, Supplying and Heating Feed-water, etc., and the Adaptation of Wood and Coke-burning Engines to Coal-burning; and in Permanent Way, including Road-bed, Sleepers, Rails, Joint Fastenings, Street Railways, etc. With 77 lithographed plates. Folio, cloth

1200
HOLMES (A. BROMLEY). The Electric Light Popularly Explained. Fifth edition. Illustrated. 12mo, paper.
HOWARD (C. R.) Earthwork Mensuration on the Basis of the Prismoidal Formulæ. Containing Simple and Labor-saving Method of obtaining Prismoidal Contents directly from End Areas. Illustrated by Examples and accompanied by Plain Rules for Practical Uses. Illustrated. 8vo, cloth.
HUMBER (WILLIAM, C. E.) A Handy Book for the Calculation of Strains in Girders, and Similar Structures, and their Strength; Consisting of Formulæ and Corresponding Diagrams, with numerous details for practical application, etc. Fourth edition, 12mo, cloth
HUTTON (W. S.) Steam-Boiler Construction. A Practical Hand-book for Engineers, Boiler Makers, and Steam Users. With upwards of 300 illustrations. 8vo, cloth

JAMIESON (ANDREW, C.E.) A Text-book on Steam and Steam-Engines. Illustrated. 12 mo , cloth 300
_Elementary Manual on Steam and the Steam-Engine. 12mo, cloth
JANNETTAZ (EDWARD). A Guide to the Determination of Rocks; being an Introduction to Lithology.
Translated from the French by Professor G. W.
Plympton. 12mo, cloth............................. 50
JONES (H. CHAPMAN). Text-book of Experimental Organic Chemıstry for Students. 18mo, cloth I ∞
JOYNSON ($\mathrm{F} . \mathrm{H}$.) The Metals used in Construction. Iron, Steel, Bessemer Metal, etc. Illustrated. 12mo, cloth75
——Designing and Construction of Machine Gearing. Illustrated. 8vo, cloth.

KANSAS C.ITY BRIDGE (THE). With an Account of the Regimen of the Missouri River and a Description of the Methods used for Founding in that River. By O. Chanute, Chief Engineer, and George Morrison, Assistant Engineer. Illustrated with 5 lithographic views and 12 plates of plans. 4to, cloth.
KAPP (GISBERT, C.E.) Electric Transmission of Energy and its Transformation, Subdivision, and Distribution. A Practical Hand-book. 12mo, cloth..... 300
KEMPE (H. R.) The Electrical Engineer's Pocket Book of Modern Rules, Formulæ, Tables, and Data. Illustrated. 32 mo , mor. gilt.
KING (W. H.) Lessons and Practical Notes on Steam. The Steam-Engine, Propellers, etc., for Young Marine Engineers, Students, and others. Revised by Chief Engineer J. W. King, United States Navy. 8vo, cloth
2∞
KIRKALDY (WM. G.) Illustrations of David Kirkaldy's System of Mechanical Testing, as Originated and Carried On by him during a Quarter of a Century.

$$
\begin{aligned}
& \text { Comprising a Large Selection of Tabulated Results, } \\
& \text { showing the Strength and other Properties of Ma- } \\
& \text { terials used in Construction, with Explanatory Text } \\
& \text { and Historical Sketch. Numerous engravings and } 25 \\
& \text { lithographed plates. 4to, cloth......................... } 25 \%
\end{aligned}
$$

KIRKWOOD (JAS. P.) Report on the Filtration of River Waters for the supply of Cities, as practised in Europe. Illustrated by 30 double-plate engravings. 4to, cloth.
LARRABEE (C. S.) Cipher and Secret Letter and Telegraphic Code, with Hog's Improvements. 18 mo , cloth
LARDEN (W., M. A.) A School Course on Heat. ismo, half leather.
LEITZE (ERNST). Modern Heliographic Processes. A Manual of Instruction in the Art of Reproducing Drawings, Engravings, etc., by the action of Light. With 32 wood-cuts and ten specimens of Heliograms. 8vo, cloth. Second edition
LOCKWOOD (THOS. D.) Electricity, Magnetism, and Electro-Telegraphy. A Practical Guide for Students, Operators, and Inspectors. 8 vo , cloth. Third edition

250
LODGE (OLIVER J.) Elementary Mechanics, including Hydrostatics and Pneumatics. Revised edition. 12 mo , cloth
LOCKE (ALFRED G. and CHARLES G.) A Practical Treatise on the Manufacture of Sulphuric Acid. With 77 Constructive Plates drawn to Scale Measurements, ह Cd other Illustrations. Royal 8vo, clothis oo
LOVELL (D. H.) Practical Switch Work. A Handbook for Track Foremen. Illustrated. 12mo; cloth.. i 50
LUNGE (GEO.) A Theoretical and Practical Treatise on the Manufacture of Sulphuric Acid and Alkali with the Collateral Branches. Vol. I. Sulphuric Acid. Second edition, revised and enlarged. 342 Illustrations. 8vo., cloth.

15 oo
and HUNTER F.) The Alkali Maker's PocketBook. Tables and Analytical Methods for Manufacturers of Sulphuric Acid, Nitric Acid, Soda, Potash and Ammonia. Second edition. 12mo, cloth 3 os

MACCORD (Prof. C. W.). A Practical Treatise on the Slide-Valve by Eccentrics, examining by methods the action of the Eccentric upon the Slide-Valve, and explaining the practical processes of laying out the movements, adapting the Valve for its various duties in the Steam-Engine. Illustrated. 4to, cloth.........
MAYER (Prof. A. M.) Lecture Notes on Physics. 8vo. cloth.
McCULLOCH (Prof. R. S.) Elementary Treatise on the Mechanical Theory of Heat, and its application to Air and Steam Engines. 8vo, cloth
MERRILL (Col. WM. E., U. S. A.) Iron Truss Bridges for Railroads. The method of calculating strains in Trusses, with a careful comparison of the most prominent Trusses, in reference to economy in combination, etc. Illustrated. 4to, cloth.
METAL TURNING. By a Foreman Pattern Maker. Illustrated with 8i engravings. 12mo, cloth........... I 50
MINIFIE (WM.) Mechanical Drawing. A Text-book of Geometrical Drawing for the use of Mechanics and Schools, in which the Definitions and Rules of Geometry are familiarly explained; the Practical Problems are arranged from the most simple to the more complex. and in their description technicalities are avoided as much as possible. With illustrations for Drawing Plans, Sections, and Elevations of Railways and Machinery; an Introduction to Isometrical Drawing, and an Essay on Linear Perspective and Shadows. Illustrated with over 200 diagrams engraved on steel. With an appendix on the Theory and Application of Colors. 8vo, cloth.
——Geometrical Drawing. Abridged from the octavo edition, for the use of schools. Illustrated with 48 steel plates. Ninth edition. 12mo, cloth
MODERN METEOROLOGY. A Series of Six Lectures, delivered under the auspices of the Meteorological Society in 1878. Illustrated. 12mo, cloth

150
MOONEY (WM.) The American Gas Engineers' and Superintendents' Hand-book, consisting of Rules, Reference Tables, and original matter pertaining to the Manufacture, Manipulation, and Distribution of Illuminating Gas. Illustrated. 12mo, morocco

MOTT (H. A., Jun.) A Practical Treatise on Chemistry Qualitative and Quantitative Analysis), Stoichiometry, Blow-pipe Analysis, Mineralogy, Assaying, Pharmaceutical Preparations, Human Secretions, Specific Gravities, Weights and Measures, etc. New Edition, 1883. 650 pages. 8vo, cloth...
MULLIN (JOSEPH P., M.E.) Modern Moulding and Pattern-making. A Practical Treatise upon PatternShop and Foundry Work: embracing the Moulding of Pulleys, Spur Gears, Worm Gears, Balance-wheels, Stationary Engine and Locomotive Cylinders, Globe Valves, Tool Work, Mining Machinery, Screw Propellers, Pattern-shop Machinery, and the latest improvements in English and American Cupolas; together with a large collection of original and carefully selected Rules and Tables for every-day use in the Drawing Office, Pattern-shop, and Foundry. i2mo, cloth, illustrated.
MUNRO (JOHN, C.E.) and JAMIESON (ANDREW, C.E.) A Pocket-book of Electrical Rules and Tables for the use of Electricians and Engineers. Seventh edition, revised and enlarged. With numerous diagrams. Pocket size. Leather
MURPHY (J. G., M.E.) Practical Mining. A Field Manual for Mining Engineers. With Hints for lnvestors in Mining Properties. 16 mo , morocco tucks.
NAQUET (A.) Legal Chemistry. A Guide to the Detection of Poisons, Falsification of Writings, Adulteration of Alimentary and Pharmaceutical Substances, Analysis of Ashes, and examınation of Hair, Coins, Arms, and Stains, as applied to Chemical Jurisprudence, for the use of Chemists, Physicians, Lawyers, Pharmacists and Experts. Translated. with additions, including a list of books and memoirs on Toxicology, etc., from the French, by J. P. Battershall, Ph.D., with a preface by C. F. Chandler, Ph.D., M.D., LL.D. izmo, cloth.

NEWALL (J. W.) Plain Practical Directions for Drawing, Sizing and Cutting Bevel-Gears, showing how the Teeth may be cut in a plain Miling Machine or Gear Cutter so as to give them a correct shape, from end to end : and showing how to get out all particulars for the Workshop without making any Drawings. Including a full set of Tables of Reference. Folding Plates, 8 vo ., cloth.

NEWLANDS (JAMES). The Carpenter's and Joiners' Assistant: being a Comprehensive Treatise on the Selection, Preparation and Strength of Materials, and the Mectianical Principles of Framing, with their application in Carpentry, Joinery, and Hand-Railing; also. a Complete Treatise on Sines; and an illustrated Glossary of Terms used in Architecture and Building. Illustrated. Folio, half mor.................................. 150
NIBLETT (J. T.) Secondary Batteries. Illustrated. 12mo, cloth 150

NIPHER (FRANCIS E., A.M) Theory of Magnetic Mi asurements, with an appendix on the Method of Least Squares. 12mo, cloth.
NOAD (HENRY M.) The Students' Text-book of Electricity. A new edition. carefully revised. With an Introduction and additional chapters by W. H. Preece. With 47 illustrations. 12 mo, cloth. 400

NUGENT (E) Treatise on Optics; or, Light and Sight
thenretically and practically treated, with the appli
cation to Fine Art and Industrial Pursuits. With roz
illustrations. 12mo. cloth.
PAGE (DAVID). The Earth's Crust, a Handy Outline of Geology. 15mo, cloth 75PARSONS (Jr.. W. B., C.E) Track, a Complete Man-ual of Maintenance of Way, according to the Latestand Best Practice on Leading American Railroads.Illustrated. 8vo, cloth200
PEIRCE (B.) System of Analytic Mechanics. 4to, cloth 1000

PHILLIPS (JOSHUA). Engineering Chemistry. A Practical Treatise for the use of Analytical Chemists, Engineers, Iron Masters, Iron Founders, students and others. Comprising methods of Analysis and Valuation of the principal materials used in Engineering works, with numerous Analyses, Examples and Suggestions. 314 Illustrations. 8 vo . cloth

```
                            400
```

PLANE TABLE (THE). Its Uses in Topographical Surveying. Illustrated. 8vo, cloth..................... 200
PLATTNER. Manual of Qualitative and Quantitative Analysis with the Blow-pipe. From the last German edition. revised and enlarged, by Prof. Th. Richter. of the Royal Saxon Mining Academy. Translated by

Prof. H. B. Cornwall, assisted by John H. Caswell.
Illustrated with 87 wood-cuts and one lithographic
plate. Fourth edition, revised. 560 pages. 8 vo ,
cloth

PLANTE (GASTON). The Storage of Electrical Energy, and Researches in the Effects created by Currents, combining Quantity with High Tension. Translated from the French by Paul B. Elwell. 89 illustrations. 8vo
PLYMPTON (Prof. GEO. W.) The Blow-pipe. A Guide to its use in the Determination of Salts and Minerals. Compiled from various sources. 12mo, cloth

POOLE (JOSEPH). The Practical Telephone Handbook and Guide to the Telephonic Exchange. 227 illustrations. I2mo, cloth.................................. 1∞

POPE (F. L.) Modern Practice of the Electric Telegraph. A Technical Hand-book for Electricians, Managers and Operators. New edition, rewritten and enlarged, and fully illustrated. 8vo, cloth 150

PRAY (Jr., THOMAS). Twenty Years with the Indicator; being a Practical Text-book for the Engineer or the Student, with no complex Formulæ. Illustrated. 8vo, cloth

PRACTICAL IRON-FOUNDING. By the author of "Pattern Making," etc., etc. Illustrated with over one hundred engravings. 12 mo , cloth
PREECE (W. H.) and MAIER (J.) The Telephone. Illustrations and Plates. I2mo, cloth
PRESCOTT (Prof. A. B.) Organic Analysis. A Manual of the Descriptive and Analytical Chemistry of certain Carbon Compounds in Common Use ; a Guide in the Qualitative and Quantitative Analysis of Organic Materials in Commercial and Pharmaceutical Assays, in the estimation of Impurities under Authorized Standards, and in Forensic Examinations for Poisons, with Directions for Elementary Organic Analysis. 8vo, cloth

Outlines of Proximate Organic Analysis, for the Identification, Separation, and Quantitative Determination of the more commonly occurring Organic Compounds. i2mo, cloth
PRESCOTT (Prof. A. B.) First Book in Qualitative Chemistry. Fifth edition. 12mo, cloth 50

- and OTIS COE JOHNSON, Qualitative Chemical Analysis. A Guide in the Practical Study of Chem- istry and in the work of Analysis. Revised edition With Descriptive Chemistry extended throughout. 30
PRITCHARD (O. G.) The Manufacture of Electric Light Carbons. Illustrated. 8vo, paper 60
PULSIFER (W. H.) Notes for a History of Lead. 8vo, cloth, gilt tops 400
PYNCHON (Prof. T. R.) Introduction to Chemical Physics, designed for the use of Academies, Colleges, and High Schools. 269 illustrations on wood. Crown 8vo, cloth 300
RANDALL (J. E.) A Practical Treatise on the Incan- descent Lamp. Illustrated. 16 mo , cloth 50
- (P. M.) Quartz Operator's Hand-book. New edi-tion, revised and enlarged, fully illustrated. I2mo,cloth
RAFTER (GEO. W.) Sewage Disposal in the United States. Illustrated. Cloth...................... (In Press.)RANKINE (W. J. MACQUORN, C.E., LL.D., F.R.S.)Applied Mechanics. Comprising the Principles ofStatics and Cinematics, and Theory of Structures,Mechanism, and Machines. With numerous dia-grams. Thoroughly revised by W. J. Millar. Crown8vo, cloth5∞
——Civil Engineering. Comprising Engineering Sur-veys, Earthwork, Foundations, Masonry. Carpentry,Metal-work, Roads, Railways, Canals, Rivers. Water-Works, Harbors, etc. With numerous tables andillustrations. Thoroughiy revised by W. J. Millar.Crown 8vo, cloth650- Machinery and Millwork. Comprising the Geom-try. Motions, Work, Strength, Construction, andObjects of Machines, etc. Illustrated with nearly 300woodcuts. Thoroughly revised by W. J. Miller.Crown 8vo, cloth.500
The Steam-Engine and Other Prime Movers.With diagram of the Mechanical Properties of Steam,folding plates, numerous tables and illustrations.Thoroughly revised by W. J. Millar. Crown 8vo,cloth

RANKINE (W. J. MACQUORN, C.E., LL.D., F.R.S.) Useful Rules and Tables for Engineers and Others. With Appendix, tables, tests, and formulæ for the use of Electrical Engineers. Comprising Submarine Electrical Engineering, Electric Lighting, and Transmission of Power. By Andrew Jamieson, C.E., F.R.S.E. Thoroughly revised by W. J. Millar. Crown 8vo, cloth
—_A Mechanical Text-book. By Prof. Macquorn Rankine and E. F. Bamber, C.E. With numerous illustrations. Crown, 8vo, cloth.

350
REED'S ENGINEERS' HAND-BOOK, to the Local Marine Board Examinations for Certificates of Competency as First and Second Class Engineers. By W. H. Thorn. Illustrated. 8vo, cloth.

RICE (Prof. J. M.) and JOHNSON (Prof. W. W.) On a New Method of obtaining the Differential of Functions, with especial reference to the Newtonian Conception of Rates or Velocities. 12mo, paper..........
RIPPER (WILLIAM). A Course of Instruction in Machine Drawing and Design for Technical Schools and Engineer Students. With 52 plates and numerous explanatory engravings. Folio, cloth.................. 750
ROEBLING (J. A.) Long and Short Span Railway Bridges. Illustrated with large copperplate engravings of plans and views. Imperial folio, cloth......... 2500
ROGERS (Prof. H. D.) The Geology of Pennsylvania. A Government Survey, with a General View of the Geology of the United States, essays on the Coal Formation and its Fossils, and a description of the Coal Fields of North America and Great Britain. Illustrated with plates and engravings in the text. 3 vols. 4to, cloth, with portfolio of maps................. 5∞
ROSE (JOSHUA, M.E) The Pattern-makers' Assistant. Embracing Lathe Work, Branch Work, Core Work, Sweep Work, and Practical Gear Constructions, the Preparation and Use of Tools, together with a large collection of useful and valuable Tables. Sixth edition. Illustrated with 250 engravings. 8vo, cloth. 250

Key to Engines and Engine-Runhing. A Practical Treatise upon the Management of Steam Engines and Boilers, for the Use of Those who Desire to Pass

Abstract

an Examination to Take Charge of an Engine or Boiler. With numerous illustrations, and Instructions upon Engineers' Calculations, Indicators, Diagrams, Engine Adjustments, and other Valuable Information necessary for Engineers and Firemen. 12 mo , cloth. ```300```

SABINE (ROBERT). History and Progress of the Electric Telegraph. With descriptions of some of the apparatus. 12mo, cloth.

25
SAELTZER (ALEX.) Treatise on Acoustics in connec-
tion with Ventilation. 12mo, cloth................... 100
SALOMONS (Sir DAVID, M.A.) Electric Light Installations, and the manageme t of Accumulators. New edition, revised and enlarged, with numerous illustrations. I2mo, cloth.. 150
SAUNNIER (CLAUDIUS). Watchmaker's Hand-book. A Workshop Companion for those engaged in Watchmaking and allied Mechanical Arts. Translated by J. Tripplin and E. Rigg. i2mo, cluth

SEATON (A. E.) A Manual of Marine Engineering. Comprising the Designing, Construction, and Working of Marine Machinery. With nu:serous tables and illustrations. roth edition. 8 vo , cloth.
SCHUMANN (F.) A Manual of Heating and Ventilation in its Practical Application, for the use of Engineers and Architects. Embracing a series of Tables and Formulæ for dimensions of heating, flow and return pipes for steam and hot-water boilers, flues, etc. 12mo, illustrated, full roan

Formulas and Tables for Architects and Engineers in calculating the strains and capacity of structures in Iron and Wood. 12 mo , morocco, tucks
SCRIBNER (J. M.) Engineers' and Mechanics' Companion. Comprising United States Weights and Measures. Mensuration of Superfices, and Solids, Tables of Squares and Cubes, Square and Cube Roots, Circumference and Areas of Circles, the Mechanical Powers, Centres of Gravity, Gravitation of Bodies, Pendulums, Specific Gravity of Bodies, Strength, Weight, and Crush of Materials, WaterWheels, Hydrostatics, Hydraulics, Statics, Centres of
Percussion and Gyration, Friction Heat, Tables of the Weight of Metals. Scantling, etc. Steam and the Steam-Engine. 16mo, full morocco.............. ..
SCHELLEN (Dr. H.) Magneto-Electric and DynamoElectric Machines: their Construction and Practical Application to Electric Lighting, and the Transmission of Power. Translated from the third German edition by N. S. Keith and Percy Neymann, Ph.D. With very large additions and notes relating to American Machines, by N. S. Keith. Vol. 1, with 353 illustrations

SHIELDS (J. E.) Notes on Engineering Construction. Embracing Discussions of the Principles involved, and Descriptions of the Material employed in Tunnelling, Bridging, Canal and Road Building, etc. 12 mo , cloth

SHREVE (S. H.) A Treatise on the Strength of Bridges and Roofs. Comprising the determination of Algebraic formulas for strains in Horizontal, Inclined or Rafter, Triangular, Bowstring, Lenticular, and other Trusses, from fixed and moving loads, with practical applications, and examples, for the use of Students and Engineers. 87 woodcut illustrations. 8vo, cloth.
SHUNK (W. F.) The Field Engineer. A Handy Book of Practice in the Survey, Location, and Truck work of Railroads, containing a large collection of Rules and Tables, original and selected, applicable to both the Standard and Narrow Gauge, and prepared with special reference to the wants of the young Engineer. Ninth edition. Revised and Enlarged. 12mo, morocco, tucks

SIMMS (F. W.) A Treatise on the Principles and Practice of Levelling. Showing its application to purposes of Railway Engineering, and the Construction of Roads, etc. Revised and corrected, with the addition of Mr. Laws' Practical Examples for setting out Railway Curves. Illustrated. 8vo, cloth.

Practical Tunnelling. Explaining in detail Settingout of the Work, Shaft-sinking, Sub-excavating, Timbering, etc., with cost of work. 8vo, cloth

SLATER (J. W.) Sewage Treatment, Purification, and Utilization. A Practical Manual for the Use of Corporations, Local Boards, Medical Officers of Health, Inspectors of Nuisances, Chemists, Manufacturers, Riparian Owners, Engineers, and Rate-payers. 12mo, cloth
SMITH (ISAAC W., C.E.) The Theory of Deflections and of Latitudes and Departures. With special applications to Curvilinear Surveys, for Alignments of Railway Tracks. Illustrated. 16mo, morocco, tucks

- (GUSTAVUS W.) Notes on Life Insurance. Theoretical and Practical. Third edition. Revised and enlarged. 8 vo , cloth.
STAHL (A. W.) and WOODS (A. T.) Elementary Mechanism. A Text-book for Students of Mechanical Engineering. 12mo, cloth.
STALEY (CADY) and PIERSON (GEO. S.) The Separate System of Sewerage : its Theory and Construction. 8vo, cloth. With maps, plates, and numerous illustrations. 8vo, cloth
STEVENSON (DAVID, F.R.S.N.) The Principles and Practice of Canal and River Engineering. Revised by his sons David Alan Stevenson, B.Sc., F.R.S.E., and Charles Alexander Stevenson, B.Sc., F.R.S.E., Civil Engineer. 8vo, cloth io ∞
-The Design and Construction of Harbors. A Treatise on Maritime Engineering. 8vo, cloth........io ∞
STILES (AMOS). Tables for Field Engineers. Designed for use in the field. Tables containing all the functions of a one degree curve, from which a correspording one can be found for any required degree. Also, Tables of Natural Sines and Tangents. 12mo, morocco, tucks
STILLMAN (PAUL). Steam-Engine Indicator and the Improved Manometer Steam and Vacuum Gauges; their Utility and Application. 12 mo , flexible cloth... I 00
STONEY (B. D.) The Theory of Stresses in Girders and Similar Structures. With observations on the application of Theory to Practice, and Tables of Strength, and other properties of Materials. 8 vo , cloth

STUART (B.) How to become a Successful Engineer. Being Hints to Youths intending to adopt the Profession. Sixth edition. 12mo, boards

- (C. B.) C.E. Lives and Works of Civil and Military Engineers of America. With 10 steel-plate engravings. 8vo. cloth

SWINTON (ALAN A. CAMPBELL). The Elementary Principle of Electric Lighting. Illustrated. 12 mo , cloth60

SWINBURNE (J.) Practical Electrical Measurement.
With 55 illustrations. 8vo, cloth

TEMPLETON (WM.) The Practical Mechanic's Workshop Companion. Comprisint a great variety of the most useful rules and formulæ in Mecnanical Science, with numerous tables of practicai data and calculated results facilitating mechanical operations. Revised and enlarged by W. S. Hutton. 12 mo , morocco...... 200

THOMPSON (EDWARD P.) How to make Inventions;
or, Inventing as a Science and an Art. A Practical
Guide for Inventors.: 8vo, paper
TONER (J. M.) Dictionary of Elevations and Climatic Register of the United States. 8vo, cloth 375
TREVERT (E.) E.ectricity and its Recent Applications. A Practical Treatise for Students and Amateurs, with an Illustrated Dictionary of Electrical Terms and Phrases. Illustrated. 12 mo , cloth

TUCKER (Dr. J. H.) A Manual of Sugar Analysis, in
cluding the Applications in General of Analytical
Methods to the Sugar Industry. With an Introduc
tion on the Chemistry of Cane Sugar, Dextrose, Lev
ulose, and Milk Sugar. 8vo, cloth, illustrated.
rUMLIRZ (Dr. O.) Potential and its Application to the Explanation of Electric Phenomena, Popularly Treated. Translated from the German by D. Robertson. Ill. 12mo, cloth.
IUNNER (P. A.) Treatise on Roll-Turning for the Manufacture of Iron. Translated and adapted by John B. Pearse, of the Pennsylvania Steel Works,
with numerous engravings, woodcuts. 8 vo , cloth, with folio atlas of plates

1000
URQUHART (J. W.) Electric Light Fitting. Embodying Practical Notes on Installation Management. A Hand-book for Working Electrical Engineers-with numerous illustrations. 12mo, cloth
200
——Electro-Plating. A Practical Hand book on the Deposition of Copper, Silver, Nickel, Gold, Brass, Aluminium, Platinum, etc. 12 mo
200

Electro-Typing. A Practical Manual, forming a New and Systematic Guide to the Reproduction and Multiplication of Printing Surfaces, etc. $12 \mathrm{mo}200$

> Dynamo Construction : a Practical Hand-book for the Use of Engineer Constructors and Electricians in Charge, embracing Framework Building, Field Magnet and Armature Winding and Grouping, Compounding, etc., with Examples of Leading English, American, and Continental Dynamos and Motors, with numerous illustrations. 12 mo, cloth............ 3∞

UNIVERSAL 'The) TELEGRAPH CIPHER CODE.
Arranged fo: General Correspondence. 12mo, cloth.. 100
VAN WAGENEN (T. F.) Manual of Hydraulic Mining. For the Use of the Practical Miner. 18mo, cloth..... 100

WANKLYN (J. A.) A Practical Treatise on the Examination of Milk and its Derivatives, Cream, Butter, and Cheese. 12 mo , cloth.
—— Water Analysis. A Practical Treatise on the Examination of Potable Water. Seventh edition. 12mo, cloth.
WARD (J. H.) Steam for the Million. A Popular Treatise on Steam, and its application to the Useful Arts, especially to Navigation. $8 v o$, cloth............. $\mp \infty$
WARING (GEO. E.. Jr.) Sewerage and Land Drainage. Large Quarto. Iilustrated with wond-cuts in the text, and full-page and folding plates. Cloth.

WATT (ALEXANDER). Electro-Deposition. A Practical Treatise on the Electrolysis of Gold, Silver, Copper, Nickel, and other Metals, with Descriptions of Voltaic Batteries, Magneto and Dynamo-Electric Machines, Thermopiles, and of the Materials and Processes used in every Department of the Art, and several chapters on Electro-Metallurgy. With numerous illustrations. Third edition, revised and corrected. Crown $8 \mathrm{vo}, 568$ pages

Electro-Metallurgy Practically Treated. 12mo, cloth
WEALE (JOHN). A Dictionary of Terms Used in Architecture- Building, Engineering, Mining, Metallurgy, Archsoology, the Fine Arts, etc., with explanatory observations connected with applied Science and Art. 12mo, cloth.... 250
WEBB (HERBERT LAWS). A Practical Guide to the Testing of Insulated Wires and Cables. Illustrated. 12mo, cloth.
WEISBACH (JULIUS). A Manual of Theoretical Mechanics. Translated from the fourth augmented and improved German edition, with an Introduction to the Calculus by Eckley B. Coxe, A.M., Mining Engineer. rioo pages, and 902 woodcut illustrations. 8vo, cloth
\qquad
WEYRAUCH (J. J.) Strength and Calculations of Dimensions of Iron and Steel Construction, with reference to the Latest Experiments. 12mo, cloth, plates.. 100
WHIPPLE (S., C.E.) An Elementary and Practical Treatise on Bridge Building. 8vo, cloth.............. 400
WILLIAMSON (R. S.) On the Use of the Barometer on Surveys and Reconnoissances. Part I. Meteorology in its Connection with Hypsometry. Part II. Barometric Hypsometry. With Illustrative tables and engravings. 4 to, cloth

WRIGHT (T. W., Prof.) A Treatise on the Adjustment of Observations. With applications to Geodetic Work, and other Measures of Precision. 8vo, cloth... 400

- A Text-book of Mechanics for Colleges and Technical Schools. 12mo, cloth.
,
-
-

No. 60.-STRENGTH OF WROUGHT-IRON BRIDGE MEMBERS. By S. W. Robinson, C.E.
No. 61.-POTABLE WATER AND THE DIFFERENT ME'THODS OF DETECTING IMPURITIES. By Chades W. Folkhard.
No. 62.-THE THEORY OF THE GAS-ENGINE. By Dougald Clerk. Secoud edition. With additional matter. Edited by F. E. Idell, M.E.
No. 63.-HOUSE DRAINAGE AND SANITARY PLUMBING. By W. P. Gerhard. Fourth edition. Revised.
No. 64.-ELECTRO-MAGNETS. By Th. du Moncel. 2d revised edition.
No. 65.-POCKET LOGARITHMS TO FOUR PLACES OF DECLMALS.
No. 66.-DYNAMO-ELECTRIC MACHINERY. BY S. P. Thompson. With notes by F. L. Pope. Third edition.
No. 67.-HYDRAULIC TABLES BASED ON "KUTTER'S FORMULA." By P. J. Flynn.
No. 68.-STEAM-HEATING. By Robert Briggs. Second edition, revised, with additions by A. R. Wolff.
No. 69.-CHEMICAL PROBLEMS. By Prof J. C. Foye. Second edition, revised and enlarged.
No. ro.-EXPLOSIVFS AND EXPLOSIVE COMPOUNDS. By M. Bertholet.
No. 71.-DYNAMIC ELECTRICITY. By John Hopkinson, J. A. Schoolbred, and R. E. Day.

No. 72.-TOPOGRAPHICAL SURVEYING. By George J. Specht, Prof. A. S. Hardy, John B. McMaster, and H. F. Walling.

No. 73.-SYMBOLIC ALGEBRA; OR, THE ALGEBRA OF algebraic numbers. By Prof. W. Cain.
No. 74.-TESTING MACHINES: THEIR HISTORY, CONSTRUCTION, AND USE. By Arthur V. Abbott.
No. 75.-RECENT PROGRESS IN DYNAMO-ELECTRIC MACHINES. Being a Supplement to DynamoElectric Machinery. By Prof. Sylvanus P. Thompson.
No. 76.-MODERN REPRODUCTIVE GRAPHIC PROCESSES. By Lieut. James S. Pettit, U.S.A.
No. 77.-STADIA SURVEYING. The Theory of Stadia Measurements. By Arthur Winslow.
No. 78.-THE STEAM-ENGINE INDICATOR, AND ITS USE. By W. B. Le Van.
No. 79.-THE FIGURE OF THE EARTH. By Frank C. Roberts, C.E.
No. 80.-HEALTHY FOUNDATIONS FOR HOUSES. By Glenn Brown.

No. S1.- WATER METERS : ©OMPARATIVE TISTS OF ACCURAUY, DELIV'ERY, ETC. Distinctive features of the Worthington, Kennedy, Siemens, and llesse meters. By Ross E. Browne.
No. 83. -THE PRESERYATION OF TIMBER BY THE USE OF ANTISEPTICS. By samuel Bagster Boulton, C.E.
No. 83. - IECHANICAL INTEGRATORS. By Prof. Henry S. H. Shaw, C. E.

No. 81.-FLOW OF WATER IN OPEN CHANNELS, PIPES, CONDUITS, SeIVERS, ETC. With Tables. By P. J. Flynn, C.E.

No. 85.-THE LUMINIFEROUS ETHER. By Prof. de Volson Wood.
No. S6.-HAND-BOOK OF MINERALOGY ; DETERMINA TION AND DUGORIPTIUN OF MINERALS FOUND IN THE UNITED STATES. By Prot. J. C. Foye.

No. Si\%-TREATISE ON THE THEORY OF THE CONSTRUOTION OF HELICOIDAL OBLIQUE ARCHES By John L. Culley, C.E.
No. 88.-BEAMIS AND GIRDERS. Practical Formulas for their Resistance. By P. H. Philbrick.
No. 89.-MODERN GUN COTTON : ITS MANUFACTURE, PROPERTIES, AND ANALYSIS. By Lieut. John P. Wisser, U.S.A.
No. 90.-ROTARY MOTION AS APPLIED TO THE GYROSCOPE, By Gen. J. G. Barnard.
No. 91.-LEVELING: BAROMETRIC, TRIGONOMETRIC, AND SPIRIT. By Prof. I. O. Baker.
No. 92.-PETROLEUMI : ITS PRODUCTION AND USE. By Boverton Redwood, F.l.C., F.C.S.
No. 33.-RECENT PRACTICE IN THE SANITARY DRAINAGE OF BUILDINGS. With Memoranda on the Cost of Plumbing Work. Second edition, revised. By William Paul Gerhard, C.E.
No. 94.-THE TREATMENT OF SEWAGE. By Dr. C. Meymott Tidy.
No. 95.-PLATE GIRDER CONSTRUCTION. By Isami Hiroi, C E.
No. 96.-ALTERNATE CURRENT MACHINERY. By Gisbert Kapp, Assoc. M. Inst., C.E.
No. 97.-THE DISPOSAL OF HOUSEHOLD WASTE. By W. Paul Gerhard, Sanitary Etgineer.

No. 98.-PRACTICAL DYNAAIO BUILDING FOR AMA. TEURS. HOW TO WIND FOR ANY (HUTPUT. By Frederick Walker. Fully illustrated.
No. 99.-TRIPPLE-EXPANSION ENGINES AND ENGING TRLALS. By Prof. Osborne Reynolds. Edited, with notes, etc., by F. E. Idell, M.E.

39999066070234

 for the duties of the Civil Engiueer. By Prof. Geo. W. Plympton.
No. 101.-THE SEXTANT, and other Reflecting Mathematical Instruments. With Practical Hints for their adjustment and use. By F. R. Brainard, U.S. Navy.
No. 102.-THE GALVANIC CIRCUIT INVESTIGATED MATHEMATICALLY. By Dr. G. S. Ohm, Berlin, 18:\% . Translated by William Francis. With Preface and Notes by the Editor, Thomas D. Lockwood, M.I.E.E.
No. 103.-THE MICRDSCOPICAL EXAMINATION OF POTABLE WATER. Witil Diagrams. By Geo. W. Rafter.

No. 104.-VAN NOSTRAND'S 'TABLE BOOK FOR CIVIL ANTD MECHANICAL ENGINEERS. Compiled by Prof. Geo. W. Plympton.
Nゥ. 105.-DETERMINANTS. An Introduction to the Study of, with Examples and Applications. By Prof. G. A. Miller.

No. 106.-COMPRESSED AIR. Experiments upon the Transmission of Power by Compressed Air in Paris. (Popp's System.) By Prof. A. B. W. Kennedy. The Transmission an 1 Distribution of Power from Central Stations by Compressed Air. By Prof. W. C. Unwin.
No. 10\%.-A GRAPHICAL METHOD FOR SWING-BRIDGEA. A Rational and Easy Graphical Analysis of the Stresses in Ordinary Swing-Bridges. With an Introduction on the General Theory of Graphical Statics. By Benjamin F.La Rue. 4 Plates.
No. 108.-SLIDE VALVE DIAGRAMS. A French Method of Obtaining Slide Valve Diagrams._By Lloyd Bankson, B.S., Assistant Naval Constructor, U. S. Navy. 8 Folding Plates.

```
WH WURS WTH WUEEP SOENTETS.
```



```
3
```


Mis. D . 0 .

f, - :

4P2 of

+18:,-

Ti. . 2an F. P

x - A x+i", ,

$-2-\cdots \quad k-\mu=1 ;-11$

[^0]: * The credit of having first introduced this method of measurement into this country would seem to belong to Mr. John R. Mayer. a French Swiss. It was used by him as early as 1850 ; and subsequently, during his connection with the United States Lake Survey, he did much towards perfecting the instruments and improving the methods of work. An essay by him in the Journal F'ranklin Institute for January, 1865, contains a short hist(rrical sketch of the development of topographical surveying and a brief discussion of the general principles of stadia measurements.

[^1]: * This is demonstrated on page 21.
 \dagger^{t} is dependent upon I and can, therefore, be made a convenient value in any instrument fitted with adjustable stadia wires. It is generally made equal to 100 , so that a reading on the rod of 1 corresponds to a distance of $100+f$.

[^2]: * A notice of this instrument will be found in an article by Mr. Benjamin Smith Lymon, entitled "Telescopic Measurements in Surveying," in Jour. Franklin Inst., May and June, 1868, and a fuller description: is contained in Annales des Mines, Vol. XVI, fourth series.

[^3]: * The above demonstration is substantialiy that given by Mr. George J. Specht, in an article on Topographical Surveying in T'an Nostrand's Engineering Magazine for February, 1880, though enlarged and corrected.

[^4]: * These are very closely the dimensions in Meller \& Brightly's large Surveyor's Transit (5-inch needle), as kindly furnished me by Mr. Feller.

[^5]: * As the cifference is evidently proportional to the length of sight, with a $10 c 0^{\prime}$ sight it would amount to 22.5', ctc.

[^6]: * The readings were taken from two targets, set so that the sight should be horizontal and thus also preventing any personal error or prejudice from affect. ing the reading

[^7]: * This may seem a statement of what was already a well-known fact. But, horctofore, it has bcen assumed to be a direct deduction from optical principles,

[^8]: * This is assuming the measurements to be made by the ordinary method, and not by the approximate one of the U.S. Engineers.

[^9]: * I wish to take this opportunity to acknowledge my indebtedness to Mr. Benjamin Smith Lyman, for the kindly interest he has taken in the above discussion, for his valuable suggestions, and for his assistance in referring me to various sources for information.

